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ABSTRACT

Fine-tuning language models (LMs) has demonstrated success in a wide array of
downstream tasks. However, as LMs are scaled up, the memory requirements
for backpropagation become prohibitively high. Zeroth-order (ZO) optimiza-
tion methods can leverage memory-efficient forward passes to estimate gradients.
More recently, MeZO, an adaptation of ZO-SGD, has been shown to consistently
outperform zero-shot and in-context learning when combined with suitable task
prompts. In this work, we couple ZO methods with variance reduction techniques
to enhance stability and convergence for inference-based LM fine-tuning. We
introduce Memory-Efficient Zeroth-Order Stochastic Variance-Reduced Gradient
(MeZO-SVRG) and demonstrate its efficacy across multiple LM fine-tuning tasks,
eliminating the reliance on task-specific prompts. Evaluated across a range of
both masked and autoregressive LMs on benchmark GLUE tasks, MeZO-SVRG
outperforms MeZO with up to 20% increase in test accuracies in both full- and
partial-parameter fine-tuning settings. MeZO-SVRG benefits from reduced compu-
tation time as it often surpasses MeZO’s peak test accuracy with a 2× reduction
in GPU-hours. MeZO-SVRG significantly reduces the required memory foot-
print compared to first-order SGD, i.e. by 2× for autoregressive models. Our
experiments highlight that MeZO-SVRG’s memory savings progressively improve
compared to SGD with larger batch sizes.

1 INTRODUCTION

Fine-tuning Language Models (LMs) has been the dominant strategy for adapting pre-trained models
to specialized downstream tasks (Gururangan et al., 2020). Fine-tuning often relies on first-order
methods, such as stochastic gradient descent (SGD) (Robbins & Monro, 1951) or Adam (Kingma
& Ba, 2015). However, as LMs are scaled up, backpropagation (Rumelhart et al., 1986) becomes
prohibitive in terms of memory requirements. This is due to the need to cache activations during the
forward pass as well as gradients and optimizer states during the backward pass. This has given rise
to memory-efficient inference-based adaptation methods, including in-context learning (ICL) and
zeroth-order (ZO) optimization.

While ZO methods have been studied for decades Spall (1992); Ghadimi & Lan (2013), it is only
recently that these have been applied to fine-tune LMs (Malladi et al., 2023). In Malladi et al. (2023),
authors propose the Memory-Efficient Zeroth-Order Optimizer (MeZO) and demonstrate its superior
performance against ICL with a memory footprint equivalent to that of inference. However, ZO
methods still face challenges in large-scale settings. According to Malladi et al. (2023), MeZO
requires a high number of iterations to achieve a good fine-tuning performance and works only
in settings where the optimization trajectory is sufficiently well-behaved, i.e. when fine-tuning is
coupled with appropriately crafted task prompts. We revisit ZO optimization under the standard
(non-prompted) fine-tuning setting. Through empirical studies, we probed further and identified that
the method also contends with i) instability for smaller batch sizes, and ii) a notable convergence gap
to first-order (FO) fine-tuning methods in non-prompted settings (see Figures 1a, 1b, 1c).

In this work, we demonstrate that variance-reduction enhances the stability and convergence prop-
erties of ZO methods in the large-scale LM fine-tuning setting. Based on our observation that ZO
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Figure 1: (a) MeZO (Malladi et al., 2023) is unable to attain the optimal value when solving least-
squares (LS) problems unlike our proposed MeZO-SVRG. In (b) and (c), MeZO is used for MNIST
(LeCun et al., 1998) classification and fine-tuning RoBERTa-large on SST-2 Socher et al. (2013),
respectively, with varying batch sizes. These illustrate MeZO’s instability w.r.t. smaller batch sizes.

methods benefit from improved stability with larger batch sizes, we propose the Memory Efficient
Zeroth-Order Stochastic Variance-Reduced Gradient (MeZO-SVRG) method: a ZO algorithm that
combines fullbatch and minibatch information to yield asymptotically unbiased, low-variance gradient
estimators. Our specific contributions are enumerated below.

1. We propose MeZO-SVRG: an efficient variant of the ZO-SVRG method that uses in-place
operations to achieve a minimal memory footprint and leverages gradient estimators computed with
single perturbation vectors to exploit data parallelism for speed.

2. We fine-tune masked and autoregressive LMs on GLUE (Wang et al., 2018) tasks. MeZO-SVRG
achieves consistent performance improvements with up to 20% increase in test accuracies over
MeZO across all models and tasks. MeZO-SVRG stands out by consistently surpassing MeZO’s test
accuracy in only half as many GPU-hours.

3. MeZO-SVRG significantly reduces the required memory footprint compared to first-order SGD,
i.e. by 2× for considered autoregressive models. Furthermore, our experiments highlight that
MeZO-SVRG’s memory savings progressively improve compared to SGD with larger batch sizes.

2 BACKGROUND

2.1 ZEROTH-ORDER GRADIENT ESTIMATORS

Consider solving the unconstrained optimization

min
θ∈Rd

f(θ) :=
1

n

n∑
i=1

fi(θ), (1)

where f : Rd → R is a non-convex objective. Note that equation 1 is akin to the standard empirical
risk minimization framework, where each fi is the objective evaluated for one of n training samples.
For an iterative ZO algorithm, we need to approximate the gradient. We can define the following
stochastic perturbation simultaneous approximation (SPSA) gradient estimator (Spall, 1992):

∇̂fi(θ) :=
fi(θ + µzi)− fi(θ − µzi)

2µ
zi for i ∈ [n], (2)

where ∇̂ denotes a gradient estimator, zi ∈ Rd is a random vector sampled from a standard normal
distribution, and µ > 0 is a perturbation scalar.

Now suppose we have a minibatch I ⊂ [n] of size b. This allows us to define the following:

∇̂fI(θ) :=
1

b

∑
i∈I

∇̂fi(θ) and ∇̂f(θ) := ∇̂f[n](θ). (3)

The gradient estimator in equation 3 requires 2b function queries and sampling b random vectors.
In practice, there are two strategies to compute estimators equation 3: accumulate the minibatch
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estimator in-place by sequentially computing each samplewise estimator, or parallelize the operation
by computing the samplewise estimators simultaneously. The trade-off between the two strategies is
that the former has a minimal memory footprint (scales with dimension of problem) but takes longer,
while the latter effectively parallelizes the operation but has to store b vectors.

Thus, we define another set of ZO gradient estimators that accommodates data parallelism: we perturb
each samplewise SPSA estimator in the same direction z ∈ Rd. We can construct

∇̄fI(θ) :=
1
b

∑
i∈I [fi(θ + µz)− fi(θ − µz)]

2µ
z and ∇̄f(θ) := ∇̄f[n](θ). (4)

From an implementation standpoint, estimators 4 can exploit data parallelism across the batch I and
benefit from a minimal required memory footprint.

2.2 MEMORY-EFFICIENT ZO-SGD (MEZO)

Malladi et al. (2023) proposes the Memory-Efficient ZO Optimizer (MeZO): an adaptation of ZO-
SGD with the same memory footprint as inference to fine-tune LMs.
Definition 2.1. (ZO-SGD) Consider solving optimization equation 1. ZO-SGD is an iterative ZO
optimizer characterized with update rule

θ(t+1) := θ(t) − η∇̄fI(θ
(t)),

for learning rate η > 0, and SPSA estimator ∇̄fI(θ
(t)) over minibatch I ∈ [n].

Implementing a vanilla ZO-SGD algorithm requires twice the memory footprint of inference due to
the need to store the perturbation vector z ∈ Rd. In Malladi et al. (2023), an in-place implementation
of the algorithm is proposed, where the requirement of storing a full set of perturbation scalars is
mitigated by merely storing a single random seed and regenerating the perturbation vector when
required. This brings the memory cost of MeZO down to that of inference.

3 OUR PROPOSED METHOD: MEZO-SVRG

3.1 MEZO LIMITATIONS

In Malladi et al. (2023), authors mention that MeZO requires a suitable task prompt to perform well;
under this setting the optimization trajectory is more well-behaved. This suggests that the applicability
of MeZO is restricted to settings where the optimization landscape is sufficiently well-behaved and
cannot be extended to more complex tasks such as pre-training. This motivates developing a method
that delivers robust performance independently of any reliance on input prompts.

While MeZO has demonstrated promise in fine-tuning settings, our empirical findings suggest that
it still faces the following challenges: i) it is susceptible to instability when using smaller batch
sizes, and ii) a considerable performance gap with respect to first-order (FO) fine-tuning exists in the
non-prompted setting. We illustrate these issues in Figures 1a, 1b and 1c.

3.2 MEZO-SVRG

We propose MeZO-SVRG: a variance-reduced ZO algorithm that enhances the stability and conver-
gence of inference-based LM fine-tuning. MeZO-SVRG is a variant of ZO-SVRG (Liu et al., 2018)
that improves iteration speed by using estimators 4 and reduces the memory footprint with in-place
operations. The method is summarized in Algorithm 1.

Efficient Gradient Estimation. We utilize the efficient gradient estimators introduced in equation 4
that perturb the entire batch in a single direction. These estimators accommodate data parallelism
offered by modern ML frameworks. Furthermore, we can utilize the “resampling trick” introduced
in Malladi et al. (2023) to reduce the memory footprint when computing each of equation 4; each
estimator requires a memory footprint equivalent to the problem dimension d.

In-place Operations for Memory Efficiency. MeZO-SVRG leverages in-place operations to
minimize memory allocation for new variable definitions. Memory space is required for the current
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Algorithm 1 Memory-Efficient ZO-SVRG (MeZO-SVRG)
Input: Total iterations T , learning rates η1, η2 > 0, minibatch size b, parameters θ0, iterations between full-batch gradient q ∈ N
begin method
for t = 0, . . . , T do

if t mod q = 0 then
1. g← ∇̄f(θ(t))

2. θ̄ ← θ(t)

3. update: θ(t+1) ← θ(t) − η1g #in-place
else

4. Choose mini-batch It of size b
5. θ(t) ← θ(t) − η2∇̄fIt (θ

(t)) #in-place

6. θ(t) ← θ(t) + η2∇̄fIt (θ̄) #in-place

7. update: θ(t+1) ← θ(t) − η2g #in-place
end if

end for
end

state of the d parameters, a copy of the parameter state after each fullbatch SPSA computation as well
as the fullbatch SPSA estimator itself. This requires a minimum memory requirement of storing 3d
values. The minibatch updates can then be computed in-place in Lines 5, 6, and 7; thus, MeZO-SVRG
achieves a minimum memory footprint equal to 3× that of inference.

4 EXPERIMENTS

In this section, we evaluate MeZO-SVRG on a variety of fine-tuning tasks by comparing against
MeZO (Malladi et al., 2023) and stochastic gradient descent (FO-SGD) (Robbins & Monro, 1951).

Setup. We opt for SGD as our FO comparison benchmark, as it provides a more competitive bound
on the memory utilization than Adam (Kingma & Ba, 2015). We mainly consider a prompt-free
fine-tuning setting (more challenging loss landscape). All experiments are run on a single GPU
(Nvidia A100 40GB or H100 80GB). We evaluate the algorithms under two fine-tuning strategies:
full- and partial-parameter fine-tuning. In the latter we fine-tune the last layers of the chosen models.
Further details of the experiment setup and implementation are provided in Appendices C and D.

Dataset. We fine-tune on 4 tasks/datasets from the NLP GLUE benchmark (Wang et al., 2018).
Similar to Malladi et al. (2023), for each task, our experiments are conducted in a many-shot
fine-tuning setting: 512 training examples, 256 validation examples and 256 test samples.

Language Models. We considered Distilbert (Sanh et al., 2020), RoBERTa-large as our masked LMs,
and GPT2 (Radford et al., 2019), OPT-2.7B, OPT-6.7B (Zhang et al., 2022) as our autoregressive
LMs. Hyperparameter configurations for these experiments are given in Appendices E.1, F.1, G.1.

4.1 LM FINE-TUNING PERFORMANCE

DistilBert RoBERTa-large

Method MNLI QNLI SST-2 CoLA MNLI QNLI SST-2 CoLA

MeZO (Full FT) 36 (1.09) 50 (0.69) 52 (0.68) 63 (0.64) 43 (0.94) 59 (0.58) 56 (0.69) 68 (0.51)
MeZO-SVRG (Full FT) 46 (0.08) 68 (0.23) 72 (0.02) 68 (0.28) 49 (0.81) 80 (0.28) 84 (0.13) 79 (0.06)
FO-SGD (Full FT) 59 (0.01) 78 (0.04) 88 (0.01) 70 (0.02) 85 (0.03) 89 (0.01) 96 (0.11) 85 (0.01)

MeZO (Partial FT) 35 (1.09) 52 (0.69) 51 (0.70) 60 (0.64) 42 (1.07) 50 (0.69) 54 (0.68) 65 (0.59)
MeZO-SVRG (Partial FT) 47 (0.28) 65 (0.29) 74 (0.10) 67 (0.36) 43 (0.82) 67 (0.46) 72 (0.59) 79 (0.35)
FO-SGD (Partial FT) 48 (0.26) 59 (0.42) 85 (0.05) 66 (0.45) 52 (0.99) 72 (0.60) 89 (0.58) 84 (0.41)

Table 1: Experiments on DistilBert and RoBERTa-large. We show the test accuracies and fine-tuning
losses (in parentheses) of MeZO-SVRG and MeZO for both full/partial-parameter FT.

MeZO-SVRG significantly outperforms MeZO in both the fine-tuning loss convergence and test
accuracy. On all models and tasks, MeZO-SVRG improves on the test accuracy over MeZO: we see
an improvement of up to 20% in Tables 1, 2. MeZO-SVRG also consistently achieves an improved
fine-tuning loss compared to MeZO. Additional results are presented in Appendices E, F and G.
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GPT2 OPT-2.7B

Method MNLI QNLI SST-2 CoLA MNLI QNLI SST-2 CoLA

MeZO 41 (0.65) 57 (0.36) 59 (0.32) 61 (0.35) 42 (1.09) 53 (0.70) 61 (0.65) 62 (0.58)
MeZO-SVRG 53 (0.41) 63 (0.24) 65 (0.20) 69 (0.25) 52 (0.81) 60 (0.46) 65 (0.55) 67 (0.53)
FO-SGD 69 (0.59) 72 (0.28) 72 (0.23) 78 (0.38) 78 (0.33) 91 (0.12) 98 (0.02) 94 (0.17)

Table 2: Experiments on GPT2 and OPT-2.7B. We show the test accuracies and fine-tuning losses (in
parentheses) of MeZO-SVRG and MeZO for full-parameter FT.

MeZO-SVRG works well on both full and partial fine-tuning. The improvement over MeZO
is consistent across both fine-tuning modes. In partial fine-tuning, MeZO-SVRG often achieves
comparable performance to FO-SGD (within 5%) on several tasks (see Table 1).

4.2 MEMORY USAGE PROFILING AND COMPUTATION TIME

Minimum Memory Usage in GB (bs=1) Memory Usage in GB for RoBERTa-large

Method GPT2 (cl=1024) OPT-2.7B (cl=2048) OPT-6.7B (cl=2048) bs = 16 bs = 32 bs = 64

MeZO 9 14 34 2.07 (69%) 2.21 (79%) 2.51 (88%)
MeZO-SVRG 18 31 74 4.36 (35%) 4.51 (58%) 4.72 (76%)
FO-SGD 34 64 137 6.74 10.67 18.55

Table 3: We measure the minimum memory usage on the autoregressive models (batch size (bs) = 1,
use max context length (cl) of model). We also measure the memory usage under different batch
sizes (bs) when fine-tuning RoBERTa-large (Liu et al., 2019) with the methods. The percentages in
the parentheses indicate the memory savings with respect to FO-SGD.

MeZO-SVRG can fit larger models on the same hardware than FO-SGD. We measure the
minimum memory requirement to fine-tune (full-parameter) the considered autoregressive models
using the different methods. We fine-tune GPT2, OPT-2.7B and OPT-6.7B on MNLI by setting
the input sequence length to the maximum context length of the LM and report the peak GPU
memory consumption for batch size = 1. Table 3 shows that MeZO-SVRG consistently yields a
significantly improved memory footprint compared to FO-SGD (approximately 2× across considered
autoregressive models). More details on how memory profiling was done is given in Appendix H.1.

MeZO-SVRG’s memory savings progressively improve over FO-SGD with increasing batch
size. For this experiment, we consider the masked model RoBERTa-large. Again we fine-tune on the
MNLI dataset using a single Nvidia A100 40GB GPU and set the input sequence length to a constant
size of 128. We measure the peak GPU memory consumption for the different methods for varying
batch sizes {16, 32, 64}. Table 3 shows that for a fixed model (RoBERTa-large) and context length
(128), MeZO-SVRG exhibits memory savings of up to 76% w.r.t FO-SGD.

We compare the speed of MeZO-SVRG and MeZO by measuring the total GPU-hours required to
achieve MeZO’s peak test accuracy. Table 17 shows that for GPT2 and OPT-2.7B, MeZO-SVRG
consistently achieves superior test accuracy with less than half the GPU-hours.

5 CONCLUSION

This work introduces MeZO-SVRG: a variance-reduced ZO method that addresses the challenge of
fine-tuning LLMs under memory constraints. MeZO-SVRG is a variant of ZO-SVRG that exploits
in-place operations for memory-frugality and gradient estimators that accommodate data parallelism
for iteration speed. The method combines fullbatch and minibatch information to yield low variance
gradient estimators. We demonstrate empirically that MeZO-SVRG outperforms MeZO consistently
on a variety of LM fine-tuning tasks, even in a challenging non-prompted setting, and requires
significantly less GPU-hours to achieve this performance. Furthermore, we show that across model
types and fine-tuning tasks, MeZO-SVRG is able to considerably close the performance gap to SGD
while benefiting from a 2× reduction in memory utilization.
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A EXPLORING THE LIMITS OF MEZO EMPIRICALLY

A.1 MNIST CLASSIFICATION AND ROBERTA-LARGE FINE-TUNING

We ran experiments to better understand shortcomings in MeZO (Malladi et al., 2023). Two settings
were considered: performing MNIST (LeCun et al., 1998) classification with a two-layer MLP
(25K parameters) and fine-tuning RoBERTa-large (350M parameters) on the SST-2 (Socher et al.,
2013) dataset. In the former, we used a two-layer feedforward network with 32 and 16 hidden units
respectively. In the latter, we performed full-parameter fine-tuning. In Malladi et al. (2023), authors
also remark that a simple instruction prompt is needed for the algorithm to succeed in fine-tuning
tasks, i.e. it requires a sufficiently well-behaved optimization trajectory. While this, in itself, can be
noted as a drawback, we adopted their proposed prompts in the experiment (Malladi et al., 2023).
The training and fine-tuning runs are illustrated in Figures 1b and 1c. The hyperparameters selected
for the runs are summarized in Tables 4 and 5. We paid particular attention to the effect of varying
batch size on the algorithm performance. We also varied the perturbation scale µ used in the SPSA
estimates equation 4. No improvement was found in reducing µ from the default setting used in
MeZO (µ = 1e − 3) and thus we present results only for that configuration (Malladi et al., 2023).
The largest learning rate values used in the grid search were selected for the MeZO runs. As an upper
bound reference on performance, we also include the training curves for the FO-SGD algorithm.
From both Figures 1b and 1c, it is clear the MeZO has to contend with instability incurred at smaller
batch sizes.

Table 4: The hyperparameter grid optimized over in the initial the small-scale MNIST (LeCun et al.,
1998) classification experiments.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64, 128}×
Learning rate {1e− 3, 1e− 4}×
µ {1e− 3, 1e− 4, 1e− 5}

FO-SGD Batch size {64}×
Learning rate {1e− 3}

Table 5: The hyperparameter grid optimized over in the initial RoBERTa-large (Liu et al., 2019)
fine-tuning experiments.

Algorithm Hyperparameters Values

MeZO Batch size {16, 32, 64}×
Learning rate {1e− 5, 1e− 6}×
µ {1e− 3, 1e− 4, 1e− 5}

FO-SGD Batch size {64}×
Learning rate {1e− 5}

A.2 SOLVING LEAST SQUARES

To make the aforementioned observations even more apparent, we examined the performance of
MeZO on a simple linear least-squares (LS) problem. Specifically we solve

min
w∈Rd

∥Xw − y∥22, (5)

where X ∈ Rn×d is a randomly generated matrix, w ∈ Rd is fixed a priori, and y ∈ Rn = Xw+noise
is the target labels. In our experiment, we focus on the 100-dimensional problem, i.e. with d = 100
and n = 1000. For comparison, we also report the performances of our proposed MeZO-SVRG and
FO-SGD. The hyperparameter configurations used are presented in Table 6. Figure 1a makes it clear
that MeZO is unable to attain the optimal value and yields a performance gap w.r.t. MeZO-SVRG
and FO-SGD.
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Table 6: The hyperparameters used for the Least Squares (LS) convergence experiment.

Algorithm Hyperparameters Values

MeZO Batch size {32}×
Learning rate {1e− 3}×
µ {1e− 3}

MeZO-SVRG Batch size {32}×
Learning rate (η1) {1e− 3}×
Learning rate (η2) {1e− 4}×
µ {1e− 3}×
q {2}

FO-SGD Batch size {32}×
Learning rate {1e− 3}

B ZEROTH-ORDER STOCHASTIC VARIANCE-REDUCED GRADIENT

B.1 ALGORITHM OVERVIEW

The Zeroth-Order Stochastic Variance Reduced Gradient (ZO-SVRG) (Liu et al., 2018) method
periodically combines a fullbatch gradient estimator with the minibatch estimator to mitigate the
stochasticity of the latter. This variance reduction helps achieve a faster convergence rate compared
to ZO-SGD (Liu et al., 2018). The full algorithm is presented in Algorithm 2.

Algorithm 2 ZO-SVRG Liu et al. (2018)
Input: Total iterations T , learning rate η > 0, minibatch size b, parameters θ0, iterations between fullbatch estimators q ∈ N
begin method
for t = 0, . . . , T do

if t mod q = 0 then
1. g← ∇̂f(θ(t))

2. θ̄ ← θ(t)

end if
3. Choose mini-batch It of size b
4. ĝ← ∇̂fIt (θ

(t))

5. ḡ← ∇̂fIt (θ̄)
6. Compute gradient blending: vt ← ĝ− ḡ + g
7. update: θ(t+1) ← θ(t) − ηv(t)

end for
end

B.2 ZO-SVRG IMPLEMENTATION CONCERNS

Memory Footprint. Recalling θ ∈ Rd, the ZO-SVRG method has a minimum memory requirement
of storing d values. A naive implementation of ZO-SVRG presented in Algorithm 2 (see Appendix B)
would require an additional 2d of memory space for storing the fullbatch gradient estimator and
parameter state θ̄. Moreover, computing and storing ∇̂fIt(θ

(t)) and ∇̂fIt(θ̄) also accrues an
additional d values of memory each. Thus, a naive implementation of Algorithm 2 would require a
minimum memory budget equivalent to 5× the memory budget of inference, which is prohibitive for
sufficiently large d.

Iteration Speed Concerns. The original ZO-SVRG method is proposed with the inefficient gradient
estimators introduced in equation 3. In both, SPSA estimators are computed for individual samples
and averaged over the batch. Consider computing equation 3 with batch size b. If we want to fully
parallelize operations, we require computing and storing b many ∇̂fi(u) estimators. However, this
increases the memory footprint. To save on memory usage, in-place operations can be used. However,
this has the effect of drastically reducing the computation speed as we need to sequentially compute
each of the b estimators in equation 3.
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C EXPERIMENT SETUP

C.1 DATASETS

For experiments on LMs, we considered fine-tuning on classification datasets. Specifically, we focused
on the following datasets from the General Language Understanding Evaluation (GLUE) (Wang
et al., 2018) benchmark: Multi-Genre Natural Language Inference (MNLI) (Williams et al., 2018),
Question Natural Language Inference (QNLI) (Wang et al., 2018) for sentence pair classification,
Stanford Sentiment Treebank (SST-2) (Socher et al., 2013) for sentiment analysis, and Corpus of
Linguistic Acceptability (CoLA) (Warstadt et al., 2018).

The datasets are imported from the Huggingface datasets library. We randomly sampled 512
examples for training, 256 for validation and 256 for testing.

C.2 MODEL

In our implementation, we used models from the Huggingface transformers
package. As we considered classification datasets, we instantiated
models from the AutoModelsForSequenceClassification and
OPTModelsForSequenceClassification classes. These libraries add a classifica-
tion head on top of the considered pre-trained model. For the prompted experiment setting, we
instantiate from the RobertaModelForPromptFinetuning custom class implemented in the
MeZO repository (Malladi et al., 2023).

Tables 7 and 8 summarize the models that where considered in our experiments. For the masked
models both full- and partial parameter fine-tuning was performed.

Model Total Trainable Parameters (×106) Partial Fine-tuning Layers

DistilBert (distilbert-base-cased) 66
[
transformer.layer.5

classifier

]

RoBERTa-large (roberta-large) 355


roberta.encoder.layer.20
roberta.encoder.layer.21
roberta.encoder.layer.22
roberta.encoder.layer.23

classifier



Table 7: An overview of the masked LMs used in the experiments. Both full- and partial-parameter
fine-tuning was considered for these LLMs.

Model Total Trainable Parameters (×106)

GPT2 (gpt2-xl) 1557

OPT-2.7B (facebook/opt-2.7B) 2651

OPT-6.7B (facebook/opt-6.7B) 6658

Table 8: An overview of the autoregressive LMs used in the experiments.
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D MEZO-SVRG IMPLEMENTATION AND ABLATIONS

D.1 MEMORY-EFFICIENT SPSA

In our implementation we adopt the memory-efficient strategy of computing the SPSA estimator as
proposed in Malladi et al. (2023). Rather than sampling and storing the entire perturbation vector
z ∈ Rd, we sample a random seed and use it to regenerate the random vector when required. This
allows in-place perturbations of the optimization parameters which minimizes the memory footprint.
The memory-efficient perturbation routine is shown in 3. The parameters are perturbed in groups
rather than individually, i.e. in Algorithm 3, each θi denotes a parameter group (e.g. an entire weight
matrix). The scaling factor s ∈ {1,−2} is used to perturb the parameters in a forward and backward
direction as required in central difference approximations.

Algorithm 3 Memory-Efficient Parameter Perturbation
Design choices: Scaling factor s ∈ {1,−2}, perturbation size µ
Input: Parameters θ, random seed r
Return: Updated parameters θ

begin method
1. Set random seed r
for θi ∈ θ do

2. zi ∼ N (0, 1)
3. θi ← θi + s ∗ zi ∗ µ

end for
end

In this work, experiments were conducted with single SPSA estimators which require exactly 2
forward passes. In p-SPSA, p estimators are computed and averaged. A total of 2p forward passes are
required to compute a p-SPSA estimator. We used the default setting of p = 1 suggested in Malladi
et al. (2023) for both MeZO and MeZO-SVRG implementations.

D.2 ROLE OF THE PERTURBATION PARAMETER

We investigated the role of the perturbation parameter µ in MeZO-SVRG. Recall that µ defines the
forward and backward perturbation scale when computing SPSA estimators equation 4. We know
from Spall (1992) that the SPSA estimator is asymptotically unbiased as µ → 0. We wanted to see
the practical effects of different µ settings for MeZO-SVRG. Thus we carried out an ablation study
where the perturbation parameter was varied. We fine-tune DistilBert (Sanh et al., 2020) on the MNLI
(Williams et al., 2018) dataset. The experiment settings are summarized in Figure 2b.

Figure 2a shows how the different values of µ affected the fine-tuning process of the MeZO-SVRG
algorithm. We observe that for a sufficiently small values of µ (i.e. smaller than 1e− 1) we see no
noticeable difference in performance, while larger µ result in diverging behaviour. Similar findings
were also empirically corroborated in Malladi et al. (2023). Thus, throughout our work we used the
default value of µ = 1e− 3.

D.3 ROLE OF q

The parameter q plays a significant role in the performance of MeZO-SVRG (Algorithm 1). Con-
cretely, q determines the frequency of fullbatch update steps in the algorithm: smaller q increases
the regularity of fullbatch updates. We perform an ablation to better understand the extent to which
full-batch updates help or hinder the MeZO-SVRG performance. We consider the task of fine-tuning
the DistilBert (Sanh et al., 2020) model on the MNLI (Williams et al., 2018) dataset. The experiment
setup is summarized in Figure 3b.

Figure 3a shows the training curves of MeZO-SVRG for different settings of q over 3500 steps.
Increasing the frequency of full-batch update steps enhances the convergence rate. However, our
findings also indicate that a combination of fullbatch and minibatch updates (with q ≥ 2) contributes
to a more stable algorithm performance compared to exclusively using fullbatch updates (when
q = 1).
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Algorithm Hyperparameters Values
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µ {1, 0.5, 1e− 1, 1e− 2, 1e− 3, 1e− 4}×
q {2}×
Total Steps {200}

(b)

Figure 2: a) Shows the effects of varying the perturbation scale on the performance of MeZO-SVRG.
b) Shows the hyperparameter settings used in this experiment.
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Algorithm Hyperparameters Values

MeZO-SVRG Batch size {64}×
Learning rate (η1) {1e− 4}×
Learning rate (η2) {1e− 6}×
µ {1e− 3}×
q {1, 2, 5, 10}×
Total Steps {3500}

(b)

Figure 3: a) Shows the effects of varying q on the convergence performance MeZO-SVRG. b) Shows
the hyperparameter settings used in this experiment.

D.4 LEARNING RATE SCHEDULING

In our implementation, we couple the MeZO-SVRG method with a basic learning rate annealing
schedule. This schedule is shown in Algorithm 4. This scheduling scheme operates on feedback from
training loss values. We compute the average loss values in consecutive epochs. If an increasing
trend of average losses is observed, the learning rates are annealed with a factor of α. Specifically, if
the ratio of leading and trailing average losses is above threshold κ, we anneal the learning rates. In
our experiments we set κ = 1.05 and annealing factor α = 5.

Algorithm 4 Learning Rate Scheduling for MeZO-SVRG
Input: Learning rates η1, η2, annealing factor α, losses L, annealing threshold κ, total number of batches in an epoch w
begin method
1. m1 ← mean(L[−w, :])
2. m2 ← mean(L[−2w,−w])
if m1

m2
> κ then

3. η1 ← η1
α , η2 ← η2

α
end if
end
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E FINE-TUNING DISTILBERT

E.1 HYPERPARAMETER SELECTION

Table 9 shows the hyperparameter grid optimized over in the DistilBert (Sanh et al., 2020) experiment.
The hyperparameter search was done by running the different algorithms for 1K steps on the MNLI
(Williams et al., 2018) dataset and selecting the best configuration. The chosen configuration was
then used for a longer fine-tuning runs for all considered tasks, i.e. 200K steps for MeZO and 50K
steps for MeZO-SVRG.

Table 9: The hyperparameter grid optimized over for the DistilBert (Sanh et al., 2020) experiments.
In the case of MeZO-SVRG we use the learning rate schedule proposed in Algorithm 4. The bold
values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64}×
Learning rate {1e−4, 1e−5, 1e−6}×
µ {1e−3}×
Total Steps {200K}

MeZO-SVRG Batch size {32, 64}×
Learning rate (η1) {1e−3, 1e−4}×
Learning rate (η2) {1e−5, 1e−6}×
µ {1e−3}×
q {2, 5, 10}×
Total Steps {50K}

FO-SGD Batch size {32, 64}×
Learning rate {1e−2, 1e−3, 1e−4}×
Total Steps {1K}

E.2 CONVERGENCE PERFORMANCE

We fine-tune Distilbert (Sanh et al., 2020) on the SST-2 (Socher et al., 2013) dataset. In Figure
4a, we show the improved convergence performance of MeZO-SVRG over MeZO. MeZO-SVRG
is able to significantly reduce the convergence gap compared to the FO-SGD baseline. Figure 4b
shows the evolution of the test accuracy over time. Observe that MeZO-SVRG achieves a significant
improvement over MeZO in test performance. Moreover, MeZO-SVRG surpasses the peak test
accuracy achieved by MeZO in over an order of magnitude less time.
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Figure 4: Performance of MeZO-SVRG and MeZO when fine-tuning Distilbert (Sanh et al., 2020) on
the SST-2 (Socher et al., 2013) dataset. The dashed line serves as a reference to the training loss/test
accuracy achieved by FO-SGD. (a) MeZO-SVRG is able to significantly reduce the convergence gap
to FO-SGD compared to MeZO. (b) MeZO-SVRG surpasses the peak test performance of MeZO in
an order of magnitude less time.

E.3 ADDITIONAL RESULTS
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Table 10: Experiments on DistilBERT (with 512 fine-tuning examples). FO refers to first-order
methods. Full FT refers to full-parameter fine-tuning and Partial FT refers to partial-parameter
fine-tuning (see Appendix C for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 1.0908 36 25600
MeZO-SVRG 0.0757 46 25600
FO-SGD 0.0101 59 64

MNLI (Partial FT) MeZO 1.0925 35 25600
MeZO-SVRG 0.2775 47 25600
FO-SGD 0.2617 48 64

QNLI (Full FT) MeZO 0.6914 50 25600
MeZO-SVRG 0.2335 68 25600
FO-SGD 0.0372 78 64

QNLI (Partial FT) MeZO 0.6929 52 25600
MeZO-SVRG 0.2925 65 25600
FO-SGD 0.4176 59 64

SST-2 (Full FT) MeZO 0.6822 52 25600
MeZO-SVRG 0.0203 72 25600
FO-SGD 0.0121 88 64

SST-2 (Partial FT) MeZO 0.6990 51 25600
MeZO-SVRG 0.1034 74 25600
FO-SGD 0.0507 85 64

CoLA (Full FT) MeZO 0.6408 62 25600
MeZO-SVRG 0.2807 68 25600
FO-SGD 0.0159 70 64

CoLA (Partial FT) MeZO 0.6422 60 25600
MeZO-SVRG 0.3617 67 25600
FO-SGD 0.44719 66 64

F FINE-TUNING ROBERTA-LARGE

F.1 HYPERPARAMETER SELECTION

Table 11 presents the hyperparameters searched over in our RoBERTa-large (Liu et al., 2019)
experiment. The hyperparameter search was done by fine-tuning the model on the MNLI (Williams
et al., 2018) dataset for 1K steps and selecting the best configuration. This selected configuration
was subsequently applied to extended fine-tuning sessions across all considered tasks. For our final
results, MeZO-SVRG was run for 24K steps and MeZO was run for 96K steps.

Table 11: The hyperparameter grid optimized over for the RoBERTa-large (Liu et al., 2019) experi-
ments. In the case of ZO-SVRG we use the learning rate schedule proposed in Algorithm 4. The
bold values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64}×
Learning rate {1e−4, 1e−5, 1e−6}×
µ {1e−3}×
Total Steps {96K}

MeZO-SVRG Batch size {32, 64}×
Learning rate (η1) {1e−4, 5e−5, 1e−5}×
Learning rate (η2) {1e−5, 1e−6}×
µ {1e−3}×
q {2, 5, 10}×
Total Steps {24K}

FO-SGD Batch size {32, 64}×
Learning rate {1e−3, 1e−4, 1e−5}×
Total Steps {1K}
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Figure 5: Performance of MeZO-SVRG, MeZO and FO-SGD when fine-tuning RoBERTa-large on
the SST-2 (Socher et al., 2013) dataset. The dashed line serves as a reference to the training loss/test
accuracy achieved by FO-SGD. (a) MeZO-SVRG is able to significantly reduce the convergence gap
to FO-SGD compared to MeZO. (b) MeZO-SVRG attains a considerably better test accuracy than
MeZO.

F.2 CONVERGENCE PERFORMANCE

F.3 ADDITIONAL RESULTS

Table 12: Experiments on RoBERTa-large (with 512 fine-tuning examples). Here partial refers to
fine-tuning the last layers of the model (see Appendix C for details). FO refers to first-order methods.
Full FT refers to full-parameter fine-tuning and Partial FT refers to partial-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 0.9447 43 12288
MeZO-SVRG 0.8125 49 12288
FO-SGD 0.0292 85 64

MNLI (Partial FT) MeZO 1.0729 42 12288
MeZO-SVRG 0.8176 43 12288
FO-SGD 0.9859 52 64

QNLI (Full FT) MeZO 0.5845 59 12288
MeZO-SVRG 0.2750 80 12288
FO-SGD 0.01426 89 64

QNLI (Partial FT) MeZO 0.6885 50 12288
MeZO-SVRG 0.4557 67 12288
FO-SGD 0.5974 72 64

SST-2 (Full FT) MeZO 0.69155 56 12288
MeZO-SVRG 0.1336 84 12288
FO-SGD 0.1086 96 64

SST-2 (Partial FT) MeZO 0.6837 54 12288
MeZO-SVRG 0.5896 72 12288
FO-SGD 0.5786 89 64

CoLA (Full FT) MeZO 0.5062 68 12288
MeZO-SVRG 0.0644 79 12288
FO-SGD 0.0099 85 64

CoLA (Partial FT) MeZO 0.5868 65 12288
MeZO-SVRG 0.3538 79 12288
FO-SGD 0.4075 84 64
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Table 13: Experiments on RoBERTa-large (with 512 fine-tuning examples) in the prompted setting.
Here partial refers to fine-tuning the last layers of the model (see Appendix C for details). FO
refers to first-order methods. Full FT refers to full-parameter fine-tuning and Partial FT refers to
partial-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

SST-2 With Prompt (Full FT) MeZO 0.2959 93 12288
MeZO-SVRG 0.3063 92 12288
FO-SGD 0.1578 93 64

SST-2 with Prompt (Partial FT) MeZO 0.3280 89 12288
MeZO-SVRG 0.3393 89 12288
FO-SGD 0.2981 90 64

G ADDITIONAL RESULTS FOR FINE-TUNING AUTOREGRESSIVE MODELS

G.1 HYPERPARAMETER SELECTION

Table 14 presents the hyperparameter grid searched over for the experiments on autoregressive models.
The hyperparameter search was conducted by fine-tuning the models on the MNLI (Williams et al.,
2018) dataset for 100 steps and selecting the best configuration. This selected configuration was used
in extended fine-tuning sessions across all considered tasks. For our final results, MeZO-SVRG was
run for 8K steps and MeZO was run for 32K steps.

Table 14: The hyperparameter grid optimized over for the GPT2 (Radford et al., 2019) and OPT-2.7B
(Zhang et al., 2022) experiments. In the case of MeZO-SVRG we use the learning rate schedule
proposed in Algorithm 4. The bold values indicate the configuration used to generate the final results
for both models.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64}×
Learning rate {1e−6, 5e−6, 1e−7}×
µ {1e−3}×
Total Steps {32K}

MeZO-SVRG Batch size {32, 64}×
Learning rate (η1) {1e−4, 5e−5, 1e−5}×
Learning rate (η2) {1e−6}×
µ {1e−3}×
q {2, 5, 10}×
Total Steps {8K}

FO-SGD Batch size {8, 16}×
Learning rate {1e−4, 1e−5}×
Total Steps {500}

G.2 CONVERGENCE PERFORMANCE

We fine-tune GPT2 (Radford et al., 2019) and OPT-2.7B (Zhang et al., 2022) on the QNLI (Wang
et al., 2018) dataset. In Figures 6a and 7a, we show the improved convergence performance of MeZO-
SVRG over MeZO. For both models, MeZO-SVRG is able to significantly reduce the convergence
gap compared to the FO-SGD baseline. Figures 6b and 7b show the evolution of the test accuracy over
time. As with the experiments on masked models, MeZO-SVRG achieves a significant improvement
over MeZO in test performance.

G.3 ADDITIONAL RESULTS

Tables 15 and 16 present extended results on the fine-tuning tasks for GPT2 (Radford et al., 2019)
and OPT-2.7B (Zhang et al., 2022).
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Figure 6: Convergence performance of MeZO-SVRG, MeZO and FO-SGD when fine-tuning GPT2
(Radford et al., 2019) on the QNLI (Wang et al., 2018) dataset. The dashed line serves as a reference
to the training loss achieved by FO-SGD. MeZO-SVRG is able to surpass the fine-tuning loss obtained
by FO-SGD. It also improves on the test accuracy attained by MeZO.
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Figure 7: Performance of MeZO-SVRG, MeZO and FO-SGD when fine-tuning OPT-2.7B (Zhang
et al., 2022) on the QNLI (Wang et al., 2018) dataset. The dashed line serves as a reference to the
training loss/test accuracy achieved by FO-SGD. MeZO-SVRG is able to reduce the convergence gap
to FO-SGD compared to MeZO and improve on the test accuracy.

H MEMORY USAGE AND COMPUTATION TIME

H.1 MEMORY PROFILING

We performed memory profiling experiments without any advanced memory-saving options such as
lowering bit precision (Dettmers et al., 2022) or gradient check-pointing (Chen et al., 2016). We used
full (f32) floating-point precision.

In the first experiment, we measured the memory requirement needed to run the different methods
on full-parameter fine-tuning tasks. The MNLI (Williams et al., 2018) dataset was used to fine-tune
autoregressive models GPT2 (Radford et al., 2019), OPT-2.7B, OPT-6.7B (Zhang et al., 2022). We
set the input sequence length to the maximum context length for each model, i.e. 1024 for GPT2 and
2048 for the OPT models. The batch size was set to 1. Table 3 shows the peak memory consumption
in GB as reported by the nvidia-smi command. The peak memory consumption was obtained
after executing the methods for at least 100 steps. Table 3 presents the largest GPT/OPT model that
can be fit for each method under the aforementioned settings on single Nvidia A100 40GB and H100
80GB GPUs.

In the second experiment, we measured how the memory usage for the different methods scales with
increasing batch size. We fine-tuned RoBERTa-large (Liu et al., 2019) on the MNLI (Williams et al.,
2018) dataset. The input sequence length was set to a constant 128 and we varied the batch size
{16, 32, 64}. The memory consumption was again measured using the nvidia-smi command and
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Table 15: Experiments on GPT2 (with 512 fine-tuning examples). FO refers to first-order methods.
This table summarizes results for full-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 0.6526 41 4096
MeZO-SVRG 0.4116 53 4096
FO-SGD 0.5924 69 8

QNLI (Full FT) MeZO 0.3351 58 4096
MeZO-SVRG 0.2372 63 4096
FO-SGD 0.2799 72 8

SST-2 (Full FT) MeZO 0.3240 59 4096
MeZO-SVRG 0.2024 65 4096
FO-SGD 0.2343 72 8

CoLA (Full FT) MeZO 0.3544 68 4096
MeZO-SVRG 0.2455 69 4096
FO-SGD 0.3855 78 8

Table 16: Experiments on OPT-2.7B (with 512 fine-tuning examples). FO refers to first-order methods.
This table summarizes results for full-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 1.0875 42 4096
MeZO-SVRG 0.8159 52 4096
FO-SGD 0.3305 78 8

QNLI (Full FT) MeZO 0.7026 53 4096
MeZO-SVRG 0.4634 60 4096
FO-SGD 0.1222 91 8

SST-2 (Full FT) MeZO 0.6530 61 4096
MeZO-SVRG 0.5501 65 4096
FO-SGD 0.0167 98 8

CoLA (Full FT) MeZO 0.5823 62 4096
MeZO-SVRG 0.5335 67 4096
FO-SGD 0.1724 94 8

measurements were taken after running the methods for at least 100 steps. Table 3 summarizes the
results.

We replicated all experiments in the half-precision (BF16) setting; the results are given in Table 24.

H.2 COMPUTATION TIME

We compared the speed of MeZO-SVRG and MeZO (Malladi et al., 2023) by measuring the time
taken by each method to achieve the test performance attained by MeZO. These measurements are
based on fine-tuning GPT2 (Radford et al., 2019) and OPT-2.7B (Zhang et al., 2022) on all considered
datasets. Table 17 summarizes the results.

GPT2 OPT-2.7B

Method MNLI QNLI SST-2 CoLA MNLI QNLI SST-2 CoLA

MeZO 0.4 5.5 19.4 2.8 2.6 5.3 48 55
MeZO-SVRG 0.3 1.9 5.6 2.2 1.1 2.7 25 1.4

Table 17: Required GPU-hrs to achieve equivalent performance levels for MeZO-SVRG and MeZO.

18



Published as a conference paper at ICLR 2024

I HALF-PRECISION EXPERIMENTS

In the section, we run preliminary experiments to evaluate the considered fine-tuning algorithms on
the half-precision (BF16) setting.

I.1 HALF-PRECISION EXPERIMENTS ON DISTILBERT

The hyperparameter grid that was optimized over for the DistilBert experiments in the half-precision
setting is presented in Table 18. As each iteration under the half-precision setting is faster than under
the full-precision setting, we run experiments for longer. Specifically, we run MeZO-SVRG for 80K
steps, MeZO for 400K steps and FO-SGD for 2K steps. The results are summarized in Table 19.

Table 18: The hyperparameter grid optimized over for the half-precision DistilBert (Sanh et al., 2020)
experiments. In the case of MeZO-SVRG we use the learning rate schedule proposed in Algorithm 4.
The bold values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64}×
Learning rate {1e−4, 1e−5, 1e−6}×
µ {1e−2}×
Total Steps {400K}

MeZO-SVRG Batch size {32, 64}×
Learning rate (η1) {1e−3, 1e−4}×
Learning rate (η2) {1e−5, 1e−6}×
µ {1e−2}×
q {2, 5}×
Total Steps {80K}

FO-SGD Batch size {32, 64}×
Learning rate {1e−2, 1e−3, 1e−4}×
Total Steps {2K}

Table 19: Half-precision experiments on DistilBERT (with 512 fine-tuning examples). FO refers to
first-order methods. Partial FT refers to partial-parameter fine-tuning (see Appendix C for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Partial FT) MeZO 1.0892 43 51200
MeZO-SVRG 0.8746 45 51200
FO-SGD 0.3508 51 128

QNLI (Partial FT) MeZO 0.6904 60 51200
MeZO-SVRG 0.5416 64 51200
FO-SGD 0.2998 66 128

SST-2 (Partial FT) MeZO 0.6889 61 51200
MeZO-SVRG 0.3887 79 51200
FO-SGD 0.0555 82 128

CoLA (Partial FT) MeZO 0.6420 66 51200
MeZO-SVRG 0.6170 71 51200
FO-SGD 0.4218 70 128
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I.2 HALF-PRECISION EXPERIMENTS ON ROBERTA-LARGE

The hyperparameter grid that was optimized over for the DistilBert experiments in the half-precision
setting is presented in Table 20. As each iteration under the half-precision setting is faster than under
the full-precision setting, we run experiments for longer. Specifically, we run MeZO-SVRG for 40K
steps, MeZO for 200K steps and FO-SGD for 1K steps. The results are summarized in Table 21.

Table 20: The hyperparameter grid optimized over for the half-precision RoBERTa-large (Liu et al.,
2019) experiments. In the case of MeZO-SVRG we use the learning rate schedule proposed in
Algorithm 4. The bold values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {64}×
Learning rate {1e−4, 1e−5, 1e−6}×
µ {1e−3}×
Total Steps {200K}

MeZO-SVRG Batch size {64}×
Learning rate (η1) {1e−4, 1e−5}×
Learning rate (η2) {1e−5, 1e−6}×
µ {1e−3}×
q {2, 5}×
Total Steps {40K}

FO-SGD Batch size {64}×
Learning rate {1e−2, 1e−3, 1e−4}×
Total Steps {1K}

Table 21: Half-precision experiments on RoBERTa-large (with 512 fine-tuning examples). FO refers
to first-order methods. Partial FT refers to partial-parameter fine-tuning (see Appendix C for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Partial FT) MeZO 1.0898 42 25600
MeZO-SVRG 1.0695 43 25600
FO-SGD 0.1820 55 64

QNLI (Partial FT) MeZO 0.6835 62 25600
MeZO-SVRG 0.6070 68 25600
FO-SGD 0.3112 67 64

SST-2 (Partial FT) MeZO 0.6630 66 25600
MeZO-SVRG 0.5278 77 25600
FO-SGD 0.1356 93 64

CoLA (Partial FT) MeZO 0.6308 66 25600
MeZO-SVRG 0.5781 69 25600
FO-SGD 0.1537 88 64

I.3 HALF-PRECISION EXPERIMENTS ON OPT-6.7B

The hyperparameter grid optimized for the OPT-6.7B experiments in the half-precision setting is
detailed in Table 22. We conducted the MeZO-SVRG experiments for 8k steps, MeZO for 24k steps,
and FO-SGD for 1k steps. The outcomes of these experiments are summarized in Table 23. We
include the BoolQ dataset from the SuperGLUE (Wang et al., 2019) benchmark to evaluate a more
challenging fine-tuning task.

I.4 MEMORY PROFILING WITH HALF-PRECISION

We repeated memory profiling experiments under the half-precision (BF16) settings. The results are
presented in Table 24.
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Table 22: The hyperparameter grid optimized over for the half-precision OPT-6.7B (Zhang et al.,
2022) experiments. In the case of MeZO-SVRG we use the learning rate schedule proposed in
Algorithm 4. The bold values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {128}×
Learning rate {1e−5, 1e−6}×
µ {1e−3}×
Total Steps {24K}

MeZO-SVRG Batch size {128}×
Learning rate (η1) {1e−4, 1e−5}×
Learning rate (η2) {1e−5, 1e−6}×
µ {1e−3}×
q {2, 5}×
Total Steps {8K}

FO-SGD Batch size {64}×
Learning rate {1e−3, 1e−4}×
Total Steps {1K}

Table 23: Half-precision experiments on OPT-6.7B (with 512 fine-tuning examples). FO refers to
first-order methods. Full FT refers to full-parameter fine-tuning (see Appendix C for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

SST-2 (Full FT) MeZO 0.5318 74 6144
MeZO-SVRG 0.5278 77 6144
FO-SGD 0.103 91 128

BoolQ (Full FT) MeZO 0.6259 65 6144
MeZO-SVRG 0.5703 69 6144
FO-SGD 0.2872 84 128

Memory Usage in GB for RoBERTa-large
Largest OPT/GPT that can fit Fixed context length (cl=128) Fixed batch size (bs=64)

Method A100 (40GB) bs = 16 bs = 32 bs = 64 cl = 256 cl = 512

MeZO 13B 1.03 1.13 1.25 1.39 2.66
MeZO-SVRG 6.7B 2.10 (39%) 2.11 (66%) 2.12 (79%) 2.27 (90%) 3.66
FO-SGD 2.7B 3.42 5.81 9.83 21.87 OOM
FO-Adam 1.3B 5.85 8.07 12.16 24.29 OOM

Table 24: Memory profiling with half-precision. Shows the largest AR models that can fit on single
40 GPUs. We also measure the memory usage under different batch sizes (bs) and context lengths (cl)
when fine-tuning RoBERTa-large. Percentages indicate the memory savings with respect to FO-SGD.
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