
Seeing-Eye Quadruped Navigation with Force
Responsive Locomotion Control

Anonymous Author(s)
Affiliation
Address
email

Abstract:1

Seeing-eye robots are very useful tools for guiding visually impaired people, po-2

tentially producing a huge societal impact given the low availability and high cost3

of real guide dogs. Although a few seeing-eye robot systems have already been4

demonstrated, none considered external tugs from humans, which frequently oc-5

cur in a real guide dog setting. In this paper, we simultaneously train a locomo-6

tion controller that is robust to external tugging forces via Reinforcement Learn-7

ing (RL), and an external force estimator via supervised learning. The controller8

ensures stable walking, and the force estimator enables the robot to respond to9

the external forces from the human. These forces are used to guide the robot to10

the global goal, which is unknown to the robot, while the robot guides the human11

around nearby obstacles via a local planner. Experimental results in simulation12

and on hardware show that our controller is robust to external forces, and our13

seeing-eye system can accurately detect force direction. We demonstrate our full14

seeing-eye robot system on a real quadruped robot with a blindfolded human.15

Before Tug During Tug After Tug

Tug Left

Figure 1: Tugs on the seeing-eye robot are used as navigation cues during blindfolded navigation.

1 Introduction16

In the typical seeing-eye dog (also known as guide dog) setting, a human holds a rigid handle17

attached to a harness on a dog. The dog will safely guide the human around nearby obstacles, while18

the human can tug on the dog to indicate which general direction to move in. Thus, the human has19

some idea of where they are, and is capable of making high-level navigation decisions, while the20

dog can better sense its immediate surroundings for obstacle avoidance and locomotion. Guide dogs21

have been shown to improve the lives of visually impaired people, via increasing independence,22

confidence, companionship, and mobility [1]. Unfortunately, guide dogs need roughly two years of23

training, and cost over $50, 000 USD per dog [2]. Despite efforts to reduce the production cost of24

guide dogs [3], their supply is still significantly lower than demand.25

To better meet this demand, and potentially improve performance, seeing-eye robot systems are26

being developed [4, 5, 6, 7, 8, 9]. There is a growing interest in the development of systems of this27

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

type, which have undergone various human studies in order to measure the extent to which they are28

compatible with visually impaired humans, and their level of societal acceptance [10, 11, 12]. While29

these seeing-eye robot systems have successfully demonstrated navigation tasks, none of them have30

considered settings involving human tugs, which is very common for seeing-eye dogs. It’s important31

for seeing-eye robots to be robust to human forces, as the human is constantly holding a rigid handle32

directly attached to the robot, and large forces can cause the robot to stray from the optimal path, or33

even fall over. Furthermore, a typical method of communication between a human and a real guide34

dog is through tugs. This makes force estimation useful for a seeing-eye robot, as knowledge of the35

direction and magnitude of the applied force can be used to better facilitate navigation according to36

the human’s intentions (see Figure 1).137

To address the above mentioned issues in human-robot communication, we develop a novel seeing-38

eye robot system which is robust to external forces, and estimates the magnitude and direction39

of these forces to determine which navigation actions to take for human-robot co-navigation. We40

achieve this by simultaneously training a locomotion controller via RL, and a force estimator via41

supervised learning. Our locomotion policy is trained over simulated tugs by sampling different42

base velocities which are suddenly applied to the robot [13]. These tugs serve as labels for training43

our force estimator, and are estimated during deployment.44

While the controller is running on a real robot, the force estimator estimates the direction and mag-45

nitude of force the human applies. These force estimates are computed exclusively from sensors46

onboard the robot (joint encoders and IMU). From force estimates, the robot detects when and in47

what direction the human tugs occur. This informs the robot which direction to go at a global level,48

while a local planner using information from a LIDAR sensor is used to navigate the immediate49

environment. Different from existing seeing-eye robot systems that require major hardware up-50

grades, e.g., customized traction device [6], or button interface [7], our seeing-eye system needs is51

compatible with any attachable leash or handle.52

Our main contributions include the following:53

1. The first seeing-eye robot system which takes directional cues via human tugs, while also54

safely navigating the immediate environment.55

2. A force tolerant locomotion controller, jointly trained with a force estimator which can56

estimate the magnitude and direction of human forces.57

3. Experimental results in simulation and on hardware to evaluate the robustness of our loco-58

motion controller and accuracy of our force estimator.59

4. Demonstration of our seeing-eye robot system in an indoor environment with a blindfolded60

human.61

2 Related Work62

Various seeing-eye robot systems have been demonstrated for the task of blindfolded navigation.63

Among these works, one of them considers an MPC-based motion planner for a wheeled robot [4].64

Another considers an optimization based approach for path planning, which models a taut or slack65

leash [5]. A third system designs an adjustable leash, and optimizes for human comfort during66

navigation [6]. These works all stray from real-world guide dog settings, in part because they assume67

the robot has full knowledge of the destination beforehand, and that the human does not need to68

communicate with the robot during navigation. In real-world settings, the human must decide on69

which high-level navigation actions to take, and communicate these actions to the robot.70

More similar to our work, other approaches consider settings where the human communicates high-71

level directions to the robot during navigation [7, 8]. However, the medium of communication in72

1The term of “Seeing-eye robots” has been used by researchers that refer to quadruped robots to guide
visually-challenged people [26]. Although our robot doesn’t use vision, it serves as a seeing-eye platform
through its Lidar sensors for navigation and obstacle avoidance.

2

State Buffer

Privileged Info

Force Estimator

Base Velocity
 Estimator

.

.

.
.
.
.

Locomotion Policy

.

.

. .
.
.

.

.

.

PD Controller

Target Joint
Angles

Joint Torques

Robot State

Sensor Readings

Train Deploy Navigation
System

Local
Navigation Goal

Navigation
Goal Selection

Force
Direction

Velocity
Command

Estimated
Force

Target Joint
Angles

PD Controller

Joint
Torques

Controller

Velocity
Estimator

Force
Estimator

Policy

Peak Detection

State Buffer

Robot State Privileged Info

Force Estimator

Base Velocity
 Estimator

Locomotion Policy

.

.

. .
.
.

.

.

.

PD
Controller

Target
Joint Angles

Joint
Torques

Sensor
Readings

Train Deploy
Navigation

System

Controller
Local

Navigation
Goal

Navigation
Goal Selection

Force
Direction

Velocity Command

Estimated
Force

Target Joint
Angles

PD Controller

Joint
Torques

Force
EstimatorPolicy

Velocity
Estimator

Peak Detection

.

.

. .
.
.

.

.

.

Figure 2: Overview of our approach. Our locomotion controller (circled in red) contains a velocity
estimator, force estimator, and locomotion policy, all of which are trained in simulation. The base
velocity estimator and force estimator are trained via supervised learning, using privileged infor-
mation from the simulator as labels. The locomotion policy is trained via RL, and outputs target
joint angles to a PD controller which converts them to joint torques which are directly applied to
the robot. During deployment, our locomotion controller estimates external force at each time step.
Force direction is derived from peaks in the estimated force signal. The direction of force determines
the next local navigation goal for our navigation system to take, which returns velocity commands
to our controller.

these works are either a custom designed handle with buttons [7], or predefined directional actions73

prior to navigation [8]. In our work, the human communicates directional cues via tugging, and is74

compatible with any rigid connection to the robot. Additionally, neither of these works consider75

human forces being applied to the robot, making their systems unresponsive or susceptible to failure76

upon navigation under human forces.77

Numerous quadruped controllers robust to external forces have already been developed [14, 15, 16].78

However these works don’t explicitly estimate the applied forces, as the focus of these works is to79

develop controllers that are generally robust to varying environments. In our work, we explicitly es-80

timate forces to the robot generated by human tugs, in order to communicate the human’s navigation81

intentions with the robot.82

3 Method83

In this section, we present our seeing-eye robot system that is robust and responsive to external84

forces from human tugs. Figure. 2 presents an overview of how we train our locomotion controller,85

and deploy for seeing-eye navigation.86

3.1 Locomotion Controller87

We train our locomotion controller via RL, which models environments as a Markov Decision Pro-88

cess (MDP). An MDP is defined as M = (S,A, T,R, γ), where S is the set of states, A is the set of89

actions, T : S ×A× S → [0, 1] is the transition function which outputs the probability of reaching90

state s′ given state s and action a, R : S×A×S → R is the reward function which returns feedback91

from taking action a from state s and ending up in state s′, and γ ∈ [0, 1] is the discount factor which92

determines how valuable future reward should be considered in comparison to immediate reward.93

We define a robot state at time t as xt = (c, v̇,q, q̇,at−1), where c = (cx, cy, cω) is the commanded94

base linear and angular velocity, v̇ is the base acceleration, q and q̇ are the joint angles and velocities95

respectively, and at−1 is the action taken at time t − 1. Actions are target joint angles, which are96

converted to torques via a PD controller. The reward function encourages tracking commands c97

while minimizing energy consumption and large action changes [13] – fully defined in Table 1.98

3

Table 1: All terms of the reward function our locomotion policy is trained on. v refers to base
velocity, c refers to commanded linear and angular base velocity, ω refers to base angular velocity,
τ refers to joint torques, q̇ refers to joint velocities, tair refers to each foots air time, a refers to an
action, and dt refers to the simulation time step.

Term Description Definition Scale
Linear Velocity x, y exp(−∥cx,y − vx,y∥2/0.25) 1.0dt

Linear Velocity z v2
z −2.0dt

Angular Velocity x, y ∥ωx,y∥2 −0.05dt
Angular Velocity z exp(−(cω − ωz)

2/0.25) 0.5dt
Joint Torques ∥τ∥2 −0.0002dt

Joint Accelerations ∥(q̇last − q̇)/dt∥2 −2.5e− 7dt

Feet Air Time
∑4

f=1(tair,f − 0.5) 1.0dt

Action Rate ∥alast − a∥2 −0.01dt

Our locomotion policy also takes the base velocity and external force vector as input, to more easily99

learn to track commands c and respond to external forces. These variables are not easily estimated100

through robot sensors. Thus, we train state estimators via supervised learning over privileged infor-101

mation, which has been shown to be more effective than classical methods, e.g., Kalman Filters [17].102

It is a common setting to learn with privileged information in simulation, and insert a corresponding103

state estimator in real-world deployment. In line with those systems, we train a velocity estimator104

and force estimator for the real robot to bridge the sim-to-real gap in locomotion policy learning.105

These estimators are trained jointly with the locomotion policy, where v = (vx, vy, vz) is ground106

truth base velocity, and F = (Fx, Fy, Fz) is ground truth external force, both obtained as privileged107

information from the simulator.108

Two variations of forces are applied to the robot during training. One variation is small and frequent109

backward pushes, which are designed to simulate a human following the robot with a taut leash,110

where a human incidentally applies frequent small backward forces on the robot as they are being111

guided. The other variation is larger, less frequent pushes occurring in any direction. These pushes112

are designed to simulate human directional tugs, in which the human intentionally tugs the robot to113

communicate the direction they want to move in. The force estimator is only trained on data from114

the second variation of tugs, as we do not want to detect the small, incidental backward tugs which115

naturally occur during guided navigation.116

The base velocity estimator is a multilayer perceptron (MLP), whose parameters are updated over117

the same data as the locomotion policy. To estimate forces, we find it helpful to access a history118

of states, to better capture the robot’s behavior over the duration of the applied force. Thus, similar119

to training adaptation modules [18], our force estimator uses 1-D convolutional layers to capture120

temporal relationships between states. Force estimator parameters are updated less frequently than121

the base velocity estimator and locomotion policy, because most time steps do not include external122

forces. Thus, most of the labels for our force estimator includes zero vectors, indicating that no123

force was applied at those time steps. This causes imbalanced training data, which we resolve by124

only training the force estimator when the training data contains nonzero forces. We then further125

re-balance this to ensure at most 20% of the force estimator’s training samples include zero vectors126

as labels.127

3.2 Seeing-eye Robot Navigation128

To perform navigation tasks with our seeing-eye robot, we need to estimate when and in what general129

direction a force is being applied. This is done by running peak detection [19] on the previous 200130

time steps of the estimated force signal Fy , at a rate of 2Hz. In this work, we only analyze Fy ,131

to determine whether a left or right tug has occurred. A peak in the signal indicates that the force132

estimator detected a significant external force applied to the robot. Thus, if a peak is detected within133

the past 50 time steps, then we consider it as a recent tug applied by the human. Positive peaks134

correspond to left tugs, while negative peaks correspond to right tugs.135

4

Start
End

Navigate
through narrow
doorway

Move around
person

Turn left

Figure 3: Map of our navigation environment. Yellow circles correspond to decision points, where
the human needs to decide which direction to move in via tugging. The blue lines indicate the path
the human took in our demonstration.

Local navigation goals are then selected based on the robot’s location, orientation, and tug direction.136

A domain expert manually labels a map with decision points, where the human must decide which137

direction to go in next, based on the direction they came from, and their tug direction. A labelled138

map of the hallway domain we demonstrate our system on can be seen in Figure 3.139

The local navigation goal is then sent to our navigation system, which uses a LIDAR sensor to140

localize itself on the map via AMCL [20], and compute local plans via DWA [21]. The local planner141

returns velocity commands c to our controller, which our controller tracks.142

4 Implementation Details143

We use Isaac Gym [22] physics simulator, and train our controller with 2048 robots in parallel [13].144

Our locomotion policy is trained via PPO [23], while our base velocity estimator and force estimator145

are trained via supervised learning, with Mean Squared Error loss. Our locomotion policy and146

base velocity estimator are both MLPs with three and two hidden layers respectively, while our147

force estimator is a convolutional neural network with three 1-D convolutional layers, which makes148

predictions over the past 25 time steps. The PD controller converts target joint angles to torques149

with proportional gain set to 20 and derivative gain set to 0.5. The policy is queried at 50Hz, and150

control signals are sent at 200Hz. New velocity commands are sampled after each episode, where151

cx, cy , and cω are sampled uniformly from [-1,1]. An episode terminates when any link other than a152

foot touches the ground, the base height is below 0.25 meters, or the episode has lasted 20 seconds.153

To better facilitate sim-to-real transfer, we train over RANDOM UNIFORM TERRAIN which increases154

in difficulty based on a curriculum [13]. We also include noise in observations, and domain random-155

ization over different surface frictions.156

We add random external forces in our environment, to improve robustness of our locomotion policy157

and collect data to train our force estimator. The small and frequent backward pushes occur every 0.6158

seconds, have a duration of 0.1 seconds, and sets the base velocity to 0.25 m/s backward. Meanwhile,159

the large and infrequent pushes used to train the force estimator occur every 3 seconds, have a160

duration sampled from [0.24, 0.48] seconds, and sets the base velocity to a vector sampled from161

Fx ∈ [−0.75, 0.75], Fy ∈ [−0.75, 0.75], and Fz ∈ [0, 0.1]. Note that forces from F are implemented162

as spontaneous updates in base velocity.163

5 Experiments164

We design experiments to evaluate the robustness of our controller, and accuracy of our force esti-165

mator. Although we are able to learn a force estimator in simulation, we could not directly evaluate166

it in the real world due to the missing ground-truth values. Instead, we chose to evaluate tug detec-167

tion (LEFT, RIGHT, and NONE) on the real robot, where the participants followed our instructions,168

5

Table 2: Our learned controllers fell significantly less frequently, and better tracked velocity com-
mands under external forces when compared to an MPC controller. Including the output of the force
estimator in the state marginally improved robustness. The large variance in drift is caused by the
large range of force strengths and directions we sample from.

Controller Proportion Fell Drift from Trajectory
MPC 0.5990 1.1256± 0.5908

Learned No Est 0.1904 0.6824± 0.5447
Learned Est 0.1762 0.6790± 0.5309

and hence ground truth was available. We then demonstrate our full seeing-eye system via guiding169

a blindfolded human.170

5.1 Force Tolerance Evaluation171

To evaluate whether our learned force controller is actually robust to external forces, we run exper-172

iments in simulation where we apply random forces to the base of the robot. In each trial, a single173

force in a random direction is applied, whose duration is sampled from [0.25, 0.5] seconds, and174

strength is sampled from [25, 100] Newtons. Meanwhile, the robot is commanded to walk forward175

at 0.5 meters/second, for a duration of five seconds.176

We run this experiment on three different types of locomotion controllers, for 1000 trials each. The177

controllers include a commonly used MPC controller [24], a variant of our learned controller which178

does not consider estimated force in its state (referred to as Learned No Est), and our controller179

described in Section 3.1 (referred to as Learned Est). All controllers are deployed in PyBullet [25].180

We measure how frequently the robot fell across all trials (Proportion Fell), and how far the external181

force caused the robot to drift from its current trajectory on average (Drift from Trajectory). We182

consider a robot to have fell if a non-foot part of the robot touches the ground. Results are reported183

in Table 2, which indicate that our learned controllers fell significantly less frequently, and better184

maintained velocity tracking under external forces than the MPC controller. Including estimated185

forces in the state appears to marginally improve robustness. Note that for our two types of learning-186

based controllers, we train over five different random seeds each and average the results.187

5.2 Force Estimation Evaluation188

We evaluate the accuracy of our force estimator through experiments in simulation, and on hardware.189

5.2.1 Simulation190

−0.2
0.0

0.5

1.0

Ac
cu

ra
cy Full State

Only Vel

25 30 35 40 45 50 55 60
Force applied (in Newtons)

−0.2
0.0

0.5

1.0

Fa
lse

 P
os

iti
ve

 R
at

e

Full State
Only Vel

Force Detection Accuracy and False Positive Rate

Figure 4: We report the accuracy and
false positive rate of our force estima-
tors, given forces of varied strength.
The shaded region indicates the stan-
dard deviation between the five policies
trained over five different random seeds.

We deploy our learned controllers in PyBullet with a ve-191

locity command of 0.5 meters/second, and a single ex-192

ternal push per trial, for 1000 trials. Each push has a193

force whose x-component is sampled from [-50, 50] New-194

tons, and a y-component which is at a fixed magnitude,195

and random direction (either left or right). There are196

three possible classes the force estimator can predict over:197

{LEFT, RIGHT, NONE}. Each trial includes 150 time198

steps and takes 3 seconds. In each trial, the force estima-199

tor is queried every 25 time steps, or six total queries per200

trial. Thus, in each trial, the force estimator makes a total201

of six predictions. A trial is deemed correct if one of the202

six queries matches the force direction being applied in203

the simulator.204

In order to evaluate whether force direction can be esti-205

mated through only a history of base velocities, we train206

a baseline force estimator which only makes force esti-207

mates based on a history of ground-truth base velocity208

and base velocity commands. We refer to this baseline as209

6

only vel, while our force estimator trained over the full state and described in Section 3.1 is referred210

to as full state.211

In Figure 4, we report the accuracy and false positive rates of our force estimators over varying212

force strengths. Accuracy is computed by dividing the number of trials in which the force estimator213

predicted the correct force direction at any of the six queries in the trial, by the number of total214

trials. Computing accuracy alone in this manner is not informative enough, because it is possible to215

achieve high accuracy by predicting LEFT at one point in the trial, and RIGHT at a different point216

within the same trial.217

Thus, we also consider the false positive rate, which we compute by dividing the number of extra218

forces (LEFT or RIGHT predicted when ground truth is NONE) predicted during the trial, by the219

number of times the force estimator is queried (every 25 time steps). A high false positive rate corre-220

sponds to the force estimator oftentimes predicting forces when they do not occur. As force strength221

increases, our estimators achieve a higher accuracy while maintaining a relatively low false positive222

rate. Results indicate that knowledge of the full state is significantly beneficial in estimating force223

direction, when compared to a force estimator which is only trained over base velocity information.224

5.2.2 Hardware225

When a human tugs our seeing-eye robot with sufficient force, the base of the robot will momentarily226

accelerate in the direction of the tug. Thus, one might wonder why we do not consider accelerometer227

signals to detect tug direction, rather than train a force estimator. In this sub-section, we validate the228

usefulness of our estimated force signals, which we compare to accelerometer readings.229

Figure 5: Measured acceleration (top) and
estimated force (bottom) during a single
trial. Tugs are denoted by red boxes.

In this experiment, we command a real Unitree A1230

robot to move forward at 0.5m/s, while a human par-231

ticipant tugs left after a few seconds of forward lo-232

comotion, followed by a right tug after another few233

seconds of locomotion. This trial is performed by234

four human participants, three of which have no prior235

experience in operating this tugging interface. Each236

participant is a robotics researcher in a university lab.237

The three participants with no prior experience with238

this system were given a demonstration of an example239

trial, before completing their own trials. In total, 42240

trials were conducted, and data was collected from241

40 trials (two trials were removed due to the robot242

falling over and data not being saved). Of these 40243

trials, each participant performed ten of them.244

Forces are detected every 25 timesteps, and can be245

predicted as one of three classes. We compute the ac-246

curacy and false positive rate for force detectors using247

the estimated force signal, compared to force detec-248

tion using the signal directly from the accelerometer249

on the robot. Accuracy is computed as the percentage250

of trials which contain a LEFT force prediction be-251

fore the halfway point of the trial, and a RIGHT force252

prediction after the halfway point of the trial. False positive rate is the average percentage of false253

positive forces being predicted across all trials. A force prediction is considered as a false positive254

if it is either LEFT or RIGHT, and does not correspond to the first expected LEFT force or later255

expected RIGHT force.256

Results are reported in Table 3, where we find the force estimator more accurately predicted the257

correct forces, with fewer false positives compared to predictions from raw accelerometer signals.258

Both methods of detecting tug direction (accelerometer and force estimator) perform worse for be-259

7

Table 3: Force estimation via accelerometer readings vs force estimator signal.

Participant Type Method Accuracy False Positive Rate

Expert (10 trials) Accelerometer 0.20 0.2149
Force Estimator 1.00 0.0442

Beginner (30 trials) Accelerometer 0.13 0.1906
Force Estimator 0.70 0.0498

ginner participants, indicating that adding diverse tugging styles is important for a more complete260

evaluation of force estimators.261

In Figure 5, we plot the raw signals from the accelerometer and force estimator from a single trial.262

We find the accelerometer signal is more noisy than the estimated force signal, which we hypothe-263

size is because the force estimator has access to other sensor information along with accelerometer264

readings. Note that our force estimator is co-learned with the locomotion policy. The locomotion265

policy takes the estimated force as input during training, and the states generated from the policy266

are used to train the force estimator. We believe this co-learning mechanism leverages the additional267

sensor information to help the force estimator outperform the tug detection from raw accelerometer268

readings.269

6 Hardware Demonstration270

We demonstrate our full seeing-eye robot system on a Unitree A1 robot, in an indoor hallway envi-271

ronment (see link in Abstract). Our locomotion policy and force estimator are deployed on hardware272

without any additional fine-tuning.273

In this demonstration, a human is blindfolded, and holding a taut leash attached to the robot. The274

human desires to reach some particular goal location, and chooses the rout to take by tugging the275

robot at decision points, while the robot autonomously avoids obstacles (including boxes, narrow276

doorways, and another human) along the way. Decision points occur at intersections in the hallway,277

where the human needs to decide in which direction they want to go. Similar to the setting in [7], the278

blindfolded human is not familiar with localizing himself without vision, so another sighted human279

verbally indicates when a decision point is approaching.280

This demonstration indicates that our locomotion policy and force detector are transferable to hard-281

ware, and can cooperate with a local planner to enable blindfolded navigation. Thus, successful282

human-robot communication occurred, such that the human avoided all obstacles while the robot283

navigated to the desired goal location through detecting human tugs at decision points.284

7 Discussion285

Limitations and Future Work While our seeing-eye system can avoid obstacles and select routes286

at a course level in indoor hallway environments, real guide dog settings include outdoor environ-287

ments, and situations with many possible directions to navigate in. In future work, researchers can288

leverage methods to determine which paths are traversable [26], and train force detectors which can289

estimate the direction of force at a finer level. Another future direction is to incorporate intelligent290

disobedience, which refers to rejecting a human’s navigation decision if unsafe [27]. Additionally,291

The evaluation can be further improved by replacing sighted people with those with visual impair-292

ments in the experiments. Finally, our robot’s locomotion speed is relatively low. It might be the293

human tugs, the learned locomotion policy, or both causing the low speed. Further investigation into294

those factors can potentially lead to very interesting future research and higher-speed seeing-eye295

robot systems.296

Conclusion We train a locomotion controller which is tolerant to human tugs, and can estimate297

the direction of external forces. We evaluate the robustness of our controller, and accuracy of our298

force estimator through experiments in simulation and on hardware. Finally, we demonstrate our299

controller on a real robot for the task of blindfolded navigation, where a blindfolded human is300

successfully guided to a destination, while giving directional cues through tugging on the robot.301

8

References302

[1] L. Whitmarsh. The benefits of guide dog ownership. Visual impairment research, 7(1):27–42,303

2005.304

[2] C. Morita. How much does a guide dog cost? https://puppyintraining.com/305

how-much-does-a-guide-dog-cost/#:~:text=Initial%20cost%20for%20Guide%306

20Dog,for%20a%20guide%20dog%20%3D%20%2459%2C600.307

[3] L. M. Tomkins, P. C. Thomson, and P. D. McGreevy. Behavioral and physiological predictors308

of guide dog success. Journal of Veterinary Behavior, 6(3):178–187, 2011.309

[4] L. Wang, J. Zhao, and L. Zhang. Navdog: robotic navigation guide dog via model predictive310

control and human-robot modeling. In Proceedings of the 36th Annual ACM Symposium on311

Applied Computing, pages 815–818, 2021.312

[5] A. Xiao, W. Tong, L. Yang, J. Zeng, Z. Li, and K. Sreenath. Robotic guide dog: Leading a313

human with leash-guided hybrid physical interaction. In 2021 IEEE International Conference314

on Robotics and Automation (ICRA), pages 11470–11476. IEEE, 2021.315

[6] Y. Chen, Z. Xu, Z. Jian, G. Tang, Y. Yangli, A. Xiao, X. Wang, and B. Liang. Quadruped316

guidance robot for the visually impaired: A comfort-based approach. arXiv preprint317

arXiv:2203.03927, 2022.318

[7] H. Hwang, T. Xia, I. Keita, K. Suzuki, J. Biswas, S. I. Lee, and D. Kim. System configuration319

and navigation of a guide dog robot: Toward animal guide dog-level guiding work. arXiv320

preprint arXiv:2210.13368, 2022.321

[8] J. T. Kim, W. Yu, J. Tan, G. Turk, and S. Ha. How to train your guide dog: Wayfinding and safe322

navigation with human-robot modeling. In Companion of the 2023 ACM/IEEE International323

Conference on Human-Robot Interaction, pages 221–225, 2023.324

[9] J. T. Kim, W. Yu, Y. Kothari, J. Tan, G. Turk, and S. Ha. Transforming a quadruped into325

a guide robot for the visually impaired: Formalizing wayfinding, interaction modeling, and326

safety mechanism. arXiv preprint arXiv:2306.14055, 2023.327

[10] Q. Chen, L. Wang, Y. Zhang, Z. Li, T. Yan, F. Wang, G. Zhou, and J. Gong. Can quadruped328

navigation robots be used as guide dogs? arXiv preprint arXiv:2210.08727, 2022.329

[11] Y. Zhang, Z. Li, H. Guo, L. Wang, Q. Chen, W. Jiang, M. Fan, G. Zhou, and J. Gong. ” i330

am the follower, also the boss”: Exploring different levels of autonomy and machine forms331

of guiding robots for the visually impaired. In Proceedings of the 2023 CHI Conference on332

Human Factors in Computing Systems, pages 1–22, 2023.333

[12] P. Chonkar, G. Hemkumar, H. Wang, D. Dua, S. Gupta, Y.-C. Chan, J. Hart, E. Hauser,334

R. Mirsky, J. Biswas, et al. Look to my lead: How does a leash affect perceptions of a335

quadruped robot?336

[13] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively337

parallel deep reinforcement learning. In Conference on Robot Learning, pages 91–100. PMLR,338

2022.339

[14] L. Campanaro, S. Gangapurwala, W. Merkt, and I. Havoutis. Learning and deploying robust340

locomotion policies with minimal dynamics randomization. arXiv preprint arXiv:2209.12878,341

2022.342

[15] G. B. Margolis and P. Agrawal. Walk these ways: Tuning robot control for generalization with343

multiplicity of behavior. arXiv preprint arXiv:2212.03238, 2022.344

9

https://puppyintraining.com/how-much-does-a-guide-dog-cost/#:~:text=Initial%20cost%20for%20Guide%20Dog,for%20a%20guide%20dog%20%3D%20%2459%2C600
https://puppyintraining.com/how-much-does-a-guide-dog-cost/#:~:text=Initial%20cost%20for%20Guide%20Dog,for%20a%20guide%20dog%20%3D%20%2459%2C600
https://puppyintraining.com/how-much-does-a-guide-dog-cost/#:~:text=Initial%20cost%20for%20Guide%20Dog,for%20a%20guide%20dog%20%3D%20%2459%2C600
https://puppyintraining.com/how-much-does-a-guide-dog-cost/#:~:text=Initial%20cost%20for%20Guide%20Dog,for%20a%20guide%20dog%20%3D%20%2459%2C600
https://puppyintraining.com/how-much-does-a-guide-dog-cost/#:~:text=Initial%20cost%20for%20Guide%20Dog,for%20a%20guide%20dog%20%3D%20%2459%2C600

[16] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-345

ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,346

2022.347

[17] G. Ji, J. Mun, H. Kim, and J. Hwangbo. Concurrent training of a control policy and a state348

estimator for dynamic and robust legged locomotion. IEEE Robotics and Automation Letters,349

7(2):4630–4637, 2022.350

[18] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.351

arXiv preprint arXiv:2107.04034, 2021.352

[19] M. Dede. peakdetect. https://github.com/avhn/peakdetect, 2022.353

[20] B. P. Gerkey. Amcl, 2013. URL http://wiki.ros.org/amcl.354

[21] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance.355

IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.356

[22] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,357

A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for358

robot learning. arXiv preprint arXiv:2108.10470, 2021.359

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization360

algorithms. arXiv preprint arXiv:1707.06347, 2017.361

[24] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine. Learning agile362

robotic locomotion skills by imitating animals. In Robotics: Science and Systems, 07 2020.363

doi:10.15607/RSS.2020.XVI.064.364

[25] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics365

and machine learning. 2016.366

[26] J. Frey, D. Hoeller, S. Khattak, and M. Hutter. Locomotion policy guided traversability learning367

using volumetric representations of complex environments. In 2022 IEEE/RSJ International368

Conference on Intelligent Robots and Systems (IROS), pages 5722–5729. IEEE, 2022.369

[27] R. Mirsky and P. Stone. The seeing-eye robot grand challenge: Rethinking automated care.370

In Proceedings of the 20th International Conference on Autonomous Agents and Multiagent371

Systems (AAMAS 2021), 2021.372

10

https://github.com/avhn/peakdetect
http://wiki.ros.org/amcl
http://dx.doi.org/10.15607/RSS.2020.XVI.064

	Introduction
	Related Work
	Method
	Locomotion Controller
	Seeing-eye Robot Navigation

	Implementation Details
	Experiments
	Force Tolerance Evaluation
	Force Estimation Evaluation
	Simulation
	Hardware

	Hardware Demonstration
	Discussion

