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Abstract
Multi-lingual ability transfer has become in-001
creasingly important for the broad application002
of large language models (LLMs). Existing003
work highly relies on training with the multi-004
lingual ability-related data, which may not005
be available for low-resource languages. To006
solve it, we propose a Multi-lingual Abilities007
Extraction and Combination approach, named008
as MAEC. Our key idea is to decompose009
and extract language-agnostic ability-related010
weights from LLMs, and combine them across011
different languages by simple addition and sub-012
traction operations without training. Specifi-013
cally, our MAEC consists of the extraction and014
combination stages. In the extraction stage,015
we firstly locate key neurons that are highly016
related to specific abilities, and then employ017
them to extract the transferable ability-related018
weights. In the combination stage, we further019
select the ability-related tensors that mitigate020
the linguistic effects, and design a combin-021
ing strategy based on them and the language-022
specific weights, to build the multi-lingual023
ability-enhanced LLM. To assess the effective-024
ness of our approach, we conduct extensive025
experiments on LLaMA-3 8B on mathemati-026
cal and scientific tasks in both high-resource027
and low-resource lingual scenarios. Experi-028
ment results have shown that MAEC can ef-029
fectively and efficiently extract and combine030
the advanced abilities, achieving comparable031
performance with PaLM. We will publicly032
release our code and data.033

1 Introduction034

Large language models (LLMs) have shown re-035

markable performance on various general tasks,036

e.g., text generation and question answering (Zhao037

et al., 2023; OpenAI, 2023). Despite the suc-038

cess, LLMs are still struggling to solve complex039

tasks (e.g., mathematical reasoning), which require040

LLMs to possess specific advanced abilities (e.g.,041

deductive reasoning) and knowledge (e.g., mathe-042

matical theory) (Yue et al., 2024; Lu et al., 2022).043
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Figure 1: The comparison between CPT and MAEC.
Only with the single-lingual ability-related corpus,
MAEC can extract the abilities and combine them,
achieving effective and efficient domain adaptation.

To address it and further improve LLMs, exist- 044

ing work either collects the related data to train 045

LLMs (Du et al., 2024; Chen et al., 2024a), or 046

merges the parameters of existing well-performed 047

LLMs to transfer their abilities into one single 048

model (Ilharco et al., 2023; Yadav et al., 2023). 049

Despite the success, it is not easy to collect suffi- 050

cient training corpus or well-trained LLMs related 051

to specific abilities, especially in multi-lingual sce- 052

narios. Especially, some popular languages (e.g., 053

English) have dominated the linguistic expressions 054

of the open web data, and the amount of available 055

domain-specific data for low-resource languages 056

(e.g., Bengali or Telugu) is highly limited (Patzelt, 057

2024; Mirashi et al., 2024). Fortunately, existing 058

work (Zhao et al., 2024; Schäfer et al., 2024) has 059

revealed that the learned knowledge from one lan- 060

guage by LLMs could be inherited and leveraged 061

by other languages. For example, Llama-series 062

LLMs are trained mainly on English texts, while 063

they can also solve the tasks based on other lan- 064

guages. Such a finding has been widely explored in 065

either improving the overall performance of multi- 066

lingual LLMs (Schäfer et al., 2024) or enhancing 067
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fine-grained knowledge (Chen et al., 2024a). How-068

ever, the related work mostly requires the ability-069

related corpus in the target language, which is not070

always available for low-resource languages.071

To conduct a more effective ability transfer, our072

idea is to learn and extract the “ability-related073

weights” that preserves the knowledge about spe-074

cific abilities for the LLM. If such ability-related075

and language-related weights could be decom-076

posed, it is achievable to transfer the required abili-077

ties into target languages by just combining the cor-078

responding weights, even building a multi-lingual079

ability-enhanced LLM like building blocks. Based080

on this idea, in this paper, we propose a Multi-081

lingual Abilities Extraction and Combination ap-082

proach, named as MAEC. Concretely, our ap-083

proach consists of two major stages, i.e., ability084

extracting and combining stage. In the extracting085

stage, we locate the abilities-related neurons and086

leverage the related corpus in a reference language087

to continually pre-train the LLM on the identified088

neurons. Then, based on the LLM trained on the089

general corpus, we devise a formula to extract the090

ability-related weights. In the combining stage, we091

utilize the ability-related weights to select related092

tensors, and design a specific model merging strat-093

egy by interpolating linguistic and ability-related094

weights. As shown in Figure 1, MAEC only needs095

ability-related corpus from any rich-resource lan-096

guage and multi-lingual general corpus, which can097

efficiently and effectively mitigate the data scarcity098

issues in low-resource languages.099

To assess the effectiveness of our approach,100

we conduct the evaluation based on two complex101

and comprehensive reasoning benchmarks, i.e.,102

Multi-lingual Grade School Math (MGSM) (Shi103

et al., 2023) and science tasks from multi-lingual104

MMLU (Lai et al., 2023) as the evaluation bench-105

marks. According to the evaluation results, with106

only training the specific LLM neurons on a small107

amount of data, the proposed approach MAEC out-108

performs other competitive baseline methods (e.g.,109

continual pre-training (Gururangan et al., 2020)110

and model merging methods with task vectors (Il-111

harco et al., 2023), achieving the 10% relative im-112

provement compared to the base LLM and compa-113

rable performance with PaLM (Chung et al., 2024).114

2 Related Work115

Continual Pre-training. LLMs still struggle in116

complex tasks and low-resource lingual scenar-117

ios (Hedderich et al., 2021; Shao et al., 2024). 118

To adapt LLMs to a specific scenario, existing 119

work (Luo et al., 2022; Taylor et al., 2022; Zhang 120

et al., 2024a) has collected the related corpus to 121

continually pre-train (CPT) LLMs. During the CPT 122

process, the mixture strategy between the general 123

and ability-related corpus should be considered 124

to avoid hurting their general abilities (Ye et al., 125

2024; Xie et al., 2023; Siriwardhana et al., 2024). 126

However, previous study (Chang et al., 2024; Lu 127

et al., 2023) has found that it is hard to collect 128

the task-related corpus, especially for low-resource 129

language scenarios. Therefore, synthesizing data 130

from powerful LLMs is utilized to expand the task- 131

related training corpus (Chen et al., 2021b; Zhou 132

et al., 2024a). In this work, we focus on adapting 133

LLMs to multilingual complex reasoning scenarios 134

with only the single-lingual ability-related corpus. 135

Knowledge Editing. According to the lottery 136

ticket hypothesis (Frankle and Carbin, 2019), train- 137

ing a sub-network of the model will achieve com- 138

parable or even better performance on downstream 139

tasks. Moreover, several study (Chen et al., 2024b; 140

Zhang et al., 2024b) pointed out that the task- 141

related sub-networks can be determined before the 142

training process. Existing study (Du et al., 2024; 143

Wang et al., 2024b; Gong et al., 2024) has leveraged 144

the inner information of LLMs to select and train 145

the related sub-network. Besides, the probe (i.e., a 146

newly initialized parameter) can be implemented to 147

detect the knowledge of LLMs and process targeted 148

repair (Wang et al., 2024a; Jiang et al., 2024). 149

Model Merging. Given the huge computation re- 150

sources consumed of CPT, previous work used 151

model merging techniques to integrate different 152

abilities (e.g., mathematical reasoning and code 153

synthesizing) into one model (Yang et al., 2024; 154

Xu et al., 2024b; Stoica et al., 2024). During the 155

merging process, the parameters of different LLMs 156

might be conflict with others, which can be miti- 157

gated by the clip (Yadav et al., 2023) or random 158

dropout (Yu et al., 2024) mechanism. Moreover, 159

the LLM inner parameters or external matrixes can 160

be utilized to determine the hyper-parameters of the 161

model merging process (Zhou et al., 2024b; Matena 162

and Raffel, 2022). Furthermore, existing work has 163

merged the reasoning-specialized and multi-lingual 164

models to improve their reasoning ability in non- 165

English scenarios (Huang et al., 2024; Yoon et al., 166

2024). Inspired by the above work, we try to locate 167
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the task-related sub-networks of LLMs and transfer168

the advanced abilities.169

3 Preliminary170

Despite that LLMs exhibit remarkable performance171

on general tasks, they still have limited advanced172

abilities, e.g., mathematical and scientific reason-173

ing abilities. A typical approach to enhance these174

abilities is to continually pre-train (CPT) LLMs175

with ability-related corpus. However, such training176

data might not always be available or sufficient,177

especially for minor domains (e.g., Bengali). In178

this work, we focus on the task of ability extraction179

and transfer by continual pre-training and merging180

LLMs. Concretely, LLMs are trained on the col-181

lected corpus from a certain domain, and we aim182

to only transfer its learned advanced capabilities to183

target domains (Zhuang et al., 2021; Farahani et al.,184

2021) without further training. In this work, we185

study the cross-lingual scene where the linguistic-186

agnostic advanced ability and linguistic abilities187

should be extracted and transferred, to build a uni-188

fied multi-lingual ability-enhanced LLM.189

Formally, for a certain ability 𝐴𝑖 and a set of lan-190

guages 𝐿 = {𝐿0, 𝐿1, . . . , 𝐿𝑛}, we assume that the191

general corpus of all languages can be collected, de-192

noted as Cgeneral = {C𝐿0 , C𝐿1 , . . . , C𝐿𝑛
}, while the193

ability-related corpus is only available in language194

𝐿0 (i.e., English), denoted as C𝐿0,𝐴𝑖
. Based on the195

above corpora, our goal is to extract and transfer196

the advanced ability 𝐴𝑖 from language 𝐿0 and lin-197

guistic abilities from other languages 𝐿1, . . . , 𝐿𝑛,198

into a unified LLM.199

4 Approach200

In this section, we propose the Multi-lingual201

Ability Extraction and Transfer approach, named202

as MAEC, which can effectively transfer the ad-203

vanced abilities from single-lingual LLMs, to build204

a multi-lingual ability-enhanced LLM. The key mo-205

tivation of our approach is to identify and extract206

ability-related neurons or weights, and combine the207

target abilities into a LLM in an efficient way. The208

framework of MAEC is presented in Figure 2.209

4.1 Ability-related Weights Extraction210

In this part, we aim to locate and learn ability-211

related parameter weights within an LLM, to en-212

able efficient combining of the ability into other213

LLMs. Concretely, it consists of two major steps,214

i.e., key neurons locating and ability-related param- 215

eter weights learning. 216

Locating the Key Neurons. The gradient of each 217

neuron in LLMs can be utilized to estimate its cor- 218

relation degree with specific task ability (Pruthi 219

et al., 2020; Chen et al., 2024b; Xia et al., 2024), 220

we select those with high gradient values as key 221

neurons. To this end, we first use the ability-related 222

corpus C′
𝐿0,𝐴𝑖

to continually pre-train the LLM, 223

while sampling a small amount to train the model 224

can be also applied to reduce the computation con- 225

sumption. During training, the LLM learns the lan- 226

guage modeling task and each neuron is updated by 227

the gradients associated by the training instances. 228

Due to the high cost of calculating the accumula- 229

tion of gradient at each training step, we calculate 230

the value changes of the LLM neurons before and 231

after the training process to approximate the impor- 232

tance. Formally, the importance function 𝐼 (𝐴𝑖 , 𝜃 𝑗) 233

of neurons can be computed as: 234

𝐼 (𝐴𝑖 , 𝜃 𝑗 ) =
∑︁

𝑑𝑘 ∈C′𝐿0 ,𝐴𝑖

Grad
(
𝜃 𝑗 , 𝑑𝑘

)
≈
∥ 𝜃 𝑗 − 𝜃 𝑗 ∥

LearningRate
, (1) 235

where 𝑑𝑘 denotes the 𝑘-th instance of training cor- 236

pus C′
𝐿0,𝐴𝑖

and 𝜃 𝑗 denote the value of the 𝑗-th neu- 237

ron of LLM after training, respectively. Based on it 238

and inspired by previous work (Yadav et al., 2023), 239

we rank all neurons according to their importance 240

scores, and then select the top 𝑘1% ones into the 241

set N𝐴𝑖
as the key neurons. 242

Learning Ability-related Weights. Based on the 243

identified key neurons in N𝐴𝑖
, we further learn 244

the ability-related parameter weights. Our moti- 245

vation is to decompose the parameter weights ac- 246

cording to their changes before and after the LLM 247

has mastered a specific ability, which is achievable 248

owing to the modularity and composition nature 249

of the LLM parameter matrices (Yu et al., 2024; 250

Shazeer et al., 2017). First, we utilize the key neu- 251

rons locating method mentioned above to extract 252

the ability-related neuron set N𝐴𝑖
, and also obtain 253

the language-related neuron set N𝐿0 via the same 254

way. Then, we train the LLM with the mixture of 255

ability-related corpus and general corpus on the 256

key neuron setN𝐴𝑖

⋃N𝐿0 andN𝐿0 respectively, to 257

obtain two specific models, denoted as LLM𝐴𝑖 ,𝐿0 258

with parameters Θ𝐴𝑖 ,𝐿0 and LLM𝐿0 with parame- 259

ters Θ𝐿0 . Next, we measure the parameter changes 260

between the backbone and the trained models, and 261

obtain the ability-related weights via the parameter 262
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Figure 2: The framework of MAEC. First, we locate the key neurons, and utilize the single-lingual ability-related
corpus and general corpus to train the LLM on these neurons to obtain the ability-related weight. Then, we remove
the tensors related to language knowledge in the ability-related weight and combine the remaining to the base LLM.
Finally, we obtain a powerful LLM that can solve the related tasks in multi-lingual scenarios.

decomposition operation as:263

𝑅(𝐴𝑖) = 𝛼· (Θ𝐴𝑖 ,𝐿0 − Θ𝑜)︸             ︷︷             ︸
Ability & language difference

−𝛽· (Θ𝐿0 − Θ𝑜)︸        ︷︷        ︸
Language difference

,

(2)264

where 𝛼 and 𝛽 are tunable coefficients to balance265

the two parts of weight differences, and Θ𝑜 denote266

the original parameters of the LLM, which serves267

as the reference for parameter decomposition. As268

we only train the parameters within the neuron set,269

its weight difference should preserve the knowl-270

edge about the corresponding ability. Thus, it can271

be regarded as the ability-related parameter repre-272

sentations, and is promising to combine the ability273

into other LLMs by the addition operation.274

4.2 Multi-lingual Ability Combination275

After obtaining the ability-related weights, we com-276

bine them to transfer and integrate the abilities,277

building a multi-lingual ability-enhanced LLM.278

Ability-related Tensor Selection. Although we279

can locate the ability-related key neurons, it is280

still hard to avoid the involvement of irrelevant281

ones. Our empirical studies in Appendix A have282

found that neuron-level features are easy to be af-283

fected by the noisy data. Inspired by previous284

work (Cheng et al., 2024a), we consider iden-285

tifying ability-related tensors to further mitigate286

the linguistic effects, which correspond to the pa- 287

rameter matrices within the LLM. Specifically, 288

we firstly leverage the ability-related weights of 289

languages 𝑅(𝐿1), . . . , 𝑅(𝐿𝑛) to obtain the multi- 290

lingual weight 𝑅𝐿𝑎𝑛𝑔. Given that large models 291

have varying levels of proficiency in different lan- 292

guages, we use the hyper-parameters 𝜇1, . . . , 𝜇𝑛 to 293

tune this process as: 294

𝑅𝐿𝑎𝑛𝑔 =

𝑛∑︁
𝑖=1

𝜇𝑖 · 𝑅(𝐿𝑖), (3) 295

where 𝑅(𝐿𝑖) preserves the linguistic ability of lan- 296

guage 𝐿𝑖 learned based on Eq. 2. Therefore, 𝑅𝐿𝑎𝑛𝑔 297

can be considered as the general language ability 298

of LLMs that spans multiple languages. As we aim 299

to find he parameter tensors that have low linguis- 300

tic effects but focus on the desired abilities (e.g., 301

mathematical reasoning), we rank all the tensors 302

according to their similarities with 𝑅𝐿𝑎𝑛𝑔, and pick 303

up the last 𝑘2% ones. Formally, for tensor 𝜏𝑖, we 304

calculate the cosine similarity of this parameter 305

between 𝑅(𝐴𝑖) and 𝑅𝐿𝑎𝑛𝑔, as follows, 306

𝑆(𝜏𝑖) = sim
(
𝑅(𝐴𝑖) [𝜏𝑖], 𝑅𝐿𝑎𝑛𝑔 [𝜏𝑖]

)
, (4) 307

where we use the cosine similarity to implement 308

the similarity function sim (·). After obtaining the 309

similarity of all tensors, we rank them in a descend- 310

ing order based on the similarity values, and then 311
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Approaches MLAR TPara AC AT

CPT Yes Full No No
MoE Yes Full No No
LoRA Yes Low-Rank No No
MoL Yes Low-Rank No No
TV Yes Full Yes No

MAEC No Ability-related Yes Yes

Table 1: The difference between our MAEC and
the methods in previous work (i.e., CPT (Hu et al.,
2022), Mixture-of-Expert (MoE) (Shazeer et al., 2017),
LoRA (Hu et al., 2022), Mixture-of-LoRA (MoL) (Feng
et al., 2024), and Task Vector (TV) (Ilharco et al., 2023).
MLAR, TPara, AC, and AT denote the abbreviation
of multi-lingual ability-related corpus, parameters for
training, ability composition, and ability transfer.

select the last 𝑘2% parameters into the set T as the312

ability-related parameters.313

Building Multi-lingual Ability-enhanced LLM.314

Based on the selected ability-related tensors T , we315

design the model merging process by interpolating316

ability weights and multi-lingual weights, to build317

the multi-lingual ability-enhanced LLM. Formally,318

the final parameter tensors of the target LLM are319

computed as:320

𝜏𝑖 = 𝜏
(𝑜)
𝑖
+
{
𝛾 · 𝑅(𝐴𝑖) [𝜏𝑖] + 𝜂 · 𝑅𝐿𝑎𝑛𝑔 [𝜏𝑖], 𝜏𝑖 ∈ T
𝑅𝐿𝑎𝑛𝑔 [𝜏𝑖], 𝜏𝑖 ∉ T

, (5)321

where 𝜏
(𝑜)
𝑖

denotes the original value of parameter322

tensor 𝜏𝑖 , and 𝛾 and 𝜂 are tunable hyper-parameters.323

This formula can be explained in two different324

cases. When a parameter tensor serves as the major325

role for specific abilities, we update it by adding326

both ability- and linguistic-related weights; oth-327

erwise, we simply enhance it with multi-lingual328

weights. In this way, we can derive a more pow-329

erful LLM that is equipped with the multi-lingual330

abilities and specific advanced abilities.331

4.3 The Overall Procedure332

To better demonstrate MAEC, we present key con-333

cepts in Table 4 for further clarifying and provide334

the complete procedure in Algorithm 1. The pro-335

cedure of MAEC consists of two main stages, i.e.,336

ability-related weights extraction and multi-lingual337

ability combination. For the extraction stage, we338

first utilize the accumulated gradient to estimate339

the importance of each neuron by Eq. 1. Then, we340

leverage the model trained on the general corpus341

to remove the effect of language and obtain the342

ability-related weight through Eq. 2. In the combi-343

nation stage, we utilize Eq. 3 and Eq. 4 to obtain344

the multi-lingual weight and identify the ability- 345

related tensors in LLM. After it, we leverage Eq. 5 346

to fulfill the multi-lingual abilities combination, to 347

build the multi-lingual ability-enhanced LLM. 348

To highlight the difference between our approach 349

and previous work, we present the comparison 350

of these methods in Table 1. To adapt LLMs to 351

multi-lingual scenarios, most of the existing meth- 352

ods (e.g., CPT and TV) require the multi-lingual 353

ability-related corpus (i.e., ability-related corpus is 354

required for each language) for training the LLM. 355

In comparison, our MAEC only trains and mod- 356

ifies the ability-related parameters, which can ef- 357

ficiently focus on enhancing the specific ability. 358

A major novelty of our work is that we identify 359

the key units and implement the sparse update in 360

the model training and merging procedure, which 361

can effectively decompose, extract, and combine 362

the abilities of LLMs. In addition, compared with 363

the LoRA-based methods (i.e., LoRA and MoL) 364

that also sparsely update the LLM parameters, our 365

approach selectively updates the ability-related neu- 366

rons, while LoRA-based methods use the low-rank 367

matrices to approximate the original parameters. 368

5 Experiment 369

5.1 Experimental Settings 370

We introduce the datasets, metrics, and the base- 371

lines in our evaluation, and present the implemen- 372

tation details of our approach in Appendix B. 373

Datasets. We focus on transferring the advanced 374

abilities (i.e., mathematical and scientific reason- 375

ing abilities) of LLMs from English scenarios to 376

multi-lingual scenarios, including high-resource 377

language (i.e., Spanish) and low-resource lan- 378

guages (i.e., Bengali and Telugu). Thus, for the 379

training corpus, we extract the corpus proposed 380

by previous work (Yang et al., 2023; Scao et al., 381

2022) as the general corpus, and use OpenWeb- 382

Math (Paster et al., 2024) and arXiv papers (Sol- 383

daini et al., 2024) as the ability-related corpus for 384

mathematical and scientific tasks. For evaluation, 385

we follow the settings in previous work (OpenAI, 386

2023), utilizing Multi-lingual Grade School Math 387

(MGSM) (Shi et al., 2023) and science tasks from 388

multi-lingual MMLU (Lai et al., 2023) (i.e., college 389

and high school biology, chemistry, and physics) as 390

the downstream tasks. The statistical information 391

of the datasets is shown in Table 6. 392

Evaluation Metrics We calculate the accuracy of 393
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Methods #Tokens
Multilingual Mathematical Tasks Multilingual Scientific Tasks

ES BN TE Avg. ICER (↓) ES BN TE Avg. ICER (↓)
Close-source Multi-lingual Large Language Models

GPT-3 175B - 54.8 10.8 4.8 23.5 - - - - - -
PaLM 62B - 46.4 17.6 12.0 25.3 - - - - - -
cont-PaLM 62B - 44.4 28.0 19.6 30.7 - - - - - -
Flan-cont-PaLM 62B - 53.6 34.4 28.8 38.9 - - - - - -

Open-source Multi-lingual Large Language Models
Baichuan-2 7B - 17.2 4.8 2.4 8.1 - 42.3 30.2 26.2 32.9 -
Mistral 7B - 38.8 9.6 2.8 17.1 - 52.1 32.9 28.0 37.7 -
LLaMA-2 7B - 7.6 1.6 0.0 3.1 - 34.2 24.6 22.2 27.0 -
LLaMA-3 8B - 48.4 28.8 20.4 32.5 - 55.1 36.6 29.3 40.3 -

Vanilla Continually Pre-training based Approaches
+ F-CPTL&A 20B 46.8 28.4 27.6 34.3 11.1 55.9 36.8 30.1 41.0 28.6
+ L-CPTL&A 20B 44.8 28.8 23.6 32.4 - 54.8 36.4 29.9 40.4 200.0
+ F-CPTA 4B 47.2 20.0 13.2 26.8 - 51.9 33.4 29.4 38.2 -
+ F-CPTL 8B 38.8 28.0 23.6 30.1 - 53.6 35.9 30.6 40.0 -
+ L-CPTL 8B 46.4 28.4 22.8 32.5 - 55.0 36.7 30.4 40.7 20.0

Transfer Learning based Approaches
+ F-CPTL & DA 12B 41.6 30.4 27.6 33.2 17.1 52.7 35.5 28.6 38.9 -
+ L-CPTL & DA 12B 46.8 28.0 27.2 34.0 8.0 55.7 36.5 29.7 40.6 40.0

Data Augmentation based Approaches
+ F-CPTL&T 20B 48.0 28.4 25.5 34.0 13.3 53.7 35.1 31.7 40.2 -
+ F-CPTT 20B 48.0 27.2 24.4 33.2 28.6 50.4 34.5 34.5 39.8 -

Model Merging based Approaches
+ F-TV 12B 42.0 16.0 10.4 22.8 - 53.4 36.7 30.7 40.3 -
+ L-TV 12B 45.6 30.8 25.6 34.0 8.0 55.5 36.7 30.4 40.9 20.0

+ MAEC (Ours) 12B 49.6 32.4 25.2 35.7 3.6 56.2 37.6 30.4 41.4 10.9

Table 2: The performance of different approaches on multilingual mathematical and scientific tasks. ES, BN, and
TE denote Spanish, Bengali, and Telugu, respectively. #Tokens denotes the number of training tokens.

the predicted answers from LLMs and focus on394

the average performance (Avg.), since our major395

goal is building a multi-lingual LLM. Moreover,396

we introduce the incremental cost-effectiveness397

ratio (ICER) (Gafni and Birch, 2006) to assess398

the efficiency of the approaches, i.e., ICER =399

Improvement / #Tokens ×100%. Notably, we only400

report the ICER scores for the methods that can401

lead to improvements.402

Baselines. We adopt LLaMA-3 8B (Dubey et al.,403

2024) as the backbone model and four categories404

of widely used methods as baselines, i.e., continu-405

ally pre-training, transfer learning, data augmen-406

tation, and model merging based approaches. Con-407

cretely, a baseline can be represented as three parts,408

i.e., training parameters, training approach, and409

training data. First, we conduct the full param-410

eters training and the LoRA training (Hu et al.,411

2022), denoted as the “F” and “L” at the prefix,412

respectively. Second, for the training approach,413

we employ continual pre-training (CPT) (Gururan-414

gan et al., 2020), domain adaption (DA) (Taylor415

et al., 2022), and model merging with task vector 416

(TV) (Ilharco et al., 2023). Third, for the training 417

data, “L”, “A”, and “T” refer to the multi-lingual 418

general corpus, English ability-related corpus, and 419

multi-lingual ability-related corpus translated by 420

GPT-4o (Hurst et al., 2024), respectively. Also, 421

we present the performance of open-source LLMs 422

(i.e., Baichuan-2 7B (Yang et al., 2023), Mistral 423

7B (Jiang et al., 2023), and LLaMA-2 7B (Touvron 424

et al., 2023)) and close-source LLMs (i.e., GPT-3 425

and PaLM series model (Chung et al., 2024)) 426

5.2 Main Results 427

The evaluation results have been shown in Table 2. 428

First, MAEC outperforms other baselines in 429

the average performance of all downstream tasks 430

by only expensing 60% computational resources, 431

showing the best incremental cost effectiveness ra- 432

tio. In our experiment, continually pre-training 433

LLMs on a mixture of multi-lingual general corpus 434

and single-lingual ability-related corpus (i.e., F- 435

CPTL&A) can enhance the specific ability of LLMs, 436

achieving the second-best performance. However, 437
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when adapting LLMs to a new domain or enhanc-438

ing a new ability of LLM, CPT-based methods439

should retrain the LLMs on the ability-related and440

multi-lingual corpus, showing the lack of transfer-441

ability and requirements of more computational re-442

sources. For the new domain adapting, MAEC only443

utilizes a small amount of single-lingual ability-444

related corpus (i.e., English corpus in practice) to445

obtain the ability weight, which can be employed446

to combine the corresponding advanced ability,447

achieving both effectiveness and efficiency.448

Second, although our MAEC shows similar train-449

ing efficiency to transfer learning based approaches,450

MAEC performs better than these baselines, show-451

ing the lower ICER score (e.g., 3.6 v.s. 8.0). For452

transfer learning based approaches, since the model453

is only trained on the single-lingual ability-related454

corpus during the domain adaptation process, it is455

difficult for LLM to handle the challenging tasks456

in multi-lingual scenarios. Concretely, the perfor-457

mance of LLM on the multi-lingual scientific tasks458

even decreases after domain adaptation, showing a459

4% relative decrease. To alleviate this issue, MAEC460

leverages the calculation between the parameters461

of different models to extract the ability-related462

weights, which are language-agnostic and can be463

transferred to any other scenario.464

Third, MAEC also achieves higher performance465

than data augmentation based approaches (i.e.,466

training LLM on the multi-lingual ability-related467

corpus translated by GPT-4o). The translation-468

based method consumes more computational re-469

sources and cannot achieve better performance.470

The reason might be that LLMs cannot perform471

the translation process well and the translated cor-472

pus shares similar knowledge of the specific do-473

main, which makes LLM overfit the corresponding474

knowledge and cannot really understand the spe-475

cific knowledge. In contrast, our approach decom-476

poses the advanced ability and language ability, and477

transfers the advanced ability from one language to478

another, preventing overfitting, decreasing the ex-479

pense, and improving performance. These results480

demonstrate that data-centric methods are difficult481

to build a multi-lingual ability-enhanced LLM.482

Last, compared with the model merging based483

approaches (i.e., F-TV and L-TV), experimental re-484

sults have shown that MAEC performs better than485

these baseline methods, since we decompose the486

relation between ability and the language of the487

training corpus. In the previous model merging488

Figure 3: The ablation study. KNL, AWO, ATI,
and AAC denote key neurons locating (Eq. 1), ability
weights obtaining (Eq. 2), ability-related tensors identi-
fying (Eq. 4), and advanced abilities combining (Eq. 5).

approaches, they mainly added the parameters of 489

different models to obtain the final model, without 490

considering the relation between language and abil- 491

ities. Due to the extraction mechanism of MAEC, 492

we mitigate the effect of languages and make the 493

weight more related to ability, which can be trans- 494

ferred in multi-lingual scenarios. 495

5.3 Detailed Analysis 496

To further analyze MAEC, we conduct an ablation 497

study, and the analysis of the combining ratio 𝑘2 498

and the generalization of MAEC. 499

Ablation Study. To assess the effectiveness of 500

each component of MAEC, we conduct the ab- 501

lation study and present the results in Figure 3. 502

We implement MAEC on multi-lingual mathemat- 503

ical and scientific tasks without each module of 504

MAEC, i.e., key neurons locating (i.e., Eq. 1), abil- 505

ity weight obtaining (i.e., Eq. 2), ability-related 506

parameter tensor identifying (i.e., Eq. 4), and ad- 507

vanced abilities transferring (Eq. 5). First, in most 508

downstream scenarios, removing any module of 509

MAEC will affect the final performance, verify- 510

ing the effectiveness of the MAEC process. Sec- 511

ond, without ability weight obtaining, i.e., directly 512

utilizing the difference between LLM trained on 513

the ability-related corpus and the backbone LLM 514

as the ability weight, the performance of LLMs 515

is seriously hurt in both scenarios, indicating this 516

process can significantly extract the advanced abil- 517

ities from the single-lingual corpus and decrease 518
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Figure 4: The performance of different proportions for
the ability-related parameters identification.

the influence of the language of the training cor-519

pus. Third, comparing the results of the models520

whether adopting the ability transferring process,521

experimental results show that LLM with the multi-522

lingual ability-enhanced cannot well solve multi-523

lingual mathematical and scientific tasks, and lever-524

aging the ability weight provided by MAEC can525

improve the LLM performance on advanced tasks.526

Influence of Combining Ratio 𝑘2. Identifying and527

updating the ability-related sub-network of LLMs528

is the key point of our MAEC. We analyze the in-529

fluence of the combining ratio 𝑘2% and show the530

results in Figure 4. Firstly, when the combining531

ratio 𝑘2 changes within a certain range, the model’s532

performance remains largely the same, indicating533

the strong robustness of our MAEC. Specifically,534

for the mathematical tasks, when 𝑘2 increases from535

0.6 to 0.8, the performance of LLM remains ap-536

proximately 35.5, showing the stability of MAEC.537

Besides, the performance of LLM has decreased in538

both extremely low and high ratios of the ability-539

related parameters identifying process. The main540

reason is that the lower proportion combines incom-541

plete knowledge to the model and makes LLM un-542

able to possess the corresponding ability, while the543

higher proportion cannot extract the ability weight544

precisely and will combine too much language-545

related knowledge to the model, which conflicts546

with the LLM’s inner knowledge.547

Out-of-Domain Performance of MAEC. We con-548

duct experiments about adapting mathematical549

ability on LLaMA-3 8B through MAEC, and as-550

sess its performance on out-of-domain (OOD)551

tasks (i.e., MMLU (Hendrycks et al., 2021), Hu-552

manEval (Chen et al., 2021a), MBPP (Austin et al.,553

Methods MMLU MBPP OpenbookQA

LLaMA-3 8B 60.85 46.60 65.00

+ CPT -2.39 -7.00 -3.60
+ MAEC +0.22 +0.80 +0.00

Table 3: The out-of-domain performance of different
methods to train LLaMA-3 8B on OpenWebMath. After
the ability-enhancing process, CPT hurts the OOD abili-
ties of LLM, while MAEC can maintain these abilities.

2021), and OpenbookQA (Mihaylov et al., 2018)). 554

Results are presented in Table 3. We can observe 555

that the performance of LLM on all evaluation 556

tasks has decreased through the CPT training pro- 557

cess, and the maximum decrease has been achieved 558

7.32% on the HumanEval task. One of the possi- 559

ble reasons is that LLaMA-3 has been trained on 560

OpenWebMath during pre-training and the CPT 561

process makes it overfit and forget the knowledge 562

of other domains, hurting the performance on OOD 563

tasks. In contrast, our proposed MAEC achieves 564

comparable and even better performance with back- 565

bone LLM in all downstream scenarios. Since we 566

identify and update the key neurons related to the 567

specific ability, the ability of LLM can be precisely 568

enhanced, and this strategy also helps the OOD 569

tasks needed for mathematical ability, e.g., mathe- 570

matical tasks in MMLU and MBPP. 571

6 Conclusion 572

In this paper, we presented MAET, which extracted 573

the advanced ability-related weights from the LLM 574

and supported simple addition and subtraction op- 575

erations to transfer the ability across different lan- 576

guages. Concretely, MAET included two main 577

stages, i.e., extraction and transfer. For the extrac- 578

tion stage, we located the key neurons and extracted 579

the ability-related weights. Then, in the transfer 580

stage, we identified the key parameter tensors and 581

leveraged them to transfer the advanced ability into 582

other LLMs. In this process, the multi-lingual 583

ability-related training corpus is not required, and 584

the experimental results have shown that our ap- 585

proach outperformed competitive baselines. 586

As future work, we will consider better methods 587

to identify the ability-related sub-network to de- 588

compose the abilities of LLMs and utilize an auto- 589

mated approach to determine the hyper-parameter. 590

Besides, we will implement MAET on larger-scale 591

models, and scenarios with more languages and re- 592

quiring more abilities to evaluate its effectiveness. 593
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Limitations594

In this section, we discuss the limitations of our595

work. First, we only implement our approach596

MAEC on 8B LLMs (i.e., LLaMA-3 8B), and do597

not adopt the LLMs with larger scales (e.g., 13B598

or 70B LLMs) in the experiment, due to the limi-599

tation of computational resources. We will test the600

effectiveness of our approach on these LLMs in601

the future. Second, we only evaluate our approach602

on two downstream tasks (i.e., mathematical and603

scientific reasoning tasks) in multi-lingual scenar-604

ios. Although they are challenging and widely-605

used testbeds, it is still meaningful to verify our606

methods on other tasks. Whereas, as we test the607

performance on diverse high-resource and low-608

resource languages, it can also provide compre-609

hensive performance estimation for our approach610

in multi-lingual scenarios. Finally, we do not con-611

sider the potential risk and ethics issues that might612

hurt the alignment of LLMs when using our ap-613

proach. Actually, our approach is also applicable614

to combining the ability to align across languages.615

We will investigate to it in the future.616
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A Empirical Study1159

A surge of work (Zhang et al., 2024b; Xiao et al.,1160

2024; Tang et al., 2024) has pointed out that LLMs1161

sparsely activate the specific sub-modules to per-1162

form corresponding tasks. Based on these find-1163

ings, we conduct empirical experiments to explore1164

whether the specific sub-module, which is related1165

to advanced abilities, can be extracted and com-1166

bined. We utilize the forum corpus (i.e., Zhihu1167

for Chinese forum corpus and Reddit for English1168

forum corpus) to continually pre-train LLMs, and1169

then assess the training performance (i.e., the value1170

of loss function) and similarity of LLM neurons.1171

The forum corpus can be considered as contain-1172

ing the question-answering (QA) ability, which1173

is necessary and important for LLMs. The re-1174

sults from Figure 5a have shown that only training1175

the top 5% relevant neurons of LLMs can achieve1176

the lower training loss and fit into the training set1177

more quickly, indicating that LLMs contain the1178

sub-module corresponding to the QA ability. More-1179

over, from Figure 5b and Figure 5c, we can observe1180

that the LLM trained on Zhihu has shown higher1181

similarity with the LLM trained on Reddit than the1182

LLM trained on Github (i.e., lower L1 Norm and1183

higher cosine similarity), and the cosine similarity1184

of different layers in LLM are largely different.1185

According to the above results, we have found1186

that the different sub-networks of LLMs control the1187

different abilities, and precisely selecting the cor-1188

rect sub-module of LLMs will help the extraction1189

of advanced abilities from the single-lingual cor-1190

pus and the combination of these abilities to multi-1191

lingual scenarios. Concretely, although Zhihu and1192

Reddit are in different languages, they will influ-1193

ence the similar sub-modules of LLM and make1194

these sub-networks show high similarity with each1195

other. These sub-networks can be referred to the1196

ability-related sub-networks, which are slightly in-1197

fluenced by languages.1198

B Implementation Details1199

In the experiment, we adapt LLaMA-3 8B as the1200

backbone LLM, and employ Transformers (Wolf1201

et al., 2020) and Deepspeed framework to per-1202

form the training process. And we also present1203

the evaluation results of different backbone LLM1204

(i.e., Qwen2.5 0.5B (Hui et al., 2024) and Gemma21205

2B (Rivière et al., 2024)) in Appendix E. For the1206

training process, the learning rate, batch size, and1207

training step are set as 5×10−5, 1M tokens, and 2B1208

tokens, respectively. Besides, for the key neurons 1209

locating, we select the top 5% relevant neurons as 1210

the key neuron set N for both stages and identify 1211

the last 80% and 60% similar tensor as the key sub- 1212

network T for mathematical reasoning tasks and 1213

scientific reasoning tasks respectively. 1214

Hyper-parameters Selection. we released all of 1215

the hyper-parameters during our experiment in Ta- 1216

ble 5, to reproduce our proposed approach bet- 1217

ter. The hyperparameters discussed in the paper 1218

can be categorized into two types: training-related 1219

parameters (e.g., learning rate, batch size) and 1220

training-independent parameters (i.e., 𝛼, 𝛽, 𝛾, 𝜂, 1221

and 𝜇). Training-related parameters do not require 1222

extensive hyperparameter tuning, as existing stud- 1223

ies (Dubey et al., 2024; Hui et al., 2024) provide 1224

clear guidelines for setting them. On the other 1225

hand, training-independent parameters are used 1226

to construct ability-related weights, tensors, and 1227

language-specific weights. These techniques are 1228

similar to those employed in model merging (Il- 1229

harco et al., 2023; Yadav et al., 2023), and the 1230

hyperparameter setting approach outlined in the 1231

paper can be applied. A limited number of hyper- 1232

parameter sets can be defined and validated, as the 1233

process primarily involves simple additions and 1234

subtractions of model parameters, making it com- 1235

putationally inexpensive. 1236

C Details of Dataset 1237

We present the statistical information of the 1238

datasets in Table 6. We mainly consider English, 1239

Spanish, Chinese, Bengali, and Telugu in our ex- 1240

periment, and utilized English as the in-domain 1241

language while others as the out-of-domain lan- 1242

guages. For the evaluation datasets, we select 1243

MGSM and multi-lingual MMLU as the evalua- 1244

tion benchmarks, which contain the parallel data in 1245

different languages and are useful for multi-lingual 1246

complex tasks evaluation. 1247

D Prompt for Translation 1248

You should translate the following text 1249

from English to {TARGET LANGUAGE} and 1250

should not modify the latex code or 1251

website code. You should not add any 1252

details that are not mentioned in the 1253

original text. 1254

1255

## English 1256
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Concepts Meaning

Key Neurons

Neuron refers to one of the trainable values of the tensors in LLMs. As previous work
pointed out (Xu et al., 2024a), different neurons might control the different abilities of
LLMs. Following this finding, in our work, we define the neurons that control the specific
ability as the ”Key Neurons”. Key neurons can be regarded as a set without duplication, and
a neuron belonging to the set means that this neuron can control the specific ability (Chen
et al., 2024b). During the following training process, only the neurons belonging to the
key neurons will be trained and optimized.

Ability-related Weights

Ability-related weights refer to the value of the whole neuron in LLM, which can represent
the corresponding ability of LLM (Yu et al., 2024; Ilharco et al., 2023). In MAET, we
obtain the ability-related weights through equation 2. The ability-related weights contain
the value of all neurons. Since only the key neurons will be trained during the training
process, the value of the neurons not belonging to key neurons is zero in the ability-related
weights.

Ability-related Tensors

Ability-related tensors can be regarded as a set of LLM tensors, which is related to
the corresponding ability. Previous work has studied how the LLM layers influence
the ability (Cheng et al., 2024b). Different from key neurons, ability-related tensors
focus on higher-level information, integrating the sparse neurons into a coarser-grained
element (Xiao et al., 2024). A tensor belonging to the ability-related tensors denotes that
this tensor is highly related to the corresponding ability and can control this ability.

Language-specific Weights

Similar to the ability-related weights, language-specific weights also refer to the value of
the whole neurons in LLMs (Zhang et al., 2024b). However, language-specific weights
represent the language abilities of LLM that include multiple abilities (i.e., one language
can be regarded as one ability) (Tang et al., 2024), and the method of obtaining them
is also different from ability-specific weights. In MAET, we first calculate the ability-
related weights of each language and then Integrating these weights together to obtain the
language-specific.

Table 4: The key concepts of our approach.

(a) Loss During Training Process (b) Similarity of LLM Layers (c) Similarity of LLM Parameters

Figure 5: The results of empirical experiments. We present the loss of different training methods during the training
process, the cosine similarity of LLM layers after being trained on Zhihu and Reddit, and the similarity of LLMs
being trained on different training corpus.

{ENGLISH TEXT}1257

1258

## {TARGET LANGUAGE}1259

E Performance of Small Scale LLMs1260

We conduct the different LLMs with different sizes1261

(i.e.,, Qwen2.5-0.5B and Gemma2-2B) in our ex-1262

periment to valid the practicality of our approach.1263

We assess MAET and baselines on multi-lingual1264

scientific reasoning tasks and present the evaluation1265

results in Table 7. Comparing the performance of1266

MAET and the baseline methods, we can observe1267

that MAET can also enhance the performance of1268

small scale models and outperform competitive1269

baselines. Therefore, the evaluation results have1270

shown the effectiveness of MAET and verified that1271

MAET is a general LLM enhancement technology. 1272

F Ability-related Sub-networks of LLM 1273

To assess and probe the ability-related sub- 1274

networks of LLMs, we only combine the specific 1275

tensors (i.e., tensors in self-attention and MLP 1276

mechanism) from the ability weight to the final 1277

models through Eq. 5, to analyze the LLM inner 1278

abilities. The experimental results are presented in 1279

Table 8. From the experiment, we can observe that 1280

although the proportion of MLP layers (41.38%) 1281

is lower than the attention layers (45.26%), only 1282

combining the MLP layers outperforms Combining 1283

the attention layers, indicating that the MLP layers 1284

are more related to the advanced abilities and stores 1285

the corresponding knowledge. In the MLP layers 1286
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Algorithm 1: The complete procedure of our proposed approach MAET.
Input :Single-lingual ability-related corpus C𝐿0,𝐴𝑖

, multi-lingual general corpus
C𝐿0 , C𝐿1 , . . . , C𝐿𝑛

, and the parameters of the backbone model Θ𝑜.
Output :A well-trained multi-lingual ability-enhanced LLM.

// Ability-related Weights Extraction
1 𝜃′ ← CPT(C𝐿0,𝐴𝑖

,Θ𝑜);
2 for 𝑗-th neuron in Θ𝑜 do
3 Calculate the importance score of the corresponding neuron using Eq. 1;

4 Identify the key neuron set N𝐴𝑖
;

5 LLM𝐴𝑖 ,𝐿0 ← CPT(C𝐿0,𝐴,Θ𝑜,N𝐴𝑖
∪ N𝐿0);

6 LLM𝐿0 ← CPT(C𝐿0 ,Θ𝑜,N𝐿0);
7 Learning the ability-related weight 𝑅(𝐴𝑖) using Eq. 2;

// Multi-lingual Ability Combination
8 Obtaining the multi-lingual weight 𝑅𝐿𝑎𝑛𝑔 using Eq. 3;
9 for 𝑗-th parameter tensor in LLM do

10 Calculate the correlation using Eq. 4;

11 Identify the ability-related parameters T ;
12 Combine the ability to multi-lingual scenarios using Eq. 5;

13 Obtain the well-trained multi-lingual ability-enhanced LLM.

of LLM, the gate mechanism (i.e., MLP Gate) will1287

control the transmission of information and the1288

down project mechanism (i.e., MLP Down) will1289

integrate the knowledge from previous layers, so1290

that Combining the MLP layers can achieve better1291

performance on the downstream tasks.1292
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Stage Hyper-Parameter Mathematical Tasks Scientific Tasks

Extraction

Learning Rate 5 × 10−5 5 × 10−5

Batch Size 1M Tokens 1M Tokens
Training Steps 2B Tokens 2B Tokens
𝛼 in Extraction 0.8 0.8
𝛽 in Extraction 0.2 0.2

Ratio of Key Neurons 𝑘1 5% 5%

Combination

Learning Rate 5 × 10−5 5 × 10−5

Batch Size 1M Tokens 1M Tokens
Training Steps 2B Tokens 2B Tokens
𝛾 in Combining 0.2 0.2
𝜂 in Combining 1.0 1.0

Ratio of Key Tensors 𝑘2 60% 60%
𝜇 for Spanish 1.5 1.5
𝜇 for Bengali 1.2 1.2
𝜇 for Telugu 1.2 1.2

Table 5: The details of hyper-parameters in the training and evaluation process.

Language
Training Dataset (Tokens) Evaluation Dataset (Instances)

General Corpus Ability-related Corpus Mathematical Tasks Scientific Tasks

English 1.81B 1.30B (Math) / 1.82B (Sci) 250 1,245
Spanish 1.81B - 250 1,232
Chinese 1.80B - 250 1,229
Bengali 1.81B - 250 1,137
Telugu 1.81B - 250 1,036

Table 6: The statistical information of the training and evaluation datasets.

Methods
Qwen2.5 0.5B Gemma2 2B

ES TE Avg. ES TE Avg.

Backbone LLM 36.64 25.69 31.17 43.41 30.01 36.71

+ F-CPTL&A 32.90 22.43 27.67 38.48 30.39 34.62
+ F-CPTA 32.62 25.26 28.94 37.83 25.39 31.61

+ MAET w/o API 36.72 28.91 32.82 43.23 29.59 36.41
+ MAET (Ours) 36.91 29.62 33.27 43.62 30.37 37.00

Table 7: The performance comparison of different LLMs on multilingual scientific tasks.

LLM Tensors Proportion of T ES ZH BN TE Avg.

All Tensors 100.00% 49.60 41.60 32.40 25.20 37.20

Attention All 45.26% 48.80 41.60 28.80 26.40 36.40
Attention Q 12.07% 47.60 40.80 30.80 26.40 36.40
Attention K 10.34% 47.20 42.40 29.60 24.40 35.90
Attention V 9.48% 47.60 42.40 28.80 25.20 36.00
Attention O 13.36% 48.00 40.40 30.80 27.20 36.60

MLP All 41.38% 48.80 39.60 31.60 27.60 36.90
MLP Up 13.79% 50.00 40.00 28.80 25.20 36.00
MLP Gate 13.79% 46.00 41.20 30.00 24.00 35.30
MLP Down 13.79% 49.60 41.60 30.40 26.00 36.90

Table 8: The effect of only merging the specific LLM tensors during the Combining process (i.e., Eq.5) on multi-
lingual mathematical tasks.
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