LEAD: Min-Max Optimization from a Physical Perspective

Reyhane Askari Hemmat “'2 Amartya Mitra "

Abstract

Adversarial formulations have rekindled interest
in two-player min-max games. A central obsta-
cle in the optimization of such games is the ro-
tational dynamics that hinder their convergence.
In this paper, we show that game optimization
shares dynamic properties with particle systems
subject to multiple forces, and one can leverage
tools from physics to improve optimization dy-
namics. Inspired by the physical framework, we
propose LEAD, an optimizer for min-max games.
Next, using Lyapunov stability theory from dy-
namical systems as well as spectral analysis, we
study LEAD’s convergence properties in contin-
uous and discrete time settings for a class of
quadratic min-max games to demonstrate linear
convergence to the Nash equilibrium. Finally,
we empirically evaluate our method on synthetic
setups and CIFAR-10 image generation to demon-
strate improvements in GAN training.

1. Introduction

Much of the advances in traditional machine learning can be
attributed to the success of gradient-based methods. Mod-
ern machine learning systems such as GANs (Goodfel-
low et al., 2014), multi-task learning, and multi-agent set-
tings (Sener & Koltun, 2018) in reinforcement learning (Bu
et al., 2008) require joint optimization of two or more objec-
tives which can often be formulated as games. In these game
settings, best practices and methods developed for single-
objective optimization are observed to perform noticeably
poorly (Mescheder et al., 2017; Balduzzi et al., 2018; Gidel
et al., 2019). Specifically, they exhibit rotational dynamics
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in parameter space about the Nash Equilibria (Mescheder
et al., 2017), slowing down convergence. Recent work in
game optimization (Wang et al., 2019; Mazumdar et al.,
2019; Mescheder et al., 2017; Balduzzi et al., 2018; Aber-
nethy et al., 2019; Loizou et al., 2020) demonstrates that
introducing additional second-order terms in the optimiza-
tion algorithm helps to suppress these rotations, thereby
improving convergence.

Taking inspiration from recent work in single-objective opti-
mization that re-derives existing accelerated methods from a
variational perspective (Wibisono et al., 2016; Wilson et al.,
2016), in this work, we adopt a similar approach in the con-
text of games. To do so, we borrow formalism from physics
by likening the gradient-based optimization of two-player
(zero-sum) games to the dynamics of a system where we
introduce relevant forces that helps curb these rotations. We
consequently utilize the dynamics of this resultant system to
propose our novel second-order optimizer for games, LEAD.

Next, using Lyapunov and spectral analysis, we demonstrate
linear convergence of our optimizer (LEAD) in both con-
tinuous and discrete-time settings for a class of quadratic
min-max games. In terms of empirical performance, LEAD
achieves an FID of 10.49 on CIFAR-10 image generation,
outperforming existing baselines such as BigGAN (Brock
et al., 2018), which is approximately 30-times larger than
our baseline ResNet architecture.

What distinguishes LEAD from other second-order opti-
mization methods for min-max games such as (Mescheder
et al., 2017; Wang et al., 2019; Mazumdar et al., 2019;
Schifer & Anandkumar, 2019) is its computational com-
plexity. All these different methods involve Jacobian (or
Jacobian-inverse) vector-product computation commonly
implemented using a form of approximation. Thus making
a majority of them intractable in real-world large scale prob-
lems. On the other hand, LEAD involves computing only
one-block of the full Jacobian of the gradient vector-field
multiplied by a vector. This makes our method significantly
cheaper and comparable to several first-order methods, as
we show in Section 5. We summarize our contributions

as following: 1) In Section 3, we model gradient descent-
ascent as a physical system. Armed with the physical model,
we introduce counter-rotational forces to curb the existing
rotations in the system. Next, we employ the principle of
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least action to determine the (continuous-time) dynamics.
We then accordingly discretize these resultant dynamics to
obtain our optimization scheme, Least Action Dynamics
(LEAD). 2) In Section 4, we use Lyapunov stability the-
ory to prove a linear convergence of LEAD in continuous
for quadratic min-max games. 3) Finally, in Section 5,
we empirically demonstrate that LEAD is computation-
ally efficient. Additionally, we demonstrate that LEAD
improves the performance of GANs on different tasks such
as 8-Gaussians and CIFAR-10 while comparing the perfor-
mance of our method against other first and second-order
methods.

Note that we also study LEAD in discrete-time using spec-
tral analysis. See Appendix B.

2. Problem Setting

Notation Continuous time scalar variables are in upper-
case letters (X)), discrete-time scalar variables are in lower
case (x) and vectors are in boldface (A). Matrices are in
blackboard bold (M) and derivatives w.r.t. time are de-
noted as an over-dot (&). Furthermore, off-diag[M]; ; is
equal to M ; for ¢ # j, and equal to O for 7 = j where
i,7=1,2,...,n.

Setting In this work, we study the optimization problem
of two-player zero-sum games,

r%}nmgxf (X,Y), (1

where f : R” x R™ — R, and is assumed to be a convex-
concave function which is continuous and twice differen-
tiable w.r.t. X, Y € R. It is to be noted that though in
developing our framework below, X, Y are assumed to be
scalars, it is nevertheless found to hold for the more general
case of vectorial X and Y, as we demonstrate both analyti-
cally (Appendix D) and empirically, our theoretical analysis
is found to hold.

3. Optimization Mechanics

In our effort to study min-max optimization from a physical
perspective, we note from classical physics the following:
under the influence of a net force F', the equation of motion
of a physical object of mass m, is determined by Newton’s
2nd [ aw,

mX = F, )

with the object’s coordinate expressed as X; = X. Ac-
cording to the principle of least action' (Landau & Lifshitz,
1960), nature “selects” this particular trajectory over other
possibilities, as a quantity called the action is extremized
along it.

!Also referred to as the Principle of Stationary Action.

We start with a simple observation that showcases the
connection between optimization algorithms and physics.
Polyak’s heavy-ball momentum (Polyak, 1964) is often per-
ceived from a physical perspective as a ball moving in a
“potential” well (cost function). In fact, it is straightforward
to show that Polyak momentum is a discrete counterpart of a
continuous-time equation of motion governed by Newton’s
2" Law. For single-objective minimization of an objective
function f (z), Polyak momentum follows:

Tpp1 =2k + B (xr — xp—1) —Vaf (), (3)

where 7 is the learning rate and S is the momentum co-
efficient. For simplicity, setting 5 to one, and moving to
continuous time, one can rewrite this equation as,

(Tprs — xk) — (Tk — Th—s) _n

52 52

and in the limit 6,7 — 0, Eq.(4) then becomes (z; —
X () =X), )
mX = —Vx f(X). )

This is equivalent to Newton’s 2" Law of motion (Eq.(2))
of a particle of mass m = §2/n, and identifying F =
—Vxf(X) (e. f(X) acting as a potential function (Lan-
dau & Lifshitz, 1960)). Thus, Polyak’s heavy-ball method
Eq.(3) can be interpreted as an object (ball) of mass m
rolling down under a potential f (X) to reach the minimum
while accelerating.

Armed with this observation, we perform an extension of 5
to our min-max setup,

mX = _va(X7Y)a

. (6)
mY = Vyf (X, Y) y

which represents the dynamics of an object moving under a
curl force (Berry & Shukla, 2016): Fiyn = (—=Vx f, Vy f)
in the 2-dimensional X — Y plane. Furthermore, it is to
be noted that discretization of Eq.(6) corresponds to Gradi-
ent Descent-Ascent (GDA) with momentum 1. Authors in
(Gidel et al., 2019) found that this optimizer is divergent in
the prototypical min-max objective, f (X,Y) = XY, thus
indicating the need for further improvement.

To this end, we note that the failure modes of the opti-
mizer obtained from the discretization of Eq.(6), can be
attributed to: (a) an outward rotatory motion by our particle
of mass m, accompanied by () an increase in its velocity
over time. Following these observations, we aim to intro-
duce suitable counter-rotational and dissipative forces to
our system above, in order to tackle (a) and (b) in an attempt
to achieve converging dynamics.

Specifically, as an initial consideration, we choose to add to
our system, two ubiquitous forces:
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* magnetic force,

Fog = (= aVarf V.qVxrf X) (D)

known to produce rotational motion (in charged par-
ticles), to counteract the rotations introduced by Fi,.
Here, q is the charge imparted to our particle.

¢ friction, . '
Fric = (X, pY') ®)
to prevent the increase in velocity of our particle (u:
coefficient of friction).

Assimilating all the above forces Fiyi, Finae and Fi;c, the
equations of motion (EOMs) of our crafted system then
becomes,

mX = Fon + Fmag + Fiic,

. ©)
mY = Fey + Fmag + Fe.

Or equivalently,
mX = —uX —Vxf—qVxyfY,
mY = —uY +Vyf+qVxyfX.

Without loss of generality, from hereon we set the mass of
our object to be unity. In the rest of this work, we study the
above EOMs in continuous and discrete time for min-max
games.

(10)

3.1. Discretization

The continuous-time EOMs (10) can be discretized in an
implicit-explicit way, to yield,
Tp1 = Tk + Bz — 21-1) — VoS (Tk, Yr)
= aVay f (Tk, y&) (Yk — Yk—1)s
Yrt1 = Yk + BYk — Yr—1) + 0V f (Tk, Y
+aVy f (T, Yx) (T — Th—1),

(11)

We name this algorithm Least Action Dynamics (LEAD) as
it corresponds to the trajectory of a charged particle under
a curl, magnetic and frictional force, as governed by the
principle of least action.

4. Convergence Analysis

We study the behavior of LEAD on the quadratic min-max
game,

h h
7(X,Y) = SIXI2 = ZIYIE+ XTAY,  (12)

where X, Y € R”, A € R® x R" is a (constant) coupling
matrix and h is a scalar constant. Let us further define the
vector field v of the above game, f, as,

C[Vx/(X,Y) ] [hX +AY
v= {—VXYf(X,Y)] {hY —Mx} R

For this quadratic min-max game, Eq.(10) generalizes to,

X =-—uX - (h+A)Y —¢AY

. . . (14)
Y = —uY — (h—AT)X + ¢AT X,

Theorem 4.1. For the dynamics of Eq.(14),
. T /.
& = (X +uX + MAY) (X +upuX + uAY)

+ (Y FuY — MATX)T (X +uY — uATX)

N N = p| —

+
15)

is a Lyapunov function of the system. Furthermore, setting
q = (2/p) + p, we find & < —p&; for

I 2/”’(Jr2nin + h)
1 + /-L7 (1 + Ur2nin + Qh’) (/.LQ + /’L) + 2012n111

p<min{

With omin being the smallest singular value of A. This
consequently ensures linear convergence of the dynamics of
Eq. (14),

&
—= —exp(—pt)|  (16)

X+ Y% <
IXIP+ VI < 5o

S. Experiments

We evaluate LEAD (implemented on top of Adam) on com-
plex, deep architectures. We adapt the ResNet architecture
in SN-GAN (Miyato et al., 2018). We compare with several
existing results on the task of image generation on CIFAR-
10 using ResNets. See Table 1 for a full comparison. Note
that, Style-GAN based models (Sauer et al., 2022; Kang
et al., 2021; Lee et al., 2021) or BigGAN based models
(Brock et al., 2018; Lorraine & Duvenaud, 2022) use archi-
tectures that are ;, 30X larger than the architecture that we
have chosen to test our method on. Our method obtains a
competitive FID of 10.49.

6. Related Work

Game Optimization: With increasing interest in games,
significant effort is being spent in understanding common
issues affecting optimization in this domain. These issues
range from convergence to non-Nash equilibrium points,
to exhibiting rotational dynamics around the equilibrium
which hampers convergence. Authors in (Mescheder et al.,
2017) discuss how the eigenvalues of the Jacobian govern
the local convergence properties of GANs. They argue
that the presence of eigenvalues with zero real-part and

(XTX + YTY) + XT(h+ AAT)X +yT (h+ ATA)Y
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Table 1: Performance of several methods on CIFAR-10 image
generation task. The FID and IS is reported over 50k samples
unless mentioned otherwise.

DCGAN FID (}) IS (M)
Adam (Radford et al., 2015) 2438 +0.13 6.58
LEAD-Adam 19.27 £0.10  7.58+0.11
CGD-WGAN (Schifer & Anandkumar, 2019) 21.3 7.2
OMD (Daskalakis et al., 2018) 29.6 +0.19 574 £0.1
ResNet
SNGAN 12.10 £0.31 8.58 £ 0.03
LEAD-Adam (ours) 10.49 £ 0.11 8.82+0.05
ExtraAdam (Gidel et al., 2018) 1678 £0.21 847 £0.1
LA-GAN (Chavdarova et al., 2020) 12.67 £0.57 8.55+0.04
ODE-GAN (Qin et al., 2020) 11.85£0.21 8.61 +£0.06

Evaluated with 5k samples
SN-GAN (DCGAN) (Miyato et al., 2018) 29.3
SN-GAN (ResNet) (Miyato et al., 2018) 21.7+0.21

7.4240.08
8.22 4+ 0.05
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Figure 1: Average computational cost per iteration of several
well-known methods for (non-saturating) GAN optimization. The
numbers are reported on the 8-Gaussians generation task and av-
eraged over 1000 iterations. Note that the y-axis is log-scale.
We compare Competitive Gradient Descent (CGD) (38) (using
official CGD optimizer code), Symplectic Gradient Adjustment
(SGA) (4), Consensus Optimization (CO) (28), Extra-gradient with
Adam (Extra-Adam) (13), WGAN with Gradient Penalty (WGAN
GP) (16).

large imaginary part results in oscillatory behavior. To miti-
gate this issue, they propose Consensus Optimization (CO).
Along similar lines, (Balduzzi et al., 2018; Gemp & Ma-
hadevan, 2018; Letcher et al., 2019; Loizou et al., 2020)
use the Hamiltonian of the gradient vector-field, to improve
the convergence in games through disentangling the con-
vergent parts of the dynamics from the rotations. Another
line of attack taken in (Schifer & Anandkumar, 2019) is to
use second-order information as a regularizer of the dynam-
ics and motivate the use of Competitive Gradient Descent
(CGD). In (Wang et al., 2019), Follow the Ridge (FtR) is
proposed. They motivate the use of a second order term
for one of the players (follower) as to avoid the rotational
dynamics in a sequential formulation of the zero-sum game.
See appendix K for full discussion on the comparison of
LEAD versus other second-order methods.

Another approach taken by (Gidel et al., 2019), demonstrate
how applying negative momentum over GDA can improve
convergence in min-max games, while also proving a linear

rate of convergence in the case of bilinear games. More
recently, (Zhang & Wang, 2021) have shown the subopti-
mality of negative momentum in specific settings. Further-
more, in (Lorraine & Duvenaud, 2022) authors carry-out
an extensive study on the effect of momentum in games
and specifically show that complex momentum is optimal
in many games ranging from adversarial to non-adversarial
settings.

Single-objective Optimization and Dynamical Systems:
The authors of (Su et al., 2014) started a new trend in
single-objective optimization by studying the continuous-
time dynamics of Nesterov’s accelerated method (Nesterov,
2013). Their analysis allowed for a better understand-
ing of the much-celebrated Nesterov’s method. In a sim-
ilar spirit, (Wibisono et al., 2016; Wilson et al., 2016)
study continuous-time accelerated methods within a La-
grangian framework, while analyzing their stability using
Lyapunov analysis. These work show that a family of
discrete-time methods can be derived from their correspond-
ing continuous-time formalism using various discretization
schemes. Additionally, several recent work (Muehlebach
& Jordan, 2019; Bailey & Piliouras, 2019; Maddison et al.,
2018; Ryu et al., 2019) cast game optimization algorithms
as dynamical systems so to leverage its rich theory, to study
the stability and convergence of various continuous-time
methods. (Nagarajan & Kolter, 2017) also analyzes the local
stability of GANs as an approximated continuous dynamical
system.

7. Conclusion

In this paper, we leverage tools from physics to propose a
novel second-order optimization scheme LEAD, to address
the issue of rotational dynamics in min-max games. By
casting min-max game optimization as a physical system,
we use the principle of least action to discover an effec-
tive optimization algorithm for this setting. Subsequently,
with the use of Lyapunov stability theory and spectral anal-
ysis, we prove LEAD to be convergent at a linear rate in
bilinear min-max games. We supplement our theoretical
analysis with experiments on GANSs and toy setups, demon-
strating improvements over baseline methods. Specifically
for GAN training, we observe that our method outperforms
other second-order methods, both in terms of sample qual-
ity and computational efficiency. Our analysis underlines
the advantages of physical approaches in designing novel
optimization algorithms for games as well as for traditional
optimization tasks. It is important to note in this regard
that our crafted physical system is a way to model min-max
optimization physically. Alternate schemes to perform such
modeling can involve other choices of counter-rotational
and dissipative forces which can be explored in future work.
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A. Appendix

B. Discrete-Time Analysis

In this section, we next analyze the convergence behavior of LEAD, Eq.(11) in the case of the quadratic min-max game of
Eq.(12), using spectral analysis,
Tpr1 = T + Az, — nhxr — nAyr — cAAyy

T T a7
Ypt1 = Yk + BAYr — nhyg + A" o + A" Axy,
where Az, = xp, — Tp_1.

For brevity, consider the joint parameters w; := (¢, y;). We start by studying the update operator of simultaneous gradient
descent-ascent,

Fn(wt) =W — 7]'U(wt—1)-

where, the vector-field is given by Eq. 13. Thus, the fixed point w* of F),(w;) satisfies F},(w*) = w*.

Furthermore, at w*, we have,
VF,(w*) =1, —nVo(w"), (18)

with I, being the n x n identity matrix. Consequently the spectrum of V F, (w*) in the quadratic game considered, is,

Sp(VF,(w")) = {1 —nh —nA | € Sp(off-diag[Vv(w™)])}, (19)

The next proposition outlines the condition under which the fixed point operator is guaranteed to converge around the fixed
point.

Proposition 1 (Prop. 4.4.1 (Bertsekas, 1999)). For the spectral radius,
P 1= p{VEy(w)} < 1 20)
and for some wy in a neighborhood of w*, the update operator F’, ensures linear convergence to w* at a rate,
A1 <O(p+e)ArVe>0,
where Ayy g i= ||wip1 — w*[[3 + ||wr — w*[[3

Next, we proceed to define the update operator of Eq.(11) as Figap (w¢, wi—1) = (w¢41,w:) . For the quadratic min-max
game of Eq.(12), the Jacobian of F]gap takes the form,

Loy, + Bloy, — (n+ @) Vo —ply, + aVo

VFEap = I, 0

21

In the next Theorem B.1, we find the set of eigenvalues corresponding to the update operator V Fi gap which are then used
in Theorem B.2, where we show for a selected values of n and o, LEAD attains a linear rate.

Theorem B.1. The eigenvalues of V Frgap(w™) are,

_ IL—(n+a)A+B-—nh+VA
2

it (22)

where,
A=1—-n+a)A+8—nh)? —4(8—a))

and X € Sp(off-diag[Vv(w*))).
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Furthermore, for h,n, |al,|5] << 1, we have,

(n+ a)® A2 4 n2h2 + B2 — 2nhf3

py =1 —nh+ 1
n+a« 23)
+A(2< hﬁ)n)
and
o~ (n+ @) A2 + 22 + B2 — 29hf3
- 4
n+a« 24
+/\<2(ﬂnh)o¢)
See proof in Appendix E.

Theorem B.1 states that the LEAD operator has two eigenvalues p1 and p— for each A € Sp (off-diag[Vv(w*)]). Specifi-
cally, ;o4 can be viewed as a shift of the eigenvalues of GDA in Eq.(19), while additionally being the leading eigenvalue for
small values of h, 7, |«| and |3]|. (See Fig. 2 for a schematic description) Also, for small values of «, u is the limiting
eigenvalue while i ~ 0.

Alm

Figure 2: Diagram depicts positioning of the eigenvalues of GDA in blue (Eq. 18) and those of LEAD (Equations (23) and (24) with
B = h = 0) in red. Eigenvalues inside the black unit circle imply convergence such that the closer to the origin, the faster the convergence
rate (Prop. 1). Every point on solid blue and red lines corresponds to a specific choice of learning rate. No choice of learning rate results
in convergence for gradient ascent descent method as the blue line is tangent to the unit circle. At the same time, for a fixed value of «,
LEAD shifts the eigenvalues (144 ) into the unit circle which leads to a convergence rate proportional to the radius of the red dashed circle.
Note that LEAD also introduces an extra set of eigenvalues (14— ) which are close to zero and do not affect convergence .

In the following Proposition, we next show that locally, a choice of positive o decreases the spectral radius of V F;, (w*)
defined as,

p = max{|uy %, [u- [P}V A

Proposition 2. For any A € Sp(off-diag[Vv(w*)]),

Vap (V) |,y <0&ne (0, (25)

=)
Im(Amax) /)
where Im (A ) is the imaginary component of the largest eigenvalue Apax.
See proof in Appendix F.

Having established that a small positive value of o improves the rate of convergence, in the next theorem, we prove that for
a specific choice of positive « and 7 in the quadratic game Eq.(12), a linear rate of convergence to its Nash equilibrium is
attained.
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Theorem B.2. Settingn = o = m, then we have ¥ € > 0,
o2 (1+3/2)h 3h? !
A Ool(1- min — A 26
o (( Mmae + 17 Omarth  8(0mas & h)2> 0 2o

where 0 a0 (Omin) is the largest (smallest) eigen value of A and

Apyr = [Jwipr — w*|[3 + [Jwr — w*|[3.

Theorem B.2 ensures a linear convergence of LEAD in the quadratic min-max game. (Proof in Appendix G).

C. Comparison of Convergence Rate for Quadratic Min-Max Game

In this section, we perform a Big-O comparison of convergence rates of LEAD (Eq. 53), with several other existing methods.
Below in Table C we summarize the convergence rates for the quadratic min-max game of Eq. 12. For each method that
converges at the rate of O((1 — r)!), we report the quantity  (larger r corresponds to faster convergence). We observe

that for the quadratic min-max game, given the analysis in (Azizian et al., 2020), for b < opax (A) and 8 > #ih),

rLEAD 2, TEG and rLgap 2 rog. Furthermore, for the bilinear case, where h = 0, LEAD has a faster convergence rate than
EG and OG.

Method r
Alternating-GDA h/2L
Extra-Gradient (EG) 1(h/L + 0%, (A) /16L?)
Optimistic Gradient(OG) 1(h/L + o2, (A) /32L2)
Consensus Optimization (CO) h?/2L% + o2, (A) /2L%
LEAD (Th. B.2) (1+ B/2)h)(Omaz + h) + 02,5, /4(Omaz + 1) — 302 /8(Tmax + h)?

Table 2: Big-O comparison of convergence rates of LEAD against EG (Korpelevich, 1976), OG (Mertikopoulos et al., 2018) and
CO (Mescheder et al., 2017) for the quadratic min-max game of Eq. 12. We report the EG, OG and CO rates from the tight analysis
in (Azizian et al., 2020) and Alt-GDA from (Zhang et al., 2022). For each method that converges at the rate of O((1 — 7)*), we report the

quantity r (larger r corresponds to faster convergence). Note that L := /2 max{h, omax (A)}, is the Lipschitz constant of the vector field
and and L7 is the Lipschitz-smoothness of 1 [|v||*.

D. Continuous-time Convergence Analysis: Quadratic Min-Max Game
Proof. For the class of quadratic min-max games,
h h
f(X,)Y) = §|X|2—§|Y|2+XTAY (27)

where X = (X', .- X")Y = (YV!,--. | Y") € R” and A,,x,, is a constant positive-definite matrix, the continuous-
time EOMs of Eq.(10) become:

X = —uX —hX —AY — gAY

. . . (28)
Y = —uY —hY + ATX 4 ¢ATX
We next define our continuous-time Lyapunov function in this case to be,
1 /. T /.
&i=3 (X+uX+uAY) (XJruXJruAY)
1 /. T /.
5 (Y +uy = paTX) (X + pY - pa”X)
t3 ( Tpr tpr (29)

1/ . o
+3 (XTX + YTY) + XT(h+AAT)X + YT (h+ ATA)Y
>0Vt
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The time-derivative of &; is then given by,

£ = (X 4 uX +paY) (X4 pk 1 pa¥) 4 (Y +pY —pa”X) (V4 ¥ - ub”X)
+ (XTX + YTY) +2 (XT(h +AATYX +YT(h + ATA)Y>
- (XT +uXxT 4 MYTAT) ((—q LAY — AY) + X7 (—qm'f X - AY)
+ (YT FuyT - NXTA) ((q ~ ) ATX + ATX) T yT (qATX a4 ATX) (30)
+2 (XT(h +AATYX + YT (h+ ATA)Y>
= (u(qg—p)—2) (YTATX - XTAY) (g —p) —2) (XTAATX + YTATAY)

— (X" (h+AAT)X + YT (h+ ATA)Y) — (XTX + YTY)

where we have used the fact that X7 AY being a scalar thus implying XTAY = YTAT X If we now set ¢ = (2/u) + p
in the above, then that further leads to,

b=~ (XT(h+AAT)X + YT (h+ ATA)Y) = (XTX + YTV

, 2 i (31)
= (h||X||2+h\|Y||2+ AT X || +|\AY||2) —,u(HXH + HYH ) <0Vt
exhibiting that the Lyapunov function, Eq.(15) is asymptotically stable at all times t.
Next, consider the following expression,
.12 112 . 2 . 112
—ote =y |l = x| Gy - - | -] - B flanx 4 v
2 2 2 2
L . . L2
==& = L (IXIP+ 1Y IP) + o (XTX +YTY ) = pp (HXH + ||Y||2)
TAY T PH T 2 2
—p,u(X AY - X AY)—?(HA X|| —|—||AY\|) -

st (81 4 1) -0 e i+ )

— L (2 +u+2) (||a7 x| + 1aYP)

< —p&

where p is some positive definite constant. This implies that the above expression is negative semi-definite by construction
given ;1 > 0. Now, for a general square matrix A, we can perform a singular value decomposition (SVD) as A = VTSU.
Here, U and V are the right and left unitaries of A, while S is a diagonal matrix of singular values (o;) of A. Using this



LEAD: Min-Max Optimization from a Physical Perspective

decomposition in Eq.(32), then allows us to write,

= o ([ [[F]]7) = 5 Gt 20 (112 4 1)
L nt) (||ATXH + 114yl
“p(1+p) (HVXH +HIUYH> 2 (4 + u+2n) (VX +|[UY]?)
=2 (1 + n+2) (Isvx|? +||SUY||2)
s ([l [9]7) - § 6 11 117)

_ g (1% + p+2) (||sx|| + IIS)JIIQ)
—-Sowen (] + )
S Sl

j=1

M\b

(1403 +20) (12 + 1) +203) (1107 + [197]]°)

where we have made use of the relations UTU = UUT =1I,, = VTV = VVT, and additionally performed a basis change, as
X =VX and Y = UY. Now, we know from Eq.(31) that,

L 112 . 112
-y (h||X||2+h||Y||2+||ATX||2+||AY||2)—u(])XH )

— e (BIIX|2 + BI[Y]2 + |[UTSVX]|* + [[VTSUY ") — g (HVXHZ + HUYW)

, , 2 12 (34)
u(hIIXII I+ s+ 15917 - (|| 2]+ [[9])
n - g n 2 2
et m) (1R 1971 = o ([l + 7))
j=1 j=1
Comparing the above expression with Eq.(33), we note that a choice of p as,
o n 20(0min + 1) .
< Tmin v 1 35
psmind o e e, Y€ 9
implies,
gtS—PE
= & < Eyexp (—pt)
= XT (h+AAT) X + YT (h+ ATA)Y < & exp (—pt)
= X1 (h4+SHX + YT (h+S%)Y < Eexp (—pt)
=3 (h+0) (1K) + 197]2) < & exp (—pt) (36)

Jj=

3

1

(h+ 02) (X9 + [[V9]12) < Eoexp (—pt)

Jj=1

IXIP Y < 20 exp (—pt) YV
~ h+o2

min
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Tk

Figure 3: Left: Contours of the Lyapunov function &£, Eq. (29) (black), and convergence trajectory of LEAD (red) in the quadratic
min-max game (Eq.(28)) to the Nash equilibrium (0, 0). Right: The evolution of the discrete-time Lyapunov function of Eq. (29) over
iteration, confirming & — &x—1 < 0V Ek € N.

E. Proof of Theorem B.1

Theorem. The eigenvalues of V F{gap(w™) about the Nash equilibrium w* = (z*, y*) of the quadratic min-max game are,

1—(n+a)A+B8-—nh£VA
2

p (o, B,m) = (37)

where, A = (1 — (n+a) A+ 8 —nh)*—4 (B — a)) and A € Sp(off-diag[Vv(w*)]). Furthermore, for h, 7, |al, |8| << 1,
we have,

(4 )® A2 + n2h2 + 52 — 29hf3

+Ai(";“<hﬂ>;)

uﬂf)(a,ﬁ,n)%l—thr

(i) (n+a)* A2 + ?h? + B2 — 29} 9
:U’—z (aaﬁ,ﬂ)“ﬁ— . 4
+«
+ A <77 5 (577h)04)
Proof. For the quadratic game 27, the Jacobian of the vector field v is given by,
_ V:L‘f(wtvyt) :| |:h]12n A :| 2n 2n
Vo=V = e R x R™"™. 39
Y |:_vyf(33t7 Yt) —AT  hl, (39
Let us next define a matrix D, as,
_ V§yf($, y) O _ A 0 2n 2n
D, = [ 0 foEyf(w,y) =0 _AT e R xR (40)
Consequently, the update rule for LEAD can be written as:
Le+1| _ |t 8 Ty —Ty—1| n Vo f(xe, yt) —a v%,f(mty yt) Ay,
Yi+1 Yt Yt — Yt =Vyf(x,yt) *szf(wta yi)Axy @n

Tt Ty — Ti—1 Ay
= — —alD
[yt] +h |:yt - yt—l] e [A%’J

where Ay; =y —y;—1 and Axy = ¢ — x4 1.
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Next, by making use of the permutation matrix P,

— 0 ]In 2n 2n
]P’.—{Hn O}GR x R

we can re-express Eq. 41 as,

o i | P R i el R B e P

Iz, O wy I, —Is, wy v DP  —IDgP wi “2)
ot o 1% Rl i ) i el
where w; = (@, y;). Hence, the Jacobian of F]gap is then given by,
erwa[iz 3 ofly ol Yo 3
_ [(1 + B8) Iy, — Vv — aD P —fly, + aDq]P’} )
Lo, 0
It is to be noted that, for games of the form of Eq. 27, we specifically have,
Vv = DyP + hly,
and,
off-diag[Vv] = DyP
Therefore, Eq. 43 becomes,
Y Fap — {(1 + 8 —nh) ]IE; — (n+ a)DgP —Bﬂgn(;f— a}D)qIE”} 44)

We next proceed to study the eigenvalues of this matrix which will determine the convergence properties of LEAD around
the Nash equilibrium. Using Lemma 1 of (Gidel et al., 2019), we can then write the characteristic polynomial of V F1gap as,

det (XTy, — VFigap) =0
e ([(X DB = O+ (B aBE)

—I, X,
= det ([(X — 1) (X = 8) I, + Xnhlay, + (X7 + Xa — ) DgP]) = 0
= det ([((X = 1) (X = B) + Xnh) UU~! + (X5 + Xa — a) UANU"']) =0 (43)
= det ([(X = 1) (X = B8) + Xnh)Ion + (Xn+ Xa—a)A]) =0
2n

= [TIX =1 (X = 8) + Xnh + (Xn+a (X —1))A] =0

i=1
Where, in the above, we have performed an eigenvalue decomposition of D[P = UAUL. Therefore,
X?2—X(1-m+a)\i+B—nh)+B8—a\=0, \; € Sp(D,P)

= X’(i)_ (4) _ 1 (77+a))\i+ﬁ—77h:|:\/A (46)
Ky
2

with,
A=(1=(n+a)Xi+p8—nh)*—4(8—a\) 47
Furthermore for h, 7, | 8], || << 1, we can approximate the above roots to be,

242 212 2
(n+a) d 2 (772 (nh—ﬁ)—n)

p (e, Bym) = 1 —nh + 1

(n+ a)* A2 + n2h2 + B2 — 2nhj3
4

(48)
M(j)(aaﬁan) ~ B -

+)\i<n—ga(3—ﬁh)_a>
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F. Proof of Proposition 2
Proposition. For any A € Sp(off-diag[Vv(w*)]),

2
Vap (A 0 0, ———— 49
aP (N ], < 176( ’Im(Amax))’ (49)
where Im(Apax) is the imaginary component of the largest eigenvalue Appx.
We observe from Proposition 2 above that for h, 7, |al, || << 1,
pla,n, B) :=max{|ul?, |n P} ¥ i
N (50)
= max{’u_i YV
2 2 272 2 2
i Y e/ nhB —(nh — B
B e Y s
— (L4 B)n Nl } v
3 332 on
%max{n— \)\i|4 - 1+8+ 357 77|>\z"2}Vi
4 4
n? 2 2
< max{ (4 [Ai]” — 1) 7|\l } Vi
where we have retained only terms up to cubic-order in ), | 3| and h. Hence, choosing n € (0, m), ensures:
Vap|,_y <0V, (52)

‘We thus posit, that a choice of a positive « causes the norm of the limiting eigenvalue p4 of F1gap to decrease.

G. Proof of Theorem B.2

Theorem. Settingn = o = > then we have V e > 0,

1
2(omax (A)+h

- (+8/2h 3w\
_ min — A 53
At+1 <0 ((1 4(Umaa: + h)2 Omaz T h + 8(U7rzaw + h)2) ’ ( )

where 0,40 (0 min ) is the largest (smallest) eigenvalue of A, Ay 1 = ||wir1 — w*||3 + ||ws — w*|[3.
Proof: From Eq. (46), we recall that the eigenvalues of V Fgap (w™) for the quadratic game are,

@) _ (= (a+mn)A +B8—nh) B 4(8—n\i)
py (o, Bom) = 5 <1i\/1 (1_(05+77))\i+ﬂ—77h)2> (54)

with \; € Sp(off-diag[Vuv(w*)]). Now, since in the quadratic-game setting considered, we have,
0 A}

AT o (55)

off-diag[Vv(w*)] = DP = [

hence, \; = t+io; with o; being the singular values of A. This, then allows us to write,

W9 (0,5 = (L (@ E W) Cis) + B—uh) <1 . w - G- atiey) ) 56)

2 a+n)(£io;) + f—nh)?

According to Proposition 1, the convergence behavior of LEAD is determined as, A1 < O(p + €)A; Ve > 0, where
(setting n = «),
p = max{ |2, [n 2} v i

) &7
=[PPV
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Now assuming that 7 is small enough, such that, 7% ~ 0 and 32 ~ 0, we have,

pr1—nc? + gn%? — (24 B)nh (58)
Furthermore, using a learning rate 7 as prescribed by Proposition 2, suchasn = a = m we find,
. (1+5/2)h 3h2
— man _ 59
T e 4 1) Omaa + b 8(Oman + D)2 o2
Therefore,
A ((1 — rLEap)’ Ao)
ol (1. i (L+p/2h 302\ (0
B 4(0maz + h)2 Omax + h 8(Jmam + h)2 0
where Ayy g i= ||wir1 — w3+ ||wr — w*[[3.

H. LEAD-Adam

Since Adam algorithm is commonly used in large-scale experiments, we extend LEAD to be used with the Adam algorithm.

Algorithm 1 Least Action Dynamics Adam (LEAD-Adam)
0: Input: learning rate 1, momentum f3, coupling coefficient c.
0: Imitialize: o < Zinit, Yo < Yinit> t < 0, m + 0, v§ < 0m§ < 0, vf < 0
0: while not converged do

t+—t+1

9o < Vaf(we,yt)

Gay Ay < Vy(92)(ye — y1-1)

gy < gzyAy + 9o

mi < Prmi_y + (1= p1).g¢

of = Baviy + (1= Ba).(g7)?

’fht — mt/(l — B{)

Oy v /(1 — B3)

Tep1 < 1 — g/ (VO +€)

9y < Vyf(zes1,yt)

Guy AT < Vi (gy) (X1 — 24)

9} < gryAT + gy

my < B1.m{_, + (1 —B1).g7

vf < Bavf 4 (1= Ba2).(g¢)?

i < mjl /(1 - p})

of < vf /(1 - p3)

Yeir < ye+n il /(o] +e)

0: end while

0: return (z,y) =0

PRI

I. 8-Gaussians Generation

We compare our method LEAD-Adam with vanilla-Adam (Kingma & Ba, 2014) on the generation task of a mixture of
8-Gaussians. Standard optimization algorithms such as vanilla-Adam suffer from mode collapse in this simple task, implying
the generator cannot produce samples from one or several of the distributions present in the real data. Through Figure 4, we
demonstrate that LEAD-Adam fully captures all the modes in the real data in both saturating and non-saturating losses.
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Figure 4: Performance of LEAD-Adam on the generation task of 8-Gaussians. All samples are shown after 10k iterations. Samples
generated using Adam exhibit mode collapse, while LEAD-Adam does not suffer from this issue.

J. Experiments and Implementation Details
J.1. Mixture of Eight Gaussians

Dataset The real data is generated by 8-Gaussian distributions their mean are uniformly distributed around the unit circle
and their variance is 0.05. The code to generate the data is included in the source code.

Architecture The architecture for Generator and Discriminator, each consists of four layers of affine transformation,
followed by ReLU non-linearity. The weight initialization is default PyTorch’s initialization scheme. See a schematic of the
architecture in Table 3.

Table 3: Architecture used for the Mixture of Eight Gaussians.

Generator Discriminator
Input: z € R% ~ N(0,1) Input: © € R?
Linear (64 — 2000) Linear (2 — 2000)
ReLU ReLU
Linear (2000 — 2000) Linear (2000 — 2000)
ReLU ReLU
Linear (2000 — 2000) Linear (2000 — 2000)
ReLU ReLU
Linear (2000 — 2) Linear (2000 — 1)

Other Details We use the Adam (Kingma & Ba, 2014) optimizer on top of our algorithm in the reported results.
Furthermore, we use batchsize of 128.
J.2. CIFAR 10 DCGAN

Dataset The CIFAR10 dataset is available for download at the following link; https://www.cs.toronto.edu/~k
riz/cifar.html

Architecture The discriminator has four layers of convolution with LeakyReLU and batch normalization. Also, the generator
has four layers of deconvolution with ReLU and batch normalization. See a schematic of the architecture in Table 4.

Other Details For the baseline we use Adam with 57 set to 0.5 and 5 set to 0.99. Generator’s learning rate is 0.0002 and
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Table 4: Architecture used for CIFAR-10 DCGAN.

Generator Discriminator
Input: z € R190 ~ N(0,1) Input: x € R3%32%32
conv. (ker: 4x4, 100 — 1024; stride: 1; pad: 0) conv. (ker: 4x4, 3 — 256; stride: 2; pad: 1)
Batch Normalization LeakyReLU

RelLU
conv. (ker: 4x4, 1024 — 512; stride: 2; pad: 1)
Batch Normalization
ReLU
conv. (ker: 4x4, 512 — 256; stride: 2; pad: 1)
Batch Normalization
ReLU
conv. (ker: 4x4, 256 — 3; stride: 2; pad: 1)
Tanh

conv. (ker: 4x4, 256 — 512; stride: 2; pad: 1)
Batch Normalization
LeakyReLU
conv. (ker: 4x4, 512 — 1024; stride: 2; pad: 1)
Batch Normalization
LeakyReLU
conv. (ker: 4x4, 1024 — 1; stride: 1; pad: 0)

Sigmoid

discriminator’s learning rate is 0.0001. The same learning rate and momentum were used to train LEAD model. We also
add the mixed derivative term with g = 0.3 and oy = 0.0.

The baseline is a DCGAN with the standard non-saturating loss (non-zero sum formulation). In our experiments, we
compute the FID based on 50,000 samples generated from our model vs 50,000 real samples.

Samples

Figure 5: Performance of LEAD on CIFAR-10 image generation task on a DCGAN architecture. Left: LEAD achieves FID 19.27. Right:
Vanilla Adam achieves FID 24.38. LEAD is able to generate better sample qualities from several classes such as ships, horses and birds
(red). Best performance is reported after 100 epochs.

J.3. CIFAR 10 ResNet

Dataset The CIFAR10 dataset is available for download at the following link; https://www.cs.toronto.edu/~k
riz/cifar.html

Architecture See Table 6 for a schematic of the architecture used for the CIFAR10 experiments with ResNet.

Other Details The baseline is a ResNet with non-saturating loss (non-zero sum formulation). Similar to (Miyato et al.,
2018), for every time that the generator is updated, the discriminator is updated 5 times. For both the Baseline SNGAN
and LEAD-Adam we use a 31 of 0.0 and 35 of 0.9 for Adam. Baseline SNGAN uses a learning rate of 0.0002 for both
the generator and the discriminator. LEAD-Adam also uses a learning rate of 0.0002 for the generator but 0.0001 for the
discriminator. LEAD-Adam uses an « of 0.5 and 0.01 for the generator and the discriminator respectively. Furthermore, we
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Table 5: ResNet blocks used for the ResNet architectures (see Table 6).

Dis—Block
Gen-Block Shortcut:
Shortcut: downsample
' Upsample(x2) conv. (ker: 1x1, 3p=1 /12827 — 128; stride: 1)
Residual: pramp Spectral Normalization
' Batch Normalization [AVgPoo] (ker:2x2, stride:?)], ifl#£1
ReL.U Residual:
Upsample(x2) [ReLU |, if £ # 1

conv. (ker: 3x3, 3e=1/1285¢1 — 128; stride: 1; pad: 1)
Spectral Normalization
ReLLU
conv. (ker: 3x3, 128 — 128; stride: 1; pad: 1)
Spectral Normalization
AvgPool (ker:2x2)

conv. (ker: 3x3, 256 — 256; stride: 1; pad: 1)
Batch Normalization
ReLU
conv. (ker: 3x3, 256 — 256; stride: 1; pad: 1)

Table 6: ResNet architectures used for experiments on CIFAR10.

Generator Discriminator
Input: z € R%* ~ N(0,1) Input: x € R3*32x32
Linear(64 — 4096) D-ResBlock
G-ResBlock D-ResBlock
G-ResBlock D-ResBlock
G-ResBlock D-ResBlock
Batch Normalization RelLU
ReLU AvgPool (ker:8x8)
conv. (ker: 3x3, 256 — 3; stride: 1; pad:1) Linear(128 — 1)
Tanh(-) Spectral Normalization

evaluate both the baseline and our method on an exponential moving average of the generator’s parameters.

In our experiments, we compute the FID based on 50,000 samples generated from our model vs 50,000 real samples and
reported the mean and variance over 5 random runs. We have provided pre-trained models as well as the source code for
both LEAD-Adam and Baseline SNGAN in our GitHub repository.

Samples

K. Comparison to other methods
In this section we compare our method with several other second order methods in the min-max setting.

The distinction of LEAD from SGA and LookAhead, can be understood by considering the 1%-order approximation of
Tp1 = Tk — NV f (T, Yk + nAyk), where Ayp = 0V, f (zx + nlAz, yp).

This gives rise to:
Thi1 = Tk — Vo f (Thoyk) — 7"V, [ (@k,yk) Ay, (61)
Yk1 = Uk + Vo f (e, ) + 07 Vo, f (T, yi) Az, (62)

with Az, Ay corresponding to each player accounting for its opponent’s potential next step. However, SGA and LookAhead

2For FtR, we provide the update for the second player given the first player performs gradient descent. Also note that in this table
SGA is simplified for the two player zero-sum game. Non-zero sum formulation of SGA such as the one used for GANs require the
computation of Jv, J T v.
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Figure 6: Generated sample of LEAD-Adam on CIFAR-10 after 50k iterations on a ResNet architecture. We achieve an FID score of
10.49 using learning rate 2e — 4 for the generator and the discriminator, « for the generator is set to 0.01 and for the discriminator is set to
0.5.

Table 7: Comparison of several second-order methods in min-max optimization. Each update rule, corresponding to a particular row,
can be constructed by adding cells in that row from Columns 4 to 7 and then multiplying that by the value in Column 1. Furthermore,
AZk41 = Tk4+1 — Tk, while C = (I + nQViy fo,m f). We compare the update rules of the first player® for the following methods:
Gradient Descent-Ascent (GDA), Least Action Dynamics (LEAD, ours), Symplectic Gradient Adjustment (SGA), Competitive Gradient
Descent (CGD), Consensus Optimization (CO), Follow-the-Ridge (FtR) and Learning with Opponent Learning Awareness (LOLA), in a
Zero-sum game.

Coefficient Momentum Gradient Interaction-xy Interaction-xx
GDA Azpiq = 1 0 —nVa.f —nV.f 0
LEAD Axyi1 = 1 BAX) —nVyf —aViyfAyk 0
SGA® Az = 1 0 —nVuf -V, fVyf 0
CGD®®  Azpi, = c 1 0 —nV.f —nZViynyf 0

CO® Az = 1 0 -V f Ve, fVyf — Vi Vel
FIRYD Ay = 1 0 Vol na (V2,0) " V2. fV.f 0
LOLATD Azxpi1 = 1 0 —nVaif =20V fVy f 0

additonally model their opponent as naive learners i.e. Ax = =V, f (2, yx), Ay = V, f(2k, yr). On the contrary, our

method does away with such specific assumptions, instead modeling the opponent based on its most recent move.

Furthermore, there is a resemblance between LEAD and OGDA that we would like to address. The 1% order Taylor
expansion of the difference in gradients term of OGDA yields the update (for x):

Thi1 = T — Vol —10°Vo, [V f + 1V, Vo, (63)

which contains an extra 2" order term V2, f compared to ours. As noted in (Schiifer & Anandkumar, 2019), the V2 _ f
term does not systematically aid in curbing the min-max rotations, rather causing convergence to non-Nash points in some
settings. For e.g., let us consider the simple game f(z,y) = (2% — y?), where x,y, v are all scalars, with the Nash
equilibrium of this game located at (* = 0,y* = 0). For a choice of v > 6, OGDA fails to converge for any learning rate
while methods like LEAD, Gradient Descent Ascent (GDA) and CGD ((Schifer & Anandkumar, 2019)) that do not contain
the Vo f (Vyy f) term do exhibit convergence. See Figure 7 and (Schiifer & Anandkumar, 2019) for more discussion.
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Figure 7: Figure depicting the convergence/divergence of several algorithms on the game of f(z,y) = y(z* — y*) (Nash equilibrium
atz® = 0,y" = 0). Left: For v = 1, OGDA and LEAD/GDA/CGD (overlaying) are found to converge to the Nash eq. Right: For
v = 6, we find that OGDA fails to converge while LEAD/GDA/CGD (overlaying) converge. We conjecture that the reason behind this
observation is the existence of V2, f term in the optimization algorithm of OGDA.



