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Abstract

Multi-lingual ability transfer has become in-
creasingly important for the broad application
of large language models (LLMs). Existing
work highly relies on training with the multi-
lingual ability-related data, which may not
be available for low-resource languages. To
solve it, we propose a Multi-lingual Abilities
Extraction and Combination approach, named
as MAEC. Our key idea is to decompose
and extract language-agnostic ability-related
weights from LLMs, and combine them across
different languages by simple addition and sub-
traction operations without training. Specifi-
cally, our MAEC consists of the extraction and
combination stages. In the extraction stage,
we firstly locate key neurons that are highly
related to specific abilities, and then employ
them to extract the transferable ability-related
weights. In the combination stage, we further
select the ability-related tensors that mitigate
the linguistic effects, and design a combin-
ing strategy based on them and the language-
specific weights, to build the multi-lingual
ability-enhanced LLM. To assess the effective-
ness of our approach, we conduct extensive
experiments on LLaMA-3 8B on mathemati-
cal and scientific tasks in both high-resource
and low-resource lingual scenarios. Experi-
ment results have shown that MAEC can ef-
fectively and efficiently extract and combine
the advanced abilities, achieving comparable
performance with PalLM. We will publicly
release our code and data.

1 Introduction

Large language models (LLMs) have shown re-
markable performance on various general tasks,
e.g., text generation and question answering (Zhao
et al., 2023; OpenAl, 2023). Despite the suc-
cess, LLMs are still struggling to solve complex
tasks (e.g., mathematical reasoning), which require
LLMs to possess specific advanced abilities (e.g.,
deductive reasoning) and knowledge (e.g., mathe-
matical theory) (Yue et al., 2024; Lu et al., 2022).
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Figure 1: The comparison between CPT and MAEC.
Only with the single-lingual ability-related corpus,
MAEC can extract the abilities and combine them,
achieving effective and efficient domain adaptation.

To address it and further improve LLMs, exist-
ing work either collects the related data to train
LLMs (Du et al., 2024; Chen et al., 2024a), or
merges the parameters of existing well-performed
LLMs to transfer their abilities into one single
model (Ilharco et al., 2023; Yadav et al., 2023).
Despite the success, it is not easy to collect suffi-
cient training corpus or well-trained LLMs related
to specific abilities, especially in multi-lingual sce-
narios. Especially, some popular languages (e.g.,
English) have dominated the linguistic expressions
of the open web data, and the amount of available
domain-specific data for low-resource languages
(e.g., Bengali or Telugu) is highly limited (Patzelt,
2024; Mirashi et al., 2024). Fortunately, existing
work (Zhao et al., 2024; Schifer et al., 2024) has
revealed that the learned knowledge from one lan-
guage by LLMs could be inherited and leveraged
by other languages. For example, Llama-series
LLMs are trained mainly on English texts, while
they can also solve the tasks based on other lan-
guages. Such a finding has been widely explored in
either improving the overall performance of multi-
lingual LLMs (Schiifer et al., 2024) or enhancing



fine-grained knowledge (Chen et al., 2024a). How-
ever, the related work mostly requires the ability-
related corpus in the target language, which is not
always available for low-resource languages.

To conduct a more effective ability transfer, our
idea is to learn and extract the “ability-related
weights” that preserves the knowledge about spe-
cific abilities for the LLM. If such ability-related
and language-related weights could be decom-
posed, it is achievable to transfer the required abili-
ties into target languages by just combining the cor-
responding weights, even building a multi-lingual
ability-enhanced LLM like building blocks. Based
on this idea, in this paper, we propose a Multi-
lingual Abilities Extraction and Combination ap-
proach, named as MAEC. Concretely, our ap-
proach consists of two major stages, i.e., ability
extracting and combining stage. In the extracting
stage, we locate the abilities-related neurons and
leverage the related corpus in a reference language
to continually pre-train the LLM on the identified
neurons. Then, based on the LLM trained on the
general corpus, we devise a formula to extract the
ability-related weights. In the combining stage, we
utilize the ability-related weights to select related
tensors, and design a specific model merging strat-
egy by interpolating linguistic and ability-related
weights. As shown in Figure 1, MAEC only needs
ability-related corpus from any rich-resource lan-
guage and multi-lingual general corpus, which can
efficiently and effectively mitigate the data scarcity
issues in low-resource languages.

To assess the effectiveness of our approach,
we conduct the evaluation based on two complex
and comprehensive reasoning benchmarks, i.e.,
Multi-lingual Grade School Math (MGSM) (Shi
et al., 2023) and science tasks from multi-lingual
MMLU (Lai et al., 2023) as the evaluation bench-
marks. According to the evaluation results, with
only training the specific LLM neurons on a small
amount of data, the proposed approach MAEC out-
performs other competitive baseline methods (e.g.,
continual pre-training (Gururangan et al., 2020)
and model merging methods with task vectors (Il-
harco et al., 2023), achieving the 10% relative im-
provement compared to the base LLM and compa-
rable performance with PaLM (Chung et al., 2024).

2 Related Work

Continual Pre-training. LLMs still struggle in
complex tasks and low-resource lingual scenar-

ios (Hedderich et al., 2021; Shao et al., 2024).
To adapt LLMs to a specific scenario, existing
work (Luo et al., 2022; Taylor et al., 2022; Zhang
et al., 2024a) has collected the related corpus to
continually pre-train (CPT) LLMs. During the CPT
process, the mixture strategy between the general
and ability-related corpus should be considered
to avoid hurting their general abilities (Ye et al.,
2024; Xie et al., 2023; Siriwardhana et al., 2024).
However, previous study (Chang et al., 2024; Lu
et al., 2023) has found that it is hard to collect
the task-related corpus, especially for low-resource
language scenarios. Therefore, synthesizing data
from powerful LLMs is utilized to expand the task-
related training corpus (Chen et al., 2021b; Zhou
et al., 2024a). In this work, we focus on adapting
LLMs to multilingual complex reasoning scenarios
with only the single-lingual ability-related corpus.

Knowledge Editing. According to the lottery
ticket hypothesis (Frankle and Carbin, 2019), train-
ing a sub-network of the model will achieve com-
parable or even better performance on downstream
tasks. Moreover, several study (Chen et al., 2024b;
Zhang et al., 2024b) pointed out that the task-
related sub-networks can be determined before the
training process. Existing study (Du et al., 2024;
Wang et al., 2024b; Gong et al., 2024) has leveraged
the inner information of LL.Ms to select and train
the related sub-network. Besides, the probe (i.e., a
newly initialized parameter) can be implemented to
detect the knowledge of LL.Ms and process targeted
repair (Wang et al., 2024a; Jiang et al., 2024).

Model Merging. Given the huge computation re-
sources consumed of CPT, previous work used
model merging techniques to integrate different
abilities (e.g., mathematical reasoning and code
synthesizing) into one model (Yang et al., 2024;
Xu et al., 2024b; Stoica et al., 2024). During the
merging process, the parameters of different LLMs
might be conflict with others, which can be miti-
gated by the clip (Yadav et al., 2023) or random
dropout (Yu et al., 2024) mechanism. Moreover,
the LLM inner parameters or external matrixes can
be utilized to determine the hyper-parameters of the
model merging process (Zhou et al., 2024b; Matena
and Raffel, 2022). Furthermore, existing work has
merged the reasoning-specialized and multi-lingual
models to improve their reasoning ability in non-
English scenarios (Huang et al., 2024; Yoon et al.,
2024). Inspired by the above work, we try to locate



the task-related sub-networks of LLLMs and transfer
the advanced abilities.

3 Preliminary

Despite that LLMs exhibit remarkable performance
on general tasks, they still have limited advanced
abilities, e.g., mathematical and scientific reason-
ing abilities. A typical approach to enhance these
abilities is to continually pre-train (CPT) LLMs
with ability-related corpus. However, such training
data might not always be available or sufficient,
especially for minor domains (e.g., Bengali). In
this work, we focus on the task of ability extraction
and transfer by continual pre-training and merging
LLMs. Concretely, LLMs are trained on the col-
lected corpus from a certain domain, and we aim
to only transfer its learned advanced capabilities to
target domains (Zhuang et al., 2021; Farahani et al.,
2021) without further training. In this work, we
study the cross-lingual scene where the linguistic-
agnostic advanced ability and linguistic abilities
should be extracted and transferred, to build a uni-
fied multi-lingual ability-enhanced LLM.

Formally, for a certain ability A; and a set of lan-
guages L = {Lo, Ly,...,L,}, we assume that the
general corpus of all languages can be collected, de-
noted as Cgeneral = {Cr,.CL,>» - - -, CrL, }, while the
ability-related corpus is only available in language
Ly (i.e., English), denoted as Cp,, 4,. Based on the
above corpora, our goal is to extract and transfer
the advanced ability A; from language L and lin-
guistic abilities from other languages L, ..., Ly,
into a unified LLM.

4 Approach

In this section, we propose the Multi-lingual
Ability Extraction and Transfer approach, named
as MAEC, which can effectively transfer the ad-
vanced abilities from single-lingual LLMs, to build
a multi-lingual ability-enhanced LLM. The key mo-
tivation of our approach is to identify and extract
ability-related neurons or weights, and combine the
target abilities into a LLM in an efficient way. The
framework of MAEC is presented in Figure 2.

4.1 Ability-related Weights Extraction

In this part, we aim to locate and learn ability-
related parameter weights within an LLM, to en-
able efficient combining of the ability into other
LLMs. Concretely, it consists of two major steps,

i.e., key neurons locating and ability-related param-
eter weights learning.

Locating the Key Neurons. The gradient of each
neuron in LL.Ms can be utilized to estimate its cor-
relation degree with specific task ability (Pruthi
et al., 2020; Chen et al., 2024b; Xia et al., 2024),
we select those with high gradient values as key
neurons. To this end, we first use the ability-related
corpus CLO’ a; t0 continually pre-train the LLM,
while sampling a small amount to train the model
can be also applied to reduce the computation con-
sumption. During training, the LLM learns the lan-
guage modeling task and each neuron is updated by
the gradients associated by the training instances.
Due to the high cost of calculating the accumula-
tion of gradient at each training step, we calculate
the value changes of the LLM neurons before and
after the training process to approximate the impor-
tance. Formally, the importance function /(A;, 6;)
of neurons can be computed as:

I(AL0)) = Y
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where dj denotes the k-th instance of training cor-
pus Cio’ A and ; denote the value of the j-th neu-
ron of LLM after training, respectively. Based on it
and inspired by previous work (Yadav et al., 2023),
we rank all neurons according to their importance
scores, and then select the top k;% ones into the
set Ny, as the key neurons.

Learning Ability-related Weights. Based on the
identified key neurons in Njy,, we further learn
the ability-related parameter weights. Our moti-
vation is to decompose the parameter weights ac-
cording to their changes before and after the LLM
has mastered a specific ability, which is achievable
owing to the modularity and composition nature
of the LLM parameter matrices (Yu et al., 2024;
Shazeer et al., 2017). First, we utilize the key neu-
rons locating method mentioned above to extract
the ability-related neuron set Ny, , and also obtain
the language-related neuron set Ny, via the same
way. Then, we train the LLM with the mixture of
ability-related corpus and general corpus on the
key neuron set N, U Nz, and N, respectively, to
obtain two specific models, denoted as LLMgy;, 1,
with parameters ©4, 1, and LLM;,, with parame-
ters ©p,,. Next, we measure the parameter changes
between the backbone and the trained models, and
obtain the ability-related weights via the parameter
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Figure 2: The framework of MAEC. First, we locate the key neurons, and utilize the single-lingual ability-related
corpus and general corpus to train the LLM on these neurons to obtain the ability-related weight. Then, we remove
the tensors related to language knowledge in the ability-related weight and combine the remaining to the base LLM.
Finally, we obtain a powerful LLM that can solve the related tasks in multi-lingual scenarios.

decomposition operation as:

R(A)) = - (®4a;,10 — 90) B (O, —0,)
— —
Ability & language difference Language difference

2
where « and S are tunable coefficients to balance
the two parts of weight differences, and ®, denote
the original parameters of the LLM, which serves
as the reference for parameter decomposition. As
we only train the parameters within the neuron set,
its weight difference should preserve the knowl-
edge about the corresponding ability. Thus, it can
be regarded as the ability-related parameter repre-
sentations, and is promising to combine the ability
into other LLLMs by the addition operation.

4.2 Multi-lingual Ability Combination

After obtaining the ability-related weights, we com-
bine them to transfer and integrate the abilities,
building a multi-lingual ability-enhanced LLM.

Ability-related Tensor Selection. Although we
can locate the ability-related key neurons, it is
still hard to avoid the involvement of irrelevant
ones. Our empirical studies in Appendix A have
found that neuron-level features are easy to be af-
fected by the noisy data. Inspired by previous
work (Cheng et al., 2024a), we consider iden-
tifying ability-related tensors to further mitigate

the linguistic effects, which correspond to the pa-
rameter matrices within the LLM. Specifically,
we firstly leverage the ability-related weights of
languages R(L,), ..., R(L,) to obtain the multi-
lingual weight Ry qne. Given that large models
have varying levels of proficiency in different lan-

guages, we use the hyper-parameters yj, . . ., u, to
tune this process as:
n
Riang = ). pi R(Li), 3)

i=1

where R(L;) preserves the linguistic ability of lan-
guage L; learned based on Eq. 2. Therefore, Ry ang
can be considered as the general language ability
of LLMs that spans multiple languages. As we aim
to find he parameter tensors that have low linguis-
tic effects but focus on the desired abilities (e.g.,
mathematical reasoning), we rank all the tensors
according to their similarities with R ., and pick
up the last k>% ones. Formally, for tensor 7;, we
calculate the cosine similarity of this parameter
between R(A;) and Ry ang, as follows,

S(r;) = sim (R(Ai)[Ti]aRLang[Ti])a 4

where we use the cosine similarity to implement
the similarity function sim (-). After obtaining the
similarity of all tensors, we rank them in a descend-
ing order based on the similarity values, and then



Approaches MLAR TPara AC AT
CPT Yes Full No No
MoE Yes Full No No
LoRA Yes Low-Rank No No
MoL Yes Low-Rank No No

TV Yes Full Yes No
MAEC No Ability-related Yes Yes

Table 1: The difference between our MAEC and
the methods in previous work (i.e., CPT (Hu et al.,
2022), Mixture-of-Expert (MoE) (Shazeer et al., 2017),
LoRA (Hu et al., 2022), Mixture-of-LoRA (MoL) (Feng
et al., 2024), and Task Vector (TV) (Ilharco et al., 2023).
MLAR, TPara, AC, and AT denote the abbreviation
of multi-lingual ability-related corpus, parameters for
training, ability composition, and ability transfer.

select the last k% parameters into the set 7~ as the
ability-related parameters.

Building Multi-lingual Ability-enhanced LLM.
Based on the selected ability-related tensors 7, we
design the model merging process by interpolating
ability weights and multi-lingual weights, to build
the multi-lingual ability-enhanced LLM. Formally,
the final parameter tensors of the target LLM are
computed as:

{7 “R(A)[i] + 1 Rpang[7il,
RLang [7],

€T

~ (o)
i =T, + >
= T ¢T

i (&)
where Ti(o) denotes the original value of parameter
tensor 7;, and y and i are tunable hyper-parameters.
This formula can be explained in two different
cases. When a parameter tensor serves as the major
role for specific abilities, we update it by adding
both ability- and linguistic-related weights; oth-
erwise, we simply enhance it with multi-lingual
weights. In this way, we can derive a more pow-
erful LLM that is equipped with the multi-lingual
abilities and specific advanced abilities.

4.3 The Overall Procedure

To better demonstrate MAEC, we present key con-
cepts in Table 4 for further clarifying and provide
the complete procedure in Algorithm 1. The pro-
cedure of MAEC consists of two main stages, i.e.,
ability-related weights extraction and multi-lingual
ability combination. For the extraction stage, we
first utilize the accumulated gradient to estimate
the importance of each neuron by Eq. 1. Then, we
leverage the model trained on the general corpus
to remove the effect of language and obtain the
ability-related weight through Eq. 2. In the combi-
nation stage, we utilize Eq. 3 and Eq. 4 to obtain

the multi-lingual weight and identify the ability-
related tensors in LLM. After it, we leverage Eq. 5
to fulfill the multi-lingual abilities combination, to
build the multi-lingual ability-enhanced LLM.

To highlight the difference between our approach
and previous work, we present the comparison
of these methods in Table 1. To adapt LLMs to
multi-lingual scenarios, most of the existing meth-
ods (e.g., CPT and TV) require the multi-lingual
ability-related corpus (i.e., ability-related corpus is
required for each language) for training the LLM.
In comparison, our MAEC only trains and mod-
ifies the ability-related parameters, which can ef-
ficiently focus on enhancing the specific ability.
A major novelty of our work is that we identify
the key units and implement the sparse update in
the model training and merging procedure, which
can effectively decompose, extract, and combine
the abilities of LLMs. In addition, compared with
the LoRA-based methods (i.e., LoRA and MoL)
that also sparsely update the LLM parameters, our
approach selectively updates the ability-related neu-
rons, while LoRA-based methods use the low-rank
matrices to approximate the original parameters.

5 Experiment

5.1 Experimental Settings

We introduce the datasets, metrics, and the base-
lines in our evaluation, and present the implemen-
tation details of our approach in Appendix B.

Datasets. We focus on transferring the advanced
abilities (i.e., mathematical and scientific reason-
ing abilities) of LLMs from English scenarios to
multi-lingual scenarios, including high-resource
language (i.e., Spanish) and low-resource lan-
guages (i.e., Bengali and Telugu). Thus, for the
training corpus, we extract the corpus proposed
by previous work (Yang et al., 2023; Scao et al.,
2022) as the general corpus, and use OpenWeb-
Math (Paster et al., 2024) and arXiv papers (Sol-
daini et al., 2024) as the ability-related corpus for
mathematical and scientific tasks. For evaluation,
we follow the settings in previous work (OpenAl,
2023), utilizing Multi-lingual Grade School Math
(MGSM) (Shi et al., 2023) and science tasks from
multi-lingual MMLU (Lai et al., 2023) (i.e., college
and high school biology, chemistry, and physics) as
the downstream tasks. The statistical information
of the datasets is shown in Table 6.

Evaluation Metrics We calculate the accuracy of



Multilingual Mathematical Tasks

Multilingual Scientific Tasks

Methods #Tokens
BN TE Avg. | ICER(]) ES BN TE Avg. | ICER(])
Close-source Multi-lingual Large Language Models
GPT-3 175B - 548 10.8 4.8 235 - - - - - -
PalLM 62B - 464 176 120 253 - - - - - -
cont-PaLM 62B - 444 28.0 196 307 - - - - - -
Flan-cont-PalLM 62B - 53.6 344 28.8 389 - - - - - -
Open-source Multi-lingual Large Language Models
Baichuan-2 7B - 172 4.8 24 8.1 - 423 302 262 329 -
Mistral 7B - 388 9.6 2.8 17.1 - 52.1 329 28.0 37.7 -
LLaMA-2 7B - 7.6 1.6 0.0 3.1 - 342 246 222 270 -
LLaMA-3 8B - 484 288 204 325 - 55.1 36.6 293 403 -
Vanilla Continually Pre-training based Approaches
+ F-CPTyga 20B 46.8 284 276 343 11.1 559 36.8 30.1 41.0 28.6
+ L-CPTygA 20B 448 288 23.6 324 - 548 364 299 404 200.0
+ F-CPTy 4B 472 200 132 268 - 519 334 294 382 -
+ F-CPTL 8B 38.8 28.0 236 30.1 - 53.6 359 30.6 40.0 -
+ L-CPTL 8B 464 284 228 325 - 55.0 36.7 304 407 20.0
Transfer Learning based Approaches
+ F-CPTL & DA 12B 41.6 304 276 332 17.1 52.7 355 28.6 389 -
+ L-CPTy & DA 12B 46.8 28.0 272 340 8.0 55.7 36,5 29.7 40.6 40.0
Data Augmentation based Approaches
+ F-CPTy&T 20B 48.0 284 255 340 13.3 53.7 351 31.7 402 -
+ F-CPTt 20B 48.0 272 244 332 28.6 504 345 345 398 -
Model Merging based Approaches
+F-TV 12B 420 160 104 228 - 534 367 30.7 403 -
+L-TV 12B 456 308 256 340 8.0 55.5 36.7 304 409 20.0
+ MAEC (Ours) 12B 49.6 324 252 357 3.6 562 37.6 304 414 10.9

Table 2: The performance of different approaches on multilingual mathematical and scientific tasks. ES, BN, and
TE denote Spanish, Bengali, and Telugu, respectively. #Tokens denotes the number of training tokens.

the predicted answers from LLMs and focus on
the average performance (Avg.), since our major
goal is building a multi-lingual LLM. Moreover,
we introduce the incremental cost-effectiveness
ratio (ICER) (Gafni and Birch, 2006) to assess
the efficiency of the approaches, ie., ICER =
Improvement / #Tokens x100%. Notably, we only
report the ICER scores for the methods that can
lead to improvements.

Baselines. We adopt LLaMA-3 8B (Dubey et al.,
2024) as the backbone model and four categories
of widely used methods as baselines, i.e., continu-
ally pre-training, transfer learning, data augmen-
tation, and model merging based approaches. Con-
cretely, a baseline can be represented as three parts,
i.e., training parameters, training approach, and
training data. First, we conduct the full param-
eters training and the LoRA training (Hu et al.,
2022), denoted as the “F” and “L” at the prefix,
respectively. Second, for the training approach,
we employ continual pre-training (CPT) (Gururan-
gan et al., 2020), domain adaption (DA) (Taylor

et al., 2022), and model merging with task vector
(TV) (Ilharco et al., 2023). Third, for the training
data, “L”, “A”, and “T” refer to the multi-lingual
general corpus, English ability-related corpus, and
multi-lingual ability-related corpus translated by
GPT-40 (Hurst et al., 2024), respectively. Also,
we present the performance of open-source LLMs
(i.e., Baichuan-2 7B (Yang et al., 2023), Mistral
7B (Jiang et al., 2023), and LLaMA-2 7B (Touvron
et al., 2023)) and close-source LLMs (i.e., GPT-3
and PalLM series model (Chung et al., 2024))

5.2 Main Results

The evaluation results have been shown in Table 2.

First, MAEC outperforms other baselines in
the average performance of all downstream tasks
by only expensing 60% computational resources,
showing the best incremental cost effectiveness ra-
tio. In our experiment, continually pre-training
LLMs on a mixture of multi-lingual general corpus
and single-lingual ability-related corpus (i.e., F-
CPTLga ) can enhance the specific ability of LLMs,
achieving the second-best performance. However,



when adapting LL.Ms to a new domain or enhanc-
ing a new ability of LLM, CPT-based methods
should retrain the LLMs on the ability-related and
multi-lingual corpus, showing the lack of transfer-
ability and requirements of more computational re-
sources. For the new domain adapting, MAEC only
utilizes a small amount of single-lingual ability-
related corpus (i.e., English corpus in practice) to
obtain the ability weight, which can be employed
to combine the corresponding advanced ability,
achieving both effectiveness and efficiency.

Second, although our MAEC shows similar train-
ing efficiency to transfer learning based approaches,
MAEC performs better than these baselines, show-
ing the lower ICER score (e.g., 3.6 v.s. 8.0). For
transfer learning based approaches, since the model
is only trained on the single-lingual ability-related
corpus during the domain adaptation process, it is
difficult for LLM to handle the challenging tasks
in multi-lingual scenarios. Concretely, the perfor-
mance of LLM on the multi-lingual scientific tasks
even decreases after domain adaptation, showing a
4% relative decrease. To alleviate this issue, MAEC
leverages the calculation between the parameters
of different models to extract the ability-related
weights, which are language-agnostic and can be
transferred to any other scenario.

Third, MAEC also achieves higher performance
than data augmentation based approaches (i.e.,
training LL.M on the multi-lingual ability-related
corpus translated by GPT-40). The translation-
based method consumes more computational re-
sources and cannot achieve better performance.
The reason might be that LLLMs cannot perform
the translation process well and the translated cor-
pus shares similar knowledge of the specific do-
main, which makes LLM overfit the corresponding
knowledge and cannot really understand the spe-
cific knowledge. In contrast, our approach decom-
poses the advanced ability and language ability, and
transfers the advanced ability from one language to
another, preventing overfitting, decreasing the ex-
pense, and improving performance. These results
demonstrate that data-centric methods are difficult
to build a multi-lingual ability-enhanced LLM.

Last, compared with the model merging based
approaches (i.e., F-TV and L-TV), experimental re-
sults have shown that MAEC performs better than
these baseline methods, since we decompose the
relation between ability and the language of the
training corpus. In the previous model merging
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Figure 3: The ablation study. KNL, AWO, ATI,
and AAC denote key neurons locating (Eq. 1), ability
weights obtaining (Eq. 2), ability-related tensors identi-
fying (Eq. 4), and advanced abilities combining (Eq. 5).

approaches, they mainly added the parameters of
different models to obtain the final model, without
considering the relation between language and abil-
ities. Due to the extraction mechanism of MAEC,
we mitigate the effect of languages and make the
weight more related to ability, which can be trans-
ferred in multi-lingual scenarios.

5.3 Detailed Analysis

To further analyze MAEC, we conduct an ablation
study, and the analysis of the combining ratio k;
and the generalization of MAEC.

Ablation Study. To assess the effectiveness of
each component of MAEC, we conduct the ab-
lation study and present the results in Figure 3.
We implement MAEC on multi-lingual mathemat-
ical and scientific tasks without each module of
MAEQG, i.e., key neurons locating (i.e., Eq. 1), abil-
ity weight obtaining (i.e., Eq. 2), ability-related
parameter tensor identifying (i.e., Eq. 4), and ad-
vanced abilities transferring (Eq. 5). First, in most
downstream scenarios, removing any module of
MAEC will affect the final performance, verify-
ing the effectiveness of the MAEC process. Sec-
ond, without ability weight obtaining, i.e., directly
utilizing the difference between LLM trained on
the ability-related corpus and the backbone LLM
as the ability weight, the performance of LLMs
is seriously hurt in both scenarios, indicating this
process can significantly extract the advanced abil-
ities from the single-lingual corpus and decrease
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Figure 4: The performance of different proportions for
the ability-related parameters identification.

the influence of the language of the training cor-
pus. Third, comparing the results of the models
whether adopting the ability transferring process,
experimental results show that LLM with the multi-
lingual ability-enhanced cannot well solve multi-
lingual mathematical and scientific tasks, and lever-
aging the ability weight provided by MAEC can
improve the LLM performance on advanced tasks.

Influence of Combining Ratio k,. Identifying and
updating the ability-related sub-network of LLMs
is the key point of our MAEC. We analyze the in-
fluence of the combining ratio k% and show the
results in Figure 4. Firstly, when the combining
ratio k, changes within a certain range, the model’s
performance remains largely the same, indicating
the strong robustness of our MAEC. Specifically,
for the mathematical tasks, when k5 increases from
0.6 to 0.8, the performance of LLM remains ap-
proximately 35.5, showing the stability of MAEC.
Besides, the performance of LLM has decreased in
both extremely low and high ratios of the ability-
related parameters identifying process. The main
reason is that the lower proportion combines incom-
plete knowledge to the model and makes LLM un-
able to possess the corresponding ability, while the
higher proportion cannot extract the ability weight
precisely and will combine too much language-
related knowledge to the model, which conflicts
with the LLM’s inner knowledge.

Out-of-Domain Performance of MAEC. We con-
duct experiments about adapting mathematical
ability on LLaMA-3 8B through MAEC, and as-
sess its performance on out-of-domain (OOD)
tasks (i.e., MMLU (Hendrycks et al., 2021), Hu-
manEval (Chen et al., 2021a), MBPP (Austin et al.,

Methods MMLU MBPP OpenbookQA
LLaMA-3 8B 60.85 46.60 65.00
+ CPT -2.39 -7.00 -3.60
+ MAEC +0.22 +0.80 +0.00

Table 3: The out-of-domain performance of different
methods to train LLaMA-3 8B on OpenWebMath. After
the ability-enhancing process, CPT hurts the OOD abili-
ties of LLM, while MAEC can maintain these abilities.

2021), and OpenbookQA (Mihaylov et al., 2018)).
Results are presented in Table 3. We can observe
that the performance of LLM on all evaluation
tasks has decreased through the CPT training pro-
cess, and the maximum decrease has been achieved
7.32% on the HumanEval task. One of the possi-
ble reasons is that LLaMA-3 has been trained on
OpenWebMath during pre-training and the CPT
process makes it overfit and forget the knowledge
of other domains, hurting the performance on OOD
tasks. In contrast, our proposed MAEC achieves
comparable and even better performance with back-
bone LLM in all downstream scenarios. Since we
identify and update the key neurons related to the
specific ability, the ability of LLM can be precisely
enhanced, and this strategy also helps the OOD
tasks needed for mathematical ability, e.g., mathe-
matical tasks in MMLU and MBPP.

6 Conclusion

In this paper, we presented MAET, which extracted
the advanced ability-related weights from the LLM
and supported simple addition and subtraction op-
erations to transfer the ability across different lan-
guages. Concretely, MAET included two main
stages, i.e., extraction and transfer. For the extrac-
tion stage, we located the key neurons and extracted
the ability-related weights. Then, in the transfer
stage, we identified the key parameter tensors and
leveraged them to transfer the advanced ability into
other LLMs. In this process, the multi-lingual
ability-related training corpus is not required, and
the experimental results have shown that our ap-
proach outperformed competitive baselines.

As future work, we will consider better methods
to identify the ability-related sub-network to de-
compose the abilities of LLMs and utilize an auto-
mated approach to determine the hyper-parameter.
Besides, we will implement MAET on larger-scale
models, and scenarios with more languages and re-
quiring more abilities to evaluate its effectiveness.



Limitations

In this section, we discuss the limitations of our
work. First, we only implement our approach
MAEC on 8B LLMs (i.e., LLaMA-3 8B), and do
not adopt the LLMs with larger scales (e.g., 13B
or 70B LLMs) in the experiment, due to the limi-
tation of computational resources. We will test the
effectiveness of our approach on these LLMs in
the future. Second, we only evaluate our approach
on two downstream tasks (i.e., mathematical and
scientific reasoning tasks) in multi-lingual scenar-
ios. Although they are challenging and widely-
used testbeds, it is still meaningful to verify our
methods on other tasks. Whereas, as we test the
performance on diverse high-resource and low-
resource languages, it can also provide compre-
hensive performance estimation for our approach
in multi-lingual scenarios. Finally, we do not con-
sider the potential risk and ethics issues that might
hurt the alignment of LLMs when using our ap-
proach. Actually, our approach is also applicable
to combining the ability to align across languages.
We will investigate to it in the future.

References

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Hsin-Yu Chang, Pei-Yu Chen, Tun-Hsiang Chou,
Chang-Sheng Kao, Hsuan-Yun Yu, Yen-Ting Lin,
and Yun-Nung Chen. 2024. A survey of data synthe-
sis approaches. CoRR, abs/2407.03672.

Jie Chen, Zhipeng Chen, Jiapeng Wang, Kun Zhou, Yu-
tao Zhu, Jinhao Jiang, Yinggian Min, Wayne Xin
Zhao, Zhicheng Dou, Jiaxin Mao, Yankai Lin, Rui-
hua Song, Jun Xu, Xu Chen, Rui Yan, Zhewei Wei,
Di Hu, Wenbing Huang, and Ji-Rong Wen. 2024a.
Towards effective and efficient continual pre-training
of large language models. CoRR, abs/2407.18743.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie

Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Richard J Chen, Ming Y Lu, Tiffany Y Chen, Drew FK
Williamson, and Faisal Mahmood. 2021b. Synthetic
data in machine learning for medicine and healthcare.
Nature Biomedical Engineering, 5(6):493-497.

Zhipeng Chen, Kun Zhou, Wayne Xin Zhao, Jingyuan
Wang, and Ji-Rong Wen. 2024b. Low-redundant opti-
mization for large language model alignment. CoRR,
abs/2406.12606.

Pei Cheng, Xiayang Shi, and Yinlin Li. 2024a. Enhanc-
ing translation ability of large language models by
leveraging task-related layers. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), Torino, Italia. ELRA
and ICCL.

Pei Cheng, Xiayang Shi, and Yinlin Li. 2024b. Enhanc-
ing translation ability of large language models by
leveraging task-related layers. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion, LREC/COLING 2024, 20-25 May, 2024, Torino,
Italy, pages 6110-6121.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Y. Zhao, Yanping Huang, Andrew M. Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2024. Scaling instruction-finetuned
language models. J. Mach. Learn. Res., 25:70:1—
70:53.

Wenyu Du, Shuang Cheng, Tongxu Luo, Zihan Qiu,
Zeyu Huang, Ka Chun Cheung, Reynold Cheng, and
Jie Fu. 2024. Unlocking continual learning abilities
in language models. CoRR, abs/2406.17245.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,



Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and

et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.
Abolfazl Farahani, Behrouz Pourshojae, Khaled

Rasheed, and Hamid R. Arabnia. 2021. A concise
review of transfer learning. CoRR, abs/2104.02144.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han,
and Hao Wang. 2024. Mixture-of-loras: An efficient
multitask tuning method for large language models.
In Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language Re-
sources and Evaluation, LREC/COLING 2024, 20-25
May, 2024, Torino, Italy, pages 11371-11380.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019.

Amiram Gafni and Stephen Birch. 2006. Incremental
cost-effectiveness ratios (icers): The silence of the
lambda. Social Science & Medicine, 62(9):2091—
2100.

Zhuocheng Gong, Ang Lv, Jian Guan, Junxi Yan, Wei
Wu, Huishuai Zhang, Minlie Huang, Dongyan Zhao,
and Rui Yan. 2024. Mixture-of-modules: Reinvent-
ing transformers as dynamic assemblies of modules.
CoRR, abs/2407.06677.

Suchin Gururangan, Ana Marasovic, Swabha
Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL

2020, Online, July 5-10, 2020, pages 8342-8360.

Michael A. Hedderich, Lukas Lange, Heike Adel, Jan-
nik Strotgen, and Dietrich Klakow. 2021. A survey
on recent approaches for natural language process-
ing in low-resource scenarios. In Proceedings of

10

the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 2545-2568.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Zixian Huang, Wenhao Zhu, Gong Cheng, Lei Li, and
Fei Yuan. 2024. Mindmerger: Efficient boosting
LLM reasoning in non-english languages. CoRR,
abs/2405.17386.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang,
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and
Junyang Lin. 2024. Qwen2.5-coder technical report.
CoRR, abs/2409.12186.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Gabriel Ilharco, Marco Tudlio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong,
Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang,
Lifeng Shang, Ruiming Tang, Qun Liu, and Wei
Wang. 2024. Learning to edit: Aligning llms with
knowledge editing. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pages 4689—
4705.

Viet Dac Lai, Chien Van Nguyen, Nghia Trung Ngo,
Thuat Nguyen, Franck Dernoncourt, Ryan A. Rossi,



and Thien Huu Nguyen. 2023. Okapi: Instruction-
tuned large language models in multiple languages
with reinforcement learning from human feedback.
In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023 - System Demonstrations, Singapore, December
6-10, 2023, pages 318-327.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Pe-
ter Clark, and Ashwin Kalyan. 2022. Learn to ex-
plain: Multimodal reasoning via thought chains for
science question answering. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Yingzhou Lu, Huazheng Wang, and Wenqi Wei. 2023.
Machine learning for synthetic data generation: a
review. CoRR, abs/2302.04062.

Rengian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
Biogpt: generative pre-trained transformer for
biomedical text generation and mining. Briefings
Bioinform., 23(6).

Michael Matena and Colin Raffel. 2022. Merging mod-
els with fisher-weighted averaging. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? A new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2381-2391.

Aishwarya Mirashi, Purva Lingayat, Srushti Sona-
vane, Tejas Padhiyar, Raviraj Joshi, and Geetanjali
Kale. 2024. On importance of pruning and distilla-
tion for efficient low resource nlp. arXiv preprint
arXiv:2409.14162.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,
and Jimmy Ba. 2024. Openwebmath: An open
dataset of high-quality mathematical web text. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11,2024.

Tim Patzelt. 2024. Medical concept normaliza-
tion in a low-resource setting. arXiv preprint
arXiv:2409.14579.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. In Advances in

Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Morgane Riviere, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shabhriari,
Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos,
Ravin Kumar, Charline Le Lan, Sammy Jerome, An-
ton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan
Girgin, Nikola Momchev, Matt Hoffman, Shantanu
Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn,
Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin
Abdagic, Amanda Carl, Amy Shen, Andy Brock,
Andy Coenen, Anthony Laforge, Antonia Pater-
son, Ben Bastian, Bilal Piot, Bo Wu, Brandon
Royal, Charlie Chen, Chintu Kumar, Chris Perry,
Chris Welty, Christopher A. Choquette-Choo, Danila
Sinopalnikov, David Weinberger, Dimple Vijayku-
mar, Dominika Rogozinska, Dustin Herbison, Elisa
Bandy, Emma Wang, Eric Noland, Erica Moreira,
Evan Senter, Evgenii Eltyshev, Francesco Visin,
Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus
Martins, Hadi Hashemi, Hanna Klimczak-Plucinska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda
Mein, Jack Zhou, James Svensson, Jeff Stanway,
Jetha Chan, Jin Peng Zhou, Joana Carrasqueira,
Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz,
Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin
McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish
Greene, Lars Lowe Sjosund, Lauren Usui, Laurent
Sifre, Lena Heuermann, Leticia Lago, and Lilly Mc-
Nealus. 2024. Gemma 2: Improving open language
models at a practical size. CoRR, abs/2408.00118.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Frangois Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoit Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina
McMillan-Major, 1z Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurengon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, and et al. 2022. BLOOM:
A 176b-parameter open-access multilingual language
model. CoRR, abs/2211.05100.

Anton Schifer, Shauli Ravfogel, Thomas Hofmann,
Tiago Pimentel, and Imanol Schlag. 2024. Lan-
guage imbalance can boost cross-lingual generali-
sation. CoRR, abs/2404.07982.


https://doi.org/10.48550/ARXIV.2404.07982
https://doi.org/10.48550/ARXIV.2404.07982
https://doi.org/10.48550/ARXIV.2404.07982
https://doi.org/10.48550/ARXIV.2404.07982
https://doi.org/10.48550/ARXIV.2404.07982

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,
and Jason Wei. 2023. Language models are multi-
lingual chain-of-thought reasoners. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.

Shamane Siriwardhana, Mark McQuade, Thomas Gau-
thier, Lucas Atkins, Fernando Fernandes Neto, Luke
Meyers, Anneketh Vij, Tyler Odenthal, Charles God-
dard, Mary MacCarthy, and Jacob Solawetz. 2024.
Domain adaptation of llama3-70b-instruct through
continual pre-training and model merging: A com-
prehensive evaluation. CoRR, abs/2406.14971.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Raghavi Chandu, Jennifer Dumas, Yanai
Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin
Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian
Magnusson, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters,
Abhilasha Ravichander, Kyle Richardson, Zejiang
Shen, Emma Strubell, Nishant Subramani, Oyvind
Tafjord, Evan Pete Walsh, Luke Zettlemoyer, Noah A.
Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groen-
eveld, Jesse Dodge, and Kyle Lo. 2024. Dolma:
an open corpus of three trillion tokens for language
model pretraining research. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
15725-15788. Association for Computational Lin-
guistics.

George Stoica, Daniel Bolya, Jakob Bjorner, Pratik
Ramesh, Taylor Hearn, and Judy Hoffman. 2024.
Zipit! merging models from different tasks without
training. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024.

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dong-
dong Zhang, Xiaolei Wang, Xin Zhao, Furu Wei,
and Ji-Rong Wen. 2024. Language-specific neurons:
The key to multilingual capabilities in large language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 5701-5715.

12

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas

Scialom, Anthony Hartshorn, Elvis Saravia, An-
drew Poulton, Viktor Kerkez, and Robert Stojnic.
2022. Galactica: A large language model for science.
CoRR, abs/2211.09085.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-

bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Huangian Wang, Yang Yue, Rui Lu, Jingxin Shi, An-

drew Zhao, Shenzhi Wang, Shiji Song, and Gao
Huang. 2024a. Model surgery: Modulating 1lm’s
behavior via simple parameter editing. CoRR,
abs/2407.08770.

Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi,

Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi
Yang, Jindong Wang, and Huajun Chen. 2024b.
Detoxifying large language models via knowledge
editing. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 3093-3118.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,

Sanjeev Arora, and Danqi Chen. 2024. LESS: se-
lecting influential data for targeted instruction tuning.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024.


https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi
Jiang, Feng Yao, Xu Han, Xiaozhi Wang, Shuo Wang,
Yufei Huang, Guanyu Lin, et al. 2024. Configurable
foundation models: Building llms from a modular
perspective. arXiv preprint arXiv:2409.02877.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V. Le,
Tengyu Ma, and Adams Wei Yu. 2023. Doremi: Op-
timizing data mixtures speeds up language model
pretraining. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Haoyun Xu, Runzhe Zhan, Derek F. Wong, and Lidia S.
Chao. 2024a. Let’s focus on neuron: Neuron-level su-
pervised fine-tuning for large language model. CoRR,
abs/2403.11621.

Zhengqi Xu, Ke Yuan, Huigiong Wang, Yong Wang,
Mingli Song, and Jie Song. 2024b. Training-free
pretrained model merging. CoRR, abs/2403.01753.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A.
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Ad-
vances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao,
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu,
Jiaming Ji, Jian Xie, Juntao Dai, Kun Fang, Lei
Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma,
Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie,
Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng
Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xian-
grong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin
Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding
Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yu-
peng Zhang, Zenan Zhou, and Zhiying Wu. 2023.
Baichuan 2: Open large-scale language models.
CoRR, abs/2309.10305.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang,
Xiaochun Cao, Jie Zhang, and Dacheng Tao. 2024.
Model merging in 1lms, mllms, and beyond: Meth-
ods, theories, applications and opportunities. CoRR,
abs/2408.07666.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou,
Jun Zhan, and Xipeng Qiu. 2024. Data mixing laws:
Optimizing data mixtures by predicting language
modeling performance. CoRR, abs/2403.16952.

Dongkeun Yoon, Joel Jang, Sungdong Kim, Seun-
gone Kim, Sheikh Shafayat, and Minjoon Seo. 2024.
Langbridge: Multilingual reasoning without multi-
lingual supervision. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational

13

Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pages 7502—
7522. Association for Computational Linguistics.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.
2024. Mammoth2: Scaling instructions from the web.
CoRR, abs/2405.03548.

Wenxuan Zhang, Hou Pong Chan, Yiran Zhao, Mahani
Aljunied, Jianyu Wang, Chaoqun Liu, Yue Deng,
Zhigiang Hu, Weiwen Xu, Yew Ken Chia, Xin Li,
and Lidong Bing. 2024a. Seallms 3: Open founda-
tion and chat multilingual large language models for
southeast asian languages. CoRR, abs/2407.19672.

Zhihao Zhang, Jun Zhao, Qi Zhang, Tao Gui, and Xu-
anjing Huang. 2024b. Unveiling linguistic regions
in large language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
6228-6247.

Jun Zhao, Zhihao Zhang, Luhui Gao, Qi Zhang, Tao Gui,
and Xuanjing Huang. 2024. Llama beyond english:
An empirical study on language capability transfer.
CoRR, abs/2401.01055.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqgian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng
Chen, Wayne Xin Zhao, Jing Sha, Zhichao Sheng,
Shijin Wang, and Ji-Rong Wen. 2024a. Jiuzhang3.0:
Efficiently improving mathematical reasoning by
training small data synthesis models.  CoRR,
abs/2405.14365.

Yuyan Zhou, Liang Song, Bingning Wang, and Weipeng
Chen. 2024b. Metagpt: Merging large language mod-
els using model exclusive task arithmetic. CoRR,
abs/2406.11385.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. 2021. A comprehensive survey on transfer learn-
ing. Proc. IEEE, 109(1):43-76.


https://doi.org/10.48550/ARXIV.2407.19672
https://doi.org/10.48550/ARXIV.2407.19672
https://doi.org/10.48550/ARXIV.2407.19672
https://doi.org/10.48550/ARXIV.2407.19672
https://doi.org/10.48550/ARXIV.2407.19672

A Empirical Study

A surge of work (Zhang et al., 2024b; Xiao et al.,
2024; Tang et al., 2024) has pointed out that LLMs
sparsely activate the specific sub-modules to per-
form corresponding tasks. Based on these find-
ings, we conduct empirical experiments to explore
whether the specific sub-module, which is related
to advanced abilities, can be extracted and com-
bined. We utilize the forum corpus (i.e., Zhihu
for Chinese forum corpus and Reddit for English
forum corpus) to continually pre-train LLMs, and
then assess the training performance (i.e., the value
of loss function) and similarity of LLM neurons.

The forum corpus can be considered as contain-
ing the question-answering (QA) ability, which
is necessary and important for LLMs. The re-
sults from Figure 5a have shown that only training
the top 5% relevant neurons of LLMs can achieve
the lower training loss and fit into the training set
more quickly, indicating that LLMs contain the
sub-module corresponding to the QA ability. More-
over, from Figure 5b and Figure 5c, we can observe
that the LLM trained on Zhihu has shown higher
similarity with the LLM trained on Reddit than the
LLM trained on Github (i.e., lower L1 Norm and
higher cosine similarity), and the cosine similarity
of different layers in LLM are largely different.

According to the above results, we have found
that the different sub-networks of LLMs control the
different abilities, and precisely selecting the cor-
rect sub-module of LLMs will help the extraction
of advanced abilities from the single-lingual cor-
pus and the combination of these abilities to multi-
lingual scenarios. Concretely, although Zhihu and
Reddit are in different languages, they will influ-
ence the similar sub-modules of LLM and make
these sub-networks show high similarity with each
other. These sub-networks can be referred to the
ability-related sub-networks, which are slightly in-
fluenced by languages.

B Implementation Details

In the experiment, we adapt LLaMA-3 8B as the
backbone LLM, and employ Transformers (Wolf
et al., 2020) and Deepspeed framework to per-
form the training process. And we also present
the evaluation results of different backbone LL.M
(i.e., Qwen2.5 0.5B (Hui et al., 2024) and Gemma?2
2B (Riviere et al., 2024)) in Appendix E. For the
training process, the learning rate, batch size, and
training step are set as 5x 107>, 1M tokens, and 2B
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tokens, respectively. Besides, for the key neurons
locating, we select the top 5% relevant neurons as
the key neuron set AV for both stages and identify
the last 80% and 60% similar tensor as the key sub-
network 7 for mathematical reasoning tasks and
scientific reasoning tasks respectively.

Hyper-parameters Selection. we released all of
the hyper-parameters during our experiment in Ta-
ble 5, to reproduce our proposed approach bet-
ter. The hyperparameters discussed in the paper
can be categorized into two types: training-related
parameters (e.g., learning rate, batch size) and
training-independent parameters (i.e., a, S, ¥, 1,
and ). Training-related parameters do not require
extensive hyperparameter tuning, as existing stud-
ies (Dubey et al., 2024; Hui et al., 2024) provide
clear guidelines for setting them. On the other
hand, training-independent parameters are used
to construct ability-related weights, tensors, and
language-specific weights. These techniques are
similar to those employed in model merging (Il-
harco et al., 2023; Yadav et al., 2023), and the
hyperparameter setting approach outlined in the
paper can be applied. A limited number of hyper-
parameter sets can be defined and validated, as the
process primarily involves simple additions and
subtractions of model parameters, making it com-
putationally inexpensive.

C Details of Dataset

We present the statistical information of the
datasets in Table 6. We mainly consider English,
Spanish, Chinese, Bengali, and Telugu in our ex-
periment, and utilized English as the in-domain
language while others as the out-of-domain lan-
guages. For the evaluation datasets, we select
MGSM and multi-lingual MMLU as the evalua-
tion benchmarks, which contain the parallel data in
different languages and are useful for multi-lingual
complex tasks evaluation.

D Prompt for Translation

You should translate the following text
from English to {TARGET LANGUAGE} and
should not modify the 1latex code or
website code. You should not add any
details that are not mentioned in the
original text.

## English



Concepts

Meaning

Key Neurons

Neuron refers to one of the trainable values of the tensors in LLMs. As previous work
pointed out (Xu et al., 2024a), different neurons might control the different abilities of
LLMs. Following this finding, in our work, we define the neurons that control the specific
ability as the ”Key Neurons”. Key neurons can be regarded as a set without duplication, and
a neuron belonging to the set means that this neuron can control the specific ability (Chen
et al., 2024b). During the following training process, only the neurons belonging to the
key neurons will be trained and optimized.

Ability-related Weights

Ability-related weights refer to the value of the whole neuron in LLM, which can represent
the corresponding ability of LLM (Yu et al., 2024; Ilharco et al., 2023). In MAET, we
obtain the ability-related weights through equation 2. The ability-related weights contain
the value of all neurons. Since only the key neurons will be trained during the training
process, the value of the neurons not belonging to key neurons is zero in the ability-related
weights.

Ability-related Tensors

Ability-related tensors can be regarded as a set of LLM tensors, which is related to
the corresponding ability. Previous work has studied how the LLM layers influence
the ability (Cheng et al., 2024b). Different from key neurons, ability-related tensors
focus on higher-level information, integrating the sparse neurons into a coarser-grained
element (Xiao et al., 2024). A tensor belonging to the ability-related tensors denotes that
this tensor is highly related to the corresponding ability and can control this ability.

Language-specific Weights

Similar to the ability-related weights, language-specific weights also refer to the value of
the whole neurons in LLMs (Zhang et al., 2024b). However, language-specific weights
represent the language abilities of LLM that include multiple abilities (i.e., one language
can be regarded as one ability) (Tang et al., 2024), and the method of obtaining them
is also different from ability-specific weights. In MAET, we first calculate the ability-
related weights of each language and then Integrating these weights together to obtain the
language-specific.
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Table 4: The key concepts of our approach.
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Figure 5: The results of empirical experiments. We present the loss of different training methods during the training
process, the cosine similarity of LLM layers after being trained on Zhihu and Reddit, and the similarity of LLMs

being trained on different training corpus.

{ENGLISH TEXT}

## {TARGET LANGUAGE}

E Performance of Small Scale LL.Ms

We conduct the different LLMs with different sizes
(i.e.,, Qwen2.5-0.5B and Gemma?2-2B) in our ex-
periment to valid the practicality of our approach.
We assess MAET and baselines on multi-lingual
scientific reasoning tasks and present the evaluation
results in Table 7. Comparing the performance of
MAET and the baseline methods, we can observe
that MAET can also enhance the performance of
small scale models and outperform competitive
baselines. Therefore, the evaluation results have
shown the effectiveness of MAET and verified that
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MAET is a general LLM enhancement technology.

F Ability-related Sub-networks of LLM

To assess and probe the ability-related sub-
networks of LLMs, we only combine the specific
tensors (i.e., tensors in self-attention and MLP
mechanism) from the ability weight to the final
models through Eq. 5, to analyze the LLM inner
abilities. The experimental results are presented in
Table 8. From the experiment, we can observe that
although the proportion of MLP layers (41.38%)
is lower than the attention layers (45.26%), only
combining the MLP layers outperforms Combining
the attention layers, indicating that the MLP layers
are more related to the advanced abilities and stores
the corresponding knowledge. In the MLP layers



Algorithm 1: The complete procedure of our proposed approach MAET.

w

N S A

10

11
12

13

Input :Single-lingual ability-related corpus Cy,, 4,, multi-lingual general corpus
Cry,C1,, ..., CL,, and the parameters of the backbone model ©,,.
Output : A well-trained multi-lingual ability-enhanced LLM.

// Ability-related Weights Extraction
0" — CPT(CLO,AL-’ ®0);
for j-th neuron in ©, do
L Calculate the importance score of the corresponding neuron using Eq. 1;

Identify the key neuron set Ny, ;
LLMAi,LO «— CPT(CLO,A, ®,, NAi U NLO);
LLM;, < CPT(Cr,. 00, N1,);
Learning the ability-related weight R(A;) using Eq. 2;
// Multi-lingual Ability Combination
Obtaining the multi-lingual weight Ry 4,¢ using Eq. 3;
for j-th parameter tensor in LLM do

L Calculate the correlation using Eq. 4;

Identify the ability-related parameters 7 ;
Combine the ability to multi-lingual scenarios using Eq. 5;

Obtain the well-trained multi-lingual ability-enhanced LLM.

of LLM, the gate mechanism (i.e., MLP Gate) will
control the transmission of information and the
down project mechanism (i.e., MLP Down) will
integrate the knowledge from previous layers, so
that Combining the MLP layers can achieve better
performance on the downstream tasks.
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Stage Hyper-Parameter Mathematical Tasks  Scientific Tasks
Learning Rate 5% 1073 5% 1073
Batch Size 1M Tokens IM Tokens
Extraction Training Steps 2B Tokens 2B Tokens
« in Extraction 0.8 0.8
[ in Extraction 0.2 0.2
Ratio of Key Neurons k| 5% 5%
Learning Rate 5%1073 5%107°
Batch Size 1M Tokens IM Tokens
Training Steps 2B Tokens 2B Tokens
v in Combining 0.2 0.2
Combination n in Combining 1.0 1.0
Ratio of Key Tensors kp 60% 60%
u for Spanish 1.5 1.5
p for Bengali 1.2 1.2
u for Telugu 1.2 1.2

Table 5: The details of hyper-parameters in the training and evaluation process.

Training Dataset (Tokens)

Evaluation Dataset (Instances)

Language

General Corpus Ability-related Corpus Mathematical Tasks ~ Scientific Tasks
English 1.81B 1.30B (Math) / 1.82B (Sci) 250 1,245
Spanish 1.81B - 250 1,232
Chinese 1.80B - 250 1,229
Bengali 1.81B - 250 1,137
Telugu 1.81B - 250 1,036

Table 6: The statistical information of the training and evaluation datasets.

Qwen2.5 0.5B Gemma?2 2B

Methods

ES TE Avg. ES TE Avg.
Backbone LLM 36.64 25.69 31.17 4341 30.01 36.71
+ F-CPTygA 3290 2243 27.67 3848 3039 34.62
+ F-CPTy 32.62 2526 2894 37.83 2539 31.61
+ MAET w/o API  36.72 2891 32.82 4323 29.59 3641
+ MAET (Ours) 3691 29.62 33.27 43.62 30.37 37.00

Table 7: The performance comparison of different LLMs on multilingual scientific tasks.

LLM Tensors Proportion of 7~ ES ZH BN TE Avg.
All Tensors 100.00% 49.60 41.60 3240 2520 37.20
Attention All 45.26% 48.80 41.60 28.80 2640 36.40
Attention Q 12.07% 47.60 40.80 30.80 2640 36.40
Attention K 10.34% 4720 4240 29.60 2440 3590
Attention V 9.48% 47.60 4240 28.80 2520 36.00
Attention O 13.36% 48.00 40.40 30.80 27.20 36.60
MLP All 41.38% 48.80 39.60 31.60 27.60 36.90
MLP Up 13.79% 50.00 40.00 28.80 2520 36.00
MLP Gate 13.79% 46.00 4120 30.00 24.00 35.30
MLP Down 13.79% 49.60 41.60 3040 26.00 36.90

Table 8: The effect of only merging the specific LLM tensors during the Combining process (i.e., Eq.5) on multi-

lingual mathematical tasks.
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