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ABSTRACT

Dense correspondences are critical for applications such as video label propagation,
but learning them is hard because of tedious and unscalable manual annotation
needs. Self-supervised methods address this by using a cross-view pretext task,
often modeled with a masked autoencoder, where a masked target view is recon-
structed from an anchor view. However, acquiring effective training data remains a
challenge - collecting diverse video datasets is costly, while simple image crops
lack the necessary pose variations, underperforming video-based methods. This
paper introduces CDG-MAE, a novel MAE-based self-supervised method that uses
diverse synthetic views generated from static images via an image-conditioned
diffusion model. We present a quantitative method to evaluate the local and global
consistency of the generated views to choose the right diffusion model for cross-
view self-supervised pretraining. These generated views exhibit substantial changes
in pose and perspective, providing a rich training signal that overcomes the limi-
tations of video and crop-based anchors. Furthermore, we enhance the standard
single-anchor MAE setting to a multi-anchor masking strategy to increase the diffi-
culty of the pretext task. CDG-MAE substantially narrows the gap to video-based
MAE methods, while maintaining the data advantages of image-only MAEs.

1 INTRODUCTION

Masked Autoencoders (MAEs) learn rich visual representations by reconstructing randomly masked
parts of an image from the remaining visible context (He et al., 2022). The paradigm of learning by
reconstruction naturally extends to multi-view scenarios through cross-view correspondence learning
(Weinzaepfel et al., 2022; 2023; Gupta et al., 2023; Eymaël et al., 2024). These methods exploit the
redundancy in captured information and the inherent 3D consistency across viewpoints as strong cues
for learning to model dynamics, physics and semantics. A specific adaptation, cross-view masked
auto-encoding, tasks a model to reconstruct a masked view of a scene from another anchor view. By
learning to complete missing parts of scene representations, cross-view masked auto-encoding leads
to strong vision models capable of understanding underlying scene semantics.

Training vision models to learn correspondences requires capturing multiple images of the scene,
which in the real world can be costly. A common shortcut for static environments uses simulators to
render diverse views of a scene (Weinzaepfel et al., 2022; 2023). To model motion and perspective
changes, the data itself must exhibit dynamic changes. Collecting videos is a good alternative (Gupta
et al., 2023), but this comes with an acquisition cost as well as the more limited diversity of the scenes
one can capture. For example, a video captures only a single motion scenario in a scene.

Given the large availability of 2D images, can we generate dynamic variations from images equivalent
to those found in videos for correspondence learning? A simple approach is to emulate changes with
augmentations such as image crops (Eymaël et al., 2024), but the cropped view diversity is limited.
As acknowledged by Eymaël et al. (2024), crops cannot introduce variations in pose, limiting the
richness of learned inductive biases. Consequently, there is a need to develop methods that can use
static images to derive richer, pose-variant transformations found in real-world dynamic scenes.

Diffusion models perform well in image generation (Dhariwal & Nichol, 2021; Labs, 2024), em-
ploying various conditioning mechanisms to guide the generation process (Rombach et al., 2022;
Zhang et al., 2023). Conditioning diffusion models with image embeddings enables the generation of
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Figure 1: CDG-MAE: We train a vision encoder in a self-supervised manner by finding correspon-
dences between real and synthetic views generated by a diffusion model ( Belagali et al. (2024)).
These synthetic views preserve important scene information while introducing diverse dynamics.

diverse variations of an input image in a self-supervised way (S-LDMs Li et al. (2024); Belagali
et al. (2024); Ma et al. (2025)). Crucially, we observe that these variations can introduce different
perspectives or diverse motions, equivalent to individual video frames (see Figure 1). However, in
order to learn correspondences, the generated views should introduce local changes while maintaining
global consistency. Currently, there are no quantitative tools to evaluate such properties.

We introduce CDG-MAE, the first cross-view self-supervised learning method for correspondence
learning, to train Masked Autoencoders using views generated from a diffusion model. However, the
success of this strategy depends on the careful selection of the diffusion model as not all diffusion-
generated views are useful for correspondence learning. In order for such views to provide a training
signal analogous to video data, they must exhibit meaningful changes in pose and image location. To
ensure this, we introduce quantitative consistency metrics to guide us in choosing the right diffusion
model for generating these views. We observe a strong effect of these metrics on final performance.
Finally, we extend the current single-anchor-view setting in cross-view self-supervised learning
by using additional anchor views and applying an anchor-specific masking strategy to increase the
difficulty of the pretext task. Our contributions are as follows:

(i) Diffusion-based view generation for MAE training. We are the first to explore training cross-
view correspondence MAEs using diffusion-generated views to address the limitations of video and
image-crop based cross-view MAE methods.

(ii) A method to evaluate the utility of diffusion generated-views for correspondence learning. We
develop quantitative metrics to evaluate local and global consistency between views. We demonstrate
their effectiveness in choosing the right diffusion model for cross-view self-supervised learning.

(iii) Multi-anchor masking as a novel MAE training paradigm. We extend the standard single-
anchor MAE setting to a multi-anchor framework. Having multiple anchors allows for anchor
masking, which creates a more challenging and effective pretext task.

We show that CDG-MAE, trained with diffusion-generated data and our multi-anchor setting, achieves
substantial improvements over state-of-the-art MAE methods reliant on image crops and narrows the
performance gap with video-based approaches.

2 RELATED WORK

Self-supervised learning — Masked Image Modeling (MIM) is a self-supervised learning paradigm
that masks part of the input visual data and trains models to predict the masked parts using visible
parts (He et al., 2022; Bao et al., 2021; Xie et al., 2022; Wei et al., 2022; Tong et al., 2022; Assran
et al., 2023). Specifically, Masked Autoencoders (MAE He et al. (2022)) divide an image into
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patches, and mask some of them. An encoder extracts features from visible patches only. The
encoder features and appended mask tokens with positional encoding are used to decode the patch
pixel values. With a sufficiently high masking ratio, the encoder learns robust visual features for
downstream discriminative tasks (classification, segmentation, object detection). VideoMAE (Tong
et al., 2022) pretrains on videos integrating multiple frames. Another class of SSL methods are
view-invariant methods which use two augmentations of the same image, and train the model to
match the global/local features between augmentations (Chen et al., 2020; Caron et al., 2021; Grill
et al., 2020; He et al., 2020; Zhou et al., 2021; Oquab et al., 2023; Bardes et al., 2022). In this work,
we specifically focus on MAE as a SSL framework due to its efficiency and modularity.

Cross-view self-supervised learning — learns visual features that match cross-views either for video
(Gupta et al., 2023; Eymaël et al., 2024) or 3D (Weinzaepfel et al., 2022; 2023) downstream tasks.
These works use Siamese Masked Autoencoders to learn cross-view correspondences. Pretraining
employs two views: anchor and target. The masked target image passes through the encoder, then the
decoder reconstructs the masked patches. The anchor view passes through the encoder independently,
without masking. To facilitate cross-view learning, the decoder reconstructs the target view by
cross-attending to the encoder features of the anchor view. A high masking ratio forces the encoder to
learn features that match patches of the anchor view to the target view. Siamese Masked Autoencoders
(SiamMAE Gupta et al. (2023)) extract target and anchor as two different video frames. Given object
motion, view point change, and pose change in video, SiamMAE visual features are suitable for label
propagation downstream tasks: video object propagation (Pont-Tuset et al., 2017a), semantic part
propagation (Zhou et al., 2018a), and pose propagation (Jhuang et al., 2013a). Cropped Siamese
Masked Autoencoder (CropMAE Eymaël et al. (2024)) extends SiamMAE, extracting the two views
from two crops of the same image, obviating the need of video pretraining. CropMAE performs
worse on tasks like pose propagation, as the anchor and target views have limited pose changes.

Diffusion models — generate realistic images due to breakthroughs in conditioning (Ho & Salimans,
2022; Zhang et al., 2023), architecture (Peebles & Xie, 2023; Esser et al., 2024) and sampling (Song
et al., 2020; Lu et al., 2023). Latent Diffusion Models (LDMs Rombach et al. (2022)) efficiently
train a diffusion model in a compact VAE latent space instead of pixel space. While diffusion models
are commonly conditioned on explicit signals such as class labels and text captions, recent works
(Belagali et al., 2024; Li et al., 2024; Ma et al., 2025; Graikos et al., 2024) train conditional diffusion
models in a self-supervised way (S-LDMs). These approaches first train an image encoder using
view-invariant self-supervised learning methods ( Caron et al. (2021); Chen et al. (2021)) to learn
image embeddings. The diffusion model is then conditioned on the output of the frozen encoder.

Diffusion models are increasingly used for data augmentation, including self-supervised settings.
Tian et al. (2024a;b) use Stable Diffusion to generate augmentations, whereas, approaches like
Gen-SIS (Belagali et al., 2024) train the diffusion model on the same dataset used for the main
SSL task. We experiment with three different self-supervised image-conditioned diffusion models:
Gen-SIS (Belagali et al., 2024), RCG (Li et al., 2024), and Lumos (Ma et al., 2025). Gen-SIS and
RCG are pretrained on ImageNet-1K, while Lumos is pretrained on 190M open-source images.

3 METHOD

Our approach, CDG-MAE, consists of three stages: 1) Bag of views generation. 2) Quantitative view
evaluation and 3) Cross-view MAE training. Figure 2 describes the overall pipeline of CDG-MAE.

3.1 BAG OF VIEWS

Given an image-only dataset (e.g., ImageNet), we generate M alternative views of the scene depicted
by each real image via an off-the-shelf image-conditioned diffusion model. We mainly use a Self-
supervised Latent Diffusion Model (S-LDM), pretrained with ImageNet self-supervision (Belagali
et al., 2024). S-LDM follows the Latent Diffusion Model (Rombach et al., 2022) architecture and
is conditioned with an image encoder pretrained with view invariant SSL (Caron et al., 2021) and
frozen during LDM training. We observe that S-LDM generates diverse views of an input image with
motion, pose, and perspective variations, mimicking changes between video frames (Figure 1). These
offline generated views, along with the original image, are the bag of views for that input, avoiding
online sampling during MAE training (with a one-time cost of 135 ms per real image).
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Figure 2: Overview of CDG-MAE: (a) For every real image, we generate M views using an off-the-
shelf S-LDM (Belagali et al., 2024). (b) We develop quantitative metrics to evaluate local and global
consistencies between view pairs. (c) We develop a multi-anchor framework to train cross-view MAE.
Having multiple anchors allows for anchor masking, which creates a more challenging pretext task.

3.2 EVALUATING CONSISTENCY BETWEEN VIEW PAIRS

Intuitively, an ideal pair of views (V1, V2) for correspondence learning should feature the same set
of objects undergoing transformations in motion, pose, and perspective. Such views must therefore
exhibit local variations that reflect these transformations while maintaining global consistency. To
measure these properties, we developed consistency metrics. Figure 2 (b) provides a visual illustration.

Let f∗(·) and fi(·) denote functions that extract a transformer-based global and local embedding at
a spatial location i, respectively for a single input V1. In our case, f∗(V1) is the [CLS] token and
fi(V1) is the ith patch token extracted from a ViT encoder. We use the pretrained ViT-B/16 MAE
(He et al., 2022) to extract both patch tokens and CLS tokens. Let us assume there are L distinct
spatial locations, indexed from 1 to L. Using this information, we calculate the:

Global Similarity (GS) — Measures the overall semantic coherence between views V1 and V2. It is
defined as the cosine similarity (sim(u,v)) between their respective global embeddings, f∗(V1) and
f∗(V2). High GS is desirable, indicating that global semantic content is preserved.

Local Similarity (LS) — It is the average cosine similarity between local embeddings fi(V1) and
fi(V2) from V1 and V2 respectively, at each identical spatial location i. A low LS indicates change in
motion, pose, and perspective between views.

Nearest Patch Similarity (NPS) — Provides a measure of global consistency, especially in the
presence of transformations. For each local embedding fi(V1) in V1, we identify its nearest neighbor
(most similar) among all local embeddings {fj(V2)}Lj=1 from V2. NPS is then calculated as the
average of these maximum similarity scores across all L locations in V1. Even with significant
changes in motion, pose, or perspective, a high NPS is expected if the views remain globally coherent.

GS(V1, V2) = sim(f∗(V1), f∗(V2)) (1)

LS(V1, V2) =
1

L

L∑
i=1

sim(fi(V1), fi(V2)) (2)

NPS(V1, V2) =
1

L

L∑
i=1

(
max

j∈{1,...,L}
sim(fi(V1), fj(V2)

)
(3)
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Table 1 presents the evaluation of quantitative metrics on several types of view pairings: (i) video
frames, (ii) synthetic views generated by the S-LDM, (iii) k-nearest neighbor (k-nn) image pairs
from the training data (derived from cosine similarity in S-LDM conditioning encoder space), and
(iv) random image pairs. The result demonstrates that S-LDM generated views are much closer to
video frames than k-nn images or random pairs. This indicates that S-LDM, conditioned on static
real images, can mimic characteristics of video data, making it ideal for correspondence learning. In
Section 5.2, we demonstrate the effectiveness of the above metrics in choosing the right diffusion
model for view generation.

Table 1: Quantitative evaluation of diffusion generated views when compared to video frames, k-nn
images, and random pair of images. We sample random 5000 images from ImageNet (Deng et al.,
2009) and 5000 pair of video frames from Kinetics-400 (Kay et al., 2017) for calculation.

Views Global Sim. (↑) Local Sim. (↓) Nearest Patch Sim.(↑ )

Video frames 0.992 0.389 0.884
Diffusion (S-LDM) 0.992 0.377 0.795

K-nn images 0.951 0.301 0.719
Random images 0.892 0.175 0.600

3.3 CDG-MAE OVERALL DESIGN AND TRAINING STRATEGY

In this section, we explain the overall design and training methodology for CDG-MAE: cross-view
masked autoencoders using diffusion generated views. Consistent with existing works on cross-view
MAE (Gupta et al., 2023; Eymaël et al., 2024), the pretext task is the reconstruction of randomly
masked patches in a target, using visible target patches and anchor views. The architecture is an
encoder-decoder Vision Transformer (ViT), where the target and each anchor are independently
processed by a weight-shared ViT encoder. Subsequently, the decoder appends mask tokens to the
visible target tokens, and reconstructs the content for these masked patches. This reconstruction is
conditioned on visible target tokens through self-attention and on anchor tokens via cross-attention.

In the remainder of this section, we denote the encoder and decoder as eθ and dψ respectively. We
define image patchification operator as ρ(·), masking operator as m(·, ratio), and concatenation as
[·; ·]. The masking ratios for the target and anchor views are denoted by rt and ra, respectively.

Encoding Target — The target image T ∈ RH×W×3 is first patchified into a sequence of Nt =
(H/P )× (W/P ) non-overlapping patches, each of size P × P × 3. We then flatten these patches
into a 1D sequence, and apply random masking using a high target masking ratio (rt). We discard
the masked patches T̃v , and process the visible patches Tv through the encoder eθ to obtain encoder
target representations T ′

v .

Tp = ρ(T ), Tv, T̃v = m(Tp, rt) (4)

T ′
v = eθ(m(Tp, rt); θ) (5)

Multi-anchor and anchor-masking — Traditional cross-view MAEs such as SiamMAE (Gupta
et al., 2023) and CropMAE (Eymaël et al., 2024) typically encode a single unmasked anchor view.
In CDG-MAE, we propose leveraging multiple anchor views, {Ak}Nk=1, sampled from the "bag of
views" (where N is the number of anchors). Furthermore, we introduce anchor masking: each anchor
view Ak is independently masked with a specific anchor masking ratio (ra), allowing for fine-grained
control over the difficulty of the pretext task. HigherN can provide the decoder with richer contextual
information, simplifying target reconstruction. Conversely, applying anchor masking makes the task
more challenging by reducing the visible information from each anchor. We demonstrate that an
optimal balance between N and ra enhances representation learning.

Similar to target encoding, each anchor Ak is patchified and masked. We discard masked anchor
patches, and pass the visible patches through the weight-shared encoder eθ (Siamese-style encoding)
to obtain anchor tokens A′k

v . We then concatenate the output tokens from all N anchors to form a
aggregated anchor representation A′

v

5
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A′k
v = eθ(m(ρ(Ak), ra); θ), ∀k ∈ {1, . . . , N} (6)

A′
v = [A′1

v ;A
′2
v ; ..;A

′N
v ] (7)

Target reconstruction — The input to the decoder dψ is the sequence Ta, which is a concatenation
of encoder target representations T ′

v and mask tokens MT̃v
. The decoder self-attends to all tokens

within Ta, and cross-attends to the aggregated anchor representation A′
v, allowing it to leverage

information across anchor views to predict the masked target patches.

Our multi-anchor setting encourages the encoder eθ to learn features that are robust for matching
across a diverse set of views - beyond just two views as in prior work (Gupta et al., 2023; Eymaël
et al., 2024). We apply a reconstruction loss (MSE) between masked target patches T̃v and decoder
predictions Tr, following prior work.

Ta = [T ′
v,MT̃v

] (8)

Tr = dψ(Ta, A
′
v;ψ) (9)

L(Tr, Tp) =
1

|T̃v|

∥∥∥Tr − T̃v

∥∥∥2
2

(10)

4 EXPERIMENTAL SETTING

Bag of Views creation — For each real image in the ImageNet-1K (Deng et al., 2009) training
dataset, we generate M = 4 random synthetic views using the pretrained checkpoint of S-LDM
(Belagali et al., 2024). The real image along with generated views are treated as the bag of views.
The generation is done in offline mode and stored on the disk before training CDG-MAE. Following
(Belagali et al., 2024), we use a classifier-free guidance weight (Ho & Salimans, 2022) of 6 and 50
DDIM (Song et al., 2020) steps for sampling.

Training — We utilize the official codebase of CropMAE (Eymaël et al., 2024) and closely follow
their setting. By default, we use a ViT-S/16 encoder and a four-layer decoder. Each decoder block has
an embedding dimension of 256, and contains cross-attention, feedfoward and self-attention modules.
We train for 100 epochs on ImageNet-1K with a base learning rate of 1.5× 10−4 and batch size of
2048.

From the bag of views (containing M views), one image is randomly chosen as the target and N
additional images as anchors (N < M ). We use a target masking ratio ra = 90% . In the multi-
anchor setting, we apply uniform anchor masking ratio across all anchors, with each anchor masked
independently and randomly. We also investigate the impact of training with a reduced patch size by
training both CropMAE and CDG-MAE with a ViT-S/8 backbone for 100 epochs. More training
details are provided in Appendix A.1.1.

Downstream evaluation — Following existing works (Gupta et al., 2023; Eymaël et al., 2024)
we evaluate correspondence learning using three label propagation tasks in videos - 1) DAVIS-2017
video object segmentation (Pont-Tuset et al., 2017b) , 2) VIP semantic part propagation (Zhou et al.,
2018b), and 3) JHMDB human pose propagation (Jhuang et al., 2013b). In label propagation, we
are provided with the annotation of the first frame and the task is to propagate the label to all frames
by computing the similarity (correspondence) between patches of frames. The evaluation is done
in a training-free manner using the pretrained encoder following the setting of (Gupta et al., 2023;
Eymaël et al., 2024). More details are provided in the Appendix A.1.2.

5 RESULTS

We first discuss the design choices of CDG-MAE in Sec 5.1,5.2, 5.3 and then compare with MAE-
based methods in Sec 5.4. We present results on training with a smaller patch size in Sec 5.5.
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Table 2: It is optimal to choose real or
generated image as the target view.

Target View DAVIS VIP JHMDB
J&Fm mIoU PCK0.1

Always Real 61.3 37.1 46.8
Always Generated 60.0 37.1 46.5
Real or Generated 61.2 37.6 46.5

k-nn image 60.5 36.0 46.5

Table 3: A balanced target masking ratio
(rt = 90% ) yields best performance.

Masking DAVIS VIP JHMDB
Ratio (%) J&Fm mIoU PCK0.1

75 60.0 34.9 46.2
90 61.2 37.6 46.5

98.5 60.7 35.5 44.4

5.1 TARGET SELECTION AND MASKING

To investigate the influence of target selection, we employ a simple single-anchor configuration
where the anchor view is unmasked (ra = 0) and with a high target masking ratio (rt = 90%). We
evaluate three strategies for selecting the target view: 1) always using the real image, 2) always using
a diffusion-generated view or 3) randomly choosing between real and generated. We observe in Table
2 that always using the real image as target and the random choice strategy yield comparable, strong
performance. Hence, we adopt the random choice selection as the default strategy for CDG-MAE.

In Table 2, we also tested using k-nearest neighbor (k = 5) image pairs for anchor and target, and
observe that it underperforms our default strategy. While k-nn images might share global feature
similarity, Table 1 indicates they lack the high Nearest Patch Similarity found in video frames.

Next, in Table 3, we investigate the effect of target masking ratio (rt). Unlike vanilla MAE (which
uses rt = 75%), cross-view MAEs such as (Eymaël et al., 2024; Gupta et al., 2023) typically employ
higher ratios (≥90%). Lower ratios (e.g., 75%) can encourage the target to reconstruct itself, thereby
hindering correspondence learning from anchor views. CropMAE uses a very high ratio (rt = 98.5%)
to keep the task challenging under high information redundancy between anchor and target cropped
from the same image. In CDG-MAE, such high ratio performs poorly. This can be attributed to the
greater visual variations between diffusion generated anchor views and the target image compared
to simple image crops. In our case, target reconstruction requires more context. We observe that a
balanced masking ratio of rt = 90% yields optimal performance.

5.2 DIFFUSION MODEL SELECTION

In this section, we experiment training CDG-MAE (single-anchor setting) using views generated
from three diffusion models pretrained in a self-supervised manner (S-LDM): Gen-SIS (Belagali
et al., 2024), RCG (Li et al., 2024), and Lumos (Ma et al., 2025). Gen-SIS and RCG are trained
on ImageNet-1K, while Lumos is trained on a large collection of 190M images from open source
datasets. Table 4 shows the performance of CDG-MAE when trained with views from different
diffusion models, along with our proposed consistency metrics (GS, LS, NPS). We also report the
metrics on Kinetics video frames for reference. The table shows that views generated from Gen-SIS
and Lumos are considerably closer to video frames than RCG-generated views in terms of GS, LS,
and NPS. Similarly, we observe that training with views from either Gen-SIS or Lumos offers higher
performance than training with RCG. This finding demonstrates the importance of our proposed
metrics in identifying the right diffusion model for learning correspondences. Based on these metrics,
we chose Gen-SIS over RCG as our default diffusion model. Since Lumos is trained on a larger scale
dataset than ImageNet-1K, we do not use it in our experiments to avoid potential data leakage effects.
We did not include image-to-video diffusion models in our study because it would require immense
computational resources (tens of thousands of A100 hours) to generate videos at ImageNet scale (see
Appendix A.4.4).

5.3 MULTI-ANCHOR AND ANCHOR-MASKING

In this section, we explore the extension from a single-anchor to a multi-anchor framework. The
latter enables us to introduce anchor masking, a technique not explored in prior methods such as
SiamMAE (Gupta et al., 2023) and CropMAE (Eymaël et al., 2024).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: CDG-MAE performance with different diffusion models (S-LDMs) and corresponding
consistency metrics (GS, LS, NPS). Video frame metrics provided as reference. Our proposed
consistency metrics strongly effect the performance.

Diffusion Model DAVIS VIP JHMDB Global Sim. (↑) Local Sim. (↓) Nearest Patch Sim.(↑ )

Gen-SIS ( Belagali et al. (2024)) 61.2 37.6 46.5 0.992 0.377 0.795
RCG ( Li et al. (2024)) 57.4 34.8 43.7 0.955 0.308 0.738

Lumos ( Ma et al. (2025)) 61.9 37.7 47.3 0.995 0.376 0.812

Video frames NA NA NA 0.992 0.389 0.884

Table 5 demonstrates that transitioning from a single anchor to two anchors substantially improves
performance. With two anchors, the decoder can learn more robust correspondences by matching
target patches across both views. Within the two-anchor configuration, applying an anchor masking
ratio of 25% or 50% further enhances the results. Ultimately, we achieve optimal performance using
three anchors with a 25% anchor masking ratio, as presented in Table 5. This highlights the need for
anchor masking when increasing the number of anchors to avoid providing too much information to
the decoder, which would greatly reduce the task difficulty.

Table 5: Effect of multiple anchors and anchor masking (ra). Multi-anchor training improves
performance, and anchor masking offers control over pretext task difficulty. We report mean ± std
across 3 pretraining runs (seeds).

Num. of Anchor DAVIS VIP JHMDB
Anchors (N ) Masking ratio (ra) J&Fm mIoU PCK0.1

1 0 61.2±0.0 37.6 ±0.4 46.5 ±0.3

2 0 62.0 ±0.1 37.6 ±0.1 47.1 ±0.2
2 25% 62.4 ±0.2 38.0 ±0.3 47.3 ±0.1
2 50% 62.1 ±0.1 38.1 ±0.2 47.8 ±0.1

3 25% 62.6 ±0.1 38.1 ±0.1 47.8 ±0.2
3 50% 62.0 ±0.4 37.4 ±0.3 47.5 ±0.2

5.4 COMPARISON WITH OTHER MASKED AUTOENCODERS

We compare CDG-MAE with multiple MAE baselines. These include the vanilla MAE (He et al.,
2022), video-based MAEs - Video-MAE (Tong et al., 2022) and MAE-ST (Feichtenhofer et al.,
2022), and other cross-view MAEs such as CropMAE (Eymaël et al., 2024), SiamMAE (Gupta
et al., 2023), and CroCo (Weinzaepfel et al., 2022; 2023). We evaluate two CDG-MAE variants:
CDG-MAE-a1 (single unmasked anchor) and CDG-MAE-a3 (three anchors with 25% masking).

Results in Table 6 show that CDG-MAE substantially outperforms CropMAE across all downstream
tasks, indicating the effectiveness of using diffusion generated views over crops of an image. Fur-
thermore, CDG-MAE-a3 achieves better performance than SiamMAE across most metrics. This is
noteworthy because CDG-MAE is pretrained on the ImageNet-1K dataset, whereas SiamMAE is
trained with video frames from Kinetics-400 dataset, and downstream evaluation tasks are video-
based. This finding demonstrates the efficacy of our multi-anchor and anchor masking strategy for
learning correspondences from static images.

5.5 IMPACT OF FINER GRAINED REPRESENTATIONS

SiamMAE has demonstrated that reducing the encoder patch size from 16 to 8 can substantially
enhance performance. At patch size 8, SiamMAE can learn more robust correspondences from
fine-grained changes (variations of small objects) between two frames. We investigate the effect of
smaller patch size for CDG-MAE, and compare with SiamMAE and CropMAE by training a ViT-S/8
encoder. Results are presented in Figure 3.

CropMAE shows no performance improvement with ViT-S/8 in object and part propagation. This is
likely because cropped views lack sufficient fine-grained variations to benefit smaller patch training.
In contrast, both SiamMAE and CDG-MAE exhibit notable performance gains with ViT-S/8 across all
three tasks, compared to their ViT-S/16 variants. CDG-MAE substantially outperforms image-based
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Table 6: Comparison of CDG-MAE with other MAE based methods. a1 and a3 refer to single
anchor and three anchors with 25% anchor masking respectively. † refers to our reproduction on
ImageNet-1K. The best and second-best results are highlighted in Bold and Underline.

Method Arch Dataset Epochs DAVIS VIP JHMDB
J&Fm Jm Fm mIoU PCK0.1 PCK0.2

MAE ( He et al. (2022)) ViT-B/16 ImagNet-1K 1600 53.5 52.1 55.0 28.1 44.6 73.4
Video-MAE ( Tong et al. (2022)) ViT-S/16 Kinetics-400 800 39.3 39.7 38.9 23.3 41.0 67.9

MAE-ST ( Feichtenhofer et al. (2022)) ViT-L/16 Kinetics-400 800 54.6 55.5 53.6 33.2 44.4 72.5

CroCov1 ( Weinzaepfel et al. (2022)) ViT-B/16 Habitat 400 55.9 52.9 58.9 31.3 42.3 70.6
CroCov2 ( Weinzaepfel et al. (2023)) ViT-B/16 Habitat + Real 100 56.5 53.0 60.0 32.1 44.6 72.8
CroCov2 ( Weinzaepfel et al. (2023)) ViT-L/16 Habitat + Real 100 57.9 54.4 61.4 31.7 43.4 71.3

SiamMAE ( Gupta et al. (2023)) ViT-S/16 Kinetics-400 2000 62.0 60.3 63.7 37.3 47.0 76.1
CropMAE † ( Eymaël et al. (2024)) ViT-S/16 ImagNet-1K 100 59.7 56.9 62.5 33.8 43.9 72.3

CDG-MAE-a1 ViT-S/16 ImagNet-1K 100 61.2 58.1 64.3 37.6 46.5 75.5
CDG-MAE-a3 ViT-S/16 ImagNet-1K 100 62.6 59.7 65.5 38.1 47.8 76.3

SiamMAE CropMAE CDG-MAE
DAVIS object prop.

30

35
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55

60

65

70

75

62.0

71.4

59.758.7
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62.5

SiamMAE CropMAE CDG-MAE
VIP part prop.
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45.9

33.8
32.2

38.1

43.3

38.0

SiamMAE CropMAE CDG-MAE
JHMDB pose prop.

47.0

61.9

43.9

55.6

47.8

56.9

43.9

patch 16 patch 8 cond. encoder

Figure 3: Performance of SiamMAE, CropMAE and CDG-MAE with ViT-S/16 and ViT-S/8 on
DAVIS (J&Fm), VIP (mIoU), and JHMDB (PCK0.1). We also present the performance of S-LDM’s
conditioning encoder with a dashed line.

CropMAE and closes the gap to the video-based SiamMAE. This highlights the ability of diffusion-
generated views to provide diverse and rich variations beneficial for correspondence learning.

Furthermore, we evaluate the conditioning encoder of S-LDM (Belagali et al., 2024) on these
downstream tasks. As indicated by the dashed line in Figure 3, while this encoder performs adequately
on object and part propagation when compared to our ViT-S/16 encoder, it substantially underperforms
in pose propagation. CDG-MAE ViT-S/8 outperforms the conditioning encoder in all three tasks.
This shows that scaling tokens (patch size reduction) allows to better leverage diffusion-generated
data, outperforming the original encoder used to condition the generation of such data.

6 CONCLUSION

We introduced CDG-MAE, a novel MAE framework for learning cross-view correspondence using
diffusion-generated views. We developed new metrics to evaluate the local and global consistency
of generated views. Such properties, inherent in video data, are important to learn correspondences.
We demonstrate the effectiveness of the proposed consistency metrics in choosing the right diffusion
model for view generation. CDG-MAE, trained with diffusion views derived from static images
along with our proposed multi-anchor masking, substantially outperforms existing crop-based MAE
methods and narrows the performance gap with video-based approaches. We hope our work inspires
further exploration into synthetic data generation to leverage rich and diverse image datasets for
cross-view representation learning.

Reproducibility Statement — We have provided implementation details in Sections 4 and A.1. The
code will be released upon publication.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 TRAINING

Our implementation is built using the CropMAE (Eymaël et al., 2024) codebase. We use ImageNet-1K
as our pretraining dataset. The default training hyperparameters for our method (CDG-MAE) under
the single anchor setting are presented in Table 7. We also provide the hyperparameters of CropMAE
as a reference. CDG-MAE also uses cropping as an augmentation, following SiamMAE (Gupta et al.,
2023).
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Real View 1 View 2 View 3 View 4

Figure 4: Bag of views visualization. Real denotes an image in ImageNet dataset. The views represent
the synthetic views generated with diffusion.
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Table 7: Training hyperparameters for CDG-MAE and CropMAE (Eymaël et al., 2024)
CDG-MAE (ours) CropMAE

Optimizer AdamW (β1=0.9, β2=0.95 ) AdamW (β1=0.9, β2=0.95 )
Weight decay 0.05 0.05

Base learning rate 1.5 × 10−4 1.5 × 10−4

Target masking ratio 90% 98.5%
lr schedule Cosine Decay Cosine Decay

Epochs 100 100
Batch size 2048 2048

Bag of views size (M ) 4 –
Augmentations Crop [0.5, 1.0] LocalToGlobal Crop [(0.3, 6.0) (0.1, 1.0)]

Aspect ratio (0.75, 1.33) (0.75, 1.33)

First frame

Figure 5: Visualization of label propagation using CDG-MAE ViT-S/16 on DAVIS Pont-Tuset et al.
(2017a) dataset. The first frame is annotated with the ground truth object segmentation masks.

First frame

Figure 6: Visualization of label propagation using CDG-MAE ViT-S/16 on VIP Zhou et al. (2018a)
dataset. The first frame is annotated with the semantic part segmentation masks.
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First frame

Figure 7: Visualization of label propagation using CDG-MAE ViT-S/16 on JHMDB Jhuang et al.
(2013a) dataset. The first frame is annotated with the pose labels.

A.1.2 DOWNSTREAM EVALUATION

We evaluate our method on standard video label propagation tasks, following the evaluation protocol
of previous works (Eymaël et al., 2024; Gupta et al., 2023). We use three datasets: 1) DAVIS (Pont-
Tuset et al., 2017a) for video object segmentation, 2) VIP (Zhou et al., 2018a) for semantic part
propagation, and 3) JHMDB (Jhuang et al., 2013a) for human pose propagation. In these tasks,
annotation is provided for the first frame, and the objective is to propagate ground-truth labels to all
subsequent frames of the video.

The evaluation is performed in a training-free manner using k-nearest neighbor (k-NN) inference.
Furthermore, this protocol utilizes a memory queue of the last few frames and restricts source patches
to the query’s spatial neighborhood. The specific hyperparameter values for this setup are detailed in
Table 8.

For DAVIS, we report mean region similarity (Jm), mean contour accuracy (Fm), and their combined
average (J&Fm). For VIP, we report the mean Intersection over Union (mIoU). For JHMDB,
evaluation is based on PCK0.1 and PCK0.2, which represent the percentage of keypoints correctly
localized within an error margin of 10% and 20% of the bounding box size, respectively. We use the
evaluation codebase released by CropMAE (Eymaël et al., 2024).

Table 8: Hyperparameters for downstream evaluation using k-nearest neighbor (k-NN) inference.
DAVIS VIP JHMDB

Top-K 7 10 7
Queue Length 20 20 20

Neighborhood Size 20 20 20

A.2 VISUALIZATION

Figure 4 shows samples from the bag of views generated using the ImageNet-1K dataset. As seen in
the figure, the views exhibit changes in pose, motion, and perspective. Moreover, one can observe
that the generated images maintain the main characteristics of the image (objects and background)
making them ideal for the training of our CDG-MAE method.
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Qualitative results of CDG-MAE on downstream tasks are presented in Figure 5, Figure 6, and
Figure 7.

A.3 COMPUTATION ANALYSIS

A.3.1 MULTI-ANCHOR AND ANCHOR MASKING

Table 5 in main paper shows that using multiple anchors with anchor masking improves downstream
task performance. In this section and Table 9, we discuss the associated training computational
complexity (evaluation-time inference complexity is the same for all models). GLOPs are calculated
using a full forward pass up to the loss calculation with a single input training sample. Adding
more anchors without anchor masking increases the computational complexity as it results in more
tokens being processed by the encoder and decoder. However, introducing anchor masking not only
improves performance, but can also help in reducing GLOPs. This is since the masked tokens are
dropped at the input and hence do not add complexity, effectively decreasing the number of tokens
processed by the encoder for each anchor, and finally the number of tokens used in cross-attention by
the decoder. As presented in Table 9, N = 2 anchors and ra = 50% can maintain almost the same
number of FLOPs as the single-anchor setting and outperforms it in downstream tasks. Further, to
make the most out of multiple anchors, our best model uses N = 3 anchors and ra = 25%. Finally,
for N = 4 we noticed no further improvement and even a small decrease in performance. For this
reason, we performed only one seed run for N = 4.

Table 9: Extension of Table 5 in main paper with GLOPs: Effect of multiple anchors and anchor
masking (ra). Multi-anchor training improves performance, and anchor masking offers control over
pretext task difficulty, along with reducing training-time computational complexity.

Num. of Anchor DAVIS VIP JHMDB GFLOPs
Anchors (N ) Masking ratio (ra) J&Fm mIoU PCK0.1

1 0 61.2±0.0 37.6 ±0.4 46.5 ±0.3 6.0

2 0 62.0 ±0.1 37.6 ±0.1 47.1 ±0.2 10.4
2 25% 62.4 ±0.2 38.0 ±0.3 47.3 ±0.1 8.3
2 50% 62.1 ±0.1 38.1 ±0.2 47.8 ±0.1 6.1

3 25% 62.6 ±0.1 38.1 ±0.1 47.8 ±0.2 11.6
3 50% 62.0 ±0.4 37.4 ±0.3 47.5 ±0.2 8.3

4 25% 62.3 37.6 47.6 14.9
4 50% 61.7 37.4 47.6 10.6

A.3.2 BAG OF VIEWS

For each training image in ImageNet-1K (1.28 M images), we generate 4 synthetic views and store
them on disk. The total computation cost for the creation of bag of views on a single node of 8 A100
GPUs is approximately 48 hrs and it is performed only once.

A.3.3 MACHINE DETAILS AND TOTAL BUDGET

We use a single node with 8 A100 40 GB GPUs for all the experiments. The CDG-MAE ViT-S/16
model takes a maximum of 14 hours for training. A total of 900 node hours were used for this paper,
including initial exploration and failed experiments.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 TRAINING CROPMAE FOR MORE EPOCHS

We compare the performance of CDG-MAE trained for 100 epochs with CropMAE trained for
a longer schedule (400 epochs). As studied by CropMAE (Eymaël et al., 2024) paper, extended
training might lead to saturation in performance. In Figure 8, we observe a similar trend, where the
performance of CropMAE starts to decrease on DAVIS and VIP, and saturates on the JHMDB dataset.
CDG-MAE trained with 100 epochs outperforms CropMAE even when the latter is trained for longer.
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Figure 8: Performance of CropMAE when trained with 400 epochs schedule. We report the evaluation
on DAVIS (J&Fm), VIP (mIoU), and JHMDB (PCK0.1). We also present the performance of CDG-
MAE trained for 100 epochs with single anchor setting.

A.4.2 TRAINING CROPMAE WITH SYNTHETIC DATA

CropMAE is trained with real images from ImageNet-1K, whereas CDG-MAE is trained with real
and diffusion-generated images from ImageNet-1K as pairs of views. In Table 10, we present the
performance of CropMAE when trained using real and synthetic images as individual data points
(Real + Synthetic). Our proposed CDG-MAE outperforms CropMAE (Real + Synthetic) across all
three downstream tasks.

Table 10: Downstream evaluation of CropMAE, CropMAE (Real+Synthetic), and CDG-MAE.
Method DAVIS VIP JHMDB

J&Fm mIoU PCK0.1

CropMAE 59.7 33.8 43.9
CropMAE (Real + Synthetic) 60.6 33.9 44.3

CDG-MAE a1 61.2 37.6 46.5
CDG-MAE a3 62.6 38.1 47.8

A.4.3 SCALING

In this section, we compare scaling the number of patches and model parameters in cross-view
MAE. In the main paper section 5.5 (also presented in Table 11), we studied scaling the number of
patches from 196 to 784 by decreasing the patch size from 16 to 8. For CDG-MAE, scaling from
ViT-S/16 to ViT-S/8 led to large improvements across all three tasks (5.8 on DAVIS, 5.2 on VIP, 9.1
on JHMDB). At ViT-S/8, CDG-MAE outperforms image-based CropMAE and closes the gap to
the video-based SiamMAE. We believe that for the downstream tasks of video label propagation,
scaling the number of patches has more impact than scaling the number of model parameters. Scaling
the number of patches helps models learn features for correspondences under fine-grained changes.
We observe that CropMAE does not consistently improve when scaling from ViT-S/16 to ViT-S/8.
This is likely because cropped views lack sufficient fine-grained variations to benefit training under
a smaller patch size. On the other hand, CDG-MAE and SiamMAE improve since they can learn
correspondences under fine-grained changes (pose, motion, viewpoint) between diffusion-generated
views (in CDG-MAE) and video frames (in SiamMAE).

We conduct an additional experiment by scaling CDG-MAE from ViT-S/16 to ViT-B/16 and observe
that it does not lead to consistent improvements across downstream tasks (Table 11). We also
report ViT-B/16 performance for SiamMAE and CropMAE. The scaling follows a similar pattern
to CDG-MAE on DAVIS and JHMDB. Even for single-image MAE (results of single-image MAE
ViT-B/16 and MAE ViT-L/16), performance improves with scale on DAVIS and VIP, but saturates
on JHMDB. It is worth noticing that our ViT-S/16 with CDG-MAE performs better than MAE
ViT-L/16. Furthermore, previous work addressing cross-view MAE (Gupta et al., 2023; Eymaël et al.,
2024), either image- or video-based does not showcase clear and consistent scaling trends in terms of
numbers of parameters on video label propagation tasks, which appears to be confirmed in our work.
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We believe scaling parameters of cross-view MAE methods remains an open research question. It is
still not clear whether it comes from data diversity, downstream tasks or, as we also suspect, from
additional required tuning (e.g. hyperparameters) to scale such methods.

Table 11: Scaling number of patches is more effective than scaling number of parameters. † denotes
results from our reproduction. ‡ denotes results reported from respective papers.

Method Pretraining Arch DAVIS VIP JHMDB
Data J&Fm mIoU PCK0.1

CDG-MAE a3 ImageNet ViT-S/16 62.6 38.1 47.8
CDG-MAE a3 ImageNet ViT-B/16 63.3 37.6 48.0
CDG-MAE a3 ImageNet ViT-S/8 68.4 43.3 56.9

CropMAE† ImageNet ViT-S/16 59.7 33.8 43.9
CropMAE† ImageNet ViT-S/8 58.7 32.2 55.6
CropMAE‡ ImageNet ViT-S/16 60.4 33.3 43.6
CropMAE‡ ImageNet ViT-B/16 60.9 32.8 44.3

SiamMAE‡ Kinetics ViT-S/16 62.0 37.3 47.0
SiamMAE‡ Kinetics ViT-B/16 62.8 38.4 47.2
SiamMAE‡ Kinetics ViT-S/8 71.4 45.9 61.9

MAE ImageNet ViT-B/16 53.5 28.1 44.6
MAE ImageNet ViT-L/16 56.9 29.9 44.6

A.4.4 VIDEO DIFFUSION MODELS

We did not experiment with video diffusion models for view generation because they are compu-
tationally impractical given our compute budget. SoTA image-to-video models like Wan2.1 (Wan
et al., 2025) and HunyuanVideo (Kong et al., 2024) have substantial computational requirements that
make them prohibitively expensive for ImageNet-scale data generation (1.3 M images). Wan2.1’s
14B model requires 9 minutes to generate a 5 second video on a single A100 GPU. For ImageNet-
scale generation, this would require over 1000 days on our 8 * A100 GPU node. Even the more
efficient LTX-video (HaCohen et al., 2024) model requires 30 seconds to generate a single video,
which would translate to 56 days for ImageNet. However, as video diffusion models become more
efficient, we believe they can be easily integrated into our framework. The frames generated by
image-to-video diffusion models can be used as a drop-in replacement for the current views generated
by image-to-image diffusion models when training CDG-MAE.

A.5 LIMITATIONS AND FUTURE WORK

Although self-supervised diffusion models can generate diverse variations needed for correspondence
learning, we cannot control which specific variations occur between generated views. Future work
can study how to better control variations, e.g. pose changes, in the generated views. This direction is
challenging and interesting to explore as this should be done in a self-supervised way, i.e. without
using pose labels.
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