Tree Knowledge Distillation for Compressing Transformer-Based
Language Models

Anonymous ACL submission

Abstract

Knowledge distillation has emerged as a
promising technique for compressing neural
language models. However, most knowledge
distillation methods focus on extracting the
“knowledge” from a teacher network to guide
the training of a student network, ignoring the
“requirements” of the student. In this paper,
we introduce Tree Knowledge Distillation for
Transformer-based teacher and student mod-
els, which allows student to actively extract
its “requirements” via a tree of tokens. In spe-
cific, we first choose the [CLS] token at the
output layer of Transformer in student as the
root of the tree. We choose tokens with the
highest values in the row for [CLS] of the
attention feature map at the second last layer
as the children of the root. Then we choose
children of these nodes in their correspond-
ing rows of the attention feature map at the
next layer, respectively. Later, we connect lay-
ers of Transformer in student to correspond-
ing layers in teacher by skipping every ¢ lay-
ers. At last, we improve the loss function by
adding the summed mean squared errors be-
tween the embeddings of the tokens in the tree.
The experiments show that tree knowledge dis-
tillation achieves competitive performance for
compressing BERT among other knowledge
distillation methods in GLUE benchmark.

1 Introduction

Pre-trained neural language models based on
Transformer networks Vaswani et al. [2017], like
BERT Devlin et al. [2019], RoBERTa Liu et al.
[2019b], XLNet Yang et al. [2019], and GPT-
3 Brown et al. [2020], have achieved remarkable
improvements on various natural language process-
ing (NLP) tasks, such as question answering Lai
et al. [2017] and sentiment classification Socher
et al. [2013].

These large-scale language models require many
parameters to obtain good performance. For in-
stance, the BERT-base model has 12 layers and

110 million parameters, and the GPT-3 model has
175 billion parameters. It is challenging to de-
ploy these language models to real-time applica-
tions in environments with limited computational
resources. Recently, knowledge distillation Hin-
ton et al. [2015]; Gou et al. [2020] has emerged
as a promising technique to compress large-scale
language models for these applications. Patient
Knowledge Distillation (PKD) Sun et al. [2019] has
been used to compress the 12-layer BERT model to
the 6-layer and 3-layer models with little sacrifice
on the performance.

Knowledge distillation is a general technique for
guiding the training of a “student” neural network
by capturing and transferring the “knowledge” of a
pre-trained “teacher” network. The distillation loss
is added to encourage the student to mimic some
aspects of the teacher. When the teacher network
is a Transformer-based model, the distillation loss
added by vanilla knowledge distillation Hinton et al.
[2015] is to encourage the student to mimic the out-
put of the [CLS] token at the output layer of the
teacher. On the other hand, it has shown that fea-
tures of intermediate layers learned by the teacher
can also be used to improve the training process and
final performance of the student Gou et al. [2020].
For a Transformer-based model, such features can
be considered as the embeddings of corresponding
tokens at the Transformer’s intermediate layer. The
distillation loss can then be improved to minimize
the difference of these embeddings for correspond-
ing tokens between the teacher and the student.
However, it is inefficient to consider all tokens at
each layer of the student. In PKD Sun et al. [2019],
the [CLS] token is only considered at each layer
to compute the distillation loss, which has shown a
promising improvement for compressing the BERT
model.

Above knowledge distillation methods focus on
extracting the teacher’s knowledge to the student

while ignoring the student’s “requirements”. In this

paper, we further extend the idea by considering a
tree of tokens for corresponding layers to allow the
student to extract its requirements from the teacher
actively. Following the idea, we introduce Tree
Knowledge Distillation (TKD) for compressing
Transformer-based language models. In specific,
we first choose the [CLS] token at the output layer
of the Transformer in the student as the root of the
tree. We choose tokens with the highest values in
the row for [CLS] of the attention feature map
at the second last layer as the children of the root.
Then we choose children of these nodes in their
corresponding rows of the attention feature map
at the next layer, respectively. Later, we connect
layers of the Transformer in the student to corre-
sponding layers of the Transformer in the teacher
by skipping every t layers, when the number of lay-
ers in the teacher is larger than the student number.
Finally, we improve the loss function of knowledge
distillation by adding the summed mean squared
errors between the embeddings of the tokens in the
tree for corresponding layers of the teacher and the
student.

Notice that, the tree of tokens is incrementally
constructed by choosing tokens with the highest
values in corresponding rows of attention feature
maps at each layer of the student. In other words,
the tree consists of tokens that are most interested
in the student at the current training stage. The
distillation loss of TKD encourages the student
to mimic the embeddings of these tokens in the
teacher, which allows the student to specify its
requirements, i.e., the tree of tokens, and actively
learn the required knowledge, i.e., the embeddings
of corresponding tokens in the layers, from the
teacher.

On the other hand, [Wang et al., 2020] shows
that a language model can be considered as an open
knowledge graph and the process of the model
training can be considered as the process of op-
timizing the knowledge graph. Then TKD for a
language model can be viewed as a way of op-
timizing the knowledge graph for the student by
conferring more weights to entities that correspond
to tokens in the tree. Intuitively, the sequences of
these entities form relative paths towards the final
result, i.e., entities correspond to the [CLS] token
at the output layer. Then by constructing the tree of
tokens in TKD, we specify paths of entities that are
considered to be more critical for the final result
from the view of the student.

We evaluate TKD on multiple NLP tasks in Gen-
eral Language Understanding Evaluation (GLUE)
benchmark Wang et al. [2018]. The experiments
show that TKD achieves competitive performance
for compressing BERT, among other knowledge
distillation methods in GLUE. Note that, more to-
kens are considered in TKD than PKD. However,
we observe little increase in the computational cost.
Moreover, we show that TKD can be fruitfully com-
bined with other existing knowledge distillation
methods to achieve better performance.

The main contributions of the paper are summa-
rized as follows:

* We introduce Tree Knowledge Distillation
(TKD) that allows a Transformer-based stu-
dent network to actively extract knowledge
from a pre-trained Transformer-based lan-
guage model to guide its training.

* We propose to improve the distillation loss to
minimize the difference of the embeddings for
specific tokens at intermediate layers between
the teacher and the student, where the student
chooses the tokens following a tree structure.

* We implement TKD to compress the 12-layer
BERT model to a 3-layer model. The exper-
iments show that TKD achieves competitive
performance for compressing BERT, among
other knowledge distillation methods, on mul-
tiple NLP tasks in GLUE benchmark. More-
over, experimental results also show that TKD
can be fruitfully combined with other exist-
ing knowledge distillation methods to achieve
better performance.

The rest of the paper is organized as follows.
The related work is presented in the next section.
Then, vanilla knowledge distillation, PKD, and the
multi-head attention mechanism in Transformer are
reviewed. Later, the details of TKD and the experi-
mental results are proposed. At last, we conclude
the paper.

2 Related Work

Knowledge distillation methods focus on extract-
ing the transferring knowledge from a teacher net-
work to guide a student network’s training. In
vanilla knowledge distillation Hinton et al. [2015],
the teacher’s softened class scores are considered
the transferring knowledge, and the distillation
loss is to minimize the difference of the scores

between the teacher and the student. Later, the
teacher’s intermediate representations are also used
to improve the student’s training and final perfor-
mance. For instance, the activations Romero et al.
[2015], neurons Huang and Wang [2017], or fea-
tures Zagoruyko and Komodakis [2016] of inter-
mediate layers can be considered as the knowledge.
Moreover, the relationships between different ac-
tivations Yim et al. [2017], neurons Lee and Song
[2019], or pairs of samples Tung and Mori [2019]
can also be used as the knowledge. Furthermore,
the connections between the parameters of differ-
ent layers in the teacher can also guide the training
of the student Liu et al. [2019a].

Knowledge distillation approaches, like
PKD Sun et al. [2019], have been applied to
compress large-scale language models for real-
time applications in environments with limited
computational resources. Unlike these approaches,
we introduce TKD that allows a Transformer-based
student network to actively extract knowledge
from a pre-trained Transformer-based language
model to guide its training.

3 Preliminaries

3.1 Knowledge Distillation

We first review the distillation loss in vanilla knowl-
edge distillation Hinton et al. [2015], which is to
encourage the student to mimic the output of the
teacher. In specific, a cross entropy loss between
the outputs of the student and the teacher is defined
as,

Lpsz—zN:zB:[P(

i=1 j=1

ey

where N is the number of training samples, B is
the number of categories of labels, y; is the output
of the model for input x;, @' denotes the parameters
of the teacher model, and #° denotes the parameters
of the student.

Moreover, the student model should also mini-
mize the training loss. In specific,

L= Y3l

=1 j=1

§) logP(y; = j | xs; 6°)],

where 1(y; = j) returns 1 if y; is j and 0 otherwise.
At last, the overall loss function of the student
network incorporates both knowledge distillation

yi=j | ws; 0°) log Plys = j | ws; 6°)],

and knowledge loss. In specific,

Lkp = (1 — @) Lps + o Lcg, 2
where « is a hyper-parameter that controls the
weight of the distillation loss.

3.2 Patient Knowledge Distillation

Patient Knowledge Distillation (PKD) Sun et al.
[2019] focuses on compressing the 12-layer BERT
model to a 3-layer model, where features of inter-
mediate layers learned by the teacher are also used
to improve the training process and final perfor-
mance of the student.

In PKD, such features are considered as the em-
beddings of the [CLS] token at corresponding lay-
ers of the Transformer model. In specific, given an
input sentence x;, the output of the 12-layer BERT
model (resp. the 3-layer model) is specified by the
embedding of the [CLS] token at the output layer.
The embedding of the [CLS] token at the jth level
of the teacher (resp. the kth level of the student)
is denoted as h ; (resp. hij) for j € {1,...,12}
(resp. k € {1,2 3})

Note that the number of layers in the teacher
is larger than the number in student. Then PKD
defines a function I,; that maps a layer % in the
student to a layer j in the teacher, i.e., I (k) = j.
A simple way for such mapping is to connect layers
in the student to corresponding layers in the teacher
by skipping every t layers, i.e., Ix(k) = kt. As
shown in Figure 1, in our case, t = 4, I;;(1) = 4,
Ipt<2) = 8, and Ipt(g) =12.

Then PKD adds the summed mean squared er-
rors between the embeddings of the [CLS] token
at corresponding layers of the teacher and the stu-
dent. In specific,

s t 2
b R ou ()

N\l AL 2],

N K

=1 k=
where N is the number of training samples and K
is the number of layers in the Transformer of the
student.

Finally, the overall loss function of PKD is writ-
ten as:

7 Ipt

Leg = (1 —«) Lps + a Leg + B Ler,

where [denotes the importance of the loss between
the features of the student and the teacher.

3.3 Multi-Head Attention

Multi-head attention Vaswani et al. [2017] is a type
of dot-product attention, which maps a query and
a set of key-value pairs to an output in the Trans-
former structure. The query, the key, and the value

CE Loss CE Loss

Outputs DS LOss

?
ol TD Loss

Outputs
Trm3
?
Trm11
*
Trm10
*
Trm9

t TD Loss
Trm8 —

4
Trm7

Trm2

?
Trm6
?
Trm5
*
ey TD Loss

4
Trm3

Trm1

?
Trm2

*
Trm1

*
Inputs

BERT base-
Teacher

Inputs

Student-3
Transformers

Figure 1: The Model architecture of PKD for compress-
ing the 12-layer BERT model to a 3-layer model, where
the student network learns the teacher’s outputs in ev-
ery 4 layers.

are all vectors computed from the input. For a batch
of sentences with the batch size b, attention first
uses different learned linear projection functions to
get the query matrix (), the key matrix K, and the
value matrix V. Then, the output is calculated by
the following formula,

. QK"
Attention(Q, K, V') = softmax(A WV,
where dy, is the dimension of K. The dot product
of) and K will grow as the dimension of the
key grows, so it needs to be divided by +/d}, to

neutralize this.

In order to speed up the calculation and improve
the accuracy, attention uses multiple heads to cal-
culate the results in parallel. First, they divide each
input with d,,,4.; dimensions to h pieces and use
h projections to make h sets of the query, key, and
value. Each head is responsible for processing one

set, and different heads can compute parallelly. Fi-
nally, outputs of each head are concatenated and
projected again, resulting in the final values. The
whole procession can be denoted as,

MultiHead(Q, K, V') = Concat(head,, . .

where head; = Attention(QWiQ, KwWE vw)),
WZQ, WZK , and I/Viv denote the linear projections
of head;, and W is the final projection.

4 Tree Knowledge Distillation

In this section, we introduce Tree Knowledge Dis-
tillation (TKD) for compressing Transformer-based
language models.

TKD also uses features of intermediate layers
learned by the teacher to improve the training pro-
cess and final performance of the student. In TKD,
such features are considered as the embeddings of
corresponding tokens at layers of the Transformer
model. In specific, given an input sentence z;, the
embedding of the token p at jth level of the teacher
(resp. the kth level of the student) is denoted as
h%,j,p (resp. A7)).

Similar to the discussion in PKD, the function
I needs to be specified to map a layer k in the
student to a layer 7 in the teacher. We also define
I,+(k) = 4k in our experiments on compressing a
12-layer BERT to a 3-layer model.

As discussed in the above sections, TKD allows
the student to actively extract knowledge from the
teacher via a tree of tokens, which is constructed
as follows. We first choose the [CLS] token at
the output layer of the student as the root of the
tree. We choose tokens with the highest values in
the row for [CLS] of the attention feature map
at the second last layer as the children of the root.
Then we choose children of these nodes in their
corresponding rows of the attention feature map
at the next layer, respectively. In specific, we use
td(k) to denote the chosen tokens in the tree at the
kth level of the student. Notice that, in order to
restrict the size of the tree, the maximum number
of children from a node is required to be a fixed
number m. We set m = 2 in our experiments on
compressing a 12-layer BERT to a 3-layer model.
An example of such a tree of tokens is illustrated
in Figure 2.

Then TKD adds the summed mean squared er-
rors between the embeddings of the tokens in the
tree at corresponding layers of the teacher and the

. heady) WO,

Extract positions of top 2 values of layer
1 in the attention matrix.
We got 1and 3.

12*

trm3

-

|

Extract positions of top 2 values in the
lines of 1,3 in the attention matrix.
We got 1,3 and 6 and 8.
of trm2

We do not need the attention matrix of
the bottom transformer.

Attention matrix of

Attention matrix

Output

Trm3 [emb1] +[emb2] + [emb3]...+[emb8] +[emb9]
Trm2 [emb1] +[emb2] +[emb3]...+[emb8] + [emb9]
Trm1 [emb1] +[emb2] + [emb3]...+[emb8] +[emb9]

Input

Student with 3 layer of
transformers

Figure 2: Constructing the tree of tokens for the Transform of the student in TKD.

student. In specific,

S»HI>

1=1 k=1 petd(k)

t
hl Ipt(k)vp
zkp”Q ||hszt(k H2

(3)
Finally, the overall loss function of TKD is writ-
ten as:

S
i,k,p

Lixkp=(1—«)Lps+aLcg+~vLmp, (4)

where v denotes the importance of the loss Lrp.
Algorithm 1 specifies the whole procedure of
TKD.

5 Experiments

In this section, we implement TKD for compress-
ing the 12-layer BERT model to a 3-layer model.
We evaluate the compressed model with multiple
NLP tasks in GLUE benchmark. The experiments
show that TKD achieves competitive performance
for compressing BERT, among other knowledge
distillation methods, with little increase of the com-
putational cost. We also show that TKD can be
fruitfully combined with other existing knowledge
distillation methods to achieve better performance.

5.1 Datasets

We evaluate TKD on multiple NLP tasks in Gen-
eral Language Understanding Evaluation (GLUE)
benchmark Wang et al. [2018]. GLUE consists of
nine sentence or sentence-pair NLP tasks built on
well-established existing datasets. These datasets
are selected to cover a diverse range of dataset

sizes, text genres, and degrees of the difficulty.
We focus on five of them, i.e., Multi-Genre Nat-
ural Language Inference (MNLI) Williams et al.
"[2018], Recognizing Textual Entailment (RTE),
Stanford Sentiment Treebank (SST-2) Socher et al.
[2013], Quora Question Pairs (QQP) Chen et al.
[2018], and Microsoft Research Paraphrase Cor-
pus (MRPC) Dolan and Brockett [2005]. Notice
that, MNLI and RTE concern the Natural Language
Inference task, SST-2 concerns the Sentence Senti-
ment Classification task, QQP concerns the Ques-
tion Answering task, and MPRC concerns the Para-
phrase Similarity Matching task.

In specific, MNLI contains about 400k sentence
pairs and corresponding labels. There are three
types of labels, i.e., entailment, neutral, and con-
tradiction, which represent the logical relation-
ships between the two sentences. RTE is similar
to MNLI. However, the volume of RTE is much
smaller than that of MNLI, which contains 2.5k
pieces of data. SST-2 is a sentence sentiment analy-
sis dataset containing 67k pieces of data. Sentences
in SST-2 are film reviews from the IMDB website,
which correspond to scores between O to 1. The
label is either positive or negative according to the
scores. QQP obtains question-pairs from the web-
site Quora, and the task is to determine whether
the two questions are duplicated. Finally, MPRC
contains 3.7k sentence pairs. The model needs to
distinguish whether the two sentences are seman-
tically equivalent, and the label is either yes or no.
Among these tasks, QQP and MNLI are the two
largest data sets, while MRPC and RTE are very
small.

[CLS] +[a] + [clever] + [blend] + [of] + [fact] + [and] + [fiction] + [SEP]

Algorithm 1 Tree Knowledge Distillation

Input: Transformer models for the teacher and
the student Qutput: The trained student model via
TKD

1: Fine-tune the teacher model on the target
dataset

2: Set the checkpoint as the epoch to start TKD

3: for every input sentence x; in the dataset do

4: Compute the KD loss Lgp by Equation (2)

5. if epoch > checkpoint then

6: Set the [CLS] token at the output layer
of the student as the root of the tree

7: for every kth layer of the student from K
to 1 do

8: for each token p in the previous layer

of the tree do
9: Choose m tokens with the highest

values in the row for p of the atten-
tion feature map at the kth layer

10 Append these tokens to the tree

11 Add these tokens to td(k)

12: end for

13: end for

14: Compute the loss L7p by Equation (3)

15: Compute the TKD loss Lykp by Equa-
tion (4)

16: Optimize the student network via the
TKD loss

17: end if

18: end for

In specific, MNLI contains about 400k sentence
pairs and corresponding labels. There are three
types of labels, i.e., entailment, neutral, and con-
tradiction, which represent the logical relation-
ships between the two sentences. RTE is similar
to MNLI. However, the volume of RTE is much
smaller than that of MNLI, which contains 2.5k
pieces of data. SST-2 is a sentence sentiment anal-
ysis dataset containing 67k pieces of data. Sen-
tences in SST-2 are film reviews from the IMDB
website, which correspond to scores between 0 to
1. The label is either positive or negative according
to whether the score is greater than 0.5. QQP ob-
tains labelled corpus of 364k question-pairs from
the website Quora, and the task is to determine
whether the two questions are duplicated. Finally,
MPRC contains 3.7k sentence pairs. The model
needs to distinguish whether the two sentences are
semantically equivalent, and the label is either yes
or no. Among these datasets, QQP, MNLI are the

two largest datasets, while MRPC and RTE are
small.

5.2 Training Details

Notice that, NLP tasks in above datasets can be
considered as classification problems. Then both
models of the student and the teacher can be con-
structed as a Transformer model with the softmax
layer for the output. We convert the input sen-
tence S into the sentence [CLS] + .S + [SEP]

and the pair of sentences 51, So into the sentence
[CLS] + 51+ [SEP] + 59 + [SEP], following
the preprocess in Devlin et al. [2019] for BERT.
Due to the limitation of computational resources,
we set the upper bound of the length for input sen-
tences to be 150, while truncating longer sentences.

We use BERT-base with 12 layers to construct
our teacher model, whose parameters come from
the bert-base-uncased parameter provided by hug-
gingface'. In addition, the Tokenizer is also ob-
tained from huggingface. Note that, we fine-tune
the teacher for corresponding datasets before ap-
plying TKD. We found that parameters in the fine-
tuned teacher model can give the student a better
starting point than the original parameters in BERT.
Our student model follows a 3-layer Transformer
structure, whose initial parameters are obtained
from parameters at the 4th, 8th, and 12th layer of
the Transformer in the teacher.

We compared the performance of the trained
student via vanilla knowledge distillation (denoted
as KD), PKD, and TKD. To get the best fine-tuned
teacher, we choose the learning rate from {1e-5, 2e-
5, 5e-5}, and use the one with the best performance.
To obtain good hyper-parameters for the student,
we set the temperature as {5, 10, 20}, the KD
weight coefficient « as {0.2, 0.5, 0.7,0.9}, and
the TKD weight v as {10, 50, 100, 500, 1000}.
Furthermore, we set the maximum training epoch
to be 30, and conduct 5 experiments on each group
of parameters to find the trained student models
with the best performance.

5.3 Experimental Results

We submitted the predictions of corresponding
models to GLUE’s official evaluation server. Ta-
ble 1 summarizes the results of trained models. In
specific, “BERT12 (Google)” denotes the teacher
model without fine-turn. “BERT;o (Teacher)” de-
notes our fine-tuned teacher model. “BERT3” de-

"https://huggingface.co

notes our fine-tuned student model without using
knowledge distillation. “BERT3-X" denotes the
trained student model via the knowledge distilla-
tion approach “X”, i.e., vanilla knowledge distilla-
tion (KD), PKD, TKD, and the fusion of both PKD
and TKD (Fusion).

In Table 1, besides the fusion approach, BERT;-
TKD achieves competitive results in all datasets,
and BERTj3-Fusion outperforms all other ap-
proaches. We also find out that there is little in-
crease in the computational cost of using TKD
than PKD. The experiment results show that TKD
achieves competitive performance for compressing
BERT, among other knowledge distillation meth-
ods in GLUE. TKD can be fruitfully combined
with PKD to achieve better performance.

In specific, on two of the largest datasets in our
experiment, i.e., MNLI-m and MNLI-mm, BERT;-
TKD improves the performance of BERT3 by 2.4%
and 2.7% of the accuracy, and improves BERT3-
KD by 0.5% and 0.7%. For SST-2, BERT3-TKD
improves BERT3 by 1.7%, improves BERT3-KD
by 1.2%, and improves BERT3-PKD by 0.6%. For
RTE, BERT3-TKD improves BERT3 by 3.2%, im-
proves BERT3-KD by 2.2%, and improves BERT3-
PKD by 0.2%. For QQP, BERT3-TKD improves
BERT3; by 2.0%, improves BERT3-KD by 0.3%,
and improves BERT3-PKD by 0.1%. On MPRC,
we found that the fine-tuned student model has al-
ready achieved a good performance, then there is
little progress it can obtain from the distillation of
the teacher.

5.4 Fusion Approach

The knowledge distillation community has made
several independent improvements for compress-
ing language models. However, it is unclear which
of these extensions are complementary and can be
fruitfully combined. Here we examine the combi-
nation of PKD and TKD. Note that, KD is already
considered in either TKD or PKD. Then the combi-
nation can be considered as the fusion of KD, PKD,
and TKD. In specific, the overall loss function for
the fusion approach is defined as:

(1—a)Lps+aLcg+ B8 Lpp + Lp.
(&)

The experimental results are shown in Table 1,
which show that TKD can be fruitfully combined
with PKD to achieve better performance. We found
that when the size of the dataset is larger, better im-
provement of the performance would be observed.

LFusion -

In specific, compared with BERT3-TKD, BERT ;-
Fusion improves the performance by 1.6% on SST-
2, 1.8% on MNLI-m, 0.7% on MNLI-mm, and
0.2% on QQP.

5.5 Discussion

Experimental results in Table 1 show that TKD
and the fusion approach provide better improve-
ments for the performance of the fine-turned stu-
dent model on datasets with the larger size. This
observation implies that TKD and the fusion ap-
proach are more suitable for the cases that the
teacher model is well-trained and the smaller stu-
dent model has troubles to be trained well for a
large number of training samples.

Different from other knowledge distillation
methods, TKD allows the student to actively ac-
quire knowledge from the teacher due to its own
interests. Experimental results show that this mech-
anism can further improve the performance of other
knowledge distillation methods while introducing
little increase in the computational cost.

On the other hand, language models can be re-
garded as knowledge graphs Wang et al. [2020]. In
the knowledge distillation procession, the student
intents to learn the complete knowledge graph w.r.t
the teacher’s language model. Due to the limits
of abilities and resources, knowledge distillation
only captures and transfers partial knowledge of the
teacher, which respects to some subgraphs in the
knowledge graph for the teacher. Intuitively, it is
more helpful if such subgraphs form relative paths
towards the final result, i.e., entities correspond to
the [CLS] token at the output layer of the student.
Vanilla knowledge distillation encourages the stu-
dent to mimic the embedding output of the [CLS]
token at the output layer of the teacher, which only
transfers knowledge of entities for the result. PKD
encourages the student to mimic the embeddings
of [CLS] at each layer of the student, where the
corresponding subgraphs are useful to construct
the final result in the knowledge graph. Clearly,
knowledge w.r.t. other tokens is also useful for the
final result. In TKD, we further extend the idea by
conferring more weights to entities that correspond
to certain tokens in a tree structure, that are are
most interested in the student at the current training
stage. Intuitively, the sequences of these entities
form relative paths towards the construction of the
final result.

Model SST-2 (67k) MPRC (3.7k) MNLI-m (393k) MNLI-mm (393k) RTE (2.5k) QQP (364k)

BERT/2 (Google) 93.5 88.9/84.8 84.6 83.4 66.4 71.2/89.2
BERT2 (Teacher) 94.3 89.2/85.2 83.7 82.8 69.1 70.9/89.0
BERT3 86.4 80.5/72.6 74.8 74.3 55.2 65.8/86.9
BERT3-KD 86.9 79.5/71.1 75.4 74.8 56.2 67.3/87.6
BERT3-PKD 87.5 80.7/72.5 76.7 76.3 58.2 68.1/87.8
BERT3-TKD 88.1 80.7/72.5 77.2 77.0 58.4 68.1/87.9
BERT3-Fusion 90.7 80.7/72.6 79.0 77.7 58.5 68.1/88.1

Table 1: Different student models on GLUE benchmark. The best results for student models are in-bold. Google’s
submission results are obtained from official GLUE leaderboard. BERT; 2 (Teacher) is our own implementation of
the teacher model. PKD’s results are obtained from its paper.

6 Conclusion

In this paper, we introduce Tree Knowledge Dis-
tillation (TKD) that allows a Transformer-based
student network to actively extract knowledge from
a pre-trained Transformer-based language model
to guide its training. Different from other knowl-
edge distillation methods, TKD allows the student
to actively acquire knowledge from the teacher
due to its own interests. TKD improves the dis-
tillation loss to minimize the difference of the em-
beddings for chosen tokens at intermediate layers
between the teacher and the student, where the stu-
dent chooses the tokens with the most interests in
a tree structure. We implement TKD to compress
the 12-layer BERT model to a 3-layer model. The
experiments show that TKD achieves competitive
performance for compressing BERT, among other
knowledge distillation methods, on multiple NLP
tasks in GLUE benchmark. Moreover, experimen-
tal results also show that TKD can be fruitfully
combined with other existing knowledge distilla-
tion methods to achieve better performance.

In the future, we intend to further explore TKD
from the point of view of the relations between
language models and knowledge graphs. We would
be committed to providing a theoretical basis for
the mechanic analysis of knowledge distillation.

References

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2018. Quora question pairs.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Jianping Gou, Baosheng Yu, Stephen John Maybank,
and Dacheng Tao. 2020. Knowledge distillation: A
survey. arXiv preprint arXiv:2006.05525.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Zehao Huang and Naiyan Wang. 2017. Like what you
like: Knowledge distill via neuron selectivity trans-
fer. arXiv preprint arXiv:1707.01219.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 785—
794.

Seunghyun Lee and Byung Cheol Song. 2019. Graph-
based knowledge distillation by multi-head attention
network. arXiv preprint arXiv:1907.02226.

Junjie Liu, Dongchao Wen, Hongxing Gao, Wei Tao,
Tse-Wei Chen, Kinya Osa, and Masami Kato. 2019a.
Knowledge representing: Efficient, sparse represen-
tation of prior knowledge for knowledge distillation.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops
(CVPR), pages 638—646.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2015. Fitnets: Hints for thin deep nets. In
Proceedings of the 3rd International Conference on
Learning Representations, (ICLR-2015).

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631-1642.

Siqgi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4314-4323.

Frederick Tung and Greg Mori. 2019. Similarity-
preserving knowledge distillation. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 1365-1374.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353-355.

Chenguang Wang, Xiao Liu, and Dawn Song. 2020.
Language models are open knowledge graphs.
arXiv preprint arXiv:2010.11967.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112—1122.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753-5763.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim.
2017. A gift from knowledge distillation: Fast op-
timization, network minimization and transfer learn-
ing. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
4133-4141.

Sergey Zagoruyko and Nikos Komodakis. 2016. Pay-
ing more attention to attention: Improving the per-
formance of convolutional neural networks via atten-
tion transfer. arXiv preprint arXiv:1612.03928.

	Introduction
	Related Work
	Preliminaries
	Knowledge Distillation
	Patient Knowledge Distillation
	Multi-Head Attention

	Tree Knowledge Distillation
	Experiments
	Datasets
	Training Details
	Experimental Results
	Fusion Approach
	Discussion

	Conclusion

