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Figure 1: Previous research has primarily focused on: (a) linguistic-based short-horizon task planning,
and (b) low-level human-scene interaction. (c) This study investigates the simulation of high-level,
long-horizon, abstract goal-driven human behaviors in 3D scenes.

ABSTRACT

Building autonomous agents that can replicate human behavior in the realistic
3D world is a key step toward artificial general intelligence. This requires agents
to be holistic goal achievers and to naturally adapt to environmental dynamics.
In this work, we introduce ACTOR, an agent capable of performing high-level,
long-horizon, abstract goals in 3D households, guided by its internal value similar
to those of humans. ACTOR operates in a perceive-plan-act cycle, extending the un-
grounded, scene-agnostic LLM controller with deliberate goal decomposition and
decision-making through actively searching the behavior space, generating activity
choices based on a hierarchical prior, and evaluating these choices using customiz-
able value functions to determine the subsequent steps. Furthermore, we introduce
BEHAVIORHUB, a large-scale human behavior simulation dataset in scene-aware,
complicated tasks. Considering the unaffordable acquisition of human-authored 3D
human behavior data, we construct BEHAVIORHUB by exploring the commonsense
knowledge of LLMs learned from large corpora, and automatically aligning motion
resources with 3D scene for knowledgeable generation. Extensive experiments
on our established benchmark demonstrate that the proposed architecture leads to
effective behavior planning and simulation. BEHAVIORHUB also proves beneficial
for downstream task development. Our code and dataset will be publicly released.

1 INTRODUCTION

Building autonomous agents (e.g., virtual beings, or humanoid robots) that can replicate human
behavior in the realistic 3D world, has been a long-standing pursuit since the inception of AI (Diderot,
1911). The study could empower non-player game character (Riedl, 2012), underpin human-robot
interaction (Riedl, 2019) and cooperation (Matsas & Vosniakos, 2017), populate virtual reality
communities (Park et al., 2022), and accelerate Embodied AI (Puig et al., 2023).

1
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Much progress has been made in vision and language models that imitate human motions (cf . Fig. 1
(b)) or propose linguistic plans (cf . Fig. 1 (a)). However, an effective 3D humanoid agent must
go beyond by conquering three major barriers: (i) Holistic goal achievement from perception to
action. As depicted in Fig. 1 (c), to accomplish a high-level goal (e.g., ‘prepare for work’), the agent
must process the perceived information (e.g., ‘lying on bed’), decompose the goal into a series of
activities (e.g.,‘get up’, ‘use toilet’, ‘eat breakfast’, etc.), and devise appropriate action plans for
each; (ii) Environmental dynamics. Agents should be able to actively adjust their plans based on the
environment, e.g., determining if the bathroom is occupied when planning to use toilet; (iii) Vast and
multifaceted human behavior space, where numerous viable paths exist to achieve even a single goal.
For example, agents preparing for work can choose to eat breakfast before using toilet or vice versa.
Also, when the bathroom is occupied, an intelligent agent can decide to whether eat breakfast first,
or continue waiting, depending on its state and beliefs, e.g., the desire to ‘complete goal as soon as
possible’ or ‘save energy costs’. A competent agent must process such value priorities to guide its
selection and evaluation of actions and policies. Besides, the absence of a comprehensive testbed
further poses great challenge for agent development and evaluation, constituting barrier (iv).

In this work, we present ACTOR - a large language model (LLM) powered agent towards diligent
simulation of human behavior in 3D realistic scenes (§4). ACTOR follows a perceive-plan-act cycle,
addressing challenge (i) as envisioned. Using LLM as a central controller, it strategizes plans by
searching the human behavior space. It actively maintains a tree of behaviors, where each node
represents an intermediate step toward holistic goal achievement. The construction of this tree is
guided by a hierarchical prior, i.e., executable low-level actions are grouped into high-level semantic
units, called activities, iteratively forming a hierarchical structure (cf . Fig. 1 (c)). The search progress
is assessed using a set of customizable value functions that determine the likelihood of different
intermediate candidates. In addition to being rational in common sense, ACTOR couples real-valued
evaluations (e.g., best efficiency) with personalized priors expressed through language commands
(e.g., description of a neat person). These outputs are converted into unified probabilities, allowing
for the incorporation of the agent’s characteristics and beliefs as value functions, thus addressing
challenge (iii). The planning process is dynamic and grounded in specific environmental values,
empowering ACTOR to readjust its plans when faced with environmental changes or new language
commands, effectively tackling challenge (ii). This formulation facilitates the use of powerful search
algorithms, e.g., greedy search, beam search, and Monte Carlo tree search (MCTS), etc. In our
experiments, we find MCTS exhibits superior performance compared to the others.

Furthermore, we establish a comprehensive environment for development and evaluation of agents
like ACTOR, based on our newly proposed large-scale, scene-aware, behavior-rich dataset, dubbed
BEHAVIORHUB (§5). One critical issue in constructing the human-authored benchmark is the
high cost associated with acquiring and scaling high-quality, human-generated daily behavior data.
Moreover, annotating large-scale behavior data further requires creativity in designing novel tasks and
expertise in creating complete plans from scratch, which is also a challenging task for humans (Puig
et al., 2018). Given this context, we propose to automatically synthesize 3D human behavior data by
enhancing existing resources. Initially, we distill the tree-structured linguistic plans of human daily
behaviors from LLM using in-context learning (Brown et al., 2020). Contactable objects and plausible
interactions from the scanned 3D scenes (e.g., ScanNet (Dai et al., 2017), etc.) and captured motion
sequences (e.g., AMASS (Mahmood et al., 2019), etc.) are attributed into the in-context prompt to
ensure viable plans grounding in certain environment. Subsequently, we align the task-motion-scene
data triplets by applying collision and contact constraints (Yi et al., 2022) for valid translation and
rotation parameters. To promote diversity, we sample multiple plausible motion sequences for each
high-level goal. In total, BEHAVIORHUB contains more than 1k daily goals over 10k high-quality
behavior samples of 15.7 steps on average covering 1.5k scenes, that establishes a comprehensive
testbed, that addresses the barrier (iv).

We conduct extensive evaluations of ACTOR in §6. First, we find that ACTOR produces admissible
plans and generates plausible motion sequences to simulate abstract, temporally-extended human
behaviors. It outperforms the strong baselines by nearly doubling the overall success rate. This result
is further confirmed by human evaluation. Then, we conduct several ablative experiments that limit
ACTOR’s access to each core design for thorough assessment. Finally, experiments on scene-aware
and language-conditioned human motion generation demonstrate how BEHAVIORHUB can benefit
the development of downstream task models.
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2 RELATED WORK

Human Behavior Simulation. Simulating human behavior in realistic, open world environment
like the one we inhabit is a long-standing topic in artificial intelligence (Bates, 1994). Historically,
the topic has primarily been studied in the game worlds, focusing on enhancing player experiences
through intelligent non-player game characters (NPCs) (Zubek, 2002; Aylett, 1999; Brenner, 2010).
Early approaches rely on rule-based approaches like finite-state machines (Siu et al., 2021) and
behavior trees (Colledanchise & Ögren, 2018). They provide a brute force way of manually crafting
agent’s behaviors, but cannot perform new procedures that were not hard-coded in their script (Umarov
et al., 2012), limiting the generalizability. Another strand (Berner et al., 2019; Vinyals et al., 2019)
involves using reinforcement learning, where agents learn its own policy through optimizing the
learning algorithm on readily definable rewards over fixed task space, which is often limited to
non-open, adversarial games, or blocks worlds only (Hausknecht et al., 2020; Miyashita et al., 2017;
Tessler et al., 2017). The third line of research, represented by some pioneer works (Laird, 2001; Choi
et al., 2021; Langley et al., 2005) in computational cognition, aims to build machines that operate
directly in perceive-plan-act cycles, encompassing the nature of autonomous agents as originally
envisioned. This formulation holds potential generalizability to most, if not all, open-world contexts.
However, these studies are typically restricted to simplified environments, such as first-person shooter
games (Choi et al., 2021), or 2D gridworlds (e.g., Generative Agents (Park et al., 2023)), and focus
on a reduced range of behaviors. Our work falls in the vein of the third category, while pushing the
frontier towards human simulation in realistic 3D environments.

Recently, beyond the game world, new trending on social embodied intelligence, such as assistive
robots, draws attentions to simulation of human collaborators’ behavior. One notable effort is
VirtualHome (Puig et al., 2018), which studies high-level human activities as plain sequences of
atomic actions. However, its formulation is inherently environment-agnostic, which has been treated
as a purely linguistic procedural planning problem in subsequent studies (Lu et al., 2023b; Huang et al.,
2022). Furthermore, the discrete action space built upon manually crafted procedural knowledge also
makes it an insufficient testbed. In contrast, with a special focus on environment-aware simulation of
contiguous daily behaviors, our work paves one solid step accelerating the development of social
embodied intelligence.

LLM as Planner. Recent years have witnessed remarkable progress in LLMs, demonstrating
their emerging capacity to break down complex tasks into more manageable sub-tasks and devise
appropriate plans for each (Shen et al., 2023; Lu et al., 2023a). LLMs have been successfully
applied to solving mathematical problems (Imani et al., 2023; Azerbayev et al., 2023), reasoning
on commonsense (Li et al., 2022), planning robotics tasks (Liang et al., 2023; Brohan et al., 2022),
and very recently, manipulating external APIs on a web scale, expanding their capabilities beyond
text generation. Based on the observation, we posit that LLMs can serve as a crucial component
in extending the perception-decision-action space to construct human-like agents in realistic 3D
environments. However, a crucial challenge remains: LLMs lack experience and interaction with their
environment (Brown et al., 2020; Chowdhery et al., 2022), preventing them from ordering actionable
and rational plans. This paper addresses this issue by incorporating customizable value functions
into LLMs to evaluate and prioritize plans. The idea bears some resemblance to recent robotics
research (Brohan et al., 2023; Huang et al., 2023). However, those methods necessitate retraining for
every new set of primitive robotic skills, making them impractical for the complex and undefined
human action space, which is difficult to define in advance. In contrast, we support plan evaluation
using real-numbered functions and language-based rules without resource-intensive retraining.

LLM as Data Generator. Being trained on the large corpora of human-produced language, LLMs
are believed to contain a wealth of information about the world (Li et al., 2021; Roberts et al., 2020).
Given a handful of task-specific prompts, LLMs can generalize and generate more linguistic data
in the same format, with the application of generating tabular data (Borisov et al., 2023), relation
triplets (Chia et al., 2022), sentence pairs (Schick & Schütze, 2021), instruction data (Wang et al.,
2023), etc. The idea seems naturally to be borrowed for human behavior data acquisition, where
the requested human motion and daily activity procedure were commonly crowdsourced with high
expense and complexity (Puig et al., 2018), limiting the scale and coverage of related datasets (Hassan
et al., 2019). However, the process is non-trivial. The generated data is often blamed for low quality
and diversity issues (Zhang et al., 2020; West et al., 2022). The 3D environment-aware nature
of the task also poses unique challenges. To respond, we explore attributed prompts specifically
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conditioned on the environment that not only mitigates the problems of low informativeness and
redundancy, but also offers an effective workflow that can further empower other related domains,
such as human-scene interaction (Wang et al., 2022b).

3 ENVIRONMENT

Simulating open-ended goals that resemble naturalistic human behaviors necessitates an environment
capable of facilitating diverse agent affordances and interactions. Before delving into the detailed
agent architecture, we first describe such environment we tailored for agents to instantiate in.

Environmental Setup. The environment features common affordances in a household, including:
• Scene of 3D textured meshes, that spans a house of multiple functional areas (e.g., kitchen, etc.).
• Objects embedded in the scene (e.g., stove in kitchen, bed in bedroom), with each constructed of

3D textured geometry and corresponding object state (e.g., fridge: opened).
• Humanoid agent(s) defined by SMPL-X (Pavlakos et al., 2019), an expressive 3D human model

of shape and pose of both body and hand. Agents reside in and interact with the scene and can
influence the state of objects by their actions (e.g., fridge: opened → closed).

As a start point, we demonstrate the environment of indoor household, keep the general formulation
open for other environments, such as outdoor streets (Dai et al., 2022).

Environmental Simulator. Interactions within the environment are driven by the simulator of two
components: (i) an engine that manages and evolves the states of objects in the environment; and
(ii) a renderer that supports generation of multiple perceptual observations (e.g., RGB, depth, 3D
surfaces) for agents. At each time step, the simulator dynamically updates environment and collects
egocentric, surround, or third-person-view information based on needs. We build our simulator upon
Habitat-Sim (Savva et al., 2019; Szot et al., 2021) to ensure efficient and parallelizable simulation.

4 ACTOR AGENT

We aim to build humanoid agents that naturally simulate 3D human behaviors to complete daily goals,
which can be lengthy, abstract, or ambiguous. Agents receive high-level goal described in language
and are tasked with generating plausible motion sequences that align with the given scene.

4.1 AGENT ARCHITECTURE

Fig. 2 shows the workflow of ACTOR. The agent operates in a perceive-plan-act loop, using language
as the generic interface connecting the three phases. At each step, it selectively perceives the world
based on the target, transforming information into an environment description using heuristics. The
observed information assists in decision-making through the LLM core, ultimately resulting in actions
in the form of 3D motion sequences based on linguistic plans within the environment.

Perception. Our definition of perception extends beyond gathering information, such as 2D images
or 3D point clouds, through the simulator (cf . §3). It encompasses attaining a deep understanding
of the environment, including object properties, spatial relationships, and scene layouts, etc. In our
preliminary implementation, information is perceived using readily available models and converted
into linguistic descriptions using heuristic functions. More specifically, they take scene geometry,
which includes object segmentation, as well as the agent’s state of position and action type as input
(Fig. 2 Right) and gives a linguistic description of the entire scene and the agent’s surroundings as
output. To provide a concrete example, a linguistic environmental description could be as follows:

ENVIRONMENT: {residential interior}; OBJECTS: {bed, desk, chair, kitchen counter, sink, television,
..., sofa}; SURROUNDINGS: {sink: empty, faucet: turned on, toilet: vacant}
The ”Environment” and ”Objects” fields offer the agent a comprehensive understanding of the human
behaviors that may occur in the current scene. On the other hand, the ”Surroundings” field provides
the agent with information about interactive objects and their respective states in the surrounding.

Plan. At the core of ACTOR, a planning module receives the current environment and past behavior
trial as input, generating action description as output. For the executable actions, it provides descrip-
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Figure 2: Left: Overall agent architecture (§4.1); Right: One-step in perceive-plan-act loop with
value-driven behavior planning (§4.2).

tions of motion sequences. In the case of high-level activity, it bypasses the action stage and proceeds
to break down the target further. We will provide a detailed explanation of this process in §4.2.

Action. For action, we specifically consider whole-body human actions in 3D scenes to closely
resemble human behavior using the off-the-shelf models. It generates whole-body motion based on
text and trajectory (Karunratanakul et al., 2023). For object-interactive actions, we further refine hand
grasping using an isolated grasp estimation model (Taheri et al., 2020). Additionally, for moving
actions like walking, trajectory paths are pre-estimated (Wang et al., 2022a). Detailed trajectory
estimation process is provided in supp. §A.2

4.2 VALUE-DRIVEN BEHAVIOR PLANNING

We now delve into the details of planning phase. An LLM, denoted as pθ with parameters θ,
functions as a controller to iteratively decompose the long-term goal l described in language texts into
shorter steps of behaviors based on the environmental dynamics E and the corresponding perceived
description e. For brevity, we define E to include both the environment state and agent’s state.
We denote linguistic descriptions of behaviors as z. The problem is formulated as a search over
a tree, where each node represents a state s = {z1···i}, representing a partial trial with the input
and the sequence of behaviors taken thus far. The instantiation consists of three components: (i)
Node expansion, which involves generating k candidate behaviors for the next step search; (ii) Value
functions to evaluate each node; (iii) Search algorithm that accounts for branch selection.

Node Expansion. The node is expanded through sampling from LLM with a window size w:
z(j) ∼ pθ(zi+1| l, e, s, h), where j∈{1, · · ·, w}. We omit the basis prompting parts for brevity, which
is also the case in the subsequent context. Here, we introduce a hierarchical heuristic, denoted as
h, which is implemented through prompt instructions and demonstrations of specific actions and
activity cases. This heuristic ensures that during each expansion, all candidates at the same level
are restricted to executable actions or high-level semantic units of activities, that provides a more
nuanced representation of behaviors for effectively modeling interchangeable activities.

Value Function. The value function assesses the state by considering the degree to which a specific
behavior contributes to the achievement of the target, conditioned on the agents’ beliefs reflecting
their value. The search algorithm uses the output to determine which nodes to explore further and
in what order. The likelihood is given by p(zi+1| l, E, s)∝pθ(zi+1| l, e, s) · pv(zi+1| l, E, s). Here,
the LLM provides us with pθ(zi+1| l, e, s), which represents the likelihood, based on commonsense,
that a textual behavior is a valid next step. However, the LLM struggles to generalize or make
inferences in the real environment since it is not grounded. On the other hand, pv provides the
likelihood of the behavior being plausible in the current state of both the environment and agent,
according to the defined values. We consider a set of values {pvn}n categorized into two types, and
pv(zi+1| l, E, s) =

∏
n pvn(zi+1| l, E, s):

• Real-valued function assigns real values as outputs, such as the shortest path value, for which the
function estimates the distance for each candidate action. The outputs of real-valued functions can
be directly normalized into probabilities.

• Language-based command is implemented by prompting the LM with a value prompt that conveys
the meaning of ‘How likely is it for someone who is a neat person to take the following action,

5
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considering ...’. It reasons about the trial to generate a classification value of sure/more-likely/less-
likely/impossible, which is empirically converted into probabilities set as 1.0/0.7/0.3/0.01.

Values are also conditioned on the state of the environment and agent. This approach allows for
reacting to environmental dynamics in addition to the active planning process.

Search Algorithms. Owing to the active planning process we have formulated, it is feasible to use
different search algorithms based on the tree structure. We explore greedy search (Feo & Resende,
1995), beam search (Freitag & Al-Onaizan, 2017) and MCTS (Coulom, 2006), and evaluate their
performance in experiments (cf . §6.2) where we find MCTS performs best. We use MCTS by default.

4.3 IMPLEMENTATION DETAIL

We employ GPT-4 and GPT-3.5-turbo API provided by OpenAI as the base LLMs. By default, we
prompt the LLMs with four in-context examples as demonstrations. We set decoding temperature
to 0 for more deterministic generation. We use official releases of conditional motion generation
models and fine-tune them on BEHAVIORHUB using the default parameters for each to promote finer
generation quality. By default, we set the window size to w = 5 and normalize the shortest path value
based on the maximum rollout depth of the search algorithm, which is set to 3. In practice, we find
one-time sampling is sufficient for effective tree search, eliminating the need for multiple samplings
for branch aggregation.

Reproducibility. Our algorithm is implemented in PyTorch and LangChain. All experiments are
conducted on Tesla A40 GPUs. Our code will be released for reproducibility.

5 BEHAVIORHUB BENCHMARK

To lay a solid foundation for future research, we build a large repository of common behaviors
performed in daily household scenarios. Each sample contains three components: (i) a high-level goal
(i.e., root node); (ii) a tree-structured linguistic plan covering necessary intermediate-level steps (i.e.,
intermediate nodes) and low-level steps (i.e., leaf nodes) required to accomplish the goal; and (iii)
scene-conditioned human motions corresponding to each executable step at either intermediate or low
level. We illustrate one example in Fig. 3 (a). Intermediate step set can be empty. Both goal and steps
in plans are human activities described with either concrete or abstract language (e.g., ‘go to sleep on
bed’ or ‘feel tired’). To generate diverse and high-quality data, we employ a two-step pipeline that
utilizes an LLM pretrained on extensive corpora: First, automatic generation of linguistic daily plans
(§5.1); Second, alignment of the plans with 3D motions and scenes (§5.2). The entire data generation
process is shown in Fig. 3 (b).

5.1 LINGUISTIC GOAL-PLAN GENERATION

The pipeline consists of three steps: (i) generate potentially incomplete goal-plan trees; (ii) complete
and refine each tree; and (iii) filter out low-quality data. We provide detailed prompts in supp. §A.1.

Attributed Goal-Plan Tree Generation. In the initial step, we generate new goal-plan trees using
a bootstrapping approach based on a small set of seed human-written samples. To ensure broader
coverage and facilitate later alignment with specific scenes, we attribute the starting room, candidate
objects and actions that interact with the activity in the plans into prompt demonstrations. We start
the sample pool with 292 activities from ActivityPrograms (Puig et al., 2018), and consider 21 room
types (e.g., bathroom, gym), ∼103 object types (e.g., TV, table), and ∼102 action types (e.g., open,
eat). Refer to the supp. §A.4 for the full list. For each step, we sample eight goal-plans as in-context
examples from the pool while restricting the outputs to one room and ten types of objects. Out of the
eight plans, six are from the human-written plans, and two are generated by the model in previous
steps to enhance diversity.

The generated trees are then labeled with sequential order for intermediate nodes in the trees, which
encompass multiple sub-step leaf nodes of individual actions. This sequential order is represented as
interchangeable groups, where nodes within the same set are interchangeable with each other. We
prompt the LM in a few-shot way to determine this.
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Figure 3: (a) An illustrative example of our BEHAVIORHUB dataset; (b) Semi-automatic 3D human
behavior data generation pipeline (§5).

Goal-Plan Tree Refinement. We further improve the constructed trees by addressing two key aspects:
(i) we complete any missing internal plan steps, which can often be revised based on commonsense,
e.g., opened the fridge without closing it. (ii) we enhance the root node descriptions to be more
abstract, e.g., transforming ‘use toilet’ to ‘feel the call of nature’. We accomplish both aspects by
querying the LLM for suggestions.

Filtering. To promote diversity, a new tree is added to the pool only if its BERTScore similar-
ity (Zhang et al., 2019) with any existing goal-plan tree is below 0.5. Additionally, we utilize LLM to
assess the generated trees by asking the question, ‘Is this a valid plan?’ Any plans flagged as ‘invalid’
are filtered out to ensure high-quality data.

5.2 GOAL-MOTION-SCENE ALIGNMENT

Once the goal-plan trees are formed, we proceed to ground them in the 3D environment. We propose to
synthesize 3D behaviors by leveraging existing resources of human motions (i.e., AMASS (Mahmood
et al., 2019), BABEL (Punnakkal et al., 2021), GRAB (Taheri et al., 2020)), and indoor scenes (i.e.,
ScanNet (Dai et al., 2017), HM3D (Ramakrishnan et al., 2021), Replica (Straub et al., 2019)). For
each tree, we first sample actions and objects from the resources using corresponding labels to fulfill
the executable activities in forms of combinations of actions on objects. Then, given the sampled
motion, we aim to generate plausible and contiguous interactions to the sampled object in the scene.

Motion Alignment. We first put motion clips into the scene anchored by the contactable objects. We
optimize the translation and rotation parameters matrices by minimizing the collision and contact
losses from MOVER (Yi et al., 2022). A unified SDF volume is calculated, and all contact vertices for
all frames are accumulated in 3D space. The motion is aligned through a transformation of the two
matrices. This joint optimization improves human-object contact and resolves 3D interpenetrations
between humans and the scene.

Sequence Blending. The aligned motion sequence, which may be sparse and not spatially connected,
is blended using a Transformer-based motion completion method (Duan et al., 2021). This results in
a contiguous motion sequence that aligns with both the scene and goal plan. In practice, we find a
single network is capable of delivering satisfactory results that align with prior research (Kim et al.,
2022; Shafir et al., 2024).

Verification. Finally, to ensure the data quality, each example is examined by three verifiers who
vote on whether the plan (motion) is complete (valid). If an example receives majority approval, it is
accepted; otherwise, it is dropped.

5.3 DATASET STATISTICS

Our dataset consists of 10k human behavior samples in 1.5k 3D scenes, covers 2k unique activity
over 0.1k actions and 1k objects, which is an order of magnitude larger than the human-authoring
ActivityPrograms (Dai et al., 2017). On average, each high-level goal has 15.7 steps, resulting in a
total of 10.1 corresponding motion sequences of 83.3 frames, that span over 8.6M motion frames.
Each activity corresponds to 4.1 different motion sequences in 1.7 rooms. Owing to the automatic
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Table 1: Quantitative results on Main and Dynamic set of BEHAVIORHUB. ‘↓’ indicates smaller
values are better. See §6.1 for details.

Behavior Planning Behavior SimulationMethod
S-BLEU BERT-S SSR GSR GSRPL FID ↓ Accuracy ↑

M
a
i
n

Se
t

LLMaP (Huang et al., 2022)[ICML2022] 0.089 0.825 - - - - -
HuggingGPT (Shen et al., 2023)[NeurIPS23] 0.132 0.856 0.533 0.317 0.161 5.386 0.620

ACTOR (Ours) 0.170 0.879 0.601 0.472 0.351 2.087 0.773
Human 0.203 0.959 - - - - -

LLMaP (Huang et al., 2022)[ICML2022] 0.069 0.821 - - - - -
HuggingGPT (Shen et al., 2023)[NeurIPS23] 0.099 0.830 0.407 0.164 0.073 9.116 0.505

D
y
n
a
m
i
c

Su
bs

et

ACTOR (Ours) 0.135 0.862 0.515 0.306 0.212 3.141 0.697

data generation pipeline, our dataset achieves even higher diversity and coverage with low human
cost. More analyses are provided in supp. §A.4.

5.4 EVALUATION METRIC

Our evaluation of the plausible behavior simulation encompasses two key aspects: (i) the simulation
should generate linguistically reasonable behavior plans (i.e., behavior planning); and (ii) align them
with natural motion sequences within the 3D environment (i.e., behavior simulation).
• For behavior planning, Sentence-BLEU (Papineni et al., 2002), and BERTScore (Zhang et al., 2019)

are used to measure the semantic similarity between the ground-truth plans and predictions. We
report maximum scores attained across gt plan variants to ensure the evaluation be order-invariant
w.r.t. interchangeable sub-steps.

• For behavior simulation, we consider three sets of metrics: (i) Success Rate: The step success rate
(SSR) records the percentage of steps where the agent successfully completes the step objective,
defined by a contact distance threshold. For example, we consider lying down to be successful
if both the hip and head of the humanoid are within 30 cm of the target location (Hassan et al.,
2023). The goal success rate (GSR) is measured to determine whether all steps in the entire plan
are successfully executed; (ii) Goal Success Rate Weighted by Path Length (GSRPL): It judges how
efficient was the agent at finishing the goal, defined as GSR· g

max(g,l) . Here g is ground-truth path
length and l is the agent’s path length; (iii) Motion Quality: We further evaluate the overall quality
of generated motions using Frechet Inception Distance (FID) and recognition accuracy measured
with the final layer of a pretrained standard RNN action recognition classifier as motion feature
extractor, which offers intuitive and fine-grained assessments of generation quality.

6 EXPERIMENT

6.1 PERFORMANCE ON BEHAVIORHUB BENCHMARK

Dataset Split and Dynamic Subset. We randomly sample 200 held-out goals as demonstration
set from which we select example(s) for prompting language models, and also as training data for
fine-tuning conditional generation models. The remaining ones are used for evaluation.

To thoroughly examine the capacity of benchmarked models in managing environmental dynamics,
we manually create a subset of 300 samples from the original BEHAVIORHUB, called Dynamic
subset. In each sample, we carefully configure the agent’s environment state-aware triggers to
guarantee a distinct goal-plan solution for a specific goal, e.g., we designate the bathroom as occupied
only after certain pre-request steps have been fulfilled; or incorporate language commands that specify
agent characteristics, further contributing to a unique goal-plan preference.

Competitors. We benchmark two top-leading LLM-based models: LLMaP (Huang et al., 2022), a
procedural planning model, and HuggingGPT (Shen et al., 2023), a general tool agent, to probe the
human behavior simulation ability in existing techniques. LLMaP is designed to operate solely on
textual inputs, and lacks the capability to perform behavior simulation. Therefore, our evaluation and
report focus solely on its behavior planning ability.

8
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<eat>, <food >
<open>, 

<refrigerator>
<clean>, <floor><take>, <broom><put on>, <clothes><take>, <clothes><open>, <wardrobe>

<typing>, 

<keyboard>

Goal: prepare for the day         Language command: he/she is a neat person
Getting dressedGetting dressed Breakfast preparationBreakfast preparationHome cleaningHome cleaning

Goal: weekend cleaning           Original plan: weekend cleaning      clean bedroom      
Condition:                                Strategized plan:

(occupied bedroom) Clean kitchenClean kitchen

Work from homeWork from home

Wash clothesWash clothes Clean bedroomClean bedroom
<take>, 

<broom>

<walk>, 

<bedroom>
<clean>, <floor> <clean>, <window>

<walk>, <washing 

machine>

<place>, <clothes>, 

<washing machine>

<walk>, 

<kitchen>

<clean>, 

<dining table>

<wash>, 

<kitchen appliance>

<walk>, <washing 

machine>

<place>, <clothes>, 

<washing machine>

<walk>, 

<kitchen>

<clean>, 

<dining table>

<wash>, 

<kitchen appliance>

(occupied signal

removed)

Figure 4: Qualitative results of ACTOR on the challenging BEHAVIORHUB Dynamic subset.
Please refer to §6.1 for more details.

Quantitative Evaluation. Table 1 summarizes the automatic evaluation results, from which we
take three major observations: (i) ACTOR achieves the best results on both behavior planning
and simulation and outperforms the strong baseline by nearly doubling the GSR, indicating the
effectiveness of our value-driven behavior planning design. (ii) On the challenging Dynamic subset,
both LLMaP and HuggingGPT experience a noticeable decline in terms of BERT-S, whereas our
ACTOR performs much better. To illustrate, in the case shown in Fig. 4, both LLMaP and HuggingGPT
directly ignore the occupied signal and give an irrational plan of heading directly to the bedroom,
causing a failure. This observation confirms our claim that the ungrounded LLM falls short in terms
of environment-aware behavior planning. (iii) Although our ACTOR shows more promising results,
there still remains a significant gap compared to human performance. This highlights the need for
developing more sophisticated behavior simulation models.

Table 2: Human-evaluated results on Dynamic subset.
Method Complete. Rational. Quality

Human 4.02 4.85 -
LLMaP [ICML2022] 2.23 2.48 -

HuggingGPT [NeurIPS23] 2.71 2.89 3.18
ACTOR (Ours) 3.05 3.47 3.75

Human Evaluation. For a comprehensive
evaluation, we engage five participants as
human evaluators. They rate the model per-
formance based on three aspects: (i) Com-
pleteness: assess whether the motion steps
can successfully complete the target goal,
capturing semantic completeness; (ii) Ra-
tionality: evaluate whether the sequence includes necessary steps in the correct sequential order to
accomplish the target goal, capturing sequential order correctness; and (iii) Quality: reflect the natu-
ralness and smoothness of the motion sequence, capturing motion quality. The results of the human
ratings, based on a 5-point Likert scale, are reported in Table 2. The human subjective judgments
generally align with the trends reflected by Table 2, confirming the reliability of our constructed
automatic evaluation framework. Also, the results reaffirm that ACTOR yields plausible behavior
simulation. However, it is worth noting that human-written plans are consistently preferred over our
results, underscoring the challenging nature of our newly proposed BEHAVIORHUB benchmark.

Qualitative Analysis. Examples from ACTOR on BEHAVIORHUB Dynamic are visualized in
Fig. 4. In addition to simulating behavior to strategize and successfully achieve the desired goal,
ACTOR is able to respond to environmental changes and adapt to language commands. For instance,
to accomplish the goal of ‘weekend cleaning’, while someone is still in bed, i.e., the bedroom is
occupied, the agent prioritizes scheduling the kitchen first and then the bedroom, waiting for the
person to wake up. In the second example, considering the truth that someone is a neat person, he/she
engages in home cleaning before eating breakfast.

6.2 DIAGNOSTIC EXPERIMENTS

A set of ablative studies is conducted on BEHAVIORHUB Dynamic for indepth analyzing each
component in ACTOR, using BERT-S, GSR, GSRPL (cf . §5.4) as evaluation metrics

Key Component Analysis. We first validate the importance of our proposed components by attaching
them one at a time in Table 4b. The 1st row reports the result of a bare baseline model, which produces
a global plan based on the given linguistic goal. Next, in the 2nd row, we transition from one-pass
planning to active tree search, resulting in improved performance and supporting our claim that active

9
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Table 3: Ablative experiments on the Dynamic subset of our proposed BEHAVIORHUB. Please
refer to §6.2 for more details.

(a) Key Component Analysis
Method BERT-S GSR GSRPL

Baseline 0.811 0.140 0.062
+ Active Search 0.837 0.235 0.132
+ Hier. Prior 0.849 0.261 0.154
+ Value Func. 0.862 0.306 0.212

(b) Search Algorithm
Algorithm BERT-S GSR GSRPL

Greedy 0.840 0.244 0.151
Beam 0.853 0.287 0.186
MCTS 0.862 0.306 0.212

(c) Modular Scalability
LLM BERT-S GSR GSRPL

Vicuna-7b 0.808 0.092 0.063
GPT-3.5 0.833 0.176 0.116
GPT-4 0.862 0.306 0.212

Table 4: Quantitative results (§6.3) on two downstream tasks. We use ‘†’ to indicate using
BEHAVIORHUB for additional training.

(a) Scene-aware Motion Generation
Method MPJPE ↓ MPVPE ↓

(Wang et al., 2021) [CVPR21] 242.50 222.13
†(Wang et al., 2021) [CVPR21] 201.56 189.21

(b) Language-conditioned Motion Generation
Method FID ↓ R Precision ↑

MDM (Tevet et al., 2023) [ICLR23] 0.544 0.611
†MDM (Tevet et al., 2023) [ICLR23] 0.471 0.705

planning can mitigate the impact of environmental changes. Moreover, the 3rd row gives the score
when the hierarchical behavior structure prior is employed when spanning searching branches. As
seen, this leads to moderate improvement by constraining the search space with interchangeable
semantic units, highlighting its necessity in handling vast and complex human behavior space. Finally,
as shown in the 4th row, incorporating value function significantly enhances the overall success rate
and success rate over path length, aligning with the rational preference for the shortest path.

Search Algorithm. Table 3b reveals the impact of search algorithms (§4.2), i.e., greedy search, beam
search, and MCTS, with window sizes of 5 for the later two algorithms. The default strategy, MCTS,
shows optimal results, which aligns with the widely accepted understanding that MCTS is more
effective when dealing with a large solution space.

Modular Scalability. In Table 3c, we investigate the modular scalability by employing various LLM
cores, including GPT-3.5, GPT-4 and open-source LLM Vicuna-7b (Chiang et al., 2023). As the
LLMs’ capabilities improve, ACTOR exhibits a continuous enhancement in its behavior simulation
performance. This observation substantiates the notion that our ACTOR system possesses great
potential for accommodating the development of more powerful LLM cores. Moreover, this shows
that BEHAVIORHUB, in conjunction with the human behavior planning task, serves as a robust testbed
for evaluating the planning capability of LLMs.

6.3 BEHAVIORHUB FOR DOWNSTEAM TASK

We further probe the effectiveness of BEHAVIORHUB by incorporating it as additional training
data for two downstream tasks: scene-aware (Wang et al., 2021) and language-conditioned motion
generation (Tevet et al., 2023), which focus on generation without planning. We follow the official
implementation of both methods and begin by pre-training the two models on BEHAVIORHUB.
Subsequently, we fine-tune then evaluate these models on PROX (Hassan et al., 2019) and Hu-
manML3D (Guo et al., 2022), respectively. The evaluation results are reported in Table 4. As
observed, BEHAVIORHUB significantly enhances model performance across all evaluation metrics
for both tasks, highlighting the potential of our created dataset in facilitating broader applications
within the realm of motion generation.

7 CONCLUSION

We present ACTOR, an LLM-powered agent towards realistic simulation of human behavior in 3D
scenes. ACTOR integrates an LLM controller to perform complex behavior through planning on goal
decomposition guided by hierarchical activity prior. The value-driven mechanism further deepens its
understanding of environment. We demonstrate its potential in the simulated 3D indoor environment
constructed using our newly created large-scale, scene-aware, behavior-rich dataset, BEHAVIORHUB.
Evaluations suggest effective behavior planning and simulation of ACTOR.
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REPRODUCIBILITY STATEMENT

We believe we have revealed sufficient details of data (§5), pipeline (§4), and running details (§4.3,
supp. §A.2, supp. §A.3). All evaluation assets are publicly accessible, and we adhere to standard
evaluation protocols for procedural planning (Puig et al., 2018; Huang et al., 2022) and human-scene
interaction (Hassan et al., 2023; Wang et al., 2022b) to report and compare the results. The cited
assets are listed in §5 and §6.3, with their licenses detailed in supp. §A.6. For additional assurance,
we will ensure the public availability of the code, dataset creation instructions, agent implementation,
and model checkpoint upon acceptance.
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Michele Colledanchise and Petter Ögren. Behavior trees in robotics and AI: An introduction. CRC
Press, 2018. 3
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A APPENDIX

In the appendix, we provide the following items that shed deeper insight on our contributions:
• §A.1: Details about data generation prompts.
• §A.2: Details about motion trajectory generation and human-scene interaction.
• §A.3: Details about MCTS process.
• §A.4: More dataset statistics.
• §A.5: More qualitative visualization and detailed goal-plan json.
• §A.6: Discussion of legal/ethical considerations and limitations.

A.1 PROMPTS FOR DATA GENERATION

We give full details of the prompts used in generating linguistic goal-plan trees, including in goal-plan
trees initialization Table 5, attribution of interchangeable groups in Table 6, and goal-plan tree
refinement in Table 7.

A.2 MORE DETAILS OF MOTION TRAJECTORY GENERATION AND HUMAN-SCENE
INTERACTION

In the action module of ACTOR, we generate whole-body human actions in 3D scenes using off-the-
shelf conditional motion generation models. Here we provide more details on how we achieve motion
trajectory generation and human-scene interaction.

For motion trajectory generation, once the linguistic planning step provides us with a parsed <action,
object> pair, we categorize the action into two types: still and moving. First, for still actions,
such as stand up and knock, no trajectory estimation is necessary as the human remains in a fixed
position. Then, as we mentioned in §4.1, for moving actions like walking, trajectory paths are
pre-estimated Wang et al. (2022a). We adapt the trajectory estimation module from Wang et al.
(2022a). The end position is sampled based on contact and collision rules, taking into account the
scene and targeted object geometry. The goal is to position the human close to the target while
avoiding collisions with walls. The start position is determined based on the previous step’s end
position. Subsequently, this module utilizes an improved A* path search algorithm, considering the
start-end position and the entire scene geometry, to generate the final trajectory.

Furthermore, for achieving human-scene interaction, we construct the leaf nodes of these goals as
<scene, text, motion> pairs to finetune the conditional motion generation model Karunratanakul
et al. (2023), where a scene-conditioned branch is added and implemented with a pretrained and fixed
Point Transformer Zhao et al. (2021) to achieve human-scene interaction. The conditional motion
generation model takes pre-estimated trajectory, text description, and scene geometry as input to
generate the whole-body motion. While the grasp estimation model further refine the hand pose.
During finetuning, we keep the hyperparameters consistent with the official implementation, except
for using a learning rate that is half of the original value. This adjustment already yields moderate
adaptation.

A.3 MORE DETAILS OF MCTS PROCESS

In Fig. 2, we illustrate a generalized view of the tree structure used in different algorithms such as
greedy search, DFS, BFS, A* search, and also MCTS. The value function assigns values to each node,
while node expansion determines the probability of transitioning from the node state. In this section,
we present a more detailed description of MCTS process based on the proposed value-driven planning
approach. Specifically, in MCTS, the root node represents the current state of the system being
executed. Each child node corresponds to a potential action or step that can be taken from the current
state. These nodes have associated values and states, which include information about the current
scene and the state of the human involved. First, the initial value of a node is determined by the value
function (cf . §4.2). This value is then updated during the backpropagation phase. Second, during the
expansion phase, new child nodes are created by sampling from LLM within the Node Expansion
process. Third, in the backpropagation phase, the results of a two-step rollout are summarized. This
involves considering the values of the two-step children and updating the value of the parent node
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accordingly. Finally, the MCTS process continues to iterate until a termination condition or goal is
reached, signifying that the search is finished.

A.4 MORE DATASET STATISTICS

We provide lists of most frequently used motion and objects in Fig. 6-7 and Table 8-9. Example
scene is illustrated in Fig. 5. We next give brief description of the scene dataset we incorporate
for data generation: (i) ScanNet Dai et al. (2017) is a widely known dataset in computer vision
and 3D scene understanding. ScanNet is a large-scale RGB-D dataset containing 3D scans of
indoor spaces, along with detailed semantic and instance-level annotations. It is commonly used for
tasks such as 3D scene understanding, object recognition, and semantic segmentation. Researchers
and developers use ScanNet to train and evaluate algorithms for various applications related to
understanding the 3D structure of indoor environments. (ii) Habitat-Matterport 3D Research Dataset
(HM3D) Ramakrishnan et al. (2021) is the largest-ever dataset of 3D indoor spaces. It consists of
1,000 high-resolution 3D scans (or digital twins) of building-scale residential, commercial, and civic
spaces generated from real-world environments. Researchers can use it with FAIR’s Habitat simulator
to train embodied agents, such as home robots and AI assistants, at scale.

A.5 MORE VISUALIZATION AND GOAL-PLAN JSON

More illustrations of qualitative visualization and detailed goal-plan tree JSONs are given in Fig. 8.

A.6 DISCUSSION

Asset License and Consent. We build BEHAVIORHUB on top of three human motion datasets (i.e.,
AMASS Mahmood et al. (2019), BABEL Punnakkal et al. (2021), GRAB Taheri et al. (2020)), and
two indoor scene datasets (i.e., ScanNet Dai et al. (2017), HM3D Ramakrishnan et al. (2021)), that
are all publicly and freely available for academic purposes. We implement our agent with LangChain
codebase using GPT-3.5 and GPT-4 models. AMASS (https://amass.is.tue.mpg.de/) is
released under this License; BABEL (https://babel.is.tue.mpg.de/) is released under
this License; GRAB (https://grab.is.tue.mpg.de/) is released under this License; Scan-
Net (http://www.scan-net.org/) is released under this License, and the code is released un-
der the MIT license; HM3D (https://aihabitat.org/datasets/hm3d-semantics/)
is released under this License; LangChain codebase (https://github.com/langchain-ai/
langchain) is released under the MIT license. GPT models from OpenAI are available for aca-
demic research under this License.

Crowdsourcing Data Collection. BEHAVIORHUB is primarily collected through an automated
data collection pipeline, with minimal human intervention required for verification. In addition, we
conduct user studies to evaluate the quality of the human-subjective generation. All human experts
involved in the annotation and evaluation process are well-informed that their contributions will be
utilized for academic research, and their consent is obtained through signed agreements. To ensure
privacy and equality, the annotation process strictly adheres to guidelines that prevent the disclosure
of personal information about the experts and minimize data bias.

Limitation Analysis. One limitation of this work is that although the generated human motions are
scene-aware, the interaction with objects is currently assumed to be static. In our future work, we aim
to enhance the capabilities of BEHAVIORHUB and the ACTOR agent by incorporating interactions
with interactive objects. To achieve this goal, we have developed our environment using the Habitat-
Sim simulator, which offers the necessary flexibility to realistically simulate these interactions in
future developments. Furthermore, we are committed to designing a more realistic benchmark and
algorithm for simulating interactions, ensuring that our work aligns with future advancements in
this area. To encourage broader exploration and engagement from the research community, we
will also release our complete code implementation, comprising the environment simulator, dataset
construction, and agent implementation.

Broader Impact. This study focuses on simulating high-level, long-horizon, abstract goal-driven hu-
man behaviors in 3D scenes. The approach has several positive implications, including advancements
in Embodied AI, potential to populate virtual reality communities, and enhancement of non-player
game character development. However, there are potential negative consequences to consider. The
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generated results could be exploited for malicious purposes, such as the creation of highly realistic
and deceptive virtual characters for social engineering or online scams. While this issue falls outside
the scope of this paper, we intend to release our models in a gated manner to ensure that they are
solely used for academic research purposes and prevent any misuse.
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Figure 5: Example Scene. (a) Global view from a slanted perspective; (b) Global top-down view; (c) Local
view of a living room.

Figure 6: (a) Counts of actions in our BEHAVIORHUB dataset; (b) Object counts.

Figure 7: (a) Most frequently used objects; and (b) Most frequently used actions.
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Figure 8: More qualitative visualization on our BEHAVIORHUB dataset.
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Table 5: Detailed prompt design for goal-plan trees initialization.
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Prompt

#1 goal-plan trees Initialization Stage - The following is a friendly conversation between a human and an AI. The AI is professional and
can generate multiple goal-plan trees with lots of specific details from its context. The AI assistant is required to using the provided
“object list” and ”action list” to come up with several tree-structure tasks with the following format: [{“Root”: task, “children”: [{
“node1”: subtask, “children”: [{“node1-1”: ACTION, “children”: []}, {“node1-2”: ACTION, “children”: []}]}, {“node2”: subtask,
“children”: [{“node2-1”: ACTION, “children”: []}]}]}]. Note: “ACTION” must be “<action>”, “<action>, <object>” or “<action>,
<object>, <object>”, non-leaf nodes must be “task” or “subtask”. Intermediate nodes must be grouped, and the order of nodes in the
same group is interchangeable. The AI assistant must reply in JSON format. The “task” or “subtask” field represents high-level task such as
“Read a book”, “Take a shower” or “Watch TV”. The “task” or “subtask” must be complex activities or objectives in household. The “<action
>” must be selected from the “action list”, “<object>” must be selected from the “object list”, and together they achieve the corresponding
“task”. Here are the “object list” and “action list” provided: {{Object List}}, {{Action List}}. To assist with goal-plan tree generation, here
are several cases for your reference: {{Demonstrations}}.

Demonstrations
Now, please generate a tree-structure tasks:
{“Root”: “play the toy”, “children”: [“node1”, “node2”], “interchangeable groups”: [“node”]}
{“node1”: “walk toy”, “children”: [] }
{“node2”: “play toy”, “children”: [] }

Now, please generate a tree-structure tasks with more branches and more depths. Remember you should reply in JSON format
and the “<action>” must be selected from the “action list”, “<object>” must be selected from the “object list”:
{“Root”: “morning routine”, “children”: [“node1”, “node2”, “node3”]}
{“node1”: “have breakfast”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1”: “<walk>”, <refrigerator>”, “children”: []}
{“node1-2: “<open>, <refrigerator>”, “children”: []}
{“node1-3”: “<garb>”, <food in refrigerator>”, “children”: []}

{“node2”: “eating”, “children”: [“node2-1”, “node2-2”, “node2-3”] }
{“node2-1”: “<walk>, <dining table>”, “children”: [] }
{“node2-2”: “<sit>, <dining table>”, “children”: [] }
{“node2-3”: “<eat>“, “children“: [] }

{“node3”: “work”, “children”: [“node3-1”, “node3-2”, “node3-3”] }
{“node3-1“: “<walk>, <computer chair>“, “children“: [] }
{“node3-2“: “<sit>, <computer chair>“, “children“: [] }
{“node3-3“: “<typing>, <keyboard>“, “children“: [] }

Table 6: Detailed prompt design for intermediate nodes labeling.
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#2 Intermediate Nodes Labeling Stage – With the input goal-plan tree in JSON, the AI should assist in labeling the intermediate nodes
in the trees using the attribute ”interchangeable groups”. Note: Intermediate nodes must be grouped, and the order of nodes in the
same group is interchangeable. For a more comprehensive understanding of this procedural step, please refer to the corresponding
demonstration {{Demonstrations}}. Remember you should reply in JSON format.

Demonstrations
Please label the intermediate nodes in the following goal-plan tree:
Query:
{“Root”: “evening routine”, “children”: [“node1”, “node2”, “node3”]}
{“node1”: “watch TV”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1”: “<walk>”, <couch>”, “children”: []}
{“node1-2: “<sit>, <couch>”, “children”: []}
{“node1-3”: “<press>”, <remote>”, “children”: []}

{“node2”: “have dinner”, “children”: [“node2-1”, “node2-2”, “node2-3”, “node2-4”, “node2-5”, “node2-6”] }
{“node2-1”: “<walk>, <refrigerator>”, “children”: [] }
{“node2-2”: “<open>, <refrigerator>”, “children”: [] }
{“node2-3”: “<take>, <food in refrigerator>“, “children“: [] }
{“node2-4“: “<walk>, <dining chair>“, “children“: [] }
{“node2-5“: “<sit>, <dining chair>“, “children“: [] }
{“node2-6“: “<eat>, <food in refrigerator>“, “children“: [] }

{“node3”: “edtime routine”, “children”: [“node3-1”, “node3-2”] }
{“node3-1“: “<walk>, <bed>“, “children“: [] }
{“node3-2“: “<lie>, <bed>“, “children“: [] }

Response:
{“Root”: “evening routine”, “children”: [“node1”, “node2”, “node3”], “interchangeable groups”: [“group1”, “group2”]}
{“node1”: “watch TV”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1”: “<walk>”, <couch>”, “children”: []}
{“node1-2: “<sit>, <couch>”, “children”: []}
{“node1-3”: “<press>”, <remote>”, “children”: []}

{“node2”: “have dinner”, “children”: [“node2-1”, “node2-2”, “node2-3”, “node2-4”, “node2-5”, “node2-6”] }
{“node2-1”: “<walk>, <refrigerator>”, “children”: [] }
{“node2-2”: “<open>, <refrigerator>”, “children”: [] }
{“node2-3”: “<take>, <food in refrigerator>“, “children“: [] }
{“node2-4“: “<walk>, <dining chair>“, “children“: [] }
{“node2-5“: “<sit>, <dining chair>“, “children“: [] }
{“node2-6“: “<eat>, <food in refrigerator>“, “children“: [] }

{“node3”: “watch TV”, “children”: [“node3-1”, “node3-2”] }
{“node3-1“: “<walk>, <bed>“, “children“: [] }
{“node3-2“: “<lie>, <bed>“, “children“: [] }

{“group1“: [{“node1“}, {“node2“}]}
{“group2“:[{“node3“}]}
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Table 7: Detailed prompt design for goal-plan trees refinement.
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#3 goal-plan Tress Refinement Stage – Given the goal-plan tree in JSON format, the AI assistant helps improve its rationality from
two aspects: 1. Completing the missing internal steps, which can often be revised on commonsense (e.g., opening the refrigerator
without closing it). 2. Enhancing the non-leaf node descriptions to be more abstract (e.g., from ‘use toilet’ to ‘feel the call of nature’).
Note that: You should only output the revised goal-plan tree in JSON. To facilitate goal-plan tree refinement, a set of illustrative cases
is provided for reference: {{Demonstrations}}.

Demonstrations
Please refine the goal-plan tree:
Query:
{“Root”: “use toilet”, “children”: [“node1”, “node2”], “interchangeable groups”: []}
{“node1”: “<walk>, <toilet>”, “children”: [] }
{“node2”: “<sit>, <toilet>”, “children”: []}

Response:
{“Root”: “feel the call of nature”, “children”: [“node1”, “node2”], “interchangeable groups”: []}
{“node1”: “<walk>, <toilet>”, “children”: [] }
{“node2”: “<sit>, <toilet>”, “children”: []}

Please refine2the goal-plan tree:
Query:
{“Root”: “evening routine”, “children”: [“node1”, “node2”, “node3”], “interchangeable groups”: [“group1”, “group2”]}
{“node1”: “watch TV”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1”: “<walk>”, <couch>”, “children”: []}
{“node1-2: “<sit>, <couch>”, “children”: []}
{“node1-3”: “<press>”, <remote>”, “children”: []}

{“node2”: “have dinner”, “children”: [“node2-1”, “node2-2”, “node2-3”, “node2-4”, “node2-5”, “node2-6”] }
{“node2-1”: “<walk>, <refrigerator>”, “children”: [] }
{“node2-2”: “<open>, <refrigerator>”, “children”: [] }
{“node2-3”: “<take>, <food in refrigerator>“, “children“: [] }
{“node2-4“: “<walk>, <dining chair>“, “children“: [] }
{“node2-5“: “<sit>, <dining chair>“, “children“: [] }
{“node2-6“: “<eat>, <food in refrigerator>“, “children“: [] }

{“node3”: “watch TV”, “children”: [“node3-1”, “node3-2”] }
{“node3-1“: “<walk>, <bed>“, “children“: [] }
{“node3-2“: “<lie>, <bed>“, “children“: [] }

{“group1“: [{“node1“}, {“node2“}]}
{“group2“:[{“node3“}]}

Response:
{“Root”: “engage in the rituals of dusk”, “children”: [“node1”, “node2”, “node3”], “interchangeable groups”: [“group1”, “group2”]}
{“node1”: “indulge in the visual leisure”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1“: “<walk>, <couch>“, “children“: []}
{“node1-2“: “<sit>, <couch>“, “children“: []}
{“node1-3“: “<press>, <remote>“, “children“: []}

{“node2”: “partake in the evening nourishment”, “children”: [“node2-1”, “node2-2”, “node2-3”, “node2-4”, “node2-5”, “node2-6”] }
{“node2-1“: “<walk>, <refrigerator>“, “children“: []}
{“node2-2“: “<open>, <refrigerator>“, “children“: []}
{“node2-3“: “<take>, <food in refrigerator>“, “children“: []}
{“node2-4“: “<walk>, <dining chair>“, “children“: []}
{“node2-5“: “<sit>, <dining chair>“, “children“: []}
{“node2-6“: “<eat>, <food in refrigerator>“, “children“: []}

{“node3”: “embrace the rituals preceding slumber”, “children”: [“node3-1”, “node3-2”] }
{“node3-1“: “<walk>, <bed>“, “children“: []}
{“node3-2“: “<lie>, <bed>“, “children“: []}

{“group1“: [{“node1“}, {“node2“}]}
{“group2“:[{“node3“}]}

Table 8: Top 100 objects by frequency in BEHAVIORHUB dataset.
Object List

Pillow, Door, Lamp, Floor, Window, Cabinet, Box, Book, Chair,
Shelf, Table, Mirror, Curtain, Towel, Paint, Bag, Shoe, Clothes,
Sink, Bed, Stairs, Toy, Tap, Cardboard Box,Rug, Toilet, Beam,
Basket, Armchair, Wall Lamp, Drawer, Decoration, Shower Wall,
Pipe, Wardrobe, Vase, Toilet Paper, Picture, Cushion, Bottle, TV,
Carpet, Desk, Decorative Plant, Radiator, Door Knob, Ventilation,
Blanket, Hanger, Blinds, Couch, Photo, Clutter, Stool, Trashcan,
Container, Window Curtain, Appliance, Ornament, Flowerpot,
Product, Candle, Device, Storage Box, Rack, Refrigerator,
Nightstand, Dining Chair, Light Fixture, Support Beam, Basket of
Something, Curtain Rod, Towel Bar, Vent, Bathroom Cabinet, Plate,
Speaker, Heater, Window Glass, Kitchen Appliance, Bathroom
Accessory, Faucet, Kitchen Lower Cabinet, Clock, Flower Vase,
Board, Hanging Clothes, Cabinet Door, Cup, Table Lamp, Dresser,
Air Vent, Case, Cloth, Bathtub, Bin, Flower, Can, Bowl, Cosmetics

Table 9: Top 50 actions by fre-
quency in BEHAVIORHUB.

Action List
Walk, Sit, Stand Up,
Move, Place, Open,
Take, Clean, Jump, Run,
Throw, Eat, Turn, Pick
Up, Put On, Touch, Lift,
Grasp, Dance, Knock,
Yoga, Catch, Grab, Lie,
Play, Shake, Hit, Drink,
Stop, Give, Wash, Close,
Relax, Remove, Rub,
Check, Wait, Cut, Cook,
Write, Tap, Press, Hang,
Tie, Draw, Chop, Fill,
Brush, Sleep, Flip

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
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1210
1211
1212
1213
1214
1215
1216
1217
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1224
1225
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1227
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1229
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1235
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1240
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Example JSON - Prepare for the day.

[
{
Root: prepare for the day
children: [
{
node1: getting dressed
children: [
{
node1-1: <open>, <wardrobe>
children: []

},
{
node1-2: <take>, <clothes>
children: []

},
{
node1-3: <put on>, <clothes>
children: []

}
]

},
{
node2: breakfast preparation
children: [
{
node2-1: <walk>, <kitchen>
children: []

},
{
node2-2: <open>, <refrigerator>
children: []

},
{
node2-3: <take>, <food in

refrigerator>
children: []

},
{
node2-4: <walk>, <dining chair>
children: []

},
{
node2-5: <sit>, <dining chair>
children: []

},
{
node2-6: <eat>, <food in refrigerator

>
children: []

}
]

},
{
node3: home cleaning
children: [
{
node3-1: <walk>, <bedroom>
children: []

},
{
node3-2: <take>, <broom>
children: []

},
{
node3-3: <clean>, <floor>
children: []

}
]

},
{
node4: work from home
children: [
{
node4-1: <walk>, <computer desk>
children: []

},
{
node4-2: <sit>, <computer chair>
children: []

},
{
node4-3: <typing>, <keyboard>
children: []

}
]

}
],
interchangeable groups: [
{
group1: [node1]

},
{
group2: [node2, node3, node4]

}
]

}
]
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Example JSON - Prepare dinner.

[
{
Root: prepare dinner
children: [
{
node1: gather ingredients
children: [
{
node1-1: <walk>, <refrigerator>
children: []

},
{
node1-2: <open>, <refrigerator>
children: []

},
{
node1-3: <take>, <food in

refrigerator>
children: []

}
]

},
{
node2: cook ingredients
children: [
{
node2-1: <walk>, <stove>
children: []

},
{
node2-2: <place>, <food in

refrigerator>, <stove>
children: []

},
{
node2-3: <wait>
children: []

},
{
node2-4: <check>, <food in

refrigerator>
children: []

},
{

node2-5: <cut>, <food in refrigerator
>

children: []
},
{
node2-6: <cook>, <food in

refrigerator>
children: []

}
]

},
{
node3: serve dinner
children: [
{
node3-1: <walk>, <dining table>
children: []

},
{
node3-2: <sit>, <dining chair>
children: []

},
{
node3-3: <eat>, <food in refrigerator

>
children: []

}
]

}
],
interchangeable groups: [
{
group1: [node1]

},
{
group2: [node2]

},
{
group3: [node3]

}
]

}
]
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Example JSON - Weekend cleaning.

[
{
Root: Weekend cleaning
children: [
{
node1: clean bedroom
children: [
{
node1-1: <walk>, <bedroom>
children: []

},
{
node1-2: <take>, <broom>
children: []

},
{
node1-3: <clean>, <floor>
children: []

},
{
node1-4: <clean>, <window>
children: []

},
{
node1-5: wash clothes
children: [
{
node1-5-1: <walk>, <washing

machine>
children: []

},
{
node1-5-2: <place>, <clothes>, <

washing machine>
children: []

}
]

}
]

},

{
node2: clean kitchen
children: [
{
node2-1: <walk>, <kitchen>
children: []

},
{
node2-2: <walk>, <dining table>
children: []

},
{
node2-3: <clean>, <dining table>
children: []

},
{
node2-4: wash dishes
children: [
{
node2-4-1: <walk>, <sink>
children: []

},
{
node2-4-2: <wash>, <kitchen

appliance>
children: []

}
]

}
]

}
],
interchangeable groups: [
{
group1: [node1, node2]

}
]

}
]
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