
Segment then Splat: Unified 3D Open-Vocabulary
Segmentation via Gaussian Splatting

Yiren Lu1, Yunlai Zhou1, Yiran Qiao1, Chaoda Song1, Tuo Liang1,
Jing Ma1, Huan Wang2, Yu Yin1�

1Case Western Reserve University
2Westlake University

1{yiren.lu, yunlai.zhou, yiran.qiao, chaoda.song,
tuo.liang, jing.ma5, yu.yin}@case.edu

2wanghuan@westlake.edu.cn
https://vulab-ai.github.io/Segment-then-Splat/

Abstract

Open-vocabulary querying in 3D space is crucial for enabling more intelligent
perception in applications such as robotics, autonomous systems, and augmented
reality. However, most existing methods rely on 2D pixel-level parsing, leading
to multi-view inconsistencies and poor 3D object retrieval. Moreover, they are
limited to static scenes and struggle with dynamic scenes due to the complexities
of motion modeling. In this paper, we propose Segment then Splat, a 3D-aware
open vocabulary segmentation approach for both static and dynamic scenes based
on Gaussian Splatting. Segment then Splat reverses the long-established approach
of “segmentation after reconstruction” by dividing Gaussians into distinct object
sets before reconstruction. Once reconstruction is complete, the scene is naturally
segmented into individual objects, achieving true 3D segmentation. This design
eliminates both geometric and semantic ambiguities, as well as Gaussian–object
misalignment issues in dynamic scenes. It also accelerates the optimization process,
as it eliminates the need for learning a separate language field. After optimization,
a CLIP embedding is assigned to each object to enable open-vocabulary querying.
Extensive experiments on various datasets demonstrate the effectiveness of our
proposed method in both static and dynamic scenarios.

1 Introduction

3D open-vocabulary querying marks a pivotal step in language-driven interaction with 3D envi-
ronments, removing the need for predefined labels. This capability is vital for large-scale scene
exploration, scene understanding, robotic navigation [1–3] and manipulation [4–7], where free-form
text bridges human language and machine perception.

3D Gaussian Splatting (3DGS) [8] has been a widely adopted 3D representation due to its efficient
training and real-time rendering capabilities. While 3DGS has demonstrated remarkable performance
in scene reconstruction and novel view synthesis, it lacks inherent semantic understanding, limiting
its applicability in tasks that require natural language-driven retrieval and reasoning.

To solve this issue, most existing works [9–12] incorporate a separate language field alongside
Gaussian Splatting reconstruction. By rendering the language field into 2D feature maps, they enable
pixel-based querying by retrieving relevant pixels based on the input text embedding. However, this
approach essentially performs segmentation in 2D space rather than partitioning Gaussians in 3D
space, leading to several drawbacks: 1) Inconsistent 2D segmentation across different views, leading

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://vulab-ai.github.io/Segment-then-Splat/

“Chopsticks”

Initialized Object-
specific Gaussians Reconstruction

Rasterize

Object Query Result
Trained Object-

specific Gaussians
“Chopsticks”

Gaussians

CLIP

R
as
te
riz
e

Rendered Image & 2D Feature Map Queried 2D Mask Object Query Result

SfM

Point Clouds

Training Images Reconstruction

Similarity

Reconstruct & Splat Pixel-level Segment

(a) Traditional Splat then Segment Pipeline

(b) The Proposed Segment then Splat Pipeline

“Chopsticks”
CLIP

Similarity

Reconstruct & Splat3D Segment

…

Input

Figure 1: Traditional 3D Open-Vocabulary Segmentation vs. our Segment-then-Splat Pipeline.
(a) The traditional Splat-then-Segment pipeline learns a language field alongside the reconstruction
of the entire scene. During object queries, it renders Gaussian language embeddings into a 2D feature
map to identify relevant pixels based on the input text embedding. (b) In contrast, our Segment-then-
Splat pipeline first initializes Gaussians into object-specific sets before reconstruction, ensuring a
more precise object-Gaussian correspondence and improving segmentation accuracy.

to inaccurate object boundaries. 2) Failure to capture true 3D object information, complicating
3D object extraction and limiting downstream tasks like robot navigation and 3D manipulation. 3)
Inapplicability to dynamic scenes, since Gaussians may have varying semantic meanings at different
time steps, preventing straightforward extensions to time-varying or moving objects.

Recently, a few works [13, 14] have explored direct segmentation in 3D space. However, these
approaches require a predefined number of objects for clustering [13] or are limited to foreground
segmentation [14], and also cannot be directly applied to dynamic scenes.

Despite the differences in segmentation strategies, whether pixel-based or 3D-based, all existing
approaches follow a “reconstruction then segmentation” (i.e., splat then segment) paradigm. This
approach inherently results in imprecise object boundaries, as each Gaussian may encode geometric
and semantic information from multiple objects, leading to geometric and semantic ambiguity.

In this paper, we propose Segment then Splat, a unified framework for 3D-aware open-vocabulary
segmentation that can be applied to both static and dynamic scenes. Unlike existing methods that
adopt a “splat then segment” approach, our method reverses the process by first initializing each object
with a specific set of Gaussians, as shown in Fig. 1. During training, each set of Gaussians is assigned
a unique object ID and contributes only to its corresponding object, guided by 2D multi-view mask
supervision. By doing so, each Gaussian is dedicated to a single object and thus learns more accurate
object geometry. Moreover, since the Gaussian-object correspondence is strictly maintained, our
method can be directly applied to dynamic scenes without the risk of Gaussian-object misalignment
(i.e., one Gaussian may represent different objects at different time steps). Finally, Segment then
Splat requires only one pass of reconstruction and does not depend on learning an additional feature
field, significantly improving efficiency. In summary, our key contributions include:

• We propose Segment then Splat, a novel paradigm that segments Gaussians into object sets
before reconstruction. This enables unified static/dynamic open-vocabulary segmentation,
eliminates auxiliary language fields, and significantly reduces training complexity.

• Our framework features a robust object tracking module that maintains spatial-temporal
consistency of object-specific Gaussians in the scene, ensuring accurate segmentation and
motion modeling while preventing misalignment.

• Learning object-specific Gaussians from the outset preserves explicit object-Gaussian corre-
spondence, eliminating geometric and semantic ambiguity, yielding superior 3D geometries
and multi-level segmentation granularity.

2

• Extensive experiments demonstrate state-of-the-art performance across diverse static and
dynamic datasets in 3D open-vocabulary segmentation, object geometry accuracy, and
computational efficiency.

2 Related Work

2.1 3D & 4D Gaussian Splatting

3D Gaussian Splatting (3DGS) [8] is a widely recognized 3D scene representation that introduces
anisotropic 3D Gaussians and an efficient differentiable splatting scheme. This enables high-quality
explicit scene representation with efficient training and real-time rendering. However, since it was
originally designed for static scenes, 3DGS lacks the capability to model dynamic environments.

To address this limitation, Dynamic 3D Gaussians [15] employs a table-based strategy, storing each
Gaussian’s mean and variance at every timestamp. 4D Gaussian Splatting [16] extends 3DGS into
four dimensions, adding a temporal component to facilitate dynamic scene reconstruction. Meanwhile,
Deformable 3D Gaussians [17] leverages a multi-layer perceptron (MLP) to learn per-timestamp
positions, rotations, and scales for each Gaussian, effectively capturing object motion and deformation
over time. 4DGaussians [18] utilizes multi-resolution HexPlanes [19] to decode features for temporal
deformation of 3D Gaussians, while STG [20] uses a temporal opacity term and a polynomial function
for each Gaussian, yielding a more detailed representation of dynamic scenes.

Despite these advancements, the above methods act solely as scene representations. After reconstruc-
tion, they do not support additional interaction or provide information beyond geometry and texture.
In contrast, our approach enhances interaction by integrating CLIP [21] embeddings into Gaussian
Splatting. This assigns semantic meaning to each Gaussian, enabling open-vocabulary segmentation
where users can retrieve, organize, and query objects using natural language prompts.

2.2 Language Embedded Scene Representation

Prior to the emergence of radiance field representations, many studies explored the integration of
feature embeddings into point cloud representations to enhance scene understanding[22–26]. More
recently, a growing body of work has focused on incorporating language features [9, 27, 11, 28, 29]
into radiance fields (e.g., NeRF and 3DGS). LERF [9] pioneered this approach by embedding CLIP
features in NeRF. Specifically, it extracts pixel-level CLIP embeddings from multi-scale image
crops and trains them alongside NeRF to enable open-vocabulary 3D queries. Building on this idea,
LEGaussians [11] incorporates uncertainty and semantic feature attributes into each Gaussian, while
introducing a quantization strategy to compress high-level language and semantic features. LangSplat
[10] employs a scene-wise language autoencoder to learn language features within a scene-specific
latent space, and incorporate SAM mask to enable clear object boundaries in rendered feature images.
Despite these advancements, all the above methods essentially perform 2D segmentation when
conducting open-vocabulary segmentation, as they compare rendered 2D language features with the
input text query embedding. OpenGaussian [13] leverages contrastive learning to assign a feature
embedding to each Gaussian, then applies K-means clustering to group Gaussians into multiple
object clusters, thereby realizing 3D segmentation. Similarly, GaussianCut [14] utilizes graphcut
[30–32] to segment Gaussians into foreground and background based on user input.

However, all of the above-mentioned methods adhere to a “splat then segment” (i.e., reconstruction
then segmentation) pipeline, which inherently results in imprecise object boundaries, since each
Gaussian may contain geometry and semantic information from different objects. Furthermore,
these methods struggle with dynamic scenes due to Gaussian-object misalignment, preventing
their direct application to non-static environments. Dynamic 3D Gaussian Distillation (DGD) [33]
distills the feature from LSeg [34] into a feature field to achieve open-vocabulary segmentation. 4D
LangSplat [35] further leverages Multimodal Large Language Models (MLLMs) through object-wise
video prompting to enhance both time-sensitive and time-agnostic open-vocabulary understanding.
Similarly, 4-LEGS [36] distills spatio-temporal language features into 4DGS for event localization
from text prompts. Nevertheless, these methods require specific modifications for dynamic scenarios
and still suffer from object–Gaussian misalignment.

In contrast, we introduce Segment then Splat, which overturns the long-established “splat then
segment” paradigm. Instead, our approach first initializes object-specific Gaussians for each object

3

Ra
nd

om
 O

bj
ec

t
Sa

m
pl

in
g

(p
er

 it
er

at
io

n)

CLIP

Rendered Imgs (!"!") GT ("!"*⨂$!
")

Object Pool

Optimization & Reconstruction

CLIP Embedding
Association

Object-Specific
Gaussian InitializationRobust Object Tracking

CLIP

CLIP

“pig”

“perfume”

“sofa” Cropped
Object Masks

Tracking
Masks

Point
Clouds

!"!
ℒ#$%&$#

ℒ'()

"!

ℒ'()

Trained Object-
specific Gaussians

Reconstructed 3D scene

…

…

…

"!

Robust
Object

Tracking

✅ Handles New Objects
✅ Recovers from Lost Tracking
✅ Resolves Duplicate Objects

$!
*

1+,
obj.

SfM

Rasterizer
Static scene

Dynamic scene

MLP

ℛ

ℛ

ℛ

…

Render:
(-.
obj.

$!
"

Figure 2: Demonstration of Segment then Splat pipeline. We first extract multi-view masks for each
object through a robust tracking module, then object IDs are assigned to each initial Gaussian based
on these masks, forming distinct object-specific sets. During optimization, object specific loss Lobj is
used to enforce Gaussian-object correspondence and thus resulting in more accurate object geometries.
Finally, a CLIP embedding is assigned to each Gaussian group for open-vocabulary queries.

before performing the reconstruction process. By enforcing object-Gaussian correspondence, our
method achieves more accurate object geometries and compatibility with dynamic scenes.

3 Method

We introduce Segment then Splat, a unified approach for 3D open-vocabulary segmentation based
on Gaussian Splatting, as illustrated in Fig. 2. The process begins by extracting multi-view masks
for each object through a robust object tracking module (Sec. 3.2), ensuring reliable detection and
mask generation. Next, each Gaussian initialized by COLMAP [37, 38] is assigned an object ID
according to these masks, partitioning the entire scene into multiple object-specific Gaussian sets
(Sec. 3.3). During optimization & reconstruction (Sec. 3.4), each Gaussian contributes exclusively to
its assigned object, preserving Gaussian-object correspondence and resulting in more accurate object
geometries. After reconstruction, CLIP embeddings are associated with each group of Gaussians
(Sec. 3.5), enabling open-vocabulary queries. Besides, three levels of granularity (large, middle, and
small) are introduced to facilitate object retrieval at different scales.

3.1 Preliminary: 3D and 4D Gaussian Splatting

3DGS. 3D Gaussian Splatting represents a scene using a collection of 3D ellipsoids, each modeled as
an anisotropic 3D Gaussian. Each Gaussian is parameterized by a mean x, which defines the center
of the ellipsoid, a covariance matrix Σ , which determines its shape, as shown in Eq. (1). The color of
the Gaussian is defined using spherical harmonics.

G(x) = e−
1
2 (x)

TΣ−1(x). (1)

During rendering, the 3D Gaussians are first transformed into camera coordinates and projected onto
the image plane as 2D Gaussians. The final pixel color is then computed through alpha blending,
which integrates the weighted Gaussian colors from front to back:

Ĉ =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) , (2)

where ci is the color of each Gaussian, and αi is the alpha value of the ith Gaussian.

4DGS. 4D Gaussian Splatting is an extension of 3D Gaussian Splatting, capable of modeling dynamic
scenes. Following Deformable 3D Gaussian Splatting [17], we incorporate a deformation field to
capture scene dynamics:

(δx, δr, δs) = Fθ(γ(x), γ(t)), (3)
where Fθ represents deformation field, which takes Gaussian mean x and time t as input and outputs
the deformation (δx, δr, δs) at time t. γ(·) denotes positional encoding.

4

3.2 Robust Object Tracking

Given a set of input images {Ii}ni=0, our goal is to extract multi-view masks for all objects at different
granularity levels (i.e., large, middle and small) in the scene. We begin by leveraging Segment
Anything (SAM) [39] with grid-based point prompting to obtain initial static object masks of different
granularities in the first input frame I0. Subsequently, SAM2 [40] is employed to track objects
throughout the sequence based on the extracted mask from I0. However, this process presents several
challenges: 1) Some objects may not appear in the first frame, leading to their exclusion from tracking.
2) Due to grid-based prompting, one pixel may be tracked multiple times into different masks, either
belonging to a single object or a part of an object. 3) If an object temporarily disappears and reappears
later in the scene, tracking may be lost. To overcome these issues and improve the robustness of object
tracking, we propose three targeted post-processing strategies that dynamically detect new objects,
resolve mask conflicts, and recover from tracking failures. These strategies transform SAM-based
segmentation into a flexible, scene-adaptive tracking pipeline, which serves as the critical foundation
for subsequent steps in our methodology.

Detect Any New Objects. To capture newly appearing objects, we introduce a detection mechanism
at fixed intervals of ∆t. Specifically, we compare the segmented region ratio between frames It+∆t

and It. A significant decline in this ratio indicates the potential presence of new objects. At this point,
we re-segment the scene and analyze the intersection between the new and previous segmentation
results. Objects with minimal overlap with prior masks are identified as new objects and added to the
static segmentation results. SAM2 then continues tracking based on this updated segmentation.

Resolving Multiple Trackings of a Pixel. To ensure that each pixel is assigned to only one object
within a given granularity level, we employ an Intersection over Union (IoU)-based filtering approach.
For each pair of masks in Ii, if their IoU exceeds a predefined threshold, the smaller object is
discarded in favor of the larger one, as it can be segmented separately at a finer granularity level.

Handling Lost Tracking. When an object’s tracking is lost, it may be incorrectly treated as a new
object upon its reappearance in subsequent frames, leading to multiple instances representing the
same object. In these scenarios, we resolve this issue using the approach described in Sec. 3.3.

3.3 Object-Specific Gaussian Initialization

As our method follows a “segmentation then reconstruction” strategy, we first segment the Gaussians
initialized by COLMAP into distinct sets, each representing a different object. Each Gaussian is
assigned three object IDs, corresponding to three granularity levels. To determine these IDs, we
analyze the visibility of each Gaussian center across all views and identify the corresponding object
mask region in which it resides. After object IDs are determined, we handle the lost tracking issue
stated in Sec. 3.2. When an object is tracked multiple times as different instances, the corresponding
Gaussians should share a similar geometric center and appearance (e.g. color). Therefore, we refine
the segmentation by merging Gaussians and its corresponding object mask, if they exhibit a closely
aligned “geometric-appearances distance”, defined as follows:

d(Gi,Gj) = λd|Mi −Mj |2 + (1− λd)|Ci −Cj |2, (4)

where Gi and Gj are two sets of Gaussians representing different objects, Mi and Mj denote the
mean Gaussian centers, representing object geometric centers, and Ci and Cj are the average colors
of the respective Gaussian sets. λd is the weight to balance geometric distance and appearance
distance. Additionally, since COLMAP provides only a sparse reconstruction of the scene, some
objects may not be covered and thus lack corresponding Gaussians. We compensate these missing
objects by randomly initializing Gaussians. Furthermore, we generate a set of background Gaussians
to fill small unsegmented regions.

3.4 Optimization & Reconstruction

Optimization Goal. After initializing Gaussians as distinct object sets, they are used to reconstruct
the scene. During this process, we enforce constraints to ensure that each set of Gaussians contributes
only to its corresponding object. Specifically, we introduce an additional object-level loss term,

5

denoted as Lobj, alongside the standard rendering loss Lrender:

Lrender = (1− λr)L1(Îi, Ii) + λrLDSSIM(Îi, Ii), (5)

Lobj = L1(M
p
i ⊗ Ii, Î

p
i). (6)

where Îi is the rendered ith image, and Îpi and Mp
i represent the rendered pth object in the ith

image and its corresponding mask, respectively, as described in Sec. 3.2. ⊗ denotes element-wise
multiplication. The overall loss function is as follows:

L = Lrender + Lobj. (7)

Throughout the entire reconstruction process, all densification and cloning operations are performed
strictly within each object-specific Gaussian set, preserving the Gaussian-object correspondence.
Besides, a Gaussian persistence mechanism is designed to ensure that each set of Gaussians is not com-
pletely pruned, thereby preventing scenarios where an object could lose all its associated Gaussians.

Optimization Efficiency. Since the number of objects in a scene can range from a few to over a
hundred, computing Lobj for every object becomes computationally infeasible, as it would require K
times more rendering operations per iteration. To address this, we randomly sample m objects per
iteration to apply Lobj, balancing efficiency and optimization effectiveness.

Optimization on Multiple Granularities. Noticed that we have three level granularities: large,
middle and small. To ensure effective optimization, we must account for these varying scales when
determining the optimization order. Since smaller objects are always part of larger ones, they should
be optimized first. If the order is reversed, i.e., optimizing smaller objects after larger ones, the
internal structure of the larger objects may become disorganized again, as shown in Fig. 3. Thus the
Lobj will finally be formulated as:

Lobj =


Lobj_S, stage1
Lobj_S + Lobj_M, stage2
Lobj_S + Lobj_M + Lobj_L, stage3

(8)

where Lobj_S, Lobj_M, Lobj_L represent per-object loss for small, middle, large level respectively.

1
101

2
101

3
101

4
102

5
102

6
102

: Small-Level ID
: Mid-Level ID

Optimize small-level first

Supervise Small-level Objects

1
101

2
101

3
101

4
102

5
102 6

1021
101
1

101
2
101

3
101

4
102
4

102
4
102

5
102

6
1026

102

6
102

Small Object - 1

Small
Object - 2

Small Object - 3

Small Object - 4

Small Object - 5

Small
Object - 6

Initialized Sparse
Gaussians with IDs

Mid Object - 101 Mid Object - 102

Optimize mid-level first

1
101

2
101

3
101

4
102

5
102

6
102

Supervise Mid-level Objects

Initialized Sparse
Gaussians with IDs

Mid Object - 101 Mid Object - 102

Chaotic Small-level Structure

4
102

1
101

6
102

2
101 1

101

3
101

1
101

2
101

3
101

6
102 4
102

5
102

6
102

5
102
4
102
5
1026

102

𝑥
𝑿

Figure 3: A demonstration of how the optimization order af-
fects reconstruction. Optimizing small-level objects first pre-
serves both small- and middle-level structures, while starting
with middle-level ones leads to well-maintained middle-level
but chaotic small-level regions due to lack of supervision.

Partial Mask Filtering. In 3D-
aware segmentation, objects can
be reconstructed even from views
where they would typically appear
occluded. Consequently, multi-view
2D masks provided as supervision
can introduce discrepancies, as they
do not account for occluded regions
revealed during rendering, as shown
in Fig. 5. This discrepancy can lead
to incorrect constraints, ultimately
distorting the geometric structure of
the 3D objects. The original 3DGS
framework can partially resolve this
issue by leveraging multi-view con-
sistency, but errors from unreliable
masks persist. To robustly address
this, we propose a partial mask fil-
tering strategy applied at the end
of training. Specifically, we render
each reconstructed object into 2D
images, compute their Intersection-
over-Union (IoU) against the provided masks, and discard masks exhibiting low IoU scores. This
ensures that only consistent, accurate masks inform the final optimization, significantly enhancing
the geometric fidelity of the reconstructed 3D objects.

6

3D OVS

Target Object Queries

LERF OVS

OpenGaussianLangSplat OursLEGaussians
3D2D

LangSplat LEGaussiansOurs

Miku Statue

GPU Card

Cat

Doll

Spatula

Rubik’s Cube

Spoon

Water

Chopsticks

Camera

Target Object Queries

3D OVS

Target Object Queries

LERF OVS

Target Object Queries

3D
G-Grouping

Figure 4: Qualitative comparison on static scenes. Compared to baseline methods, our approach
accurately retrieves the correct object and produces sharper segmentation boundaries. In contrast, 2D
pixel-based methods exhibit ambiguous boundaries, while OpenGaussian either misses parts of the
object or incorrectly groups irrelevant objects together.

3.5 CLIP Embedding Association

Unlike previous methods [9–12] that supervise Gaussian language embeddings indirectly via 2D
feature maps, leading to inconsistent embeddings for Gaussians belonging to the same object, our
approach directly assigns a unified language embedding to each object-specific Gaussian set. This
ensures consistent semantic embeddings within each object, significantly improving segmentation
accuracy and boundary precision. The CLIP embedding of each object is calculated as follows:

fp =
1

n

∑
Mp

i /∈Mp
part

CLIPi(crop(MP
i ⊗ Ii)), (9)

where fp is the language embedding of the pth object, Mp
part denotes the partial masks that are

excluded in the previous section. CLIPi(·) represents the CLIP image encoder and crop(·) denotes
the cropping function to extract the mask region.

Open-vocabulary segmentation. Given an input text prompt, we perform open vocabulary query
following the below strategy:

fq = CLIPt(q), (10)
qreturn = argmax

p
cos(fq, fp), (11)

where fq is the CLIP embedding of the input text prompt q, given by CLIP text encoder CLIPt(·),
and qreturn is the object that best matches the query, determined by maximizing the cosine similarity
cos (·) between the query embedding and the object embeddings.

4 Experiments
4.1 Setups

Baselines. We categorize the baselines into two groups based on their querying strategies: 2D
pixel-based segmentation and 3D-based segmentation. For static scenes, we use LangSplat [10],
LEGaussians [11] and Gaussian Grouping [41] as the 2D pixel-based baselines. For the 3D baselines,
we choose OpenGaussian[13], and we also adapt LangSplat and LEGaussians for 3D segmentation
by selecting Gaussians instead of pixels to evaluate their performance. In dynamic scenes, we adopt a
zero-shot image segmentation model CLIP-LSeg [34] as the 2D pixel-based baseline and DGD [33]
as the 3D-based approach.

Datasets & Evaluation Metrics. To assess the segmentation performance of our proposed method,
we conduct experiments on two static scene datasets (i.e., 3DOVS dataset [42] and LERF_OVS
dataset [9]) and two dynamic scene datasets (i.e., HyperNeRF dataset [43] and Neu3D dataset
[44]). We use mean intersection over union (mIoU) for open-vocabulary segmentation and report
optimization time (in minutes) for training efficiency.

7

Implementation Details. The new object detection stride ∆t in the robust object tracking is set to 10.
Following the original 3D Gaussian Splatting, we set λr in Lrender to 0.2. For geometric-appearances
distance, we set λd to 0.5. In each iteration, we sample 1 object per granularity for 3DOVS to
compute Lobj and 3 objects per granularity for all the remaining datasets. The mIoU threshold for
partial mask filtering is set to 30%. We train the smaller-scale 3DOVS data for 20K iterations, and
larger-scale datasets (i.e., LERF_OVS, HyperNeRF, and Neu3D) for 40K iterations. All experiments
are conducted using a RTX A6000 GPU.

4.2 Open-Vocabulary Query

2D V.S. 3D segmentation. One thing to be mentioned is that, due to the nature of 3D segmentation
and the evaluation used for open-vocabulary segmentation, there is a slight reduction in our mIoU
score. This is because 3D segmentation directly retrieves the Gaussians associated with an object,
revealing occluded parts that are not visible in some ground truth masks, as shown in Fig. 5.

Table 1: Quantitative segmentation results for
static (a) and dynamic (b) scenes.

(a) Static scenes

LERF_OVS 3DOVS

Method mIoU↑ Time↓ mIoU↑ Time↓

2D LangSplat [10] 46.37 62.00 82.49 68.90
LEGaussians [11] 18.79 72.00 52.12 55.90
G-Grouping [41] 29.59 77.00 76.24 56.10

3D

LangSplat [10] 16.76 62.00 47.31 68.90
LEGaussian [11] 12.08 72.00 33.44 55.90
OpenGaussian [13] 42.43 69.75 31.00 59.40
Ours 52.10 50.75 88.53 9.40

(b) Dynamic scenes

HyperNeRF Neu3D

Method mIoU↑ Time↓ mIoU↑ Time↓

2D LSeg [34] 15.71 - 1.49 -

3D DGD [33] 7.83 1564.5 1.65 1733
Ours 69.48 218 44.00 161.3

Results on 3DOVS dataset. The quantitative
results on the 3DOVS are presented in Tab. 1
(a). Our method outperforms all baseline ap-
proaches. The qualitative comparison is shown
in Fig. 4. Notably, 2D pixel-based methods
tend to produce relatively ambiguous bound-
aries, whereas our approach, leveraging the Seg-
ment then Splat strategy, achieves significantly
clearer object boundaries. For 3D segmenta-
tion methods, OpenGaussian requires a prede-
fined number of objects K for clustering. Since
3DOVS contains fewer objects compared to
LERF_OVS, we manually reduced its preset
K. However, even after this adjustment, Open-
Gaussian still only retrieves parts of certain ob-
jects. Although LangSplat and LEGaussians are
modified to segment Gaussians instead of pixels,
their performance remains suboptimal. This is
because each Gaussian’s language embedding
lacks direct supervision and may encode multi-
ple object semantics, leading to inaccurate seg-
mentation. Additionally, since our method follows a single-pass reconstruction process and the scene
scale is relatively small, our training time is significantly shorter compared to the baselines.

Original Image Mask 2D Seg Ours
“Controller”

Figure 5: Comparison between 2D pixel-based
segmentation and our 3D segmentation. Unlike
2D pixel-based methods, which are limited by oc-
clusions, our approach can retrieve the complete
object even from an occluded view.

Results on LERF_OVS dataset. The quan-
titative results on the LERF_OVS dataset are
also presented in Tab. 1 (a) and the qualita-
tive results are shown in Fig. 4. Similar to the
3DOVS dataset, 2D pixel-based methods pro-
duce less precise object boundaries, while our
method demonstrates significantly improved re-
sults. For 3D-based methods, OpenGaussian
performs much better on LERF_OVS compared
to 3DOVS. However, since OpenGaussian re-
quires a predefined number of clusters, some ob-
jects may be incorrectly grouped together (e.g.,
the rubber duck and the Rubik’s cube). More-
over, due to its “splat then segmentation” strat-
egy, its object boundaries remain less accurate
than those produced by our method.

Results on HyperNeRF dataset. The quantitative results and qualitative results on HyperNeRF
dataset are presented in Tab. 1 (b) and Fig. 6 respectively. Since our method explicitly enforces
Gaussian-object correspondence, it can be directly applied to dynamic scenes, achieving good
segmentation performance without the Gaussian-object misalignment issue encountered by previous
approaches. In contrast, methods such as DGD, which relies on learning a language field supervised

8

HyperNeRF

Object Queries

LSeg DGD Ours

Hand Hand

Chicken ChickenObject Queries

LSeg DGD OursLSeg DGD Ours

Hand

ChickenObject Queries

T = 1 T = 2 T = 3

Neu3D LSeg DGD Ours

Bunny Painting

Man

Bunny Painting

Man
LSeg DGD OursT = 1 T = 2

Object Queries Object Queries

Figure 6: Qualitative comparison on dynamic scenes. As our method enforce object-Gaussian
correspondence, it applies directly to dynamic scenes and performs well, whereas DGD and LSeg
tend to include irrelevant content and are not able to retrieve small objects (e.g., bunny painting).

via 2D feature maps, suffer from misalignment, as a single Gaussian might represent multiple distinct
objects across different time steps. As illustrated in Fig. 6, this misalignment results in retrieving
irrelevant Gaussians. Moreover, because DGD does not directly supervise the language embeddings
of each Gaussian, Gaussians located far apart may share similar embeddings, further deteriorating
segmentation quality. In addition, our method achieves nearly a ten-fold improvement in optimization
speed compared to DGD, as learning a dynamic language field is computationally intensive. We omit
training time results for LSeg, as it is a zero-shot method requiring no additional optimization.

Table 2: Ablation studies: (Top) Number of supervised objects
per iteration. (Middle) Partial mask filtering. (Bottom) Tracking
module ablation.

(a) Number of supervised objects per iteration

Static Scene Dynamic Scene
ramen waldo_kitchen chickchicken split-cookie

obj Time↓ mIoU↑ Time↓ mIoU↑ Time↓ mIoU↑ Time↓ mIoU↑

1 26 51.09 44 33.97 146 73.11 180 77.76
3 34 54.38 48 40.71 157 74.89 202 80.30
5 42 55.61 54 40.83 172 75.29 253 80.47
7 53 56.03 63 40.77 185 75.21 258 81.52
9 62 56.48 68 41.59 201 75.23 309 81.74

(b) Partial mask filtering strategy

Static Scene Dynamic Scene
ramen waldo_kitchen chickchicken split-cookie

Method mIoU↑ PSNR↑ mIoU↑ PSNR↑ mIoU↑ PSNR↑ mIoU↑ PSNR↑

w/o MF 42.19 23.11 31.94 30.43 72.65 29.32 80.23 32.76
Ours 54.38 24.54 40.71 31.33 74.89 29.62 80.30 33.04

(c) Tracking module ablation

Method ramen teatime figurines split-cookie
ORR↑ Dup↓ ORR↑ Dup↓ ORR↑ Dup↓ ORR↑ Dup↓

SAM2 0.889 1 0.858 1 0.683 4 0.970 0
+new_obj_detect 0.934 2 0.961 3 0.963 18 1.000 2
+multi-track 0.934 1 0.961 3 0.948 5 1.000 0
+lost-track 0.934 0 0.961 0 0.948 0 1.000 0

Results on Neu3D dataset.
Quantitative results and qualita-
tive results are shown in Tab. 1
and Fig. 6. Similar to the observa-
tions on the HyperNeRF dataset,
many irrelevant Gaussians are re-
trieved due to object-Gaussian
misalignment issue and the “splat
then segment” strategy. Besides,
both LSeg and DGD fail when re-
trieving relatively small objects
(e.g., bunny painting).

4.3 Ablation Study

Number of Supervised Objects.
In this ablation study, we ex-
amine the relationship between
the number of supervised ob-
jects in each granularity per iter-
ation and the segmentation per-
formance. We pick two static
scenes from LERF_OVS and two
dynamic scenes from HyperNeRF
dataset. The results are presented in Tab. 2 (a). As expected, increasing the number of supervised
objects per iteration generally enhances segmentation performance. However, beyond a certain
threshold, the performance gain becomes marginal. For scenes with fewer objects (e.g., chickchicken
and split-cookie), performance quickly converges after a certain number of supervised objects. In
contrast, more complex scenes containing many objects (e.g., ramen and waldo_kitchen) continue to
show performance improvements, though at a diminished rate. Additionally, training time increases

9

proportionally with the number of supervised objects. To balance training time and performance, we
choose three objects for LERF_OVS, Neu3D and HyperNeRF in our experiments.

Partial Mask Filtering. In this ablation study, we investigate the impact of the partial mask filtering
strategy on segmentation performance as well as reconstruction quality. As shown in Tab. 2 (b),
scenes with a larger number of objects (e.g., ramen, waldo_kitchen) tend to have more occluded
views, leading to more performance gain when applying partial mask filtering. In contrast, scenes
with fewer objects (e.g., chickchicken, split-cookie) exhibit a smaller performance gain. Overall, the
results validate the effectiveness of the partial mask filtering strategy, particularly in complex scenes
with high object density.

Robust Object Tracking. We conduct an ablation study on each component of our robust object
tracking module, as shown in Tab. 2 (c). The evaluation is performed on three static scenes from
LERF_OVS and one dynamic scene from HyperNeRF. Leveraging ground-truth labels, we adopt two
metrics: Object Recall Rate (ORR), defined as

ORR =
1

k

k∑
i=1

number of tracked objects
number of GT objects

, (12)

where k is the number of ground-truth frames, measures the percentage of objects successfully
tracked throughout the sequence; and the number of duplicate trackings (Dup), which quantifies how
often the same object is redundantly tracked as multiple instances. Results show that the new object
detection module increases ORR by capturing newly appeared objects, albeit at the cost of more
duplicate instances. In contrast, the multi-track and lost-track handling modules effectively reduce
Dup, as described in Sec. 3.2. The slight drop in ORR observed in the Figurines scene when adding
the multi-track module is caused by an isolated tracking failure at a fine-grained level in a single
frame. However, this minor failure does not affect the final reconstruction, as sufficient information
is retained from other views.

5 Conclusion

We propose Segment then Splat, a unified framework for 3D open-vocabulary segmentation based
on Gaussian Splatting. We reverse the long-established “segment after reconstruct” approach to form
a “segment then reconstruct” pipeline. By maintaining consistent object–Gaussian correspondence
throughout the process, Segment then Splat effectively eliminates both geometric and semantic
ambiguities, resulting in more precise object boundaries and improved segmentation performance.
Furthermore, because this correspondence is explicitly established, our method naturally extends
to dynamic scenes without concerns of misalignment between objects and Gaussians during dynamic
modeling. Extensive experiments across diverse static and dynamic datasets demonstrate the superior
performance and robustness of our framework.

6 Limitation and Future Direction

Our method relies on SAM2 for initializing object tracking. In extremely complex scenarios with
high-density and visually similar objects, tracking may fail, resulting in suboptimal open-vocabulary
segmentation, which is an issue commonly shared by tracking-based approaches (e.g., Gaussian
Grouping). This limitation could potentially be addressed by incorporating techniques such as
Kalman filtering [45] to improve the temporal stability of SAM2. Another limitation is that our
method cannot effectively handle text queries involving relational descriptions across multiple
objects, such as “a sheep sitting on the chair in front of the table.” Similar to existing baselines,
our method encodes textual embeddings from masked regions or local patches corresponding to
individual objects, and therefore lacks explicit modeling of inter-object relationships or contextual
understanding. Developing this capability is crucial for advancing open-vocabulary understanding,
and we plan to explore it in future work.

10

References
[1] Dexter Ong, Yuezhan Tao, Varun Murali, Igor Spasojevic, Vijay Kumar, and Pratik Chaudhari.

Atlas navigator: Active task-driven language-embedded gaussian splatting. arXiv preprint
arXiv:2502.20386, 2025.

[2] Guangzhao Dai, Jian Zhao, Yuantao Chen, Yusen Qin, Hao Zhao, Guosen Xie, Yazhou Yao,
Xiangbo Shu, and Xuelong Li. Unitedvln: Generalizable gaussian splatting for continuous
vision-language navigation. arXiv preprint arXiv:2411.16053, 2024.

[3] Keiko Nagami, Timothy Chen, Javier Yu, Ola Shorinwa, Maximilian Adang, Carlyn Dougherty,
Eric Cristofalo, and Mac Schwager. Vista: Open-vocabulary, task-relevant robot exploration
with online semantic gaussian splatting. arXiv preprint arXiv:2507.01125, 2025.

[4] Adam Rashid, Satvik Sharma, Chung Min Kim, Justin Kerr, Lawrence Yunliang Chen, Angjoo
Kanazawa, and Ken Goldberg. Language embedded radiance fields for zero-shot task-oriented
grasping. In 7th Annual Conference on Robot Learning, 2023. URL https://openreview.
net/forum?id=k-Fg8JDQmc.

[5] William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kaelbling, and Phillip Isola.
Distilled feature fields enable few-shot language-guided manipulation. In 7th Annual Conference
on Robot Learning, 2023.

[6] Yuhang Zheng, Xiangyu Chen, Yupeng Zheng, Songen Gu, Runyi Yang, Bu Jin, Pengfei Li,
Chengliang Zhong, Zengmao Wang, Lina Liu, et al. Gaussiangrasper: 3d language gaussian
splatting for open-vocabulary robotic grasping. IEEE Robotics and Automation Letters, 2024.

[7] Mazeyu Ji, Ri-Zhao Qiu, Xueyan Zou, and Xiaolong Wang. Graspsplats: Efficient manipulation
with 3d feature splatting. In Conference on Robot Learning, pages 1443–1460. PMLR, 2025.

[8] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July
2023. URL https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

[9] Justin* Kerr, Chung Min* Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf:
Language embedded radiance fields. In International Conference on Computer Vision (ICCV),
2023.

[10] Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. Langsplat: 3d
language gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 20051–20060, 2024.

[11] Jin-Chuan Shi, Miao Wang, Hao-Bin Duan, and Shao-Hua Guan. Language embedded 3d gaus-
sians for open-vocabulary scene understanding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5333–5343, 2024.

[12] Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen Fan, Zehao Zhu, Dejia Xu, Pradyumna
Chari, Suya You, Zhangyang Wang, and Achuta Kadambi. Feature 3dgs: Supercharging 3d
gaussian splatting to enable distilled feature fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 21676–21685, 2024.

[13] Yanmin Wu, Jiarui Meng, Haijie Li, Chenming Wu, Yahao Shi, Xinhua Cheng, Chen Zhao,
Haocheng Feng, Errui Ding, Jingdong Wang, et al. Opengaussian: Towards point-level 3d
gaussian-based open vocabulary understanding. arXiv preprint arXiv:2406.02058, 2024.

[14] Umangi Jain, Ashkan Mirzaei, and Igor Gilitschenski. Gaussiancut: Interactive segmentation
via graph cut for 3d gaussian splatting. Advances in Neural Information Processing Systems,
37:89184–89212, 2025.

[15] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In 2024 International Conference on 3D Vision
(3DV), pages 800–809. IEEE, 2024.

11

https://openreview.net/forum?id=k-Fg8JDQmc
https://openreview.net/forum?id=k-Fg8JDQmc
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

[16] Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene
representation and rendering with 4d gaussian splatting. In International Conference on
Learning Representations (ICLR), 2024.

[17] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 20331–20341, 2024.

[18] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu,
Qi Tian, and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
20310–20320, 2024.

[19] Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 130–141,
2023.

[20] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8508–8520, 2024.

[21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

[22] Songyou Peng, Kyle Genova, Chiyu "Max" Jiang, Andrea Tagliasacchi, Marc Pollefeys, and
Thomas Funkhouser. Openscene: 3d scene understanding with open vocabularies. In CVPR,
2023.

[23] Ayça Takmaz, Elisabetta Fedele, Robert W. Sumner, Marc Pollefeys, Federico Tombari, and
Francis Engelmann. OpenMask3D: Open-Vocabulary 3D Instance Segmentation. In Advances
in Neural Information Processing Systems (NeurIPS), 2023.

[24] Rui Huang, Songyou Peng, Ayca Takmaz, Federico Tombari, Marc Pollefeys, Shiji Song,
Gao Huang, and Francis Engelmann. Segment3d: Learning fine-grained class-agnostic 3d
segmentation without manual labels. European Conference on Computer Vision (ECCV), 2024.

[25] Yuliang Sun, Xudong Zhang, and Yongwei Miao. A review of point cloud segmentation for
understanding 3d indoor scenes. Visual Intelligence, 2(1):14, 2024.

[26] Yizhou Wang, Longguang Wang, Qingyong Hu, Yan Liu, Ye Zhang, and Yulan Guo. Panoptic
segmentation of 3d point clouds with gaussian mixture model in outdoor scenes. Visual
Intelligence, 2(1):10, 2024.

[27] Wenbo Zhang, Lu Zhang, Ping Hu, Liqian Ma, Yunzhi Zhuge, and Huchuan Lu. Boot-
straping clustering of gaussians for view-consistent 3d scene understanding. arXiv preprint
arXiv:2411.19551, 2024.

[28] Xingxing Zuo, Pouya Samangouei, Yunwen Zhou, Yan Di, and Mingyang Li. Fmgs: Foundation
model embedded 3d gaussian splatting for holistic 3d scene understanding. International Journal
of Computer Vision, pages 1–17, 2024.

[29] Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Feature splatting: Language-driven
physics-based scene synthesis and editing. arXiv preprint arXiv:2404.01223, 2024.

[30] Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary & region segmenta-
tion of objects in nd images. In Proceedings eighth IEEE international conference on computer
vision. ICCV 2001, volume 1, pages 105–112. IEEE, 2001.

[31] Lester Randolph Ford and Delbert Ray Fulkerson. Flows in networks. 2015.

[32] Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940, 1988.

12

[33] Isaac Labe, Noam Issachar, Itai Lang, and Sagie Benaim. Dgd: Dynamic 3d gaussians
distillation. In European Conference on Computer Vision, pages 361–378. Springer, 2024.

[34] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and René Ranftl. Language-
driven semantic segmentation. arXiv preprint arXiv:2201.03546, 2022.

[35] Wanhua Li, Renping Zhou, Jiawei Zhou, Yingwei Song, Johannes Herter, Minghan Qin, Gao
Huang, and Hanspeter Pfister. 4d langsplat: 4d language gaussian splatting via multimodal large
language models. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pages 22001–22011, 2025.

[36] Gal Fiebelman, Tamir Cohen, Ayellet Morgenstern, Peter Hedman, and Hadar Averbuch-Elor.
4-legs: 4d language embedded gaussian splatting. In Computer Graphics Forum, page e70085.
Wiley Online Library.

[37] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise
view selection for unstructured multi-view stereo. In European Conference on Computer Vision
(ECCV), 2016.

[38] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[39] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 4015–4026,
2023.

[40] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma,
Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan,
Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and
Christoph Feichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. URL https://arxiv.org/abs/2408.00714.

[41] Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
anything in 3d scenes. In ECCV, 2024.

[42] Kunhao Liu, Fangneng Zhan, Jiahui Zhang, Muyu Xu, Yingchen Yu, Abdulmotaleb El Sad-
dik, Christian Theobalt, Eric Xing, and Shijian Lu. Weakly supervised 3d open-vocabulary
segmentation. Advances in Neural Information Processing Systems, 36:53433–53456, 2023.

[43] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B
Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. Hypernerf: A higher-dimensional
representation for topologically varying neural radiance fields. ACM Trans. Graph., 40(6), dec
2021.

[44] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil
Kim, Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural
3d video synthesis from multi-view video. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5521–5531, 2022.

[45] Cheng-Yen Yang, Hsiang-Wei Huang, Wenhao Chai, Zhongyu Jiang, and Jenq-Neng Hwang.
Samurai: Adapting segment anything model for zero-shot visual tracking with motion-aware
memory, 2024. URL https://arxiv.org/abs/2411.11922.

13

https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2411.11922

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect
paper’s contribution and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the limitations in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation detail are included in Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: The code is released at https://github.com/luyr/Segment-then-Splat.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training and test details are provided in Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide numerical mean for all the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources are stated in Sec. 4.1 implementation details and time of
execution is included in Sec. 4.2 experiment results

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As discussed in Sec. 1, 3D open-vocabulary querying enables richer scene un-
derstanding which can benefit applications like autonomous driving and robot manipulation.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release data or model that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets used in the paper are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	3D & 4D Gaussian Splatting
	Language Embedded Scene Representation

	Method
	Preliminary: 3D and 4D Gaussian Splatting
	Robust Object Tracking
	Object-Specific Gaussian Initialization
	Optimization & Reconstruction
	CLIP Embedding Association

	Experiments
	Setups
	Open-Vocabulary Query
	Ablation Study

	Conclusion
	Limitation and Future Direction

