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Abstract

In this paper, we develop a theory about the relationship between invariant and equivariant
maps with regard to a group G. We then leverage this theory in the context of deep neural
networks with group symmetries in order to obtain novel insight into their mechanisms.
More precisely, we establish a one-to-one relationship between equivariant maps and certain
invariant maps. This allows us to reduce arguments for equivariant maps to those for
invariant maps and vice versa. As an application, we propose a construction of universal
equivariant architectures built from universal invariant networks. We, in turn, explain how
the universal architectures arising from our construction differ from standard equivariant
architectures known to be universal. Furthermore, we explore the complexity, in terms of
the number of free parameters, of our models, and discuss the relation between invariant
and equivariant networks’ complexity. Finally, we also give an approximation rate for G-
equivariant deep neural networks with ReLU activation functions for finite group G.

1 Introduction

Symmetries play a fundamental role in many machine learning tasks. Incorporating these symmetries into
deep learning models has proven to be a successful strategy across various contexts. Notable examples
include the use of convolutional neural networks (CNNs) to address translation symmetries (LeCun et al.,
2015; Cohen & Welling, 2016), deep sets and graph neural networks for permutation symmetries (Zaheer
et al., 2017; Scarselli et al., 2008; Kipf & Welling, 2017; Defferrard et al., 2016), and spherical CNNs for
rotation symmetries (Cohen et al., 2018; Esteves et al., 2020). The underlying common principle in all these
cases is as follows: once the inherent symmetries of a target task are identified, the learning model is designed
to encode these symmetries. In doing so, we aim to improve the quality of the learning by building a model
that fits the characteristics of the task better.

In mathematics, symmetries are represented by the concepts of groups and group actions. A group is a set
of transformations, and the action of a group results in a transformation of a given set. The symmetries of
group actions are usually divided into two categories: invariant tasks and equivariant tasks. Invariant tasks
require that the output remains unchanged by any transformation of the input via the group action. On
the other hand, in equivariant tasks, a transformation of the input results in a similar transformation of the
output. For example, in computer vision, object detection is an invariant task whereas image segmentation
is an equivariant task with regard to rotations and shift transformations.

Despite appearing in tasks of different natures, there are some mathematical relations between invariant
and equivariant maps. One can easily verify that the composition of an equivariant map followed by an
invariant one results in an invariant map. This relation is at the core of convolutional architectures, which
consist of layers made of an equivariant convolution followed by invariant pooling (LeCun et al., 2015). The
same is done by Maron et al. (2019b; 2020) to define G-invariant networks for a finite group G.

In this paper, we explore the relation between invariant and equivariant maps. Our main result Theorem 1
states that for a given group G acting on a set, there is a one-to-one correspondence between G-equivariant
maps and Hi-invariant maps, where the Hi are some stabilizer subgroups of G. This allows us to reduce any
equivariant tasks to some invariant tasks and vice versa.
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As a main application of Theorem 1, we study universal approximation for equivariant maps. The universal
approximation theorem (Pinkus, 1999), which is fundamental in deep learning, asserts that any reasonably
smooth function can be approximated by an artificial neural network with arbitrary accuracy. In the presence
of symmetries, we enforce the neural network architecture to match the symmetries of the target tasks, and,
by doing so, we significantly reduce the hypothesis class of neural networks. Naturally, it is essential to
ensure that the universal approximation property is not compromised.

It turns out that the universal approximation problem is more involved in the equivariant than in the
invariant setup. Indeed, for the symmetric group of permutations of n elements Sn, Zaheer et al. (2017)
showed that the DeepSets invariant architecture is universal via a representation theorem which is famous
as a solution for Hilbert’s 13th problem by Kolmogorov (1956) and Arnold (1957). However, they do not
provide such a theoretical guarantee for their equivariant architecture. Their result for invariance was then
extended to more general groups by Maron et al. (2019b) and Yarotsky (2022), but it is another series of
papers which later solved the equivariant case, each with their own techniques (Keriven & Peyré, 2019; Segol
& Lipman, 2019; Ravanbakhsh, 2020).

Using our decomposition Theorem 1, we propose, in Theorem 2 an alternative way to build universal
G-equivariant architectures via Hi-invariant maps for some suitable subgroups Hi ⊂ G. As we explain in
Remark 1, the equivariant universal approximator that we obtain is different from others in the literature.

As a second application of our main theorem, we examine the number of parameters as well as the rate of
approximation by invariant/equivariant neural networks with ReLU activation. In Theorem 3, we provide
both lower and upper bounds on the minimal number of parameters required to approximate en equivariant
map to a given accuracy with regard to the minimal number of parameters required to approximate an
invariant map in that same accuracy. Finally, in Theorem 4 and Corollary 1, we give an approximation rate
for G-equivariant neural networks among G-equivariant function with Hölder smoothness condition. This
last result is an extension of a result of Sannai et al. (2021) from Sn to any finite group G.

1.1 Contributions

Our contributions are summarized as follows:

• We introduce a relation between invariant maps and equivariant maps. This allows us to reduce
some problems for equivariant maps to those for invariant maps.

• We apply the relation to constructing universal approximators by equivariant deep neural network
models for equivariant maps. Our models for universal approximators are different from the standard
models as in Zaheer et al. (2017) or Maron et al. (2019a). However, the number of parameters in
our models can be very small compared to the fully connected models.

• As other applications of the relation, we show inequalities among invariant and equivariant deep neu-
ral networks to be able to approximate any invariant and equivariant continuous maps, respectively,
in a given accuracy. Moreover, we show an approximation rate of G-invariant and G-equivariant
ReLU deep neural networks for elements of a Hölder space.

1.2 Related work

Symmetries in machine learning Symmetries have been considered since the early days of machine
learning by Shawe-Taylor (1989; 1993); Wood & Shawe-Taylor (1996). In contemporary deep learning,
they keep generating increasing interest following seminal works from Kondor (2008); Gens & Domingos
(2014); Qi et al. (2017); Ravanbakhsh et al. (2017); Zaheer et al. (2017). The most commonly encountered
symmetries involve translations, addressed by convolutional architectures (LeCun et al., 2015) and their
generalization to arbitrary compact groups, by Cohen & Welling (2016); Kondor (2008), rotations Cohen
et al. (2018); Esteves et al. (2020) and permutations. The latter are particularly relevant for set data
(Zaheer et al. (2017); Qi et al. (2017); Maron et al. (2020) as well as for graph data via most of the graph
neural network architectures Scarselli et al. (2008); Defferrard et al. (2016); Kipf & Welling (2017); Bruna
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et al. (2014). Permutation symmetries are also present in modern Transformers of architectures, via self
attention Vaswani et al. (2017) and positional encoding. Recent extension of Transformers for graph learning
as proposed by Kim et al. (2021), utilize Laplacian eigenvectors for positional encoding features. Thus, to
address ambiguity in eigenvector choices, Lim et al. (2023) recently proposed an architecture that is invariant
to change of basis in the eigenspaces. Villar et al. (2021; 2024) are interested in the symmetries arousing
from classical physics and the distinction between “passive symmetries” coming from physical law and being
empirically observed, and “passive symmetries” coming from arbitrary choice of design such as labeling of
elements of a set or nodes of a graph. Regarding the connection between invariant and equivariant maps, the
idea behind our main Theorem 1 appears in previous work from Sannai et al. (2019). Although, the latter
only treats the symmetric group Sn, our contribution is to extend this result to a generic group G, which was
mentioned as a possible direction for future work in Sannai et al. (2019). More recently, Blum-Smith & Villar
(2023) explain how to build equivariant maps from invariant polynomials using invariant theory. Finally,
we shall mention that invariant/equivariant deep learning is now a fast growing field with a plethora of
various architectures. Some researchers have recently proposed to unify most of existing approaches through
a general framework known as Geometric Deep Learning (Bronstein et al., 2021).

Symmetries and universal approximation Universal Approximation property is fundamental classical
deep learning, extensively studied since the pioneer works by Cybenko (1989); Hornik et al. (1989); Funa-
hashi (1989); Barron (1994); Kůrková (1992); Pinkus (1999) and more and further explored by Sonoda &
Murata (2017); Hanin & Sellke (2017); Hanin (2019). Concerning invariant architecture, Yarotsky (2022)ob-
served that it is straightforward to build a universal invariant architecture from universal classic architecture
just by group averaging when the group is finite. However, this is unfeasible for large groups such as Sn.
Additionally, this issue was recently addressed by Sannai et al. (2024) who showed that, it can sometimes
be enough to average over a subset of the group rather that the entire group. By doing so, they are, for
instance, able to reduce the averaging operation complexity from O(n!) to O(n2) in the case of graph neural
networks. Zaheer et al. (2017) prove universality of DeepSets via a representation theorem from Kolmogorov
(1956) and Arnold (1957) coupled with a sum decomposition. The effectiveness of this universal decompo-
sition for continuous functions on sets is discussed by Wagstaff et al. (2022), who argue that the underlying
latent dimension must be high-dimensional. Recently, Tabaghi & Wang (2023) improved the universality
result from Zaheer et al. (2017). Some generalizations to other groups have been proposed by Maron et al.
(2019b) and Yarotsky (2022) and universality of some invariant graph neural network was proved by Maron
et al. (2019b) and Keriven & Peyré (2019).

In the case of equivariant networks, Keriven & Peyré (2019); Segol & Lipman (2019); Ravanbakhsh (2020)
established universality results for finite groups using high order tensors. More recently, Dym & Maron (2021)
suggested a universal architecture for rotation equivariance and Yarotsky (2022) for the semi-direct product
of Rn and SOn(R) (translation plus rotation). In this paper, we propose circumventing the challenge of
directly addressing equivariant universality by constructing equivariant universal architectures directly from
invariant networks, known to be universal, via our decomposition theorem. The resulting architecture differs
from others in the literature, as explained with more details in Remark 1.

2 Preliminaries

In this section, we review some notions of group actions and introduce invariance/equivariance for maps. In
Appendix A, we summarize some necessary notions and various examples for groups.

For sets X and V , we consider the set Map(X, V ) = V X = {f : X → V } of maps from X to V . In many
situations, we regard X as an index set and V as a set of objects (such as channels or pictures). We show
some examples.
Example 1. (i) If X = {1, 2, . . . , n} and V = R, then Map(X, V ) is idenfied with Rn by Map(X, V ) →

Rn : f 7→ (f(1), f(2), . . . , f(n))⊤.

(ii) Let ℓ, m be positive integers, and X = {1, 2, . . . , ℓ} × {1, 2, . . . , m} and V = {0, 1, . . . , 255}3. Then,
Map(X, V ) can be regarded as the set of digital images of ℓ × m pixels with the RGB color channels.
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For f ∈ Map(X, V ) and (i, j) ∈ X, f(i, j) = (rij , gij , bij)⊤ (rij , gij , bij ∈ {1, 2, . . . , 255}) represents
RGB color at (i, j)-th pixel.

(iii) Let V ′ ⊂ V X be a set of some digital images as in Example 1(ii) and X ′ = {1, 2, . . . , n}. Then,
V ′X′ is the set of n-tuples of the digital images in V ′.

(iv) For X = R2 and V = R3, Map(R2,R3) = (R3)R2 can be regarded as the space of “ideal” images.
Here, the “ideal” means that the size of the image is “infinitely extended” and the pixels of the
image are “infinitely detailed” in the sense of Yarotsky (2022). This is a similar notion to the set
L2(Rν ,Rm) of the “signals” introduced in Yarotsky (2022, Section 3.2).

Next, we consider a group action on the set V X . Let G be a group and X be a G-set, i.e., a set on which
G acts from the left. Then, G also acts on V X from the left1 for any set V by

(σ · f)(x) = f(σ−1 · x) , (1)

for f ∈ V X and σ ∈ G. For f ∈ V X , let Of be the G-orbit G · f = {σ · f | σ ∈ G}.
Example 2. (i) The permutation group Sn of the set X = {1, 2, . . . , n} acts on X by permutation.

Any unordered set {v1, v2, . . . , vn} of n elements of V can be regarded as an Sn-orbit of the ordered
n-tuple (v1, v2, . . . , vn) ∈ V X for X = {1, 2, . . . , n}.

(ii) The Sn-orbit of an element f in Map({1, 2, . . . , n},R3) can be regarded as a point cloud consisting
of n points in R3.

(iii) Let X = {1, 2, . . . , n}2 and V = R. We consider the diagonal Sn-action σ · (i, j) = (σ(i), σ(j))
(σ ∈ Sn) on X. Then, Sn also acts on V X = Rn×n. Let Sym(n) be the subset of symmetric
matrices in Rn×n. This Sym(n) is stable by the diagonal action of Sn. The Sn-orbit Sn · A of an
A ∈ Sym(n) ⊂ Rn×n can be regarded as an isomorphism class of undirected weighted graph. Indeed,
Sym(n) is the set of adjacency matrices of undirected weighted graphs, and two graphs are isomorphic
if and only if the corresponding adjacency matrices A1, A2 satisfy A1 = σ ·A2 for an element σ ∈ Sn.

We define invariant and equivariant maps as follows:
Definition 1. Let G be a group, X, Y be two G-sets, and V, W be two sets. Then, a map F from V X to
W is G-invariant if F satisfies F (σ · f) = F (f) for every σ ∈ G and f ∈ V X . A map F from V X to W Y is
G-equivariant if F satisfies F (σ · f) = σ · F (f) for every σ ∈ G and f ∈ V X . We set

InvG(V X , W ) = {F : V X → W | G-invariant}
EquivG(V X , W Y ) = {F : V X → W Y | G-equivariant}

Example 3. (i) Let X = Y = {1, 2, . . . , n} and V = R3. The classification task of point clouds
can be regarded as a task to find an appropriate Sn-invariant map from V X to a set of classes
W = {c1, c2, . . . , cm}.

(ii) A task of anomaly detection from n pictures is a permutation equivariant task as in Zaheer
et al. (2017, Appendix I). This is to find an appropriate Sn-equivariant map V X to W Y for
V = ({0, 1, . . . , 255}3)ℓ×m, W = {0, 1}, and X = Y = {1, 2, . . . , n}.

(iii) A task of classification of digital images of ℓ × ℓ pixels is finding an appropriate 90-degree rotation
invariant map V X to a set of classes W = {c1, c2, . . . , cm}, where V = {0, 1, . . . , 255}3 and X =
{1, 2, . . . , ℓ}2. An image segmentation task can be regarded as finding an appropriate 90-degree
rotation equivariant map V X to W Y for the same V, W, X as Example 3 (ii) and Y = {1, 2, . . . , ℓ}2.

(iv) An extension of Example 3 (iii) to “ideal images” is finding an SO2(R)-invariant map from V X

to W (or SO2(R)-equivariant map from V X to W Y ) for and X = R2, V = R3, and W = R (or
X = Y = R2, V = R3, and W = R respectively).

1Acting from the left means that for any σ, τ ∈ G, the formula σ · (τ · f) = (στ) · f holds. To ensure this, we must use σ−1,
rather than σ, on the right-hand part of equation (1). Otherwise we would have σ · (τ · f) = (τσ) · f .
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3 Invariant-equivariant relation and universal approximation

3.1 Warm up example with Sn

We begin this section with a warm-up example. In this subsection, G = Sn, X = {1, . . . , n} and V, W are
generic sets. We denote as f an element of V X . The action of Sn on V X is as in equation (1)

(σ · f)(i) = f(σ−1(i)), ∀ 1 ≤ i ≤ n, (2)

and so is the action of Sn on W X . Let F be a map from V X to W X , then there exist n maps F1, . . . , Fn

from V X to W such that
F (f)(i) = Fi(f), ∀ 1 ≤ i ≤ n. (3)

Fi is just a shorter notation for the map F (·)(i). Now let us make the assumption that F belongs to
EquivSn

(V X , W X), the equivariance property F (σ · f) = σ · (F (f)) implies for all i,

Fi(σ · f) = Fσ−1(i)(f). (4)

Let us focus on i = 1. Notice that if σ is a permutation such σ(1) = 1, it is straightforward from equation (4)
that F1(σ ·f) = F1(f) for all f ∈ V X . Since it is fairly known that the set of permutations such that σ(1) = 1
is a subgroup of Sn, denoted as StabSn

(1), (this group is isomorphic to Sn−1), we deduce from equation (4)
that

F1 = F (·)(1) ∈ InvStabSn (1)(V X , W ). (5)

Moreover, if we let (1 i) be the transposition that exchanges 1 and i and fix any other j ∈ X, we obtain
easily from equation (4) that for all f

F1((1 i) · f) = F(1 i)·1(f) = Fi(f). (6)

To sum up, we have almost proven the following claim.
Proposition 1. F ∈ EquivSn

(V X , W X) if and only if there exists F1 ∈ InvStabSn (1)(V X , W ) such that for
all f ∈ V X , for i = 1, . . . , n,

F (f)(i) = F1((1 i) · f). (7)

Proof. The discussion above is a proof of the nontrivial implication. Reciprocally, one easily verifies that
picking F1 ∈ InvStabSn (1)(V X , W ) and defining F : V X → W X by

F (f)(i) = F1((1 i) · f

yields a map F ∈ EquivSn
(V X , W X).

The rest of this section is dedicated to a generalization of this result to a generic group G.

3.2 Invariant-equivariant relation

Our main theorem is a relation between a G-equivariant maps and some invariant maps for some subgroups
of G. Recall that, for any y in a G-set Y , its stabilizer, denoted as StabG(y), is the subgroup of all the σ ∈ G
such that σ · y = y (see the recall en groups and group actions in Appendix A).
Theorem 1. Let G be a group and X, Y be two G-sets. Let V, W be two sets. Let Y =

⊔
i∈I Oyi

be the
G-orbit decomposition of Y . We fix a system of representatives {yi ∈ Y | i ∈ I}. Then, the following map is
bijective:

Φ : EquivG(V X , W Y ) −→
∏

i∈I InvStabG(yi)(V X , W )

F 7−→ Φ(F ) = (F (·)(yi))i∈I

.
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Moreover, its inverse map

Ψ :
∏

i∈I InvStabG(yi)(V X , W ) −→ EquivG(V X , W Y )

(F̃i)i∈I 7−→ Ψ
(

(F̃i)i∈I

) ,

is defined by

Ψ
(

(F̃i)i∈I

)
(f)(y) = F̃i(σ · f) (8)

for any f ∈ V X and y ∈ Y such that y ∈ Oyi and y = σ−1 · yi for some σ ∈ G.

In addition, if V and W are vector spaces over R, then V X , W Y , EquivG(V X , W Y ), and∏
i∈I InvStabG(yi)(V X , W ) are also vector spaces over R and Φ and Ψ are R-linear isomorphisms.

Proof. To prove Theorem 1, we shall prove that the maps Φ and Ψ are well-defined and these maps are
the inverse maps of each other, i.e., Ψ ◦ Φ is the identity on EquivG(V X , W Y ) and Φ ◦ Ψ is the identity on∏

i∈I InvStabG(yi)(V X , W ).

We first show the well-definedness of Φ. That is, for Φ(F ) = (F (·)(yi))i∈I , we shall prove that
F (·)(yi) : V X → W is StabG(yi)-invariant for any i ∈ I. To do so, we check that for σ ∈ StabG(yi)
and f ∈ V X , F (σ · f)(yi) = F (f)(yi). Let F be a G-equivariant map from V X to W Y and σ be an element
in StabG(yi). This implies σ−1 · yi = yi, hence the inverse σ−1 is also in StabG(yi). Then, by G-equivariance
of F , we have

F (σ · f)(yi) = (σ · F )(f)(yi) = F (f)(σ−1 · yi) = F (f)(yi).

Hence, the map F (·)(yi) is StabG(yi)-invariant. This implies that the map

Φ: EquivG(V X , W Y ) →
∏
i∈I

InvStabG(yi)(V X , W ); F 7→ (F (·)(yi))i∈I

is well-defined.

Next, we prove that the map Ψ is well-defined. The well-definedness of Ψ can be rephrased that the
image Ψ((F̃i)i∈I)(f)(y) = F̃i(τ · f) for τ ∈ G such that y = τ−1 · yi of (F̃i)i∈I ∈

∏
i∈I InvStabG(yi)(V X , W )

is independent of the choice of τ ∈ G and is G-equivariant. We first notice that such a τ exists since, from
the G-orbit decomposition Y =

⊔
i∈I Oyi

, there is an orbit representative yi such that y ∈ Oyi
, and thus

y = τ−1·yi for some τ ∈ G. If τ ′ ∈ G is another choice so that y = τ ′−1·yi, then we have τ ′−1·yi = y = τ−1·yi.
This implies that ττ ′−1 stabilizes yi. Thus, we can represent τ ′ = στ for some σ ∈ StabG(yi). The value of
F̃i at τ ′ · f becomes

F̃i(τ ′ · f) = F̃i((στ) · f)) = F̃i(σ · (τ · f)) = F̃i(τ · f).

Here, the last equality is deduced from StabG(yi)-invariance of F̃i. This implies that the definition of the
value Ψ(F̃i)(f)(y) is independent of the choice of τ ∈ G satisfying yi = τ · y.

We set F = Ψ((F̃i)i∈I). To show G-equivariance of F , it is sufficient to check that for any σ ∈ G, any
f ∈ V X , and any y ∈ Y , σ · F (f)(y) = F (σ · f)(y) holds. Let y ∈ Oyi

and y = τ−1 · yi for some τ ∈ G. Then,
because σ−1 · y = (σ−1τ−1) · yi ∈ Oyi

,

(LHS) = σ · F (f)(y) = F (f)(σ−1 · y) = F (f)((σ−1τ−1) · yi)

= F (f)((τσ)−1 · yi) = F̃i((τσ) · f).

Here, the last equality follows from the definition of the map of Ψ in equation (8). On the other hand, we
have

(RHS) = F (σ · f)(y) = F (σ · f)(τ−1 · yi) = F̃i(τ · (σ · f)) = F̃i((τσ) · f).
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Here, the third equality also follows from the definition of the map of Ψ in equation (8). Therefore, F
satisfies σ · F (f)(y) = F (σ · f)(y) for any σ ∈ G, any f ∈ V X , and any y ∈ Y . Hence, F is G-equivariant.

Finally, we show that the map Ψ is the inverse map of the map Φ and vice versa, i.e., both Ψ◦Φ and Φ◦Ψ
are identities. Let F be a map in EquivG(V X , W Y ). Then, the image of the map Φ can be written as (F̃i)i∈I

such that F̃i(f) = F (f)(yi). Then, the map Ψ takes (F̃i)i∈I to F ′ such that F ′(f)(y) = F̃i(τ ·f) = F (τ ·f)(yi)
for y ∈ Y and τ ∈ G such that y = τ−1 · yi. Because F is G-equivariant, we have

F (f)(y) = F (f)(τ−1 · yi) = (τ · F )(f)(yi)
= F (τ · f)(yi) = F ′(f)(y) = Ψ ◦ Φ(F (f))(y).

Hence, F = F ′ = (Ψ ◦ Φ)(F ) holds for any F ∈ EquivG(V X , W Y ). In particular, Ψ ◦ Φ is the identity.

Conversely, (F̃i)i∈I ∈
∏

i∈I InvStabG(yi)(V X , W ) is given. Let F = Ψ((F̃i)i∈I). Then, the image of F by
Φ becomes Φ(F )(f) = (F (f)(yi))i∈I . Now, for i0 ∈ I,

F (f)(yi0) = Ψ((F̃i)i∈I)(f)(yi0) = F̃i0(τ · f)

for a τ ∈ G satisfying yi0 = τ · yi0 . In particular, τ is in StabG(yi0). By StabG(yi0)-invariance of F̃i0 ,
F̃i0(τ · f) = F̃i0(f) holds. Thus, we have

(Φ ◦ Ψ)((F̃j)j∈I)(f) = Φ(Ψ((F̃j)j∈I)(f)) = {Ψ((F̃j)j∈I)(f)(yi)}i∈I

= (F̃i(f))i∈I = (F̃i)i∈I(f).

Therefore, the composition Φ ◦ Ψ is the identity.

Finally, we justify the final statement of the theorem in the case V and W are real vector spaces. Under
this assumption, it is fairly known that V X , W Y , Map(V X , W Y ) as well as Map(V X , W ) are real vector
spaces. Therefore,

∏
i∈I Map(V X , W ) is also a vector space as the Cartesian product of vector spaces. By

an abuse of notation, consider Φ as a map between Map(V X , W Y ) and
∏

i∈I Map(V X , W ), and let us show
that it is linear.

Let F, F ′ ∈ Map(V X , W X) and λ ∈ R. It is clear that for all f ∈ V X , (F + λF ′)(f) = F (f) + λF ′(f) and
thus for all y ∈ Y , (F + λF ′)(f)(y) = F (f)(y) + λF ′(f)(y). Hence,

Φ(F + λF ′) = ((F + λF ′)(·)(yi))i∈I

= (F (·)(yi) + λF ′(·)(yi))i∈I

= (F (·)(yi))i∈I + λ(F ′(·)(yi))i∈I ,

Which justifies the linearity of Φ : Map(V X , W Y ) →
∏

i∈I Map(V X , W ).

Next, we shall show that EquivG(V X , W Y ) is a linear subspace of Map(V X , W Y ). In order to do that,
we first have to show that the action of F ′ on Map(V X , W Y ) is itself linear. Let F, F ′ ∈ Map(V X , W Y ) and
λ ∈ R, for any f ∈ V X , any y ∈ Y , and any σ ∈ G, we have :

σ · (F + λF ′)(f)(y) = (F (f) + λF ′(f))(σ−1 · y)
= F (f)(σ−1 · y) + λF ′(f)(σ−1 · y)
= σ · F (f)(y) + λσ · F ′(f)(y),

Which yields σ · (F +λF ′) = σ ·F +λσ ·F ′. That being done, we go back on showing that EquivG(V X , W Y )
is a linear subspace of Map(V X , W Y ). Let F, F ′ ∈ EquivG(V X , W Y ) and λ ∈ R, for any σ ∈ G, we have

σ · (F + λF ′)(f) = (σ · F + λσ · F ′)(f)
= σ · F (f) + λσ · F ′(f)
= F (σ · f) + λF ′(σ · f)
= (F + λF ′)(σ · f),

7



Under review as submission to TMLR

where the third equality is due to the G-equivariance property. Hence, since the null map is clearly equivariant
too, this makes EquivG(V X , W Y ) a real vector subspace of Map(V X , W Y ).

Consequently, the image of EquivG(V X , W Y ) by Ψ must be a vector subspace of
∏

i∈I Map(V X , W ). Since
we have proven earlier that Φ : EquivG(V X , W Y ) →

∏
i∈I InvStabG(yi)(V X , W ) is a bijection, in particular, it

is a surjection. Hence, the aforementioned image is
∏

i∈I InvStabG(yi)(V X , W ), therefore it is a vector space.

To conclude, notice that we have shown that Φ : EquivG(V X , W Y ) →
∏

i∈I InvStabG(yi)(V X , W ) is a
linear bijection between vector spaces. Thus, by a fairly known fact from linear algebra, its inverse Ψ must
be linear too.

Theorem 1 implies that any G-equivariant map F is determined by the StabG(yi)-invariant maps F (·)(yi)
for i ∈ I. In other words, the parts F (·)(y) for y ̸∈ {yi | i ∈ I} are redundant to construct G-equivariant
map F .

This theorem is quite elementary, in the sense that its statement as well as its proof, only requires
basic knowledge in group theory. However, the idea of linking G-equivariant maps to invariant maps on
some subgroups of G is not new and has more profound implications. For instance, it is central in group
representation theory as it relates to the so-called Frobenius reciprocity theorem (Curtis & Reiner, 1966),
about the relationships between the representation of G and the representations of its subgroups. In addition,
the result from Theorem 1 can be recovered from some other more general theorems in more advanced topics,
such as Theorem 1.1.4 in Cap & Slovák (2009), about homogeneous vector bundles.

3.3 Construction of universal approximators

As an application of Theorem 1, we construct universal approximators for continuous G-equivariant maps.
In this section, we assume that V and W are normed vector spaces over R whose norms are ∥ · ∥V and ∥ · ∥W

respectively. Then, we define norms on V X and W Y by the supremum norms

∥f∥V X = sup
x∈X

∥f(x)∥V . (9)

for f ∈ V X and similarly for g ∈ W Y . Let K ⊂ V X be a compact subset. We assume that K is stable by
the action of G, i.e., σ · f ∈ K for any σ ∈ G and f ∈ K. We denote Equivcont

G (K, W Y ) (resp. Invcont
H (K, W )

for a subgroup H) the subset of continuous maps in EquivG(K, W Y ) (resp. InvH(K, W )):

Equivcont
G (K, W Y ) = {F ∈ EquivG(K, W Y ) | continuous}

Invcont
H (K, W ) = {F̃ ∈ InvH(K, W ) | continuous}

For a subgroup H ⊂ G, let HH-inv be a hypothesis set in Invcont
H (K, W ) consisting of some deep neural

networks. We assume that any maps in Invcont
H (K, W ) can be approximated by an element in HH-inv, i.e.,

for any F̃ ∈ Invcont
H (K, W ) and any ε > 0, there is an element ̂̃F ∈ HH-inv such that

sup
f∈K

∥ ̂̃F (f) − F̃ (f)∥W < ε .

We define a hypothesis set HG-equiv in EquivG(K, W Y ) by aggregating the W -valued hypothesis sets
HStabG(yi)-inv as follows:

HG-equiv = Ψ
(∏

i∈I

HStabG(yi)-inv

)
, (10)

where Ψ is the map defined in Theorem 1. Then, the set HG-equiv is included in Equivcont
G (K, W Y ). Indeed,

by Theorem 1, this set is included in EquivG(K, W Y ) and we can show that F = (Fy)y∈Y : K → W Y is
continuous if and only if Fy : K → W is continuous for all y ∈ Y because we consider the supremum norm
on W Y .

The following theorem constructs a universal approximator for G-equivariant map from some invariant
universal approximators:

8
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Theorem 2. Any element in Equivcont
G (K, W Y ) can be approximated by an element of HG-equiv defined

in equation (10). More precisely, for any F ∈ Equivcont
G (K, W Y ) and any ε > 0, there exists an element in

F̂ ∈ HG-equiv such that
sup
f∈K

∥F̂ (f) − F (f)∥W Y ≤ ε.

Proof. By the definition of the hypothesis set HStabG(yi)-inv, for any ε > 0 and any i ∈ I, there is an element̂̃
F i ∈ HStabG(yi)-inv such that

sup
f∈K

∥ ̂̃F i(f) − F̃i(f)∥W ≤ ε (11)

We set F̂ = Ψ(( ̂̃F i)i∈I). The map F can also be written as F = Ψ((F̃i)i∈I). Then, the norm of the difference
between F̂ and F for f ∈ K at y ∈ Y becomes as follows: If y ∈ Oyi and y = σ−1 · yi for σ ∈ G, then

∥F̂ (f)(y) − F (f)(y)∥W = ∥F̂ (f)(σ−1 · yi) − F (f)(σ−1 · yi)∥W

= ∥F̂ (σ · f)(yi) − F (σ · f)(yi)∥W

= ∥ ̂̃F i(σ · f) − F̃i(σ · f)∥W

≤ sup
f∈K

∥ ̂̃F i(σ · f) − F̃i(σ · f)∥W

≤ sup
f∈K

∥ ̂̃F i(f) − F̃i(f)∥W ≤ ε

The second inequality follows from the stability of K by the action of G, and the last inequality follows from
inequality equation (11).

Hence, the difference between F̂ and F at f ∈ K can be written as

∥F̂ (f) − F (f)∥W Y = sup
y∈Y

∥F̂ (f)(y) − F (f)(y)∥W ≤ ε. (12)

This completes the proof because f ∈ K is arbitrary in the above argument.

The conclusion of this Theorem relies on the assumption that some universal classes HH-inv of invariant
maps do exist for the subgroups of G. We argue that this assumption is always fulfilled. Indeed, given any
universal class with a priori no symmetry, for instance, usual multi-layers perceptrons, one can always turn
it into a universal class of invariant maps by simple group averaging, as remarked by Yarotsky (2022).

However, such straightforward constructions are clearly unrealistic for large groups like Sn. The interest
of Theorem 2 is to enable reducing the study of efficient G-equivariant universal architecture to the study
of StabG(yi)-invariant ones. It offers an alternative to the equivariant or invariant “symmetrization-based”
constructions in Yarotsky (2022, Section 2.1) by group averaging.

3.3.1 On the structural characteristics of universal equivariant networks arising from Theorem 2

On the G-action between the hidden layers. Several works have studied the design of multi-layer
universal equivariant architectures, including Zaheer et al. (2017), Maron et al. (2019b), Segol & Lipman
(2019), and Ravanbakhsh (2020). How do a universal architecture arising from our Theorem 2, differ from
the already existing aforementioned ones?

The main difference resides in the nature of the G-action in the hidden layers. In fact the way our
architecture is built involves a new G-action, noted “∗”, which is different from the original action “·”. We
provide below an explanation of this phenomenon in the form of a remark. The rigorous demonstrations are
left to Appendix B and require some background in group Representation Theory.

9
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Remark 1. Say that we seek to design multi-layer architectures that are equivariant to some G-action
“·”. The usual strategy, as in the case of the previously mentioned works, is to focus on designing a single
layer block that is equivariant for “·”. Then by stacking these blocks, we obtain an equivariant multi-layer
architecture, because equivariance is preserved by composition.

Now, consider the scenario of our construction from Theorem 2. Assume that we are given some families
of multi-layers Hi-invariant maps, for the action “·”, where the Hi ⊂ G are some subgroups that have been
identified thanks to the decomposition from Theorem 1. Then, by “aggregating” some of these Hi-invariant
maps, and applying Ψ, as is equation (10), a new multi-layer architecture F̂ is built. Moreover, by Theorem 1
again, the F̂ obtained by this procedure are guaranteed to be equivariant for the action “·”.

What can be said about the layer-wise structure of such F̂? It turns out that the G-equivariance of the
hidden layers is no longer realized by “·” on both the input and the first hidden space. Instead, it involves
another G-action “∗” in the hidden space. If we look at the first layer φ1, which consists in “plugging-in”
the “aggregated” invariant maps to the input space (see Figure 2), its equivariance, from the input layer to
the first hidden layer of F̂ , will be written as φ1(σ · f) = σ ∗ φ1(f), as seen in Figure 1(b).

Overall, using commutative diagrams, Figure 1 highlights the differences between the group actions involved
in these architectures.

V0 V1 V2 · · ·

V0 V1 V2 · · ·

φ1

σ· ⟳

φ2

σ· ⟳ σ·

φ1 φ2

(a) Usual equivariant architecture: the action “·” is the same in the input space as well as in
each hidden spaces.

V0 V ′
1 V ′

2 · · ·

V0 V ′
1 V ′

2 · · ·

φ1

σ· ⟳

φ2

σ∗ ⟳ σ∗

φ1 φ2

(b) Equivariant architecture arising from Theorem 2: the action “·” on the input space is
different than the action “∗”, in red, on the hidden spaces.

Figure 1: Commutative diagrams for comparing between a usual equivariant multi-layer architecture, and
ours arising from Theorem 2. For each diagram, the two lines both represent the same multi-layer equivariant
architecture with the φi being the equivariant layers between hidden spaces. Each square encapsulating a
⟳ symbol is a commutative diagram that represents the equivariance of the layer φi, i.e, the fact that φi

commutes with some action of the group. This means that, within these squares, from the top left to the
bottom right the two possible paths are equal.

This new action “∗”, which is still an action of the group G, can be described as the “induced representation
of the restricted representation action on the hidden layers”. In Appendix B, a rigorous discussion about this
phenomenon and definition of this action “∗” are done using tools from Representation Theory.

On the number of free parameters. Another notorious advantage of multi-layer equivariant architec-
tures such as Zaheer et al. (2017); Maron et al. (2020), is that the design of equivariant blocks requires few
free parameters thanks to a phenomenon of parameters sharing enabled by the symmetry. Hence, in terms of
the total number of free parameters, there is a significant advantage in using layer-wise equivariant networks,
rather than naive fully connected ones, in order to approximate an equivariant map. Is it also the case for
our architecture?

10
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We clarify that point in the following remark. We claim that, indeed, our equivariant architecture is more
efficient than naive fully connected networks, in terms of a number of free parameters. Proofs and rigorous
explanations are left in appendix C.
Remark 2. Although our equivariant model differs from the standard equivariant models, the number of
parameters of our models can also be less than that of a fully connected neural network. For example, let
G = Sn act on X = Y = {1, . . . , n} by permutation and V, W be vector spaces over R. For Sn-equivariant
map F : V n → W n, we can take G-equivariant deep neural network F̂ approximating F by Theorem 2. Then,
the first hidden layer of F̂ can be written as the form V n2

1 for a vector space V1. The linear map V n → V n2

1
is equivariant for permutation action on V n and the direct sum of “induced representations of restriction
representations to the stabilizer subgroup” on V n2

1 . By the argument on irreducible representations, the
number of parameters of the linear map between the input layer V n and the first hidden layer V n2

1 becomes
5 dim V dim V1. Because the number of parameters of the linear map V n → V n2

1 for the fully connected model
is n3 dim V dim V1, our model can be constructed by much fewer parameters than the fully connected model.
In Appendix C, precise statement and proof of this fact are concluded using Schur’s Lemma and Young’s
diagrams.

4 Some specific cases

In this section, we propose an application of Theorems 1 and 2 to a few examples.

4.1 Permutation equivariant maps

As a first example, we consider Sn-equivariant maps. Recall the context from Section 3.1 where X = Y =
{1, 2, . . . , n} and V, W are generic sets. The set Y only has a single orbit by the Sn action: O1 = Sn · 1,
which can be written as

O1 = {(1 i) · 1 | i = 1, . . . , n} = {1, 2, . . . , n},

where (i j) ∈ Sn is the transposition between i and j.

Hence, we recover Proposition 1 from Theorem 1. Namely, that an Sn-equivariant map F : V X → W X is
uniquely determined by its Stab(1)-invariant component F̃1 : V X → W via

F (f) = (F̃1((1 i) · f))n
i=1.

By this argument, any analysis of Sn-equivariance of the map F can be reduced to analyze only one StabSn
(1)-

invariant map F̃1 : V X → W (Figure 2).

In this case, as a hypothesis set HStabSn (1) of StabSn(1)-invariant deep neural networks, we can use the
universal approximators defined in Maron et al. (2019b). By this HStabSn (1) and Theorem 2, we obtain
universal approximators for Sn-equivariant maps.

4.2 Finite groups

In this subsection, G is any finite group. By Proposition 3 in Appendix A, G is a subgroup of Sn for some
n. Hence, G acts on X = Y = {1, 2, . . . , n} via permutation action of Sn.

The G-orbit decomposition of Y is generally nontrivial. Let Y =
⊔k

i=1 Oyi
be the G-orbit decomposition

of Y and y1, y2, . . . , yl be elements of G such that Oyi
= Gyi for i = 1, 2, . . . , k. We represent Oyi

as
Oyi

= {yi1, yi2, . . . , yimi
}, and choose σij ∈ G such that yij = σ−1

ij · yi. Then, we remark that
∑k

i=1 mi = n.

We consider a G-equivariant map F from V X to W Y for vector spaces V, W over R. By Theorem 1, F
can be written by

F (f) = (F̃i(σij · f)) i=1,...,k
j=1,...,mi

(13)

11
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Figure 2: The case of G = Sn and X = Y = {1, 2, . . . , n}. The Sn-orbit of 1 ∈ Y is the whole set Y , thus
Sn-equivariant map F is determined by only one StabSn

(1)-invariant map F̃1.

for any f ∈ V X , where F̃i(f) = F (f)(yi) is StabG(yi)-invariant. We remark that this map F is determined
by the StabG(yi)-invariant map F̃i from V X to W for i = 1, 2, . . . , l.

For general finite group G, as a hypothesis space HStabG(yi)-inv, we choose the set of models by using deep
neural networks with tensors introduced in Maron et al. (2019b), which is guaranteed to approximate any
StabG(yi)-invariant continuous maps. Keriven & Peyré (2019) also construct a universal approximator for
graph neural networks.

4.3 The special orthogonal group SO2(R)

As for Example 3 (iii), we consider the rotation actions on the set of the ideal images. The index sets are
X = Y = R2. We consider Map(X,R3) = (R3)X as the set of ideal images with the values for ideal RGB color
channels V = R3. Let W be a set of output labels. Then, the 2-dimensional special orthogonal group SO2(R)
acts on X = Y = R2. We consider an SO2(R)-equivariant (i.e., rotation equivariant) map F : V R2 → WR2 .
Then, the orbit Oyi

= SO2(R) · yi of yi = (i, 0) ∈ R2 for i ∈ I = [0, ∞) is Oyi
= {(a, b) ∈ R2 | a2 + b2 = i2},

and Y =
⊔

i∈I Oyi
holds. On the other hand, the stabilizer subgroup of SO2(R) for yi = (i, 0) is

StabSO2(R)(yi) =
{{(

1 0
0 1

)}
if i > 0,

SO2(R) if i = 0.

Then, by Theorem 1, the SO2(R)-equivariant map F can be written by

F (f) =
(

(F̃i(g · f)) i∈(0,∞)
g∈SO2(R)

, F̃0(f)
)

.

This means that SO2(R)-equivariant map F is determined by the maps F̃i : ([0, 1]3)R2 → W for i ∈ [0, ∞)
as Figure 3. Unfortunately, F̃i for i > 0 does not have any invariance because the stabilizer subgroup of
SO2(R) for (i, 0) is

{(
1 0
0 1

)}
.

We assume that X, Y are the disk D = {(x, y) | x2 + y2 ≤ R} of radius R > 0. We can apply Theorem 2.
Then, if there is a universal approximators ( ̂̃F i)i∈I of (F̃i)i∈I , Ψ(( ̂̃F i)i∈I) approximates the map F =
Ψ((F̃i)i∈I).

In this case, as a hypothesis set HStabSO2(R)(yi)-inv of StabSO2(R)(yi)-invariant deep neural networks, we
can use the universal approximators defined in Yarotsky (2022, Definition 3.2). By this HStabSO2(R)(yi)-inv

and Theorem 2, we obtain universal approximators for SO2(R)-equivariant maps.

12
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Figure 3: Rotation equivariant map F is determined the maps {F̃i}i∈I where I is the nonnegative real line
R≥0. We can recover F from {F̃i}i∈I by “rotating” {F̃i(g·)}i∈I,g∈SO2(R)

.

4.4 The traslation group T for R2

It is known that the convolutional layers of convolution neural networks are translation equivariant. In this
subsection, we consider an example for X = Y = R2 and the actions of the translation group T for R2 on
V X and W Y . The translation group T is defined by

T = {Tv | v ∈ R2},

where the translation Tv is defined by Tv(x) = x + v. For f ∈ V X , the action of Tv on f is defined by

(Tv · f)(x) = f(T −1
v (x)) = f(x − v).

We consider an T-equivariant (i.e., translation equivariant) map F : V R2 → WR2 . In this case, for (0, 0) ∈
Y = R2, the orbit O(0,0) = T · (0, 0) is same as Y = R2 and StabT((0, 0)) = {Id}. Then, by Theorem 1, the
T-equivariant map F can be written by

F (f) = (F̃(0,0)(Tv · f))v∈Y .

In particular, T-equivariant map F is determined by one {Id}-invariant map (i.e., usual map without in-
variance) F̃(0,0) : V X → W . In this situation, by Theorem 2, if there is a universal approximators ̂̃F (0,0) of
F̃(0,0), Ψ( ̂̃F (0,0)) approximates the map F = Ψ(F̃(0,0)).

5 Application to the numbers of parameters

5.1 A relation of the numbers of parameters for invariant/equivariant maps

In the case of finite group G, we investigate the number of parameters from the point of view of approxi-
mations. Let G be a group and X, Y be two finite G-sets. Let Y =

⊔
i∈I Oyi be the G-orbit decomposition

of Y and K ⊂ V X be a compact subset which is stable by the G-action. For F ∈ Equivcont
G (K, W Y ), we

define ceq
G (ε; F ) to be the minimum number of the parameters of G-equivariant deep neural networks that

can approximate F in accuracy ε > 0. More precisely, there exists a G-equivariant deep neural network F̂ of
which the number of parameters is equal to ceq

G (ε; F ) and supf∈K ∥F̂ (f)−F (f)∥W Y ≤ ε, and there is no such
G-equivariant deep neural network of which the number of parameters is less than ceq

G (ε; F ). Similarly, for
subgroup H of G and F̃ ∈ Invcont

H (K, W ), we define cinv
H (ε; F̃ ) to be the minimum number of the parameters

of H-invariant deep neural networks that can approximate F̃ in accuracy ε > 0. The existences of such
cinv

H (ε; F̃ ) and ceq
G (ε; F ) are guaranteed by the results for universal approximation theorems such as Maron

et al. (2019b) or Theorem 2 in this volume.

For F ∈ Equivcont
G (K, W Y ), F̃i ∈ InvStabG(yi)(V X , W ) is defined by (F̃i)i∈I = Φ(F ) in the sense of

Theorem 1. Then, we have the following:

13
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Theorem 3. For any ε > 0, the following holds:

max
i∈I

cinv
StabG(yi)(ε; F̃i) ≤ ceq

G (ε; F ) ≤
∑
i∈I

cinv
StabG(yi)(ε; F̃i). (14)

Proof. We first show the left inequality. Let F̃i0 ∈ InvStabG(yi0 )(V X , W ) for an i0 ∈ I. We can find a
G-equivariant deep neural network F̂ such that ∥F̂ (f) − F (f)∥W Y ≤ ε for any f ∈ K and the number of
parameters of F̂ is equal to ceq

G (ε; F ). The existence of F̂ is guaranteed by Theorem 2. For this F , F̂ (·)(yi0)
satisfies ∥F̂ (f)(yi0) − F̃i0(f)∥W ≤ ε and the number of parameters of the deep neural network F̂ (·)(yi0)
is less than or equal to ceq

G (ε; F ). Thus, F̃i0 can be approximated in accuracy ε by a StabG(yi0)-invariant
deep neural network of which the number of parameters is less than or equal to ceq

G (ε; F ). This implies
cinv

StabG(yi0 )(ε; F̃i0) ≤ ceq
G (ε; F ). Because i0 ∈ I is arbitrary, we have the first inequality of equation (14).

We next show the second inequality of equation (14). For any i ∈ I, there is a deep neural network ̂̃F i

such that ∥ ̂̃F i(f) − F̃i(f)∥W ≤ ε for f ∈ K and the number of parameters of this is cinv
StabG(yi)(ε; F̃i). We set

F̂ = Φ(( ̂̃F i)i∈I). Then, by Theorem 1 and inequality equation (12), we have

sup
f∈K

∥F̂ (f) − F (f)∥W Y = sup
f∈K

sup
y∈Y

∥F̂ (f)(y) − F (f)(y)∥W

= sup
f∈K

(
sup
i∈I

(
sup
σ∈G

∥F̂ (f)(σ−1 · yi) − F (f)(σ−1 · yi)∥W

))
= sup

f∈K

(
sup
i∈I

(
sup
σ∈G

∥F̂ (σ · f)(yi) − F (σ · f)(yi)∥W

))
≤ sup

i∈I

(
sup
f∈K

∥F̂ (f)(yi) − F (f)(yi)∥W

)

= sup
i∈I

(
sup
f∈K

∥ ̂̃F i(f) − F̃i(f)∥W

)
≤ ε. (15)

Because the number of parameters of F̂ (f) is less than or equal to
∑

i∈I cinv
StabG(yi)(ε; F̃i), any elements

in Equivcont
G (K, W Y ) can be approximated in accuracy ε by a G-equivariant deep neural network of

which the number of parameters is less than or equal to
∑

i∈I cinv
StabG(yi)(ε; F̃i). This implies ceq

G (ε; F ) ≤∑
i∈I cinv

StabG(yi)(ε; F̃i). This is the second inequality of equation (14).

5.2 Approximation rate for G-equivariant deep neural networks

In the case of G = Sn, X = {1, 2, . . . , n}, V = W = R, and K = [0, 1]n ⊂ V n, Sannai et al. (2021, Theorem 4)
showed an approximation rate of Sn-invariant ReLU deep neural networks for elements in a Hölder space.
In this subsection, we generalize this result to G-invariant maps for a finite group G ⊂ Sn and show an
approximation rate for G-equivariant ReLU deep neural networks.

Let α be a positive constant. The Hölder space of order α is the space of continuous functions f such
that all the partial derivatives of f up to order ⌊α⌋ exist and the partial derivatives of order ⌊α⌋ are α − ⌊α⌋
Hölder-smooth. This space is usually denoted as Cα,α−⌊α⌋, but we denote it as Cα here for convenience. For
f : K → R, the Hölder norm is defined by

∥f∥Cα := max
β:|β|<⌊α⌋

∥∂βf(x)∥L∞(K) + max
β : |β|=⌊α⌋

sup
x,x′∈K,x̸=x′

|∂βf(x) − ∂βf(x′)|
∥x − x′∥α−⌊α⌋

∞
.

For B > 0, a B-radius ball in the Hölder space on K is defined as Cα
B = {f ∈ Cα | ∥f∥Cα ≤ B}.

The following is a generalization of Sannai et al. (2021, Theorem 4) to finite group G ⊂ Sn.
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Theorem 4. Let G ⊂ Sn be a finite group acting on the sets X = Y = {1, 2, . . . , n} and Y =
⊔k

i=1 Oi be
the G-orbit decomposition, and K = [0, 1]n ⊂ Rn. For any ε > 0, let HG-inv be a set of G-invariant ReLU
deep neural networks from K to R which has at most O(log(1/ε)) layers and O(ε−n/α log(1/ε)) non-zero
parameters. Then, for any G-invariant function F̃ ∈ Cα

B, there exists ̂̃F ∈ HG-inv such that

sup
f∈K

| ̂̃F (f) − F̃ (f)| ≤ ε.

Proof. To generalize Sannai et al. (2021, Theorem 4), it is sufficient to define the fundamental domain ∆G

for finite group G ⊂ Sn and a sorting map Sort : [0, 1]n → ∆G, and to show that Sort can be realized by
ReLU deep neural networks. The remaining part of the proof is similar to the proofs of Sannai et al. (2021,
Proposition 9, Theorem 4)

Let {1, 2, . . . , n} =
⊔k

i=1 Oi be a G-orbit decomposition and Ij = {ij
1, . . . , ij

mj
} satisfying ij

ℓ < ij
ℓ′ for

ℓ < ℓ′.

Then, a fundamental domain ∆G for G is given as

∆G = {(x1, . . . , xn)⊤ ∈ [0, 1]n | xij
ℓ

≥ xij

ℓ′
if ℓ < ℓ′ for j = 1, 2, . . . , k}.

We consider the reordered index (i1
1, i1

2, . . . , i1
m1

, i2
1, . . . , i2

m2
, . . . , ik

1 , . . . , ik
mk

). We define the permutation
σ0 from (1, 2, . . . , n) to this index as

σ0 =
(

1 2 . . . n
i1
1 i1

2 . . . ik
mk

)
.

Then, by σ−1
0 , (x1, x2, . . . xn)⊤ ∈ [0, 1]n is permutated as

σ−1
0 · (x1, x2, . . . , xn)⊤ = (xσ0(1), xσ0(2), . . . , xσ0(n))⊤ = (xi1

1
, xi1

2
, . . . , xik

mk
)⊤.

We remark that this permutation can be realized by a linear map. On the other hand, we define
SortG : [0, 1]n → [0, 1]n by

SortG(x1, . . . , xn) =
(max1

1(x1, . . . , xn), max1
2(x1, . . . , xn), . . . , maxk

mk
(x1, . . . , xn)).

Here, maxj
ℓ(x1, . . . , xn) is the ℓ-th largest value in {xpj−1+1, xpj−1+2 . . . , xpj

}, where pj =
∑j−1

i=1 mi. As
proven in Sannai et al. (2021, Proposition 8), we can show that the map SortG is represented by deep
neural networks with ReLU activation functions. We define S̃ortG = σ0 ◦ SortG ◦ σ−1

0 . Then, the image
S̃ortG(x1, . . . , xn) is in the fundamental domain ∆G and S̃ortG can also be realized by a ReLU deep neural
network.

By applying Sannai et al. (2021, Proposition 9 and Proof of Theorem 4) with this S̃ortG, we can complete
the proof.

As mentioned in Sannai et al. (2021) for G = Sn, also for finite group G ⊂ Sn, the approximation rate in
Theorem 4 is the optimal rate without invariance obtained by Yarotsky (2022, Theorem 1). Thus, we show
that G-invariant deep neural networks can also achieve the optimal approximation rate even with invariance.

By combining Theorem 4 and similar argument in the proof of Theorem 3, we can show the approximation
rate for G-equivariant maps:
Corollary 1. Let G ⊂ Sn be a finite group acting on the sets X = Y = {1, 2, . . . , n} and Y =

⊔k
i=1 Oi be the

G-orbit decomposition. Let V = W = R and K = [0, 1]n ⊂ Rn. For any ε > 0, let HG−equiv be a set of G-
equivariant ReLU deep neural networks from K to Rn with at most O(log(1/ε)) layers and O(kε−n/α log(1/ε))
non-zero parameters. Then, for any G-equivariant map F ∈ (Cα

B)n, there exists F̂ ∈ HG−equiv such that

sup
f∈K

∥F̂ (f) − F (f)∥Rn ≤ ε.
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Proof. Let F ∈ (Cα
B)n be a G-equivariant map and (F̃i)i∈I = Φ(F ). Then, by Theorem 1, F̃i is a StabG(yi)-

invariant continuous function on K. By Theorem 4, there is an element ̂̃F i in HStabG(yi)-inv such that

sup
f∈K

| ̂̃F i(f) − F̃i(f)| ≤ ε.

We set F̂ = Ψ(( ̂̃F i)i∈I). Then, by the similar argument in inequality equation (15), we have

sup
f∈K

∥F̂ (f) − F (f)∥Rn ≤ sup
i∈I

sup
f∈K

| ̂̃F i(f) − F̃i(f)| ≤ ε.

Now, F̂ has at most O(log(1/ε) layers and O(kε−n/α log(1/ε)) non-zero parameters because of the assump-
tions for ̂̃F i (i = 1, 2, . . . , k). This concludes the proof.

6 Conclusion

In this study, we explained a fundamental relationship between equivariant maps and invariant maps for
stabilizer subgroups. The relation allows any equivariant tasks for a group to be reduced to some invariant
tasks for some stabilizer subgroups. As an application of this relation, we proposed the construction of
universal approximators for equivariant continuous maps by using some invariant deep neural networks.

Although our model is different from the other standard models introduced by Zaheer et al. (2017) or
Maron et al. (2019b), the number of parameters of our models is fewer than fully connected models. Moreover,
by the relation, we showed inequalities of the number of parameters of invariant or equivariant deep neural
networks to approximate any continuous invariant/equivariant maps. We also showed an approximation rate
of G-equivariant ReLU deep neural networks for elements of a Hölder space for finite group G.

The invariant-equivariant relation is fundamental and applicable to a wide variety of situations. We
believe that this study will lead to further research in the field of machine learning.
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A Groups, actions, and orbits

To introduce a precise statement of the main theorem, we briefly review several notions of groups, actions, and
orbits. In general, a group is a set of transformations and an action of the group on a set is a transformation
rule. This is further explained in the following examples. For more details, we refer the readers to Rotman
(2012).

Let G be a set with a product στ ∈ G for any elements σ, τ of G. Then, G is called a group if G satisfies
the following conditions:

1. (Existence of the unit) There is an element ϵ ∈ G such that ϵσ = σϵ = x for all σ ∈ G.

2. (Existence of the inverse element) For any σ ∈ G, there is an element σ−1 ∈ G such that σσ−1 =
σ−1σ = ϵ.

3. (Associativity) For any σ, τ, ϕ ∈ G, (στ)ϕ = σ(τϕ).

We call G a finite group if the number of elements of G is finite. If the product of G is commutative, i.e.,
for any σ, τ ∈ G, στ = τσ holds, then G is called an abelian (or a commutative) group. Let G be a group
and H a subset of G. We call H a subgroup of G if H is a group with the same product as that of G.
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Example 4. (i) The permutation group Sn is one of the most important examples of finite groups:

Sn = {σ : {1, . . . , n} → {1, . . . , n} | bijective}

and the product of σ, τ ∈ Sn is given by the composition σ ◦ τ as maps. The permutation group Sn is also
called by the symmetric group.

(ii) The special orthogonal group SO2(R) is also an abelian group:

SO2(R) = {A ∈ R2×2 | A⊤A = I, det A = 1}

=
{(

cos θ sin θ
− sin θ cos θ

) ∣∣∣∣ θ ∈ [0, 2π)
}

,

where I is the 2 × 2 unit matrix. As seen above, the elements of SO2(R) include the rotations on R2.

Next, we review group actions on sets. Let X be a set. A left (resp. right) action of G on X is defined
as a map X → X; x 7→ σ · x for σ ∈ G satisfying the following:

1. For any x ∈ X, ϵ · x = x.

2. For any σ, τ ∈ G and x ∈ X, (στ) · x = σ · (τ · x) (resp. (στ) · x = τ · (σ · x)).

Then, we say that G acts on X from left (resp. right). Here, the reason why we call the latter a right action
is that the condition (στ) · x = τ · (σ · x) seems as if the condition “x · (στ) = (x · σ) · τ”.
Example 5. (i) The permutation group Sn acts on the set {1, 2, . . . , n} from left by the permutation σ · i =
σ(i).

(ii) The special orthogonal group SO2(R) acts on R2 from left by the rotation transformations.

We introduce a subgroup that is often considered in this article. Let G be a group acting on a set X from
left. For an element x ∈ X, the subset StabG(x) of G consisting of elements stabilizing x is a subgroup of G:

StabG(x) = {σ ∈ G | σ · x = x}.

This group StabG(x) is called the stabilizer subgroup of G with respect to x.

Next, we introduce the notion of orbits by the group actions. An orbit is the set of elements obtained by
transformations of a fixed base element. Let G be a group acting on X from left. Then, for x ∈ X, we define
the G-orbit Ox of x as

Ox = G · x = {σ · x | σ ∈ G}.

Then, it is easy to demonstrate that X can be decomposed into a disjoint union of the G-orbits X =
⊔

i∈I Oxi
.

We call this the G-orbit decomposition of X. We remark that the index set I might be infinite.
Example 6. (i) We consider the permutation action of Sn on X = {1, 2, . . . , n}. Then, the orbit of 1 ∈ X
is same as X, i.e., X = O1 = Sn · 1.

(ii) The orbit of X ∈ R2 of the action of SO2(R) on X = R2 is same as

OX =
{

{(a, b) ∈ R2 | a2 + b2 = ∥X∥2
2} if X ̸= 0,

{0} if X = 0.

When ∥X∥2 = r, then we can represent the orbits as O(r,0) = OX . Hence, the orbit decomposition of X = R2

is same as X =
⊔

r≥0 O(r,0).

Let H be a subgroup of a finite group G. Then, H acts on G from left and right by the product: For
τ ∈ H and σ ∈ G, τ acts on σ from left (resp. right) by σ 7→ τσ (resp. σ 7→ στ). For any σ ∈ G, we define
the set

σH = {στ ∈ G | τ ∈ H}.
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This is nothing but the right H-orbit of σ for the above right action of H on G. This is called the left coset
of H with respect to σ. Because the left coset is identical to the H-orbit for the right action of H, we can
decompose G into a disjoint union of the left cosets as a H-orbit decomposition:

G =
⊔
i∈I

σiH.

We refer to this as the left coset decomposition of G by H. We define G/H as the set of the left cosets of G
by H:

G/H = {σiH | i ∈ I}.

The right cosets, the right coset decomposition, and the set of right cosets H\G are also defined similarly.

Then, a relation exists between an orbit and a set of cosets:
Proposition 2. Let G be a group acting on a set X from left. For any x ∈ X, the map

G/StabG(x) → Ox; σStabG(x) → σ · x

is bijective. In particular, if G/StabG(x) = {σiStabG(x) | i ∈ I}, then the orbit of x inX can be written by
Ox = {σi · x | i ∈ I}.

Proof. It is easy to check well-definedness and bijectivity.

Example 7. (i) For G = Sn acting on {1, 2, . . . , n}, the G-orbit of 1 was only one, i.e.,

O1 = σ · 1 = {1, 2, . . . , n}.

Hence, by Proposition 2, the following map is bijective:

Sn/StabSn
(1) → {1, 2, . . . , n}; σStabSn

(1) 7→ σ(1).

(ii) For G = SO2(R), the orbit could be represented by O(r,0) = SO2(R) · (r, 0) for r ≥ 0. Then, the stabilizer
subgroup of SO2(R) for (r, 0) is

StabSO2(R)((r, 0)) =
{

{I} if r > 0,

SO2(R) if r = 0.

By Proposition 2, the map

SO2(R)/StabSO2(R)((r, 0)) → O(r,0); σStabSO2(R)((r, 0)) 7→ σ · (r, 0)

is bijective for any r ≥ 0. Indeed, this is compatible with Example 6 (ii).

One reason for the importance of the permutation group Sn is the following proposition:
Proposition 3. Any finite group G can be realized as a subgroup of Sn for some positive integer n.

Proof. Let n := |G| and G = {σ1, σ2, . . . , σn}. For any σ ∈ G, σσi = σj for some j ∈ {1, 2, . . . , n}, because
the product σσi is in G. We set τσ(i) = j. Then, we define a map τ : G → Sn; σ 7→ τσ. This map is injective
and preserves the product, i.e., τσσ′ = τστσ′ . Through this map, G can be regarded as a subgroup of Sn.

B Theoretical explanation of Remark 1

To explain the architecture of our models, we introduce some notions of representation theory.

Let G be a finite group, V be a vector space over R, and GL(V ) be the group of the automorphisms
of V . Here, an automorphism of V is a linear bijection from V to V . Then, a group homomorphism
ρ : G → GL(V ) is called a (linear) representation of G on V . Defining a representation ρ : G → GL(V ) is
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equivalent to defining an action of G on V by ρ. Then, it is also known that considering a representation
ρ : G → GL(V ) is equivalent to considering an R[G]-module V . Here, R[G] is the group algebra defined as

R[G] =
{∑

σ∈G

aσσ

∣∣∣∣∣ aσ ∈ R

}
.

Moreover, for an algebra A with unit 1, an A-module M is an abelian group with summation +, endowed
with a “scalar product” by A , denoted as ·, satisfying

σ · (x + x′) = σ · x + σ · x′,

(σ + τ) · x = σ · x + τ · x,

(στ) · x = σ · (τ · x),
1 · x = x

for σ, τ ∈ A and x, x′ ∈ M . This means that an A-module is an analog of a vector space with the scalar
product by algebra A. When a representation ρ : G → GL(V ) is given, V can be regarded as an R[G]-module
by the action (∑

σ∈G

aσσ

)
· v =

∑
σ∈G

aσρ(σ)(v).

for
∑

σ∈G aσσ ∈ R[G] and v ∈ V .

Two representations (ρ, V ), (ρ′, V ′) of a group G are called isomorphic, denoted (ρ, V ) ≃ (ρ′, V ′) if there
is a linear isomorphism Ξ: V → V ′ satisfying the commutativity

Ξ(ρ(σ)(v)) = ρ′(σ)(Ξ(v)) (16)

for any σ ∈ G and v ∈ V . A linear map (not necessarily isomorphism) satisfying commutativity equation (16)
is called an intertwining operator. We set HomG(V, V ′) as the set of intertwining operators from (ρ, V ) to
(ρ′, V ′).

For a subgroup H ⊂ G and a representation ρ : G → GL(V ), the restriction map ρ|H : H → GL(V )
is a representation of H on V . This representation is called the restricted representation of ρ to H and
denoted by ResG

H(ρ). Then, considering the restricted representation ρ|H is equivalent to considering V as
an R[H]-module.

On the other hand, for a subgroup H ⊂ G and a representation ρ′ : H → GL(W ) of H on W , the
coefficient extension of R[H]-module W to R[G]

R[G] ⊗R[H] W

is an R[G]-module. Here, the tensor product R[G] ⊗R[H] W is defined as the quotient (R[G] × W )/∼ of the
direct product R[G] × W , by the equivalent relation ∼ which is defined for σ, σ′ ∈ R[G], τ ∈ H, w, w′ ∈ W
and c ∈ R by:

(σ + σ′, w) ∼ (σ, w) + (σ′, w),
(cσ, w) ∼ (σ, cw),

(σ, w + w′) ∼ (σ, w) + (σ, w′),
(στ, w) ∼ (σ, ρ′(τ)(w)) .

Then, the action of σ′ ∈ G on an element σ ⊗ w ∈ R[G] ⊗R[H] W is defined by

σ′(σ ⊗ w) = (σ′σ) ⊗ w.

We call the representation defined by this the induced representation of ρ′ to G and denote by IndG
H(ρ′). We

remark that the following equality holds:

στ ⊗ w = σ ⊗ ρ′(τ)(w)
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for any σ ∈ G, τ ∈ H, w ∈ W . Let G =
⊔m

i=1 Hσi be the right coset decomposition of G by H. Then, we
have the directed sum decomposition

R[G] =
m⊕

i=1
σ−1

i R[H]. (17)

By equation (17), we have

R[G] ⊗R[H] W =
(

m⊕
i=1

σ−1
i R[H]

)
⊗R[H] W =

m⊕
i=1

σ−1
i ⊗R[H] W ≃ W m

Therefore, the dimension of R[G] ⊗R[H] W is m dim W = (G : H) dim W , where (G : H) is the index of H in
G.

Let G ⊂ Sn be a finite group, F : V n → W n be a G-equivariant continuous map, and let Y =
{1, 2, . . . , n} =

⊔m
i=1 Oyi

be a G-orbit decomposition with Oyi
= {σ−1(yi) | σ ∈ G} of yi ∈ Y . By Theorem 1,

we have Φ(F ) = (F̃i)m
i=1 for the StabG(yi)-invariant continuous map F̃i(·) = F (·)(yi). Then, we have an

approximator ̂̃F i : V n → W as a StabG(yi)-invariant deep neural network of the StabG(yi)-invariant map
F̃i (cf. Segol & Lipman (2019), Ravanbakhsh (2020)) and, by Theorem 2, can reconstruct an approximator
F̂ = Ψ(( ̂̃F i)m

i=1).

Let G =
⊔ℓi

j=1 StabG(yi)σij be a right coset decomposition for StabG(yi). Then, by Proposition 2, we

have Oyi
= {σ−1

ij (yi) | j = 1, . . . , ℓi}. By using this, an approximator F̂ of F is constructed from ( ̂̃F i)m
i=1 by

F̂ (X) = (( ̂̃F i(σij · X)ℓi
j=1)m

i=1 (18)

for X = (x1, . . . , xn) ∈ V n.

We focus on a StabG(yi)-invariant approximator ̂̃F i : V n → W . By Segol & Lipman (2019), we assume
that ̂̃F i can be realized as a deep neural network model as

V n φ
(i)
1−→ (V (i)

1 )n φ
(i)
2−→ (V (i)

2 )n φ
(i)
3−→ . . .

φ
(i)
d−→ (V (i)

d )n
φ

(i)
d+1−→ (V (i)

d+1)n = W n,

where V
(i)

k is a finite dimensional vector space over R and the φ
(i)
k is a map defined by

φ
(i)
k (X) = ReLU(W (i)

k X + B
(i)
k )

for X ∈ (V (i)
k−1)n, W

(i)
k ∈ Rn dim V

(i)
k

×n dim V
(i)

k−1 , and B
(i)
k = (b(i)

k1 , . . . , b
(i)
kn) ∈ (V (i)

k )n such that W
(i)
k (resp.

B
(i)
k ) is StabG(yi)-equivariant (resp. StabG(yi)-invariant), i.e., for any X ∈ (V (i)

k−1)n and any σ ∈ StabG(yi),

W
(i)
k (σ · X) = σ · (W (i)

k X), σ · B
(i)
k = B

(i)
k

holds. Here, StabG(yi) ⊂ G ⊂ Sn acts on (V (i)
k )n by the restriction of the permutation action.

By combining the equation (18) and this notation, the weight matrix from the input layer V n to the first
hidden layer

⊕m
i=1
⊕ℓi

j=1(V (i)
1 )n of F̂ is

((W (i)
1 σij)ℓi

j=1)m
i=1.

Then, by the action of σ ∈ G, we have

W
(i)
k σij(σ · X) = W

(i)
k ((σijσ) · X)

= W
(i)
k ((τσij′) · X)

= W
(i)
k τ(σij′ · X)

= τW
(i)
k (σij′ · X),
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where j′ ∈ Y and τ ∈ StabG(yi) are determined by σijσ = τσij′ ∈ StabG(yi)σij′ .

In particular, by the action of σ ∈ G, the (i, j)-th part W
(i)
k σij(X) ∈ (V (i)

k )n is replaced by (i, j′)-th part
τW

(i)
k (σij′ · X) with the action of τ = σijσσ−1

ij′ ∈ StabG(yi). From this observation, we define the action of
G on the i-th part

⊕ℓi

j=1(V (i)
k )n as follows: For σ ∈ G and j = 1, 2, . . . , ℓi, we define ϕ

(i)
σ (j) ∈ {1, 2, . . . , ℓi}

such that

σijσ = τσ
iϕ

(i)
σ (j) ∈ Hiσiϕ

(i)
σ (j). (19)

Then, for V (i) = (v(i)
j )ℓi

j=1 ∈
⊕ℓi

j=1(V (i)
k )n ⊂

⊕m
i=1
⊕ℓi

j=1(V (i)
k )n, we define the action of σ ∈ G by

σ ∗ V (i) = ((σijσσ−1
iϕ

(i)
σ (j)

) · v
(i)
ϕ

(i)
σ (j)

)ℓi
j=1. (20)

The following theorem shows that this action ∗ of G is equivalent to the induced representation of the
restricted representation on (V (i)

k )n.

Theorem 5. For our proposed model, we define the action of G on the k-th layer
⊕m

i=1
⊕ℓi

j=1(V (i)
k )n by the

action ∗ defined in equation (20). Then, the representation defined by the action ∗ is isomorphic to the sum
of the induced representation of the restrictions

m⊕
i=1

IndG
StabG(yi)(ResG

StabG(yi)((V
(i)

k )n)).

Moreover, for any k ≥ 1, any affine maps from (k −1)-th layer to k-th layer are G-equivariant for the action
∗. (Only for the input layer, the action is the restriction of the permutation action to G.)

Proof. We set Hi = StabG(yi) and G =
⊔ℓi

j=1 Hiσij . For i-th part, the induced representation of the
restricted representation of (V (i)

k )n can be regarded as the R[G]-module

R[G] ⊗R[Hi] (V (i)
k )n =

ℓi⊕
j=1

σ−1
ij ⊗ (V (i)

k )n.

Then, by the action of σ, an element σ−1
ij ⊗ v ∈

⊕ℓi

j=1 σ−1
ij ⊗ (V (i)

k )n is changed as

σ · (σ−1
ij ⊗ v) = (σσ−1

ij ) ⊗ v = (σijσ−1)−1 ⊗ v

= (τσij′)−1 ⊗ v = σ−1
ij′ τ−1 ⊗ v = σij′ ⊗ (τ−1 · v), (21)

where j′ ∈ Y and τ ∈ Hi are determined by σijσ−1 = τσij′ ∈ Hiσij′ . We remark that this j′ is equal to
ϕ

(i)
σ−1(j) by the notation defined in equation (19). This means that by the action of σ ∈ G, the (i, j)-th part

σ−1
ij ⊗ v is replaced to the (i, ϕ

(i)
σ−1(j))-part σ

iϕ
(i)
σ−1 (j) ⊗ (τ · v) with the action of τ = σijσ−1σ−1

iϕ
(i)
σ−1 (j)

∈ Hi.

We define the map Ξ from the i-th part of k-th hidden layer
⊕ℓi

j=1(V (i)
k )n to R[G] ⊗R[Hi] (V (i)

k )n =⊕ℓi

j=1 σ−1
ij ⊗ (V (i)

k )n by

Ξ: V (i) = (v(i)
j )ℓi

j=1 7−→
ℓi∑

j=1
σ−1

ij ⊗ v
(i)
j .
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By definition, this map is bijective and equivariant for the action ∗ of σ ∈ G on
⊕ℓi

j=1(V (i)
k )n by equation (20)

and on R[G] ⊗R[Hi] (V (i)
k )n by equation (21). Indeed, we have

Ξ(σ ∗ V (i)) = Ξ(((σijσσ−1
iϕ

(i)
σ (j)

) · v
(i)
ϕ

(i)
σ (j)

)ℓi
j=1)

=
ℓi∑

j=1
σ−1

ij ⊗ (σijσσ−1
iϕ

(i)
σ (j)

) · v
(i)
ϕ

(i)
σ (j)

=
ℓi∑

j=1
σ−1

ij (σijσσ−1
iϕ

(i)
σ (j)

) ⊗ v
(i)
ϕ

(i)
σ (j)

=
ℓi∑

j=1
(σσ−1

iϕ
(i)
σ (j)

) ⊗ v
(i)
ϕ

(i)
σ (j)

= σ

ℓi∑
j=1

σ−1
iϕ

(i)
σ (j)

⊗ v
(i)
ϕ

(i)
σ (j)

= σ

ℓi∑
j=1

σ−1
ij ⊗ v

(i)
j = σ · Ξ(V (i)).

This means that
⊕ℓi

j=1(V (i)
k )n and R[G] ⊗R[Hi] (V (i)

k )n are isomorphic as R[G]-modules.

The equivariance of affine maps is deduced by the definition of the action ∗. This concludes the proof.

C Theoretical explanation of Remark 2

In the remaining part, we argue about the number of parameters of the affine maps between layers. If a
weight matrix between two layers of neural networks is equivariant by some G-action, this can be regarded as
an intertwining operator. To count the number of parameters of intertwining operators, we need the notion
of irreducible representations. We here review these notions briefly.

For a representation (ρ, V ) of group G, we call a subspace W ⊂ V G-invariant subspace if ρ(σ)(W ) ⊂
W for any σ ∈ G. Then, (ρ, W ) is also a representation of G. This representation (ρ, W ) is called a
subrepresentation of (ρ, V ). When a representation (ρ, V ) has no nontrivial subrepresentation, this is called
irreducible representation. This means that if (ρ, W ) is a subrepresentation of the irreducible representation
(ρ, V ), then (ρ, W ) is equal to (ρ, {0}) or (ρ, V ). By Maschke’s theorem (Curtis & Reiner, 1966, (10.7),(10.8)),
any finite-dimensional representation over R can be factorized to the direct sum of irreducible representations
up to isomorphic. In particular, irreducible representations are “building blocks” of representations.

By Schur’s Lemma (Curtis & Reiner, 1966, (27.3)), for two irreducible representations (ρ, V ), (ρ′V ′),
HomG(V, V ′) = 0 holds if and only if (ρ, V ) is not isomorphic to (ρ′, V ′). Thus, by this fact with Maschke’s
theorem, any intertwining operator can be factorized to the sum of intertwining operators between irreducible
representations.

For G = Sn, by the argument with Young’s diagrams, we can calculate how the irreducible representations
change by induction and restriction of them. By combining such argument and Theorem 5, we can calculate
the number of parameters of the weight matrix between the input layer and the first hidden layer as follows:
Proposition 4. For G = Sn, Sn-equivariant continuous map F : V n → W n can be recovered by one
StabSn

(1)-invariant map F̃1 as F = Ψ(F̃1). Let ̂̂F 1 be a universal approximator of F̃1 and ((V (1)
k )n)n

be the k-th hiddent layer of F̂ = Ψ( ̂̂F 1). Then, the number of free parameters of the affine map from the
input layer V n to the first hidden layer ((V (1)

1 )n)n is 5 dim V dim V
(1)

1 + 2 dim V
(1)

1 . Moreover, the number
of free parameters of the affine map from the (k − 1)-th hidden layer ((V (1)

k−1)n)n to the k-th hidden layer
((V (1)

k )n)n for k = 2, . . . , d is at most 21 dim V
(1)

k−1 dim V
(1)

k + 2 dim V
(1)

k .
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Proof. For G = Sn, StabG(1) ≃ Sn−1 holds and the left coset decomposition is Sn =
⊔n

i=1 StabG(1)(1 i).
Thus, the first hidden layer is isomorphic to R[Sn] ⊗R[Sn−1] (V (1)

1 )n for a finite vector space V
(1)

1 .

By permutation, Sn acts on the part Rn part of V n ≃ Rn ⊗R V . By the argument of Young tableau
(c.f. (James, 1987, 9.2)), the permutation representation on Rn is the sum of two irreducible representations
corresponding to the partitions λ1 = (n) (trivial representation) and λ2 = (n−1, 1) of n. On the other hand,
the representation on R[Sn]⊗R[Sn−1] (V

(1)
1 )n ≃ R[Sn]⊗R[Sn−1]Rn ⊗R V

(1)
1 is the induced representation of the

restricted representation of the permutation representation on Rn. By the argument of Young tableau again
(c.f. (James, 1987, 9.2)), the restricted representation is the sum of irreducible representations corresponding
to the partitions λ11 = (n−1), λ21 = (n−1), and λ22 = (n−2, 1) of n−1. Then, the induced representation
of it is the sum of irreducible representations corresponding to the partitions λ111 = (n), λ112 = (n − 1, 1),
λ211 = (n), λ212 = (n − 1, 1), λ221 = (n − 1, 1), λ222 = (n − 2, 2), and λ223 = (n − 2, 1, 1). Let Vλ be
the irreducible representation over R corresponding to the partition λ of n. Then, we have the irreducible
representation decomposition

R[Sn] ⊗R[Sn−1] Rn ≃ V ⊕2
(n) ⊕ V ⊕3

(n−1,1) ⊕ V(n−2,2) ⊕ V(n−2,1,1). (22)

The permutation representation can be decomposed into

Rn ≃ V(n) ⊕ V(n−1,1).

We set HomG(V, V ′) as the set of G-equivariant linear maps from an R[G]-module V to an R[G]-module V ′.
Then, by Schur’s lemma ((Curtis & Reiner, 1966, (27.3))), HomSn

(Vλ, Vλ′) = 0 holds if λ ̸= λ′. Moreover, it
is also known that

dimR HomSn
(V(n), V(n)) = dimR HomSn

(V(n−1,1), V(n−1,1)) = 1 (23)

holds. Indeed, it is known that

V(n) ≃ {c 1 ∈ Rn | c ∈ R} and
V(n−1,1) ≃ {X ∈ Rn | 1⊤X = 0},

where 1 ∈ Rn is the all one vector and 1⊤ is the transposition of vector 1 and we can show directly that
HomSn(V(n), V(n)) ≃ R and HomSn(V(n−1,1), V(n−1,1)) = R. More explicitly, we can show that

HomSn
(V(n) ⊕ V(n−1,1),V(n) ⊕ V(n−1,1))

≃ R
(

1
n

11⊤
)

⊕ R
(

I − 1
n

11⊤
)

⊂ Rn×n

where I ∈ Rn×n is the unit matrix, and (1/n)11⊤ (resp. I −(1/n)11⊤) is the identity on V(n) (resp. V(n−1,1))
and the zero map on V(n−1,1) (resp. V(n)). This implies that

HomSn
(V n,R[Sn] ⊗R[Sn−1] (V (1)

1 )n)

≃ HomSn
(Rn ⊗R V,R[Sn] ⊗R[Sn−1] Rn ⊗R V

(1)
1 )

≃ HomSn(Rn,R[Sn] ⊗R[Sn−1] Rn) ⊗R Hom(V, V
(1)

1 )

≃ (HomSn(V(n), V ⊕2
(n) ) ⊕ HomSn(V(n−1,1), V ⊕3

(n−1,1))) ⊗R Hom(V, V
(1)

1 ). (24)

Thus, by equation (23), the dimension of HomSn
(V n,R[Sn] ⊗R[Sn−1] (V (1)

1 )n) is equal to 5 dim V dim V
(1)

1 .

Next, we consider the bias vector (Bj)n
j=1 ∈ ((V (1)

1 )n)n ≃ R[Sn] ⊗R[Sn−1] (V (1)
1 )n, where Bj =

(bj1, . . . , bjn) ∈ (V (1)
1 )n. Then, by the action ∗ of Sn, (Bj)n

j=1 is invariant, i.e.,

σ ∗ (Bj)n
j=1 = ((σ1jσσ−1

1ϕ
(1)
σ (j)

) · B
ϕ

(1)
σ (j))

n
j=1 = (Bj)n

j=1.
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holds for any σ ∈ Sn.

Without of loss of generality, we may assume that σ11 is the unit element e. We consider σ = σ−1
1j0

τσ11

for τ ∈ H1 = StabSn(1), we have σ1j0σ = τσ11 = τ . In particular, ϕ
(1)
σ (j0) = 1 Thus, j0-th entry of

(σ−1
1j τ) ∗ (Bj)n

j=1 becomes

(σ1j0σσ−1
1ϕ

(1)
σ (j0)

) · B
ϕ

(1)
σ (j0) = τ · B1. (25)

Because (Bj)n
j=1 is invariant by the action ∗ of Sn,

Bj0 = τ · B1

holds for any j0 = 1, 2, . . . , n and τ ∈ StabSn(1). This implies that by τ = e, Bj = B1 holds for any
j = 1, 2, . . . , n. Furthermore, τ · B1 = B1 holds for any τ ∈ StabSn(1). Because the orbit decomposition of
{1, 2, . . . , n} by H1 = StabSn

(1) is

{1, 2, . . . , n} = {1} ⊔ {2, 3, . . . , n},

B1 = (b11, b12, . . . , b1n) satisfies that b12 = · · · = b1n. This means that the number of free parameters of
B1 (hence, of (Bj)n

j=1) is 2 dim V
(1)

1 .

Thus, the number of free parameters of the affine map from the input layer to the first hidden layer is
5 dim V dim V

(1)
1 + 2 dim V

(1)
1 .

Next, we consider the linear part of the affine map from the (k − 1)-th layer ((V (1)
k−1)n)n to the k-th layer

((V (1)
k )n)n for k > 1. Then, by Theorem 5, Sn acts on these layers by the action ∗, and the representations

defined by this action ∗ is isomorphic to the sum of the induced representation of the restricted representation.
by equation (22) and a similar argument as equation (24), we have

HomSn
(R[Sn] ⊗R[Sn−1] (V (1)

k−1)n,R[Sn] ⊗R[Sn−1] (V (1)
k )n)

≃ HomSn
(R[Sn] ⊗R[Sn−1] Rn ⊗R V

(1)
k−1,R[Sn] ⊗R[Sn−1] Rn ⊗R V

(1)
k )

≃ HomSn
(R[Sn] ⊗R[Sn−1] Rn,R[Sn] ⊗R[Sn−1] Rn) ⊗R Hom(V (1)

k−1, V
(1)

k )
≃ (HomSn(V ⊕2

(n) , V ⊕2
(n) ) ⊕ HomSn(V ⊕3

(n−1,1), V ⊕3
(n−1,1))

⊕ HomSn
(V(n−2,2), V(n−2,2)) ⊕ HomSn

(V(n−2,1,1), V(n−2,1,1))) ⊗R Hom(V (1)
k−1, V

(1)
k ).

Because the dimension of the division algebra over R is at most 4, the dimensions of HomSn
(V(n−2,2), V(n−2,2))

and HomSn
(V(n−2,1,1), V(n−2,1,1))) are at most 4. Thus, the dimension of HomSn

(((V (1)
k−1)n)n, ((V (1)

k )n)n) is
at most 21 dim V

(1)
k−1 dim V

(1)
k .

On the other hand, the number of free parameters of the bias vectors is 2 dim V
(1)

k by the similar argument
as above.
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