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ABSTRACT

Score-based generative models (SGMs) can generate high-quality samples via
Langevin dynamics with a drift term and a diffusion term (Gaussian noise) itera-
tively calculated and added to a sample until convergence. In biological systems,
it is observed that the neural population can conduct heavy-tailed Lévy dynam-
ics for sampling-based probabilistic representation through neural fluctuations.
Critically, unlike the existing sampling process of SGMs, heavy-tailed Lévy dy-
namics can produce both large jumps and small roaming to explore the sampling
space, resulting in better sampling results than Langevin dynamics with a lack-
ing of large jumps. Motivated by this contrast, we explore a new class of SGMs
with the sampling based on the Lévy dynamics. However, exact numerical sim-
ulation of the Lévy dynamics is significantly more challenging and intractable.
We hence propose an alternative solution by leveraging Gaussian mixture noises
during training to mimic the desired large jumps and small roaming properties.
Theoretically, GM-SGMs conduct a probabilistic graphical model used by empir-
ical Bayes for sampling, expanding the maximum a posteriori (MAP) estimation
applied by conventional SGMs. Expensive experiments on the challenging image
generation tasks show that our GM-SGMs exhibit superior sampling quality over
prior art SGMs across various sampling iterations.

1 INTRODUCTION

Score-based generative models (SGMs) (Song and Ermon, 2019; 2020; Song et al., 2021b;a; Dock-
horn et al., 2022; Karras et al., 2022) have recently demonstrated tremendous performance in data
synthesis, especially high-quality images, along with easier model optimization (Song and Ermon,
2019), richer generative diversity (Xiao et al., 2022), and solid theories (De Bortoli et al., 2021).
During optimization, SGMs learn to fit a score function by predicting the Gaussian noises added
to a sample drawn from a target dataset. To generate a sample in the target distribution, the SGMs
conduct Langevin dynamics constructed from the score function. This process reverses a Brownian
motion starting from the dataset distribution with i.i.d. Gaussian increments.

As a special case of Monte Carlo Markov Chain methods, the Langevin dynamics has been widely
applied for constructing sampling-based algorithms (Rey-Bellet and Spiliopoulos, 2015). However,
increasing evidence from experimental observation suggests that in biological systems, the neural
population implements sampling-based probabilistic representations through a heavy-tailed Lévy
dynamics (He, 2014; Donoghue et al., 2020; Townsend and Gong, 2018; Muller et al., 2018), which
instead reverses an anomalous diffusion process with heavy-tailed increments (Fig. 2(Left)). The
neural coding benefits from Lévy dynamics, since it can implement large jumps that facilitates the
process to escape from local minimal and explore the sampling space more thoroughly (Ye and Zhu,
2018; Qi and Gong, 2022). A natural question arises: can we apply the Lévy dynamics instead of
the Langevin dynamics for better sampling performance of SGMs?

Inspired by this insight, we explore a novel class of SGMs that reverse the anomalous diffusion for
sampling. Nonetheless, exact numerical simulation of the Lévy dynamics (i.e., reversing the anoma-
lous diffusion) is drastically more challenging and intractable, especially for high-dimensional data
such as images. To tackle this challenge, we consider Brownian motion with Gaussian mixture as
an approximation of the anomalous diffusion. To tackle this challenge, we train the SGMs with
Gaussian mixture noises to enable both large jumps and small roaming during the sampling phase,

1



Under review as a conference paper at ICLR 2023

reminiscent of the Lévy dynamics. Concretely, we construct a novel variant of SGMs, namely
Gaussian Mixture SGMs (GM-SGMs), that learn to denoise Gaussian mixture noises; In doing
so, our model is enabled to reverse the Gaussian mixture Brownian motion by switching between
large jump and small roaming during sampling, resembling the merits of Lévy dynamics. Theo-
retically, our GM-SGMs conduct the probabilistic graphical model (PGM) of an empirical Bayes
(EB) to reverse a Gaussian mixture Brownian motion; Instead, conventional SGMs perform a PGM
of maximum a posteriori (MAP) estimation to reverse a Brownian motion. Empirically, extensive
experiments on several challenging image generation tasks verify the ability of our GM-SGMs to
automatically select large jump or small roaming during sampling and the promising ability of our
GM-SGMs over state-of-the-art SGMs under different sampling budgets.

2 PRELIMINARY: SCORE-BASED GENERATIVE MODELS

Score matching was originally developed for non-normalized statistical learning (Hyvärinen and
Dayan, 2005). By observing i.i.d. samples of an unknown (target) distribution p∗ in d dimensions,
score matching directly approximates the score function s(x) := ▽x log p

∗(x) via a model sθ
parameterized by θ, for x ∈ Rd. Score-based generative models (SGMs) aim to generate samples in
the distribution p∗ via score matching through the following iterations

xT ∼ N (0, I),xt−1 = xt +
ϵ2t
2
sθ(xt, t) + ϵtzt, t = T, . . . , 1, (1)

where ϵt is the step size and zt ∼i.i.d. N (0, I). This process transforms a Gaussian noise xT

towards a sample x0 obeying p∗. Eq.(1) can be considered as the reverse of a corrupting process
where the noises are gradually added to a datum x0

x0 ∼ p∗,xt+1 = xt + ϵtzt, t = 0, . . . , T − 1, (2)

The first SGM, noise conditional score network (NCSN) (Song and Ermon, 2019), is trained by
fitting the score function s(x) via minimizing the weighted explicit score matching (ESM) objective

L(θ; {σt}Tt=1) =

T∑
t=1

λ(σt)Ex∼p∗,η∼N (0,σ2
t I)

[
1

2
∥sθ(x+ η, t)− s(x+ η)∥2

]
,

where σ2
t is the noise variance at the time step t, and λ(σt) the weights for each time step t. Discard-

ing the constant part independent from θ, the ESM can be rewritten as a tractable denoising score
matching (DSM) objective (Vincent, 2011)

L(θ; {σt}Tt=1) =

T∑
t=1

λ(σt)Ex∼p∗,η∼N (0,σ2
t I)

[
1

2
∥sθ(x+ η, t)−▽x+η log pσt

(x+ η | x)∥2
]

=

T∑
t=1

λ(σt)Ex∼p∗,η∼N (0,σ2
t I)

[
1

2

∥∥∥∥sθ(x+ η, t) +
η

σ2
t

∥∥∥∥2
]
, (3)

where pσt(· | x) := N (·;x, σ2
t I). Considering the sampling process as a stochastic differential

equation (SDE), Song et al. (2021b) further proposed an improved version NCSN++ that utilizes an
existing numerical solver of SDEs to enhance the sampling quality.

3 GAUSSIAN MIXTURE SGMS

3.1 ANOMALOUS DIFFUSION PERSPECTIVE

In this section, we introduce a wider class of corrupting processes as well as their reverses (i.e.,
the corresponding sampling process), followed by analyzing their fundamental properties. We first
write Eq.(1-2) in a continuous formula. Eq.(2) is the discretized version of a Brownian motion

x0 ∼ p∗, dx = dw, (4)

where the stochastic increment is Gaussian and satisfies

∆wt = wt+∆t −wt ∼ N (0,∆tI), t,∆t > 0.
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Figure 1: (Left) The pdf of one-dimensional Lévy stable distribution with different α and standard
Gaussian distribution. The Lévy stable distribution is more heavy-tailed than the Gaussian distribu-
tion. (Right) Addition of two Gaussian distributions vs. their mixture. Best viewed in color.

The sampling process of SGMs (Eq.(1)) is the dicretized version of a Langevin dynamics

dx =
1

2
ϵ2(t)▽x log p∗(x)dt+ ϵ(t)dw̄, (5)

where ϵ(t) is a time-dependent positive scalar function, and ·̄ represents reversing the time flow of
the process. The Langevin dynamics (Eq.(5)) is the reverse process of the Brownian motion (Eq.(4)).

Further, Eq.(4) is an instance of a more general class of stochastic process called stable Lévy process,

x0 ∼ p∗, dx = dLα, (6)

where α is the Lévy index, and the increment ∆Lα
t obeys a Lévy stable distribution

∆Lα
t = Lα

t+∆t − Lα
t ∼ SαS(x;α,∆t

1
α ).

The Lévy stable distribution SαS has the probabilistic distribution function (pdf)

SαS(x;α, γ) =
1

πd

∫
Rd

+

exp{−1

2
∥γy∥α} cos(x · y)dy.

Similar as the Langevin dynamics (Eq.(5)), Eq.(6) has its reverse process called Lévy dynamics

dx =
ϵ(t)2

2p∗(x)
Dα−2{p∗(x)▽x log p∗(x)}dt+ ϵ(t)

2
α dL̄α, (7)

where Dα−2{·} is the Riesz fractional derivative of order α, and dLα represents another stable
Lévy process (Mandelbrot and Mandelbrot, 1982). Theoretically, we can sample from p∗ through
the Lévy dynamics (Eq.(7)) that reverses a stable Lévy process (Eq.(6)).

When α = 2, γ = 1
2 , SαS becomes the standard Gaussian distribution, and the stable Lévy process

(Eq.(6)) becomes a Brownian motion. When 1 ≤ α < 2, SαS is heavy-tailed, and the stable
Lévy process becomes an anomalous diffusion (a.k.a., super-diffusion or Lévy flight) (Klages et al.,
2008; Metzler et al., 2014). To visually demonstrate the differences between Gaussian distribution
and heavy-tailed Lévy stable distribution, we depict their probability distribution functions (pdf)
in one-dimensional case. It is observed from Fig. 1 (left) that compared to Gaussian distribution,
the Lévy stable distribution is not only more heavy-tailed but also more concentrated around zero
center. In particular, the latter property prevents us from simply using a Gaussian distribution with
high variance as an substitution of the Lévy stable distribution.

We further inspect the stochastic behavior differences of Brownian motion and anomalous diffusion
resulted from their different distributions in the increment. As shown in Fig. 2, it is evident that
the heavy-tailed property of Lévy stable distribution enables the sampling process (i.e., the Lévy
dynamics Eq.(7)) to better explore the full space more efficiently (Ye and Zhu, 2018). More specifi-
cally, the Lévy dynamics can produce large jumps for allowing the sample point to traverse though
low-probability regions. As a result, it is less possible for the sample point to be trapped by local
minimal. Also, it is easier for the sample point to switch between different modes, making it suit-
able to deal with multi-mode distribution situations (Qi and Gong, 2022). On the other hand, the
higher concentration near zero eases the Lévy dynamics to conduct small roaming for exploring lo-
cal regions. Consequently, the anomalous diffusion involves at least two modes: (1) small roaming
mode for careful searching a local area, and (2) large jump mode for escaping from one area to a
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timeAnomalous diffusion Gaussian mixture Brownian motion Brownian motion

large jump

small roaming

Figure 2: Visualization of (Left) anomalous diffusion dLα (α = 1.8), (Middle) Gaussian mixture
Brownian motion dw1,β (β = 2), and (Right) Brownian motion dw. We fixed the random seed at
2023 for all the three simulations. Best viewed in color.

new area for global exploring. It has been widely observed in the neural population of biological
systems, where the neural fluctuation is used for probabilistic coding (He, 2014; Donoghue et al.,
2020; Townsend and Gong, 2018; Muller et al., 2018).

In contrast, the Gaussian distribution is relatively light-tailed, resulting in a lacking of large jumps
in the Langevin dynamics (Eq.(5)). The sample point is thus easier to be trapped at local minimal.
More importantly, for conventional SGMs, the light-tailed issue is not only caused by the stochastic
increments zt, but also intensified by the model sθ itself, which plays the main role to guide the
sample point to the target distribution p∗. To illustrate this, we revisit the score function in the
conventional training objective (Eq.(3)), where the model sθ(·, t) is trained to fit

log p∗σt
(x+ η | x) = − η

σ2
t

, x ∼ p∗, ∀η ∈ Rd.

Ideally, the model sθ(·, t) could learn the above map for all η ∈ Rd, since the range of a Gaussian
distribution is the whole Rd. In practice, however, often sθ(·, t) only learns this map well for those
η with relatively high probability being sampled from N (0, σ2

t I), whilst lacking experiences for
the low-probability others (corresponding to the large jumps). As a result, the conventional training
only allows SGMs learn to reverse a Brownian motion, with less possible large jumps and inferior
capability of predicting the corresponding samples.

This insightful analysis as above motivates us to design a new class of SGMs capable of conducting
large jumps similar as the anomalous diffusion for sampling. As the reverse capability of a SGM
is largely shaped by the distribution of the training noises η, the key is on reformulating this noise
distribution for training.

3.2 GAUSSIAN MIXTURE

Although the anomalous diffusion comes with desired merits as discussed above, conducting a gen-
eral Lévy dynamics (Eq.(7)) is computationally more challenging. First, the Riesz fractional deriva-
tive D{·} is difficult to calculate (Çelik and Duman, 2012). Second, the Lévy dynamics involves
p∗ which is intractable for high-dimensional cases. Third, sampling from a Lévy stable distribu-
tion (Mantegna, 1994) is much more expensive than sampling from a Gaussian distribution.

To bypass these obstacles, instead of struggling to approximate the Lévy dynamics, we resort to
an alternative approach that mimics the functional properties (i.e., ability to implement both large
jumps and small roaming) of the anomalous diffusion. Formally, we exploit a Gaussian mixture
sampling

Nmix(0, {I, β2I}) := 1

2

(
N (0, I) +N (0, β2I)

)
,

where we mix N (0, I) with another Gaussian distribution with large variance (N (0, β2I), β > 1).
Note, our mixture operation sums two pdfs up to a single mixed pdf, instead of taking the means
of samples from two individual distributions respectively. We visualize their differences in Fig. 1
(Right): (1) The latter has much less concentration near zero. (2) Whilst the former (ours) largely
keeps the original concentration degree, and is also more heavy-tailed than the latter.

Correspondingly, we define the Gaussian mixture Brownian motion as dw1,β , where the increment

∆w1,β
t = w1,β

t+∆t −w1,β
t (8)
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obeys the Gaussian mixture distribution Nmix(0, {∆tI, β2∆tI}). To verify that our Gaussian mix-
ture Brownian motion captures the behavior of the anomalous diffusion dLα, we conduct a two-
dimensional simulation as shown in Fig. 2 (Middle). We can see that the large jumps property can
be approximated well although not exactly for global space exploration, whilst preserving the small
roaming trait in local regions.

3.3 TRAINING

As analyzed in Sec. 3.1, the distribution of η in Eq.(3) determines what kinds of corrupting processes
the SGM can reverse. To enable the model to reverse a Gaussian mixture Brownian motion, we
propose Gaussian mixture SGMs (GM-SGM), which is trained to minimize

T∑
t=1

λ(σt)Ex∼p∗(x),η∼Nmix(0,{σ2
t I,β

2σ2
t I})

[
1

2

∥∥∥∥sθ(x+ η, t) +
η

σ2
t

∥∥∥∥2
]
, (9)

where β ≥ 1 is the only hyper-parameter. Compared to the conventional training objective
(Eq.(3)), the only difference is that the noise η now is sampled from the Gaussian mixture
N (0, {σ2

t I, β
2σ2

t I}) instead of N (0, σ2
t I) at each time step t. Minimizing our objective Eq.(9)

is equivalent to alternatively minimize the original objective Eq.(3) and the following objective

T∑
t=1

λ(σt)Ex∼p∗(x),η∼N (0,σ2
t I)

[
1

2

∥∥∥∥sθ(x+ βη, t) +
βη

σ2
t

∥∥∥∥2
]
. (10)

This provides new opportunities, where the scaled noises βη added to the sample x have much larger
deviation than expected, forcing the model conduct a large jump in order to recover x ∼ p∗.

As there is no indication with the input about if the noise η is scaled by β or not, the model must
learn to decide on its own when to make the large jump, i.e., learning to switch between large jump
mode and small roaming mode properly. After training, at each time step t, our GM-SGM will
automatically select one of possible denoising prior: the noise to be denoised at this step obeys
N (0, σ2

t I) or N (0, σ2
t β

2I). This enables GM-SGM to vary the step size adaptively to some degree
with more robustness against outlier cases (e.g., η satisfying N (η;0, σ2

t I) ≪ 1).

To reduce the stochasticity of training, we alternatively minimize two objectives Eq.(3) and Eq.(10),
instead of uniformly sampling them. The training procedure is summarized in Alg. 1.

Algorithm 1 GM-SGM training

Input: The model sθ, the overall training iterations N ,
the parameter β.
for n = 1 to N do

Draw x ∼ p∗(x), t ∼ Uniform[1, 2, . . . , T ], η ∼
N (0, I)

if n mod 2 = 0 then
β̃ = 1

else
β̃ = β

end if
Backpropagate on λ(σt)

∥∥∥sθ(x+ β̃η, t) + β̃η
σ2
t

∥∥∥2
end for
Output: sθ

xt xs

β ztξθp(β)

xt xs

ztξθ

SGM (MAP)

GM-SGM (EB)

~ ~

Figure 3: Schematic diagram of the sam-
pling inference: SGMs vs. GM-SGMs.

3.4 SAMPLING

During inference, we sample from a trained GM-SGM using exactly the same procedure as conven-
tional SGMs (Eq.(1)). Thus, our GM-SGMs do not introduce any extra cost during inference. This
is some inconsistent with our training noise increments zt ∼ Nmix(0, {I, β2I}). We provide the
theoretical insights and analysis as follows.
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4 THEORETICAL ANALYSIS

4.1 UNDERSTANDING GM-SGMS VIA PROBABILISTIC INFERENCE

GM-SGMs can be extended to general cases, where we train the model via the Gaussian mixture

Nmix(x;0, p(β̃)) :=

∫
N (x;0, β̃2I)p(β̃)dβ̃,

where p(β̃) is a possibly continuous pdf of the scalar β̃. In Sec. 3.2, the distribution of β̃ is dis-
crete: p(β̃ = 1) = p(β̃ = β) = 0.5, corresponding to the small roaming and large jump modes
respectively. In this general case, the corresponding objective is

T∑
t=1

λ(σt)Eβ̃∼p(β̃)

Ex∼p∗(x),η∼N (0,σ2
t I)

1

2

∥∥∥∥∥sθ(x+ β̃η, t) +
β̃η

σ2
t

∥∥∥∥∥
2 ∣∣∣∣∣β̃

 . (11)

To understand why the sampling process of GM-SGM can converge to the target distribution, we
analyze what the GM-SGM is really doing from the perspective of probabilistic inference.

Let us first revisit the conventional SGMs. For convenience, we denote −σtsθ(x+σtξ, t) as ξθ(x, t),
an equivalent form of the SGM. Then ξθ is trained to infer the standardized noise ξ through the
probabilistic graphical model (PGM)

p(ξ | xt, t) ∝ p(xt | ξ, t)p(ξ),
given xt = x0 + σtξ and t, where x0 ∼ p∗, ξ ∼ N (0, I), and p(ξ) = N (0, I). This PGM is
the same as that in a maximum a posteriori estimation (MAP) formula. After estimating ξ by ξθ, at
step t, the model can push the sample point xt along the direction of −ξ to approximate the target
distribution. This approximation is reasonable due to following relationship.
Theorem 1. Given the corrupting process (σt > σs, ∀t > s)

x0 ∼ p∗, xt = x0 + σtξt, ξt ∼i.i.d. N (0, I), (12)

for any time points 0 ≤ u < s < t, we have

p(xs | xt,xu) = N
(
xt −

σ2
t − σ2

s

σ2
t − σ2

u

(xt − xu),
(σ2

t − σ2
s)(σ

2
s − σ2

u)

σ2
t − σ2

u

I
)
.

See the proof in A.1 of Appendix. As a result, if we set u = 0, it is clear that if xt moves along
the direction −ξ = −(xt − x0)/σt with small enough step, it will be closer to xs for s < t. During
sampling, the SGM takes the step along this direction with a scalar ϵ2t

2 controlling the step size at
every time step t and a random increment zt that represents the uncertainty in p(xs | xt,x0).

When applying the above analysis to GM-SGM, we find that this time ξθ is trained to infer ξ through

p(ξ | xt, t) ∝
∫

p(xt | ξ, t)p(ξ | β̃)p(β̃ | xt, t)dβ̃, p(β̃ | xt, t) ∝ p(xt | β̃, t)p(β̃) (13)

where p(β̃) is the distribution of β̃ in Eq.(11), and p(ξ | β̃) = N (ξ;0, β̃2I). Therefore, GM-
SGMs also infer a direction −ξ to push the sample point xt closer to xs, s < t. The key difference
is that infers the direction −ξ is inferred through the PGM of maximum a posteriori estimation
(MAP) formula with the SGMs, whilst through the PGM of empirical Bayes (EB) formula (BP
and TA, 2001) by our GM-SGM. As illustrated in Fig. 3, GM-SGM takes into consideration of the
probability that ξ is associated with different covariance matrices β̃2I , corresponding to large jumps
and small roaming.

With the above analysis, we can more clearly explain why we apply the Langevin dynamics as the
sampling process of GM-SGM, with the increments zt in Gaussian distribution instead of Gaussian
mixture. From the perspective of probabilistic inference, zt represents the level of uncertainty of
estimating ξθ at time step t. Indeed, during training, we do not specify different levels of uncertainty
of ξ for different β̃ given the time t. This means the model infers ξ at the same level of certainty
at each time step t, independent of β̃. Therefore, for GM-SGM we can adopt the sampling process
as the SGMs. Otherwise, when Gaussian mixture increments are used for sampling, the model
performance would degrade due to inconsistent uncertainty introduced (verified in Sec. 5).
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4.2 RELATIONSHIP TO THE CONVENTIONAL SGMS

Following the relationships between our GM-SGMs and conventional SGMs as analyzed in Sec. 4.1,
we further make additional interesting connections as follows.

First, GM-SGMs can be considered as a more robust variant of SGMs. Extra robustness comes from
that the model is optimized to deal with large jumps β̃η, η ∼ N (0, β̃2σ2

t I), β̃ > 1 (the outliers of
N (0, σ2

t I)) at each step t (Eq.(10)).

Second, training GM-SGMs can be regarded as an ensemble learning procedure of training SGMs.
Specifically, for every β̃, we train a SGM (denoted as sθ,β̃) by minimizing corresponding objective
constructed by β̃, followed by mixing these SGMs based on p(β̃).

Third, the sampling process of GM-SGMs can be seen as reversing a mixture of multiple Brownian
motions, where the noise term zt is amplified by different β̃. These corrupting processes expand the
hypothesis space of original SGMs which only contains a single Brownian motion. The model sθ
adaptively selects one of them for denoising, i.e., switching from different modes (β̃ > 1 for large
jumps and β̃ ≤ 1 for small roaming). This will be verified in Fig. 4. As a result, going beyond
conventional SGMs with a need for designing a step schedule for sampling, our GM-SGMs can vary
the step sizes of the score function term automatically.

5 EXPERIMENTS

We evaluate image generation tasks on CIFAR-10 (Krizhevsky et al., 2009), CelebA (Liu et al.,
2015) and LSUN (church and bedroom) (Yu et al., 2015). We focus on comparing GM-SGMs with
the prior art SGMs, namely NCSN++ (Song et al., 2021b). For fair comparison, we construct our
proposed GM-SGM using the same U-Net architecture as NCSN++. We use the released check-
points of NCSN++ for all the datasets except CelebA for which no checkpoints released and we use
the released codes to train by ourselves. We first set β = 2 in Alg. 1 and investigate the effect of
different β later. We provide more detailed settings of implementation in A.2 of Appendix.
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Figure 4: The norm ∥ξθ∥ of GM-SGMs and SGMs. (Left) The norms across several sampling
processes. The ratio of (Middle) mean rmean and (Right) variance rvar at different time steps.

5.1 SAMPLING STATISTICS

To verify that our GM-SGM indeed makes large jumps following the PGM of empirical Bayes in-
ference, we track the values of the score function sθ(xt, t) evaluated during the sampling procedure
and calculate the norm of the estimated noise vector ξθ(xt, t) for every time step t (see Sec. 4.1).
We denote ξGM-SGM

θ (xt, t) and ξSGM
θ (xt, t) as the noise vector produced by our GM-SGM and SGMs

respectively. For a relative comparison, we calculate the ratio of mean and the ratio of variance

rmean(t) =
E
[∥∥ξGM-SGM

θ (xt, t)
∥∥]

E
[∥∥ξSGM

θ (xt, t)
∥∥]] , rvar(t) =

var
[∥∥ξGM-SGM

θ (xt, t)
∥∥]

var
[∥∥ξSGM

θ (xt, t)
∥∥]] ,

where rmean/rvar represent the relative denoising step-size/variation taken by our GM-SGM over con-
vnetional SGMs on average. We sample 512 images using GM-SGM and SGM trained on CelebA
(64× 64) (Liu et al., 2015) respectively and plot the results of sampling statistics in Fig. 4. We draw
several key observations: (1) With the rmean > 1 across the whole sampling process, we validate
that our GM-SGM does take more large jumps. (2) rvar starts at the range of [50, 150] and surges
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Figure 5: Image samples generated by SGMs and GM-SGMs on CIFAR-10, CelebA with 64 × 64
resolution and LSUN (church and bedroom) with 256× 256 resolutions.

rapidly afterwards followed by a quick dip. This implies that when the sample point is sufficiently
informative (e.g., close to the target distribution), our GM-SGM would activately infer the noises ξ
based on different hypothesis of β̃. In contrast, the norm variation by SGM is always much smaller.
The underlying reason is that, GM-SGM can take much more diverse sampling paths, as expressed
by Eq.(13). More specifically, at every step t, GM-SGM estimate ξ with two possible selections
in the prior distribution of ξ: N (0, I) or N (0, β2I) at each t. Therefore, there are a total of 2T
denoising paths GM-SGM can choose from during sampling.

5.2 EVALUATION ON IMAGE SYNTHESIS QUALITY

Next, we evaluate the sampling quality. As shown in Fig. 5, our GM-SGMs can generate much
better quality images than SGMs under the same iterations T . See A.7 of Appendix for more
visual comparison. For quantitative measurement, we adopt the popular Fréchet inception distance
(FID) (Heusel et al., 2017). Lower FID is better. As shown in Table 1-2, GM-SGM is consistently
superior over SGM across different sampling budgets and generation tasks.

Table 1: FID score of generating object im-
ages on CIFAR-10. Lower FID is better. SGM:
NCSN++ Song et al. (2021b)).

Iterations T SGM GM-SGM

1000 2.50 2.25
500 3.54 3.53
400 4.35 4.00
333 6.24 4.55
250 12.70 6.18
200 29.39 8.76
100 306.91 37.63
50 456.49 29.41

Table 2: FID score of generating human facial
images on CelebA (64 × 64). Lower FID is
better. SGM: NCSN++ Song et al. (2021b)).

Iterations T SGM GM-SGM

500 4.01 3.75
400 6.56 3.98
333 14.53 4.10
200 257.64 4.51
100 435.59 5.99
80 437.98 6.20
66 436.91 6.26
20 439.32 27.81

5.3 GM-SGM PARAMETER ANALYSIS

We investigate the effect of β on sampling quality. The default setting is β = 2. In general, if β
is over small, our model advantage will be reduced due to reduced heavy-tail property. If β is over
large, the denoising task would become too challenge to solve, hence harming the performance. To
empirically validate this, we test GM-SGMs by varying β in [1.5, 3] on CIFAR-10 with 50 iterations.
When β = 1.5, the FID increases from 29.4 to 37.9. When β = 3, the FID goes to 105.4. However,
both are still better than 456.5 by SGM. See Tab. 3 in A.3 of Appendix for more results. Also, we
test other Gaussian mixture designs and find them less effective (see A.6 of Appendix).
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5.4 FURTHER STUDY

We investigate more designs of GM-SGMs. First, we only use the objective Eq.(10) for training.
As shown in Fig. 7 of Appendix, the model fails to generate natural images even under many
iterations. This is because this model only learns to implement large jumps, while ignoring small
roaming which is also necessary for space exploring, as discussed in Sec. 3.1. Second, instead of
Gaussian increments as SGMs, we turn to use Gaussian mixture N (0, {I, β2I}). We test this on
CelebA (64× 64) under 333 iterations. We find the FID increases from 4.1 to 5.2 (still much better
than 14.5 by SGMs). This verifies empirically our analysis in Sec. 4.1 that the probabilistic inference
of our GM-SGM shares the same level of uncertainty for all β at each step t. We also investigate
GM-SGMs using Gaussian mixture with general covariance matrices in A.5 of Appendix.

6 RELATED WORK

The first SGMs, the noise conditional score network (NCSN), is introduced (Song and Ermon, 2019).
Later on, Song and Ermon (2020) further improved the NCSN by scaling the noises and improving
the stability with the moving average. By abstracting the previous SGMs into a unified framework
based on the stochastic differential equation (SDE), Song et al. (2021b) proposed the NCSN++
for high-resolution image generation using numerical SDE solvers and several architectural en-
hancements. Relying on Hamiltonian Monte Carlo methods (Neal et al., 2011), critically-damped
Langevin diffusion (CLD) based SGMs is introduced (Dockhorn et al., 2022). Alternatively, Jing
et al. (2022) implemented the sampling process on a series of selected subspaces. Besides, Vahdat
et al. (2021) trained the SGMs in a latent space of variational autoencoder (Kingma and Welling,
2019). While Karras et al. (2022) focused on refining the training hyper-parameters, sampling sched-
ule and high-order numerical methods for better performance.

DDPMs (Ho et al., 2020) are another class of iterative denoising based generation models. Their ori-
gin is (Sohl-Dickstein et al., 2015) that proposed to destroy the data through a diffusion process, and
learn to reverse this process via maximizing the variational bound. Although theoretically equivalent
to SGMs (Vincent, 2011), DDPMs adopt a variance preserving (VP) stochastic process for sampling.
In contrast, SGMs consider a variance exploding (VE) stochastic process (i.e., the Langevin dynam-
ics). There have been further improvements for DDPMs (Yang et al., 2022). For instance, DDIMs
(Song et al., 2020) generate samples via a class of non-Markovian diffusion processes. Nichol and
Dhariwal (2021) proposed to learn the noise schedules for better sampling quality. Liu et al. (2021)
further improved DDIMs by implementing the sampling on a manifold for better denoising. Bao
et al. (2022b;a) attempted to optimize the discrete-time schedules for sampling speed-up.

Application of SGMs and DDPMs has been rapidly evolved, e.g., text-to-image generation (Nichol
et al., 2021; Saharia et al., 2022; Rombach et al., 2022). Recently, SGMs were applied in creating,
editing, and recovering photo-realistic images (Meng et al., 2021; Saharia et al., 2021a;b; Kawar
et al., 2022), or high fidelity audio streams (Kong et al., 2021; Chen et al., 2021).

Complementary to all the prior efforts, in this work we investigate the fundamental limitation of
lacking large jumps in sampling with conventional SGMs and construct a more robust variant char-
acterized by superior exploration ability, along with solid theoretical justification.

7 CONCLUSION

Inspired by the heavy-tailed Lévy dynamics (the reverse of the anomalous diffusion) implemented
by neural coding in biological systems, we propose a novel class of generative models, namely Gaus-
sian mixture score-based generative models (GM-SGMs). In contrast to conventional SGMs based
on Langevin dynamics, our models are featured with a relatively heavy-tailed sampling property and
capability of more thoroughly exploring the sampling space. Specifically, GM-SGMs are trained by
denoising Gaussian mixture noises with built-in automatic switches between large jumps and small
roaming in the spirit of anomalous diffusion. Theoretically, GM-SGMs implement a probabilistic
graphical model (PGM) of an empirical Bayesian for generation, expanding the PGM of maximum a
posteriori estimation used by the SGMs; This results in a sampling process with automatic selection
of the step schedule and more robustness. Empirically, we demonstrate that our GM-SGMs signifi-
cantly outperform the conventional SGMs on a diversity of challenging image generation tasks.
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A APPENDIX

A.1 PROOF OF THM. 1

Proof. Using Bayes’ theorem, we have
p(xs | xt,xu) ∝ p(xt | xs,xu)p(xs | xu).

According to Eq.(12), we have

p(xt | xs,xu) = p(xt | xs) =
1√
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After taking logarithm at the both sides of the equation and ignoring a constant term, we have
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which implies that p(xs | xt,xu) also obeys a Gaussian distribution, and its mean and covariance
matrix can be obtained

Exs∼p(xs|xt,xu) [xs] = xt −
σ2
t − σ2

s

σ2
t − σ2

u

(xt − xu),

covxs∼p(xs|xt,xu) [xs] =
(σ2

t − σ2
s)(σ

2
s − σ2

u)

σ2
t − σ2

u

I

Hence, the estimated direction −ξθ(xt, t) = −(xt −x0)/σt guides the sample point xt closer to xs

for some s < t whose distribution is closer to p∗.

A.2 DETAILED SETTINGS

We train the GM-SGM on CIFAR-10 for 550k iterations at the batch size of 64 on single NVIDIA
RTX 3090 GPU to compare the public checkpoint of the SGM (NCSN++) trained on CIFAR-10.
We train both GM-SGM and SGMs on CelebA (64 × 64) for 230k iterations at the batch size
of 64 on two NVIDIA RTX 3090 GPUs. We train the GM-SGM on LSUN (church) and LSUN
(bedroom) at resolution of 256 × 256 for 250k iterations at the batch size of 64 and compare the
public checkpoint of the SGM (NCSN++) trained on LSUN (church) on 4 NVIDIA RTX A6000
GPUs. We apply the same hyper-parameters of optimizer and learning schedule as that in Song
et al. (2021b). For sampling, we use the same generation process of continuous variance exploding
(VE)-NCSN++ Song et al. (2021b) with both predictor and corrector for both SGMs and GM-SGM.
For sampling, all the experiments apply the original linear schedule used in Song et al. (2021b) with
both predictor and corrector (PC).

A.3 EXTRA RESULTS ON PARAMETER ANALYSIS

We report more results on how the parameter β influences the performance of GM-SGM in Tab. 3.
In particular, when β = 1, we get the original SGM.
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Table 3: The comparison of the performance of GM-SGMs under different β in Alg. 1. Metrics:
FID score. Dataset: CIFAR-10.

Iterations T 50 200 250 500

β = 1 (SGM) 456.49 29.39 12.70 3.54
β = 1.5 37.91 9.06 7.07 3.33
β = 2 29.41 8.76 6.18 3.53
β = 3 105.40 11.24 8.08 3.64

A.4 COMPARISON TO OTHER METHODS

In this section, we compare our GM-SGMs with existing SGMs and DDPMs. First, we compare
GM-SGMs with SGMs equipped with adaptive SDE solver (ASDE) (Jolicoeur-Martineau et al.,
2021). As shown in Table 4, our GM-SGMs outperform the competitors significantly. This suggests
that our method has superior acceleration benefit. Also note our GM-SGMs do not alter the sam-
pling process, without adding extra per-step complexity during inference. In contrast, alternative
acceleration methods usually increase per-step cost.

Table 4: FID of SGMs (Song et al., 2021b), GM-SGMs, and SGMs equipped with adaptive SDE
solver (Jolicoeur-Martineau et al., 2021). Dataset: CIFAR-10.

adaptive SDE solver (VP) adaptive SDE solver (VE) SGM GM-SGM (ours)
Iterations T 49 50 50 50

FID 82.42 307.32 456.49 29.41

Next, we compare GM-SGMs with DDPMs using non-Gaussian noises for training or sampling,
including DDGM (Nachmani et al., 2021) where Gaussian noises are replaced by noises obeying
Gamma distribution. As shown in Table 5, our GM-SGMs are superior over DDPMs, DDPM-based
DDGM, and comparable to DDIM and DDIM-based DDGM, despite that their base model DDPM
and DDIM already have better low-iteration performance than our base model SGMs.

Table 5: FID of SGMs (Song et al., 2021b), GM-SGMs, DDPM (Ho et al., 2020), DDIM (Song
et al., 2020), and DDGM (based on DDPM and DDIM) (Nachmani et al., 2021). Dataset: CelebA
(64× 64).

Iterations T DDPM DDIM DDGM (DDPM-based) DDGM (DDIM-based) SGM GM-SGM (ours)
20 183.83 13.73 28.24 6.83 439.32 27.81

100 45.2 6.53 14.22 3.17 435.59 5.99

A.5 MORE GENERAL CASES

In Sec. 4.1, we consider the cases of using Gaussian mixture Nmix(x;0, p(β̃)) for training. In fact,
this can be generalized to multi-dimensional Gaussian mixture cases. Denoting a distribution of
invertible matrix B̃ as p(B̃), we can consider a more general training objective

T∑
t=1

λ(σt)EB̃∼p(B̃)

Ex∼p∗,η∼N (0,σ2
t I)

1

2

∥∥∥∥∥sθ(x+ B̃η, t) +
B̃η

σ2
t

∥∥∥∥∥
2 ∣∣∣∣∣B̃

 .

It is not obvious which kinds of p(B̃) can train a better GM-SGM. Here, we try a p(B̃) motivated
by the observation that for image generation, SGMs tend to generate images with too much high-
frequency noise when the iterations number is low (see examples in Sec. 3.4). To suppress the
generation for high-frequency components, we design a p(B̃) matrix as follows

p(B̃ = I) = 0.5, P (B̃ = 2M) = 0.5,

14



Under review as a conference paper at ICLR 2023

where M is a filter operated on the height and width coordinates to shrink the top-5% high-frequency
part of an image by 0.5. We obtain the following results: For CelebA (64 × 64), the FID of GM-
SGM decreases to 3.77 at 400 iterations (better than the result of GM-SGM in the main paper); On
CIFAR-10, the FID of GM-SGM decreases to 2.24 at 1000 iterations, better than SGMs (2.51). This
implies that the optimal settings of Gaussian mixture can be more complicated, which calls for a
further study in the future.

A.6 FAILURE EXAMPLES

In Fig. 6 and Fig. 7, we show the failure examples under improper parameter settings as mentioned
in Sec. 5.

Figure 6: Image samples generated by a GM-
SGM trained on CIFAR-10, where we apply
the Gaussian mixture N (0, {0.52I, 22I}) in-
stead of Gaussian mixture N (0, {I, 22I}) for
training. Iterations: 2000.

Figure 7: Image samples generated by a GM-
SGM trained on CelebA (64 × 64), where we
apply N (0, 22I) instead of Gaussian mixture
N (0, {I, 22I}) for training. Iterations: 2000.

A.7 MORE VISUAL EXAMPLES

We first show examples generated by SGMs and GM-SGMs under several settings of iterations
number T in Fig. 8-19, then we only show GM-SGMs with even lower iterations on LSUN in
Fig. 20-21. Under these low iterations, SGMs only generate high-frequecny noises similar as left of
Fig. 8.

15



Under review as a conference paper at ICLR 2023

Figure 8: Image samples generated by SGMs (left) and GM-SGMs (right). Dataset: CIFAR-10.
Iterations: 50.

Figure 9: Image samples generated by SGMs (left) and GM-SGMs (right). Dataset: CIFAR-10.
Iterations: 200.
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Figure 10: Image samples generated by SGMs (left) and GM-SGMs (right). Dataset: CIFAR-10.
Iterations: 500.

Figure 11: Facial image samples generated by SGMs (left) and GM-SGMs (right). Dataset: CelebA
(64× 64). Iterations: 20.
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Figure 12: Facial image samples generated by SGMs (left) and GM-SGMs (right). Dataset: CelebA
(64× 64). Iterations: 200.

Figure 13: Facial image samples generated by SGMs (left) and GM-SGMs (right). Dataset: CelebA
(64× 64). Iterations: 400.
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Figure 14: Church image samples generated by SGMs (left) and GM-SGMs (right). Dataset: LSUN
(church) (256× 256). Iterations: 100.

Figure 15: Church image samples generated by SGMs (left) and GM-SGMs (right). Dataset: LSUN
(church) (256× 256). Iterations: 200.
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Figure 16: Church image samples generated by SGMs (left) and GM-SGMs (right). Dataset: LSUN
(church) (256× 256). Iterations: 400.

Figure 17: Bedroom image samples generated by SGMs (left) and GM-SGMs (right). Dataset:
LSUN (bedroom) (256× 256). Iterations: 100.
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Figure 18: Bedroom image samples generated by SGMs (left) and GM-SGMs (right). Dataset:
LSUN (bedroom) (256× 256). Iterations: 200.

Figure 19: Bedroom image samples generated by SGMs (left) and GM-SGMs (right). Dataset:
LSUN (bedroom) (256× 256). Iterations: 400.
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Figure 20: Church image samples generated by GM-SGMs with 50 iterations (left) and 40 iterations
(right). Dataset: LSUN (church) (256 × 256). SGMs only produce unrecognizable noises (like left
of Fig. 11) below 100 iterations.

Figure 21: Bedroom image samples generated by GM-SGMs with 50 iterations (left) and 40 itera-
tions (right). Dataset: LSUN (bedroom) (256 × 256). SGMs only produce unrecognizable noises
(like left of Fig. 11) below 100 iterations.
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