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Abstract

Knowledge distillation has emerged as a001
promising technique for compressing neural002
language models. However, most knowledge003
distillation methods focus on extracting the004
“knowledge” from a teacher network to guide005
the training of a student network, ignoring the006
“requirements” of the student. In this paper,007
we introduce Tree Knowledge Distillation for008
Transformer-based teacher and student mod-009
els, which allows student to actively extract010
its “requirements” via a tree of tokens. In spe-011
cific, we first choose the [CLS] token at the012
output layer of Transformer in student as the013
root of the tree. We choose tokens with the014
highest values in the row for [CLS] of the015
attention feature map at the second last layer016
as the children of the root. Then we choose017
children of these nodes in their correspond-018
ing rows of the attention feature map at the019
next layer, respectively. Later, we connect lay-020
ers of Transformer in student to correspond-021
ing layers in teacher by skipping every t lay-022
ers. At last, we improve the loss function by023
adding the summed mean squared errors be-024
tween the embeddings of the tokens in the tree.025
The experiments show that tree knowledge dis-026
tillation achieves competitive performance for027
compressing BERT among other knowledge028
distillation methods in GLUE benchmark.029

1 Introduction030

Pre-trained neural language models based on031

Transformer networks Vaswani et al. [2017], like032

BERT Devlin et al. [2019], RoBERTa Liu et al.033

[2019b], XLNet Yang et al. [2019], and GPT-034

3 Brown et al. [2020], have achieved remarkable035

improvements on various natural language process-036

ing (NLP) tasks, such as question answering Lai037

et al. [2017] and sentiment classification Socher038

et al. [2013].039

These large-scale language models require many040

parameters to obtain good performance. For in-041

stance, the BERT-base model has 12 layers and042

110 million parameters, and the GPT-3 model has 043

175 billion parameters. It is challenging to de- 044

ploy these language models to real-time applica- 045

tions in environments with limited computational 046

resources. Recently, knowledge distillation Hin- 047

ton et al. [2015]; Gou et al. [2020] has emerged 048

as a promising technique to compress large-scale 049

language models for these applications. Patient 050

Knowledge Distillation (PKD) Sun et al. [2019] has 051

been used to compress the 12-layer BERT model to 052

the 6-layer and 3-layer models with little sacrifice 053

on the performance. 054

Knowledge distillation is a general technique for 055

guiding the training of a “student” neural network 056

by capturing and transferring the “knowledge” of a 057

pre-trained “teacher” network. The distillation loss 058

is added to encourage the student to mimic some 059

aspects of the teacher. When the teacher network 060

is a Transformer-based model, the distillation loss 061

added by vanilla knowledge distillation Hinton et al. 062

[2015] is to encourage the student to mimic the out- 063

put of the [CLS] token at the output layer of the 064

teacher. On the other hand, it has shown that fea- 065

tures of intermediate layers learned by the teacher 066

can also be used to improve the training process and 067

final performance of the student Gou et al. [2020]. 068

For a Transformer-based model, such features can 069

be considered as the embeddings of corresponding 070

tokens at the Transformer’s intermediate layer. The 071

distillation loss can then be improved to minimize 072

the difference of these embeddings for correspond- 073

ing tokens between the teacher and the student. 074

However, it is inefficient to consider all tokens at 075

each layer of the student. In PKD Sun et al. [2019], 076

the [CLS] token is only considered at each layer 077

to compute the distillation loss, which has shown a 078

promising improvement for compressing the BERT 079

model. 080

Above knowledge distillation methods focus on 081

extracting the teacher’s knowledge to the student 082

while ignoring the student’s “requirements”. In this 083
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paper, we further extend the idea by considering a084

tree of tokens for corresponding layers to allow the085

student to extract its requirements from the teacher086

actively. Following the idea, we introduce Tree087

Knowledge Distillation (TKD) for compressing088

Transformer-based language models. In specific,089

we first choose the [CLS] token at the output layer090

of the Transformer in the student as the root of the091

tree. We choose tokens with the highest values in092

the row for [CLS] of the attention feature map093

at the second last layer as the children of the root.094

Then we choose children of these nodes in their095

corresponding rows of the attention feature map096

at the next layer, respectively. Later, we connect097

layers of the Transformer in the student to corre-098

sponding layers of the Transformer in the teacher099

by skipping every t layers, when the number of lay-100

ers in the teacher is larger than the student number.101

Finally, we improve the loss function of knowledge102

distillation by adding the summed mean squared103

errors between the embeddings of the tokens in the104

tree for corresponding layers of the teacher and the105

student.106

Notice that, the tree of tokens is incrementally107

constructed by choosing tokens with the highest108

values in corresponding rows of attention feature109

maps at each layer of the student. In other words,110

the tree consists of tokens that are most interested111

in the student at the current training stage. The112

distillation loss of TKD encourages the student113

to mimic the embeddings of these tokens in the114

teacher, which allows the student to specify its115

requirements, i.e., the tree of tokens, and actively116

learn the required knowledge, i.e., the embeddings117

of corresponding tokens in the layers, from the118

teacher.119

On the other hand, [Wang et al., 2020] shows120

that a language model can be considered as an open121

knowledge graph and the process of the model122

training can be considered as the process of op-123

timizing the knowledge graph. Then TKD for a124

language model can be viewed as a way of op-125

timizing the knowledge graph for the student by126

conferring more weights to entities that correspond127

to tokens in the tree. Intuitively, the sequences of128

these entities form relative paths towards the final129

result, i.e., entities correspond to the [CLS] token130

at the output layer. Then by constructing the tree of131

tokens in TKD, we specify paths of entities that are132

considered to be more critical for the final result133

from the view of the student.134

We evaluate TKD on multiple NLP tasks in Gen- 135

eral Language Understanding Evaluation (GLUE) 136

benchmark Wang et al. [2018]. The experiments 137

show that TKD achieves competitive performance 138

for compressing BERT, among other knowledge 139

distillation methods in GLUE. Note that, more to- 140

kens are considered in TKD than PKD. However, 141

we observe little increase in the computational cost. 142

Moreover, we show that TKD can be fruitfully com- 143

bined with other existing knowledge distillation 144

methods to achieve better performance. 145

The main contributions of the paper are summa- 146

rized as follows: 147

• We introduce Tree Knowledge Distillation 148

(TKD) that allows a Transformer-based stu- 149

dent network to actively extract knowledge 150

from a pre-trained Transformer-based lan- 151

guage model to guide its training. 152

• We propose to improve the distillation loss to 153

minimize the difference of the embeddings for 154

specific tokens at intermediate layers between 155

the teacher and the student, where the student 156

chooses the tokens following a tree structure. 157

• We implement TKD to compress the 12-layer 158

BERT model to a 3-layer model. The exper- 159

iments show that TKD achieves competitive 160

performance for compressing BERT, among 161

other knowledge distillation methods, on mul- 162

tiple NLP tasks in GLUE benchmark. More- 163

over, experimental results also show that TKD 164

can be fruitfully combined with other exist- 165

ing knowledge distillation methods to achieve 166

better performance. 167

The rest of the paper is organized as follows. 168

The related work is presented in the next section. 169

Then, vanilla knowledge distillation, PKD, and the 170

multi-head attention mechanism in Transformer are 171

reviewed. Later, the details of TKD and the experi- 172

mental results are proposed. At last, we conclude 173

the paper. 174

2 Related Work 175

Knowledge distillation methods focus on extract- 176

ing the transferring knowledge from a teacher net- 177

work to guide a student network’s training. In 178

vanilla knowledge distillation Hinton et al. [2015], 179

the teacher’s softened class scores are considered 180

the transferring knowledge, and the distillation 181

loss is to minimize the difference of the scores 182
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between the teacher and the student. Later, the183

teacher’s intermediate representations are also used184

to improve the student’s training and final perfor-185

mance. For instance, the activations Romero et al.186

[2015], neurons Huang and Wang [2017], or fea-187

tures Zagoruyko and Komodakis [2016] of inter-188

mediate layers can be considered as the knowledge.189

Moreover, the relationships between different ac-190

tivations Yim et al. [2017], neurons Lee and Song191

[2019], or pairs of samples Tung and Mori [2019]192

can also be used as the knowledge. Furthermore,193

the connections between the parameters of differ-194

ent layers in the teacher can also guide the training195

of the student Liu et al. [2019a].196

Knowledge distillation approaches, like197

PKD Sun et al. [2019], have been applied to198

compress large-scale language models for real-199

time applications in environments with limited200

computational resources. Unlike these approaches,201

we introduce TKD that allows a Transformer-based202

student network to actively extract knowledge203

from a pre-trained Transformer-based language204

model to guide its training.205

3 Preliminaries206

3.1 Knowledge Distillation207

We first review the distillation loss in vanilla knowl-208

edge distillation Hinton et al. [2015], which is to209

encourage the student to mimic the output of the210

teacher. In specific, a cross entropy loss between211

the outputs of the student and the teacher is defined212

as,213

LDS = −
N∑
i=1

B∑
j=1

[
P (yi = j | xi; θt) logP (yi = j | xi; θs)

]
,

(1)214

215

where N is the number of training samples, B is216

the number of categories of labels, yi is the output217

of the model for input xi, θt denotes the parameters218

of the teacher model, and θs denotes the parameters219

of the student.220

Moreover, the student model should also mini-221

mize the training loss. In specific,222

LCE = −
N∑
i=1

B∑
j=1

[1(yi = j) logP (yi = j | xi; θs)] ,223

where 1(yi = j) returns 1 if yi is j and 0 otherwise.224

At last, the overall loss function of the student225

network incorporates both knowledge distillation226

and knowledge loss. In specific, 227

LKD = (1− α)LDS + αLCE, (2) 228

where α is a hyper-parameter that controls the 229

weight of the distillation loss. 230

3.2 Patient Knowledge Distillation 231

Patient Knowledge Distillation (PKD) Sun et al. 232

[2019] focuses on compressing the 12-layer BERT 233

model to a 3-layer model, where features of inter- 234

mediate layers learned by the teacher are also used 235

to improve the training process and final perfor- 236

mance of the student. 237

In PKD, such features are considered as the em- 238

beddings of the [CLS] token at corresponding lay- 239

ers of the Transformer model. In specific, given an 240

input sentence xi, the output of the 12-layer BERT 241

model (resp. the 3-layer model) is specified by the 242

embedding of the [CLS] token at the output layer. 243

The embedding of the [CLS] token at the jth level 244

of the teacher (resp. the kth level of the student) 245

is denoted as hti,j (resp. hsi,k) for j ∈ {1, . . . , 12} 246

(resp. k ∈ {1, 2, 3}). 247

Note that the number of layers in the teacher 248

is larger than the number in student. Then PKD 249

defines a function Ipt that maps a layer k in the 250

student to a layer j in the teacher, i.e., Ipt(k) = j. 251

A simple way for such mapping is to connect layers 252

in the student to corresponding layers in the teacher 253

by skipping every t layers, i.e., Ipt(k) = k t. As 254

shown in Figure 1, in our case, t = 4, Ipt(1) = 4, 255

Ipt(2) = 8, and Ipt(3) = 12. 256

Then PKD adds the summed mean squared er- 257

rors between the embeddings of the [CLS] token 258

at corresponding layers of the teacher and the stu- 259

dent. In specific, 260

LPT =
N∑
i=1

K∑
k=1

∥∥∥∥∥ hsi,k
‖hsi,k‖2

−
hti,Ipt(k)

‖hti,Ipt(k)‖2

∥∥∥∥∥
2

2

, 261

where N is the number of training samples and K 262

is the number of layers in the Transformer of the 263

student. 264

Finally, the overall loss function of PKD is writ- 265

ten as: 266

LCE = (1− α)LDS + αLCE + β LPT, 267

where β denotes the importance of the loss between 268

the features of the student and the teacher. 269
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3.3 Multi-Head Attention270

Multi-head attention Vaswani et al. [2017] is a type271

of dot-product attention, which maps a query and272

a set of key-value pairs to an output in the Trans-273

former structure. The query, the key, and the value

Inputs

BERT_base-
Teacher

Student-3 
Transformers

Inputs

Trm1

Trm2

Trm3

Trm4

Trm5

Trm6

Trm7

Trm8

Trm9

Trm10

Trm11

Trm12

Trm1

Trm2

Trm3

TD Loss

TD Loss

TD Loss

DS Loss
Outputs Outputs

CE Loss CE Loss

Figure 1: The Model architecture of PKD for compress-
ing the 12-layer BERT model to a 3-layer model, where
the student network learns the teacher’s outputs in ev-
ery 4 layers.

274
are all vectors computed from the input. For a batch275

of sentences with the batch size b, attention first276

uses different learned linear projection functions to277

get the query matrix Q, the key matrix K, and the278

value matrix V . Then, the output is calculated by279

the following formula,280

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,281

where dk is the dimension of K. The dot product282

of Q and K will grow as the dimension of the283

key grows, so it needs to be divided by
√
dk to284

neutralize this.285

In order to speed up the calculation and improve286

the accuracy, attention uses multiple heads to cal-287

culate the results in parallel. First, they divide each288

input with dmodel dimensions to h pieces and use289

h projections to make h sets of the query, key, and290

value. Each head is responsible for processing one291

set, and different heads can compute parallelly. Fi- 292

nally, outputs of each head are concatenated and 293

projected again, resulting in the final values. The 294

whole procession can be denoted as, 295

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO, 296

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ), 297

WQ
i , WK

i , and W V
i denote the linear projections 298

of headi, and WO is the final projection. 299

4 Tree Knowledge Distillation 300

In this section, we introduce Tree Knowledge Dis- 301

tillation (TKD) for compressing Transformer-based 302

language models. 303

TKD also uses features of intermediate layers 304

learned by the teacher to improve the training pro- 305

cess and final performance of the student. In TKD, 306

such features are considered as the embeddings of 307

corresponding tokens at layers of the Transformer 308

model. In specific, given an input sentence xi, the 309

embedding of the token p at jth level of the teacher 310

(resp. the kth level of the student) is denoted as 311

hti,j,p (resp. hsi,k,p). 312

Similar to the discussion in PKD, the function 313

Ipt needs to be specified to map a layer k in the 314

student to a layer j in the teacher. We also define 315

Ipt(k) = 4k in our experiments on compressing a 316

12-layer BERT to a 3-layer model. 317

As discussed in the above sections, TKD allows 318

the student to actively extract knowledge from the 319

teacher via a tree of tokens, which is constructed 320

as follows. We first choose the [CLS] token at 321

the output layer of the student as the root of the 322

tree. We choose tokens with the highest values in 323

the row for [CLS] of the attention feature map 324

at the second last layer as the children of the root. 325

Then we choose children of these nodes in their 326

corresponding rows of the attention feature map 327

at the next layer, respectively. In specific, we use 328

td(k) to denote the chosen tokens in the tree at the 329

kth level of the student. Notice that, in order to 330

restrict the size of the tree, the maximum number 331

of children from a node is required to be a fixed 332

number m. We set m = 2 in our experiments on 333

compressing a 12-layer BERT to a 3-layer model. 334

An example of such a tree of tokens is illustrated 335

in Figure 2. 336

Then TKD adds the summed mean squared er- 337

rors between the embeddings of the tokens in the 338

tree at corresponding layers of the teacher and the 339
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Input

Trm1

Trm2

Trm3

Output

Student with 3 layer of 
transformers

[CLS]+[a]+[clever]+[blend]+[of]+[fact]+[and]+[fiction]+[SEP]

Extract positions of top 2 values in the 
lines of 1,3 in the attention matrix.

We got 1 ,3 and 6 and 8. Attention matrix 
of trm2

Extract positions of top 2 values of layer 
1 in the attention matrix.

We got 1and 3. Attention matrix of 
trm3

12 *

12 *

We do not need the attention matrix of 
the bottom transformer.

pos 1

pos 1 pos 3

pos 1 Pos 3 pos 8pos 6 [emb1]+[emb2]+[emb3] +[emb8]+[emb9]

[emb1]+[emb2]+[emb3] +[emb8]+[emb9]

[emb1]+[emb2]+[emb3] +[emb8]+[emb9]

Figure 2: Constructing the tree of tokens for the Transform of the student in TKD.

student. In specific,340

LTD =

N∑
i=1

K∑
k=1

∑
p∈td(k)

∥∥∥∥∥ hsi,k,p
‖hsi,k,p‖2

−
hti,Ipt(k),p

‖hti,Ipt(k),p‖2

∥∥∥∥∥
2

2

.

(3)341

Finally, the overall loss function of TKD is writ-342

ten as:343

LTKD = (1− α)LDS + αLCE + γ LTD, (4)344

where γ denotes the importance of the loss LTD.345

Algorithm 1 specifies the whole procedure of346

TKD.347

5 Experiments348

In this section, we implement TKD for compress-349

ing the 12-layer BERT model to a 3-layer model.350

We evaluate the compressed model with multiple351

NLP tasks in GLUE benchmark. The experiments352

show that TKD achieves competitive performance353

for compressing BERT, among other knowledge354

distillation methods, with little increase of the com-355

putational cost. We also show that TKD can be356

fruitfully combined with other existing knowledge357

distillation methods to achieve better performance.358

359

5.1 Datasets360

We evaluate TKD on multiple NLP tasks in Gen-361

eral Language Understanding Evaluation (GLUE)362

benchmark Wang et al. [2018]. GLUE consists of363

nine sentence or sentence-pair NLP tasks built on364

well-established existing datasets. These datasets365

are selected to cover a diverse range of dataset366

sizes, text genres, and degrees of the difficulty. 367

We focus on five of them, i.e., Multi-Genre Nat- 368

ural Language Inference (MNLI) Williams et al. 369

[2018], Recognizing Textual Entailment (RTE), 370

Stanford Sentiment Treebank (SST-2) Socher et al. 371

[2013], Quora Question Pairs (QQP) Chen et al. 372

[2018], and Microsoft Research Paraphrase Cor- 373

pus (MRPC) Dolan and Brockett [2005]. Notice 374

that, MNLI and RTE concern the Natural Language 375

Inference task, SST-2 concerns the Sentence Senti- 376

ment Classification task, QQP concerns the Ques- 377

tion Answering task, and MPRC concerns the Para- 378

phrase Similarity Matching task. 379

In specific, MNLI contains about 400k sentence 380

pairs and corresponding labels. There are three 381

types of labels, i.e., entailment, neutral, and con- 382

tradiction, which represent the logical relation- 383

ships between the two sentences. RTE is similar 384

to MNLI. However, the volume of RTE is much 385

smaller than that of MNLI, which contains 2.5k 386

pieces of data. SST-2 is a sentence sentiment analy- 387

sis dataset containing 67k pieces of data. Sentences 388

in SST-2 are film reviews from the IMDB website, 389

which correspond to scores between 0 to 1. The 390

label is either positive or negative according to the 391

scores. QQP obtains question-pairs from the web- 392

site Quora, and the task is to determine whether 393

the two questions are duplicated. Finally, MPRC 394

contains 3.7k sentence pairs. The model needs to 395

distinguish whether the two sentences are seman- 396

tically equivalent, and the label is either yes or no. 397

Among these tasks, QQP and MNLI are the two 398

largest data sets, while MRPC and RTE are very 399

small. 400

5



Algorithm 1 Tree Knowledge Distillation
Input: Transformer models for the teacher and
the student Output: The trained student model via
TKD

1: Fine-tune the teacher model on the target
dataset

2: Set the checkpoint as the epoch to start TKD
3: for every input sentence xi in the dataset do
4: Compute the KD loss LKD by Equation (2)
5: if epoch > checkpoint then
6: Set the [CLS] token at the output layer

of the student as the root of the tree
7: for every kth layer of the student from K

to 1 do
8: for each token p in the previous layer

of the tree do
9: Choose m tokens with the highest

values in the row for p of the atten-
tion feature map at the kth layer

10: Append these tokens to the tree
11: Add these tokens to td(k)
12: end for
13: end for
14: Compute the loss LTD by Equation (3)
15: Compute the TKD loss LTKD by Equa-

tion (4)
16: Optimize the student network via the

TKD loss
17: end if
18: end for

In specific, MNLI contains about 400k sentence401

pairs and corresponding labels. There are three402

types of labels, i.e., entailment, neutral, and con-403

tradiction, which represent the logical relation-404

ships between the two sentences. RTE is similar405

to MNLI. However, the volume of RTE is much406

smaller than that of MNLI, which contains 2.5k407

pieces of data. SST-2 is a sentence sentiment anal-408

ysis dataset containing 67k pieces of data. Sen-409

tences in SST-2 are film reviews from the IMDB410

website, which correspond to scores between 0 to411

1. The label is either positive or negative according412

to whether the score is greater than 0.5. QQP ob-413

tains labelled corpus of 364k question-pairs from414

the website Quora, and the task is to determine415

whether the two questions are duplicated. Finally,416

MPRC contains 3.7k sentence pairs. The model417

needs to distinguish whether the two sentences are418

semantically equivalent, and the label is either yes419

or no. Among these datasets, QQP, MNLI are the420

two largest datasets, while MRPC and RTE are 421

small. 422

5.2 Training Details 423

Notice that, NLP tasks in above datasets can be 424

considered as classification problems. Then both 425

models of the student and the teacher can be con- 426

structed as a Transformer model with the softmax 427

layer for the output. We convert the input sen- 428

tence S into the sentence [CLS] + S + [SEP] 429

and the pair of sentences S1, S2 into the sentence 430

[CLS] + S1 + [SEP] + S2 + [SEP], following 431

the preprocess in Devlin et al. [2019] for BERT. 432

Due to the limitation of computational resources, 433

we set the upper bound of the length for input sen- 434

tences to be 150, while truncating longer sentences. 435

We use BERT-base with 12 layers to construct 436

our teacher model, whose parameters come from 437

the bert-base-uncased parameter provided by hug- 438

gingface1. In addition, the Tokenizer is also ob- 439

tained from huggingface. Note that, we fine-tune 440

the teacher for corresponding datasets before ap- 441

plying TKD. We found that parameters in the fine- 442

tuned teacher model can give the student a better 443

starting point than the original parameters in BERT. 444

Our student model follows a 3-layer Transformer 445

structure, whose initial parameters are obtained 446

from parameters at the 4th, 8th, and 12th layer of 447

the Transformer in the teacher. 448

We compared the performance of the trained 449

student via vanilla knowledge distillation (denoted 450

as KD), PKD, and TKD. To get the best fine-tuned 451

teacher, we choose the learning rate from {1e-5, 2e- 452

5, 5e-5}, and use the one with the best performance. 453

To obtain good hyper-parameters for the student, 454

we set the temperature as {5, 10, 20}, the KD 455

weight coefficient α as {0.2, 0.5, 0.7, 0.9}, and 456

the TKD weight γ as {10, 50, 100, 500, 1000}. 457

Furthermore, we set the maximum training epoch 458

to be 30, and conduct 5 experiments on each group 459

of parameters to find the trained student models 460

with the best performance. 461

5.3 Experimental Results 462

We submitted the predictions of corresponding 463

models to GLUE’s official evaluation server. Ta- 464

ble 1 summarizes the results of trained models. In 465

specific, “BERT12 (Google)” denotes the teacher 466

model without fine-turn. “BERT12 (Teacher)” de- 467

notes our fine-tuned teacher model. “BERT3” de- 468

1https://huggingface.co
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notes our fine-tuned student model without using469

knowledge distillation. “BERT3-X” denotes the470

trained student model via the knowledge distilla-471

tion approach “X”, i.e., vanilla knowledge distilla-472

tion (KD), PKD, TKD, and the fusion of both PKD473

and TKD (Fusion).474

In Table 1, besides the fusion approach, BERT3-475

TKD achieves competitive results in all datasets,476

and BERT3-Fusion outperforms all other ap-477

proaches. We also find out that there is little in-478

crease in the computational cost of using TKD479

than PKD. The experiment results show that TKD480

achieves competitive performance for compressing481

BERT, among other knowledge distillation meth-482

ods in GLUE. TKD can be fruitfully combined483

with PKD to achieve better performance.484

In specific, on two of the largest datasets in our485

experiment, i.e., MNLI-m and MNLI-mm, BERT3-486

TKD improves the performance of BERT3 by 2.4%487

and 2.7% of the accuracy, and improves BERT3-488

KD by 0.5% and 0.7%. For SST-2, BERT3-TKD489

improves BERT3 by 1.7%, improves BERT3-KD490

by 1.2%, and improves BERT3-PKD by 0.6%. For491

RTE, BERT3-TKD improves BERT3 by 3.2%, im-492

proves BERT3-KD by 2.2%, and improves BERT3-493

PKD by 0.2%. For QQP, BERT3-TKD improves494

BERT3 by 2.0%, improves BERT3-KD by 0.3%,495

and improves BERT3-PKD by 0.1%. On MPRC,496

we found that the fine-tuned student model has al-497

ready achieved a good performance, then there is498

little progress it can obtain from the distillation of499

the teacher.500

5.4 Fusion Approach501

The knowledge distillation community has made502

several independent improvements for compress-503

ing language models. However, it is unclear which504

of these extensions are complementary and can be505

fruitfully combined. Here we examine the combi-506

nation of PKD and TKD. Note that, KD is already507

considered in either TKD or PKD. Then the combi-508

nation can be considered as the fusion of KD, PKD,509

and TKD. In specific, the overall loss function for510

the fusion approach is defined as:511

LFusion = (1−α)LDS +αLCE + β LPD + γ LTD.
(5)512

The experimental results are shown in Table 1,513

which show that TKD can be fruitfully combined514

with PKD to achieve better performance. We found515

that when the size of the dataset is larger, better im-516

provement of the performance would be observed.517

In specific, compared with BERT3-TKD, BERT3- 518

Fusion improves the performance by 1.6% on SST- 519

2, 1.8% on MNLI-m, 0.7% on MNLI-mm, and 520

0.2% on QQP. 521

5.5 Discussion 522

Experimental results in Table 1 show that TKD 523

and the fusion approach provide better improve- 524

ments for the performance of the fine-turned stu- 525

dent model on datasets with the larger size. This 526

observation implies that TKD and the fusion ap- 527

proach are more suitable for the cases that the 528

teacher model is well-trained and the smaller stu- 529

dent model has troubles to be trained well for a 530

large number of training samples. 531

Different from other knowledge distillation 532

methods, TKD allows the student to actively ac- 533

quire knowledge from the teacher due to its own 534

interests. Experimental results show that this mech- 535

anism can further improve the performance of other 536

knowledge distillation methods while introducing 537

little increase in the computational cost. 538

On the other hand, language models can be re- 539

garded as knowledge graphs Wang et al. [2020]. In 540

the knowledge distillation procession, the student 541

intents to learn the complete knowledge graph w.r.t 542

the teacher’s language model. Due to the limits 543

of abilities and resources, knowledge distillation 544

only captures and transfers partial knowledge of the 545

teacher, which respects to some subgraphs in the 546

knowledge graph for the teacher. Intuitively, it is 547

more helpful if such subgraphs form relative paths 548

towards the final result, i.e., entities correspond to 549

the [CLS] token at the output layer of the student. 550

Vanilla knowledge distillation encourages the stu- 551

dent to mimic the embedding output of the [CLS] 552

token at the output layer of the teacher, which only 553

transfers knowledge of entities for the result. PKD 554

encourages the student to mimic the embeddings 555

of [CLS] at each layer of the student, where the 556

corresponding subgraphs are useful to construct 557

the final result in the knowledge graph. Clearly, 558

knowledge w.r.t. other tokens is also useful for the 559

final result. In TKD, we further extend the idea by 560

conferring more weights to entities that correspond 561

to certain tokens in a tree structure, that are are 562

most interested in the student at the current training 563

stage. Intuitively, the sequences of these entities 564

form relative paths towards the construction of the 565

final result. 566
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Model SST-2 (67k) MPRC (3.7k) MNLI-m (393k) MNLI-mm (393k) RTE (2.5k) QQP (364k)

BERT12 (Google) 93.5 88.9/84.8 84.6 83.4 66.4 71.2/89.2
BERT12 (Teacher) 94.3 89.2/85.2 83.7 82.8 69.1 70.9/89.0

BERT3 86.4 80.5/72.6 74.8 74.3 55.2 65.8/86.9
BERT3-KD 86.9 79.5/71.1 75.4 74.8 56.2 67.3/87.6

BERT3-PKD 87.5 80.7/72.5 76.7 76.3 58.2 68.1/87.8
BERT3-TKD 88.1 80.7/72.5 77.2 77.0 58.4 68.1/87.9

BERT3-Fusion 90.7 80.7/72.6 79.0 77.7 58.5 68.1/88.1

Table 1: Different student models on GLUE benchmark. The best results for student models are in-bold. Google’s
submission results are obtained from official GLUE leaderboard. BERT12 (Teacher) is our own implementation of
the teacher model. PKD’s results are obtained from its paper.

6 Conclusion567

In this paper, we introduce Tree Knowledge Dis-568

tillation (TKD) that allows a Transformer-based569

student network to actively extract knowledge from570

a pre-trained Transformer-based language model571

to guide its training. Different from other knowl-572

edge distillation methods, TKD allows the student573

to actively acquire knowledge from the teacher574

due to its own interests. TKD improves the dis-575

tillation loss to minimize the difference of the em-576

beddings for chosen tokens at intermediate layers577

between the teacher and the student, where the stu-578

dent chooses the tokens with the most interests in579

a tree structure. We implement TKD to compress580

the 12-layer BERT model to a 3-layer model. The581

experiments show that TKD achieves competitive582

performance for compressing BERT, among other583

knowledge distillation methods, on multiple NLP584

tasks in GLUE benchmark. Moreover, experimen-585

tal results also show that TKD can be fruitfully586

combined with other existing knowledge distilla-587

tion methods to achieve better performance.588

In the future, we intend to further explore TKD589

from the point of view of the relations between590

language models and knowledge graphs. We would591

be committed to providing a theoretical basis for592

the mechanic analysis of knowledge distillation.593
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