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Abstract

One of the significant challenges in treatment ef-
fect estimation is collider bias, a specific form
of sample selection bias induced by the common
causes of both the treatment and outcome. Iden-
tifying treatment effects under collider bias re-
quires well-defined shadow variables in observa-
tional data, which are assumed to be related to
the outcome and independent of the sample se-
lection mechanism, conditional on the other ob-
served variables. However, finding a valid shadow
variable is not an easy task in real-world scenar-
ios and requires domain-specific knowledge from
experts. Therefore, in this paper, we propose a
novel method that can automatically learn shadow-
variable representations from observational data
without prior knowledge. To ensure the learned
representations satisfy the assumptions of the
shadow variable, we introduce a tester to perform
hypothesis testing in the representation learning
process. We iteratively generate representations
and test whether they satisfy the shadow-variable
assumptions until they pass the test. With the help
of the learned shadow-variable representations,
we propose a novel treatment effect estimator to
address collider bias. Experiments show that the
proposed methods outperform existing treatment
effect estimation methods under collider bias and
prove their potential application value.

1. Introduction
Causal inference is a powerful statistical modeling tool for
explanatory analysis (Wang et al., 2022; Zhang et al., 2023;
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2024), and a central problem in causal inference is treat-
ment effects estimation. The gold standard approach for
treatment effect estimation is to conduct Randomized Con-
trolled Trials (RCTs), but RCTs can be expensive (Kohavi
& Longbotham, 2011) and sometimes infeasible (Bottou
et al., 2013). Therefore, developing practical approaches to
estimate treatment effects from observational data is crucial
for causal inference.

In observational studies, association does not imply causa-
tion, mainly due to the presence of spurious associations in
the data. There are two primary sources of spurious associa-
tions: confounding bias and collider bias (Hernán & Robins,
2020). Most of the previous works focused on confounding
bias that results from common causes of treatments and out-
comes (Bang & Robins, 2005; Louizos et al., 2017; Shalit
et al., 2017; Wager & Athey, 2018) while ignored collider
bias which comes from non-random sample selection caused
by both treatments and outcomes.

We use causal diagrams in Figure 1 to further illustrate
the two biases, where X denotes the observed covariates,
T denotes the treatment variable, Y denotes the outcome
variable, and S denotes the sample selection indicator. Con-
founding bias results from common causes of treatment and
outcome (Greenland, 2003; Guo et al., 2020). As shown in
Figure 1(a), there are two sources of association between T
and Y : the path T → Y that represents the treatment effect
of T on Y , and the path T ← X → Y between T and Y
that includes the common cause X, which introduces spuri-
ous associations into the observational data. Collider bias is
a particular case of sample selection bias1 that results from
conditioning on a common effect of T and Y (Hernán &
Robins, 2020). As shown in Figure 1(b), except for the path
T → Y , the other source of association between T and Y is
from the open path T → S ← Y . It links T and Y through
their conditioned on common effect S, which introduces
spurious associations. As shown in Figure 1(d), an analysis
conditioned on S will cause collider bias, i.e., we can only
observe the outcome of those selected units (S = 1), and the
values of Y are missing for those unselected units (S = 0),

1Sample selection bias arises from non-random sample selec-
tion conditioned on S caused by certain variables in data, while
collider bias is the particular case that T and Y both cause S.
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(a) Confounding bias. (b) Collider bias. (c) An illustrative case of shadow variables.

: Observed

: Unobserved

(d) The data form of collider bias.

Figure 1. Different kinds of biases represented by causal diagrams.

leading to incorrect treatment effect estimation.

Previous studies show that treatment effects are unidenti-
fiable under collider bias without further assumptions or
prior knowledge. Fortunately, if some shadow variables
are available in the observational data, identifying treat-
ment effects is still possible from observational data (Miao
& Tchetgen Tchetgen, 2016). As shown in Figure 1(c),
shadow variables Z are assumed to be fully observed vari-
ables independent of the sample selection mechanism after
conditioning on the outcome and other covariates, i.e., a
valid shadow variable needs to simultaneously satisfy that
Z ⊥̸⊥ Y | X, T, S = 1 and Z ⊥⊥ S | X, T, Y . For ex-
ample, when studying the effect of students’ mental health
(T ) on teachers’ assessment (Y ), collider bias occurs since
teachers might not be willing to report their assessment of
students with poor mental health. The teacher’s response
rate (S) may be related to their assessment of the student
but is unlikely to be related to a separate parent’s report
after conditioning on the teacher’s assessment and fully ob-
served covariates; moreover, the parent’s report (Z) is likely
highly correlated with the teacher’s. In this case, the parental
assessment can be considered a shadow variable (Ibrahim
et al., 2001). With the help of shadow variables, treatment ef-
fects can be identified and estimated (d’Haultfoeuille, 2010;
Wang et al., 2014; Miao & Tchetgen Tchetgen, 2016).

However, finding a well-defined shadow variable requires
domain-specific knowledge from experts and needs to be
investigated on a case-by-case basis (Li et al., 2023), which
is also a hard task. Therefore, we propose a novel method
named ShadowCatcher that automatically generates rep-
resentations from the observed covariates satisfying the as-
sumptions of shadow variables, which can serve the role
of shadow variables when estimating treatment effects and
thus achieve the goal of solving collider bias without intro-
ducing more prior knowledge. Specifically, we iteratively
generate shadow-variable representations by conditional
independence constraints and test whether the generated
representations satisfy the assumptions until the generated
representations can pass the hypothesis test. Furthermore,
we also propose a novel ShadowEstimator to estimate treat-
ment effects under collider bias by leveraging the generated

shadow variables representations. We conduct experiments
on synthetic and real-world datasets, including ablation stud-
ies, and the results demonstrate the effectiveness and poten-
tial application value of our proposed ShadowCatcher and
ShadowEstimator.

The contributions in this paper are summarized as follows:

•We study a practical and challenging problem of treatment
effect estimation from observational data under collider bias.
• We propose a novel ShadowCatcher that automatically
generates representations serving the role of shadow vari-
ables from the observed covariates, addressing the challenge
of finding valid shadow variables in real-world scenarios.
• We propose a novel ShadowEstimator to estimate treat-
ment effects using the generated shadow-variable represen-
tations to address the collider bias in observational data.
• Extensive experiments show that our proposed methods
can practically generate shadow-variable representations
and address collider bias in treatment effect estimation.

2. Problem and Algorithm
2.1. Problem Formulation

Suppose that we have a random sample of n units from a
super population P where each unit i = 1, · · · , n has a set
of covariates xi ∈ X , the treatment ti ∈ T , and the outcome
yi ∈ Y . We use a binary selection indicator si ∈ {0, 1} that
indicates whether the unit i is selected into the sample. As
shown in Figure 1(d), in the presence of collider bias, for a
unit with si = 1, we can observe the values of xi, ti, and yi,
while for a unit with si = 0, we can only observe the values
of xi and ti and the value of yi is missing.

In this paper, we focus on the case of binary treatment2,
i.e., ti ∈ {0, 1}, where ti = 1 denotes unit i is treated, and
ti = 0 denotes otherwise. Under the potential outcome
framework (Imbens & Rubin, 2015), we define the potential

2To make the proposed ShadowCatcher and ShadowEstimator
process more concise, here we consider the binary treatment set-
ting, but our proposed methods can also be effectively applied to
continuous treatment settings.
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outcomes under treatment as Y (1) and under control as
Y (0). With the observational data, our goal is to estimate
the Conditional Average Treatment effect (CATE), which
is defined as τ(x) = E[Y (1)− Y (0) | X = x]. For a unit
i, only the factual outcome Y (ti) is available. Therefore,
to make CATE identifiable, we make the following widely
used assumptions (Imbens & Rubin, 2015):

• Stable Unit Treatment Value Assumption. The dis-
tribution of the potential outcome of one unit is inde-
pendent of the treatment assignment of another unit.

• Overlap Assumption. A unit has a nonzero probabil-
ity of being treated and being selected, 0 < P(T = 1 |
X = x) < 1 and 0 < P(S = 1 | X = x) < 1.

• Unconfoundedness Assumption. The treatments are
independent of the potential outcomes given the covari-
ates, i.e., Y (1), Y (0) ⊥⊥ T | X.

Based on these assumptions, CATE can be estimated as

τ(x)
(1)
= E[Y | X = x, T = 1]− E[Y | X = x, T = 0].

However, because the values of Y are missing in S = 0
units, we can only estimate the CATE of S = 1 samples,
which differs from the true CATE of the entire data because
E[Y | X = x, T = t, S = 1] ̸= E[Y | X = x, T = t].
It leads to a biased estimation using the observed sam-
ples because conditioning on S opens a non-causal path
T → S ← Y . Therefore, it is necessary to develop ap-
proaches to solve collider bias for treatment effect estima-
tion. Fortunately, studies show that treatment effects can be
identifiable under collider bias if some shadow variables are
available in the observational data (d’Haultfoeuille, 2010;
Miao & Tchetgen Tchetgen, 2016; Miao et al., 2024).

2.2. Preliminaries of the Shadow Variable

Valid shadow variables Z are supposed to be fully observed
covariates, i.e., the values of Z are observable in both S = 0
and S = 1 data and satisfy the following assumption:
Assumption 2.1. (d’Haultfoeuille, 2010) A valid shadow
variable should satisfy the conditional dependence assump-
tion Z ⊥̸⊥ Y | X, T, S = 1 and conditional independence
assumption Z ⊥⊥ S | X, T, Y .

As shown in Figure 1(c), Assumption 2.1 indicates that
the shadow variable does not affect the sample selection
mechanism after conditioning on the outcome and other
observed covariates, and it is associated with the outcome
given the covariates. This assumption is widely used in the
literature of collider bias (d’Haultfoeuille, 2010; Wang et al.,
2014; Miao & Tchetgen Tchetgen, 2016; Zhao & Shao,
2016; Li et al., 2023; Miao et al., 2024), and an illustrative
example can be found in Section 1.

Throughout the paper, we use f(·) to denote the data distri-
bution function. The key problem of collider bias is that the

outcome values are missing in S = 0 data, which results
in f(Y | X,Z, T, S = 0) not available from the observed
data. We can use the odds ratio function OR(X,Z, T, Y )
to encode the deviation between the distribution of S = 1
data and that of S = 0 data. Under Assumption 2.1 (Miao
& Tchetgen Tchetgen, 2016), it equals

OR(X, T, Y )
(2)
=

f(S = 0 | X, T, Y ) · f(S = 1 | X, T, Y = 0)

f(S = 0 | X, T, Y = 0) · f(S = 1 | X, T, Y )
,

and the proof can be found in Appendix D.1. In Eq. (2),
Y = 0 is used as a reference value, and OR(X, T, Y =
0) = 1. Note that it can be replaced by any other value
within the support of Y . The odds ratio function measures
the degree to which the S = 0 data differs from the S = 1
data and thus can be used to recover the unknown f(Y |
X,Z, T, S = 0) from the known f(Y | X,Z, T, S = 1)
through the following proposition:

Proposition 2.2. (Miao & Tchetgen Tchetgen, 2016; Miao
et al., 2024) Under Assumption 2.1, we have

OR(X, T, Y )

E[OR(X, T, Y ) | X,Z, T, S = 1]

(3)
=

f(Y | X,Z, T, S = 0)

f(Y | X,Z, T, S = 1)

and

E[ÕR(X, T, Y ) | X,Z, T, S = 1]
(4)
=

f(Z | X, T, S = 0)

f(Z | X, T, S = 1)
,

where

ÕR(X, T, Y ) =
OR(X, T, Y )

E[OR(X, T, Y ) | X, T, S = 1]
.

Eq. (3) shows that the key challenge of collider bias, i.e.,
f(Y | X,Z, T, S = 0) is unidentifiable, can be solved
under Assumption 2.1 by integrating the odds ratio function
with the S = 1 data distribution. Since f(Y | X,Z, T, S =
1) can be obtained from the fully observed S = 1 samples,
the only problem becomes the identification of the odds
ratio function. Fortunately, with f(Z | X, S = 0) and
f(Z | X, S = 1) obtained from the observed data, Eq.
(4) is a Fredholm integral equation of the first kind, with
ÕR(X, T, Y ) to be solved for. Because OR(X, T, Y =
0) = 1, we have the following result (Miao et al., 2024):
(the proof is in Appendix D.2)

OR(X, T, Y )
(5)
=

ÕR(X, T, Y )

ÕR(X, T, Y = 0)
.

Therefore, identification of OR(X, T, Y ) is equivalent to
finding a unique solution to Eq. (4), which is guaranteed by
the following theorem.

Condition 2.3. (Miao et al., 2024) For all square-integrable
functions h(X, T, Y ), E[h(X, T, Y ) | X,Z, T, S = 1] = 0
almost surely if and only if h(X, T, Y ) = 0 almost surely.
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(a) Constraint 1 in the generation phase. (b) Constraint 2 in the generation phase. (c) Hypothesis test phase.

Figure 2. The flowchart of ShadowCatcher, including the generation phase and the test phase.

Theorem 2.4. (Miao et al., 2024) Under Assumption 2.1
and Condition 2.3., Eq. (4) has a unique solution. Thus
OR(X, T, Y ) and f(Y | X,Z, T ) can be identified.

Based on the above theorem, collider bias can be solved
with the help of shadow variables by firstly estimating
OR(X, T, Y ) through Eq. (4) and Eq. (5), then recovering
f(Y | X,Z, T, S = 0) through Eq. (3), and finally esti-
mating f(Y | X,Z, T ). However, finding a well-defined
shadow variable in real-world scenarios is also challeng-
ing because it requires domain-specific knowledge from
experts and must be investigated on a case-by-case basis (Li
et al., 2023). To relax the assumption that prior knowledge
about shadow variables is needed, we propose a novel Shad-
owCatcher to generate representations serving the role of
shadow variables directly from observed covariates without
prior knowledge and a novel ShadowEstimator to estimate
CATE under collider bias with the help of the generated
shadow-variable representations.

2.3. ShadowCatcher

Intuitively, as shown in Figure 1(c), the causal link X→ Z
indicates that the shadow variable is possible to be learned
from the fully observed covariates. Therefore, our proposed
ShadowCatcher aims to learn representations Z that satisfy
the shadow variable assumptions from X. To achieve this
goal, we must ensure that the generated representations do
satisfy Assumption 2.1.

As stated in Assumption 2.1, a valid shadow variable needs
to satisfy the conditional dependence assumption Z⊥̸⊥ Y |
X, T, S = 1 and the conditional independence assumption
Z ⊥⊥ S | X, T, Y . The first assumption can be easily

tested with the observed data because only S = 1 data is
involved. However, the second assumption needs Y to be
fully observed, but the fact is that Y values are missing for
S = 0 data. Fortunately, this assumption is proven refutable
with only the observed data.

Theorem 2.5. (d’Haultfoeuille, 2010) Suppose the overlap
assumption and Z⊥̸⊥ Y | X, T, S = 1 hold, then Z ⊥⊥ S |
X, T, Y can be rejected if and only if there does not exist
any function Q(·) that satisfies the following equation and
takes value between (0, 1]:

E
[

S

Q(X, T, Y )
− 1 | X,Z, T

]
(6)
= 0.

Note that Eq. (6) only involves the observed data since
X,Z, T are fully observed and S/Q(X, T, Y ) = 0 when
S = 0. Hence, although we cannot directly test whether
the generated Z satisfies the second assumption, we can test
whether the generated Z can be rejected by Eq. (6). As a
result, we can tell ShadowCatcher generates valid shadow-
variable representations if and only if the generated Z is
tested to be not refutable.

Therefore, ShadowCatcher iteratively generates shadow-
variable representations and tests whether the generated
representations satisfy Assumption 2.1 until they can pass
the hypothesis test, detailed as follows.

Generation Phase. As shown in Figure 2.1, Shadow-
Catcher uses the representation generator g : X → Z to
generate synthetic shadow variables Z = g(X), maintain-
ing optimal predictive power for T and Y , independent
of the selection mechanism, subject to the two constraints
(Z ⊥̸⊥ Y | X, T, S = 1 and Z ⊥⊥ S | X, T, Y ). Let the
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Figure 3. The flowchart of ShadowEstimator, including four estimation procedures.

loss function to train g be ℓg. This loss function equals to
ℓg = ℓgy + ℓgz , where ℓgy is the loss function from the con-
straint Z ⊥̸⊥ Y | X, T, S = 1, and ℓgz is the loss function
from the constraint Z ⊥⊥ S | X, T, Y . Below we separately
provide the expression of ℓgy and ℓgz .

(1) Constraining the conditional dependence assumption
using ℓgy . The generated shadow variables should maintain
optimal predictive power for Y , and thus we propose an out-
come prediction function hy1

: X ×Z×T → Y to estimate
f(Y | X,Z, T, S = 1) with the loss function being ℓy1

=
1
n1

∑
i:si=1[(hy1

(xi, zi, ti)−yi)2+(hy1
(x−

i , zi, ti)−yi)2],
where n1 denotes the number of S = 1 units and x−

i de-
notes random variables that differ from xi generated by
replacing the original xi value with random noise. By mini-
mizing this function, hy1

(·) would maximize the embedding
of the predictive information of X and Z for Y , separately.
Additionally, to constrain the generated Z satisfying the con-
ditional dependence assumption, i.e., Z⊥̸⊥ Y | X, T, S = 1,
we need to make f(Y | X,Z, T, S = 1) differ from
f(Y | X,Z−, T, S = 1), where Z− denotes random vari-
ables that differ from Z generated by replacing the original
zi value with random noise. Therefore, one objective of the
generator is to simultaneously minimize the Mean-Square
Error (MSE) between hy1

(XS=1,ZS=1, TS=1) and YS=1,
and maximize the MSE between hy1(XS=1,Z

−
S=1, TS=1)

and YS=1, where ·S=1 denotes the corresponding variables
of the S = 1 data. The loss function of this constraint on
the representation generator is

ℓgy =
1

n1

∑
i:si=1

(hy1
(xi, zi, ti)− yi)

2

− 1

n1

∑
i:si=1

(hy1
(xi, z

−
i , ti)− yi)

2 ,

where hy1 is trained using ℓy1 , and is fixed when training g.

(2) Constraining the conditional independence assump-
tion using ℓgz . This estimator aims to estimate f(Z |
X, T, Y, S = 1) with S = 1 samples. That is, we learn
a representation prediction function hr : X × T × Y →
Z with the loss function of this estimator being ℓr =
1
n1

∑
i:si=1(hr(xi, ti, yi)−zi)2. To constrain the generated

Z satisfying the conditional independence assumption, i.e.,
Z ⊥⊥ S | X, T, Y , we need to make f(Z | X, T, Y, S = 1)
the same as f(Z | X, T, Y, S = 0). Therefore, the other
objective of the generator is to minimize the MSE between
hr(XS=0, TS=0, YS=0) and ZS=0, where ·S=0 denotes the
corresponding variables of the S = 0 data. The loss function
of this constraint on the representation generator is

ℓgz =
1

n0

∑
i:si=0

(hr(xi, ti, hy1(xi, zi, ti))− zi)
2
,

where n0 denotes the number of S = 0 units, and hr is
trained using ℓr and is fixed when training g. Since the
Y values are missing for S = 0 units, here we use ŶS=0

predicted by hy1
as the substitute. This imputation approach

may harm the constraining process, but we can control this
impact in the subsequent hypothesis test phase.

Hypothesis Test Phase. In the generation process, the con-
ditional independence assumption is not strictly constrained
due to the missing Y values for S = 0 units. Therefore,
ShadowCatcher conducts an additional hypothesis test based
on Theorem 2.5 after the generation phase finishes. The
tester aims to learn a solution q of Q(X, T, Y ) in Eq. (6)
that belongs to (0, 1] which turns into an optimization prob-
lem with the loss function being

ℓq =
1

n

n∑
i=1

∥∥∥∥∥∥
(

si
q(xi, ti, yi)

− 1

)
·

xi

zi
ti

∥∥∥∥∥∥
2

2

,

where q(xi, ti, yi) is a function from R to (0, 1] and ∥ · ∥2
denotes the ℓ2 norm. Note that for si = 0 units, the value of
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Figure 4. The overall flowchart of ShadowCatcher and ShadowEst-
imator.

si/q(xi, ti, yi) equals 0, and thus, the entire optimization
process does not involve missing yi values. Therefore, when
the loss function converges, if the loss value is greater than
a given threshold α, which means it fails to learn a q that
satisfies Eq. (6), we can tell that no solution of Eq. (6)
belongs to (0, 1] and Assumption 2.1 is rejected. Note that
to preempt the possible multiple comparisons issue, we use
Bonferroni correction (Dunn, 1961) to dynamically adjust
α during training by setting α to α/m in the m-th iteration.
As a result, the generated Z does not satisfy Assumption 2.1,
and we need to regenerate it until it can pass the hypothesis
test, i.e., the converged loss value is less than α. Finally, the
first generated Z that passes the test can serve the role of
shadow variables and be used for treatment effect estimation
under collider bias by ShadowEstimator.

2.4. ShadowEstimator

With the help of the shadow-variable representations, we
can estimate treatment effects under collider bias through:

• Estimation of the odds ratio function, i.e., estimiting
ÕR(X, T, Y ) and OR(X, T, Y ) by Eq. (4) and Eq. (5);
• Estimation of the conditional distrubution of the unse-
lected outcomes, i.e., using Eq. (3) to recover and estimate
f(Y | X,Z, T, S = 0);
• Estimation of the treatment effects, i.e., estimating
f(Y | X,Z, T ) and the CATE using the estimated f(Y |
X,Z, T, S = 0), f(Y | X,Z, T, S = 1) and f(S |
X,Z, T ). Note that the estimated f(Y | X,Z, T, S = 1) is
available from ShadowCatcher.

Estimation of the odds ratio function. With the generated
Z and fully observed X and T , we first use two shadow-
variable estimators hz0 : X×T → Z and hz1 : X×T → Z
to estimate f(Z | X, T, S = 0) and f(Z | X, T, S = 1)
respectively. The loss functions of these estimators are

ℓz0 =
1

n0

∑
i:si=0

(hz0(xi, ti)− zi)
2,

and

ℓz1 =
1

n1

∑
i:si=1

(hz1(xi, ti)− zi)
2.

Using X, T , and Y of the S = 1 units and
hz0(X, T )/hz1(X, T ) as the ground truths, we estimate

ÕR(X, T, Y ) with the loss function being

ℓõr =
1

n1

∑
i:si=1

(
õr(xi, ti, yi)−

hz0(xi, ti)

hz1(xi, ti)

)2

,

where õr(·) is the estimated ÕR(·). Then we can obtain
OR(X, T, Y ) with õr(·) by Eq. (5).

Estimation of the conditional distribution of the unse-
lected outcomes. With the estimated OR(X, T, Y ) and
f(Y | X,Z, T, S = 1), the ground truth counterfactual
outcomes of the S = 1 samples, i.e., the outcome values
of the S = 1 samples result from f(Y | X,Z, T, S = 0),
can be obtained by Eq. (3). Therefore, we can learn another
outcome prediction function hy0

: X × Z × T → Y to
estimate f(Y | X,Z, T, S = 0) using S = 1 samples. The
loss function of this estimator is

ℓy0
=

1

n1

∑
i:si=1

(hy0
(xi, zi, ti)

− õr(xi, ti, yi)

õr(xi, ti, hy1
(xi, zi, ti))

· hy1
(xi, zi, ti))

2.

Estimation of the treatment effects. Now that f(Y |
X,Z, T, S = 0) and f(Y | X,Z, T, S = 1) are both esti-
mated, estimation of f(Y | X,Z, T ) becomes estimation
of f(S | X,Z, T ), which can be achieved by learning an S
prediction function hs : X × Z × T → S, where S is the
space of S. The loss function of this estimator is

ℓs =−
1

n

n∑
i=1

(si · log(hs(xi, zi, ti))

+ (1− si) · log(1− hs(xi, zi, ti))),

and then we can obtain f(Y | X,Z, T ) by

f(Y | X,Z, T ) =
∑

s∈{0,1}
f(Y | X,Z, T, S = s)

· f(S = s | X,Z, T ).

Consequently, we can use Eq. (1) to achieve CATE estima-
tion. Additionally, we add an Integral Probability Metric
(IPM) term to the outcome estimators following Shalit et al.
(2017) to address possible confounding bias.

In summary, the overall framework of ShadowCatcher and
ShadowEstimator is shown in Figure 4: ShadowCatcher first
takes the fully observed X and T , and the observed Y of
S = 1 units as inputs to generate shadow-variable repre-
sentations Z. Subsequently, it tests whether the generated
Z satisfies Assumption 2.1. If the generated Z does not
pass the hypothesis test, ShadowCatcher should re-generate
new shadow-variable representations until the generated Z
finally passes the test. After that, ShadowEstimator uses
the generated Z to estimate treatment effects with obser-
vational samples. The pseudo-codes are in Appendix A,
and the source code is available at https://github.com/
ZJUBaohongLi/ShadowCatcher-ShadowEstimator.
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Table 1. The results of CATE estimation (
√
PEHE) on synthetic datasets under different β.

β = 1 β = 3 β = 5

ESTIMATOR SELECTED DATA UNSELECTED DATA SELECTED DATA UNSELECTED DATA SELECTED DATA UNSELECTED DATA

HECKIT 0.323±0.065 0.330±0.046 0.340±0.055 0.352±0.042 0.349±0.069 0.413±0.048
DR 0.298±0.032 0.316±0.042 0.331±0.048 0.357±0.053 0.367±0.033 0.448±0.017
IPSW 0.328±0.048 0.348±0.049 0.328±0.031 0.353±0.034 0.465±0.011 0.545±0.014
BNN 0.290±0.011 0.306±0.012 0.329±0.048 0.354±0.033 0.359±0.011 0.439±0.015
TARNET 0.295±0.012 0.312±0.011 0.329±0.030 0.357±0.053 0.366±0.071 0.436±0.087
CFR 0.290±0.009 0.307±0.008 0.324±0.009 0.350±0.013 0.359±0.008 0.436±0.030
CFOREST 0.310±0.030 0.331±0.038 0.338±0.019 0.368±0.022 0.373±0.026 0.453±0.043
DR-CFR 0.284±0.038 0.307±0.040 0.340±0.055 0.355±0.064 0.366±0.051 0.435±0.060
TEDVAE 0.281±0.056 0.419±0.070 0.378±0.063 0.420±0.059 0.394±0.054 0.431±0.067
DER-CFR 0.291±0.010 0.309±0.014 0.323±0.015 0.348±0.017 0.358±0.011 0.439±0.013
DESCN 0.295±0.002 0.312±0.002 0.326±0.003 0.357±0.004 0.365±0.003 0.449±0.011
ES-CFR 0.289±0.003 0.305±0.004 0.331±0.003 0.359±0.003 0.369±0.003 0.448±0.005
OURS 0.227±0.001 0.229±0.001 0.249±0.013 0.255±0.021 0.299±0.008 0.300±0.008

3. Experiments
3.1. Baselines

Currently, no causal inference method can solve collider
bias without introducing additional assumptions and prior
knowledge. Therefore, we implemented the following treat-
ment effect estimators that focus on confounding bias and
sample selection bias caused by X and T as our base-
lines, including three groups. (1) Statistical estimators:
Heckman’s Correction (Heckit) (Heckman, 1979), Dou-
bly Robust (Bang & Robins, 2005), Inverse Probability
of Sampling Weights (IPSW) (Cole & Stuart, 2010), and
Causal Forest (CForest) (Wager & Athey, 2018). (2) Bal-
anced representation learning estimators: Balancing Neu-
ral Network (BNN), Treatment-Agnostic Representation
Network (TARNet) (Johansson et al., 2016), CounterFac-
tual Regression (CFR) (Shalit et al., 2017), Deep Entire
Space Cross Networks (DESCN) (Zhong et al., 2022), and
Entire Space CounterFactual Regression (ES-CFR) (Wang
et al., 2023). (3) Disentangled representation learning esti-
mators: Disentangled Representations for CounterFactual
Regression (DR-CFR) (Greiner, 2020), TEDVAE (Zhang
et al., 2021), and Decomposed Representations for Coun-
terFactual Regression (DeR-CFR) (Wu et al., 2022). We
used the above baselines to estimate and compare the
CATE with our proposed methods. Based on the estimated
CATE, we use the Precision in Estimation of Heteroge-
neous Effect (PEHE) (Shalit et al., 2017; Louizos et al.,
2017) to evaluate the performance of the estimators, where
PEHE = 1

N ·
∑N

i=1((ŷi(1)− ŷi(0))−(yi(1)−yi(0))
2. We

split each dataset into 60/20/20 train/validation/test datasets,
independently repeated 20 times, and report the mean and
standard deviation (std) of

√
PEHE for all experiments,

formed as mean ± std in the tables.
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Figure 5. Ablation studies of the reject threshold α.

3.2. Experiments on Synthetic Data

3.2.1. DATASETS

In order to better evaluate the performance of each estimator
under collider bias, we generated synthetic datasets with
different collider bias strengths, denoted by β, which affects
the impact of Y on S. The size n of all datasets was 10,000,
and the dimension d of the covariates was 10. To compare
our methods with the baselines under different strengths
of collider bias, we evaluated the performance of each es-
timator under β = {1, 3, 5}. Moreover, we aim to prove
the effectiveness of the constraints on the shadow-variable
assumptions in ShadowCatcher. Therefore, we conducted
ablation studies, including a comparison between Shadow-
Catcher and an ablation version without the conditional
dependence constraint and another version without the hy-
pothesis tester that guarantees the conditional independence
constraint. Moreover, we performed additional experiments
on synthetic data to evaluate the impact of different propor-
tions of non-shadow variables in the covariates. We also
compared the proposed method with shadow-variable re-
gression using correctly specified shadow variables (Miao
& Tchetgen Tchetgen, 2016). The data generation process
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Table 2. The results of CATE estimation on three real-world datasets.

IHDP (
√
PEHE) ACIC 2016 (

√
PEHE) JOBS (R̂Pol)

ESTIMATOR WITHIN-SAMPLE OUT-OF-SAMPLE WITHIN-SAMPLE OUT-OF-SAMPLE WITHIN-SAMPLE OUT-OF-SAMPLE

HECKIT 1.587±0.065 1.621±0.041 3.106±0.444 3.340±0.111 0.328±0.050 0.331±0.052
DR 1.355±0.123 1.572±0.205 2.346±0.129 2.653±0.222 0.316±0.007 0.317±0.036
IPSW 2.118±0.344 2.129±0.295 4.244±0.145 5.411±0.073 0.284±0.051 0.289±0.063
BNN 1.308±0.298 1.457±0.339 2.173±0.150 2.586±0.486 0.303±0.025 0.304±0.041
TARNET 1.240±0.158 1.416±0.154 2.275±0.756 2.805±0.766 0.315±0.012 0.316±0.050
CFR 1.283±0.186 1.401±0.238 2.107±0.297 2.361±0.587 0.313±0.018 0.314±0.072
CFOREST 1.702±0.292 1.948±0.429 4.137±0.295 4.605±0.137 0.326±0.012 0.326±0.059
DR-CFR 1.299±0.087 1.399±0.171 2.240±0.691 2.340±0.663 0.322±0.022 0.323±0.099
TEDVAE 4.246±0.394 4.347±0.563 3.501±0.708 4.468±0.813 0.296±0.046 0.300±0.031
DER-CFR 1.446±0.345 1.571±0.371 2.214±0.204 2.246±0.598 0.309±0.023 0.311±0.029
DESCN 1.193±0.057 1.665±0.246 2.185±0.150 2.306±0.236 0.331±0.010 0.331±0.051
ES-CFR 1.499±0.096 1.436±0.095 3.875±0.224 4.494±0.214 0.290±0.045 0.293±0.046
OURS 0.703±0.106 0.723±0.102 1.911±0.126 2.047±0.351 0.279±0.017 0.280±0.018

and the ablations are detailed in Appendix C.

3.2.2. RESULTS

We separately report the results of the selected data (S = 1)
and unselected data (S = 0) in Table 1 under different col-
lider bias strengths with β = {1, 3, 5}. We observe that:
(1) The overall performance of DR, BNN, CFR, CForest,
TEDVAE, DR-CFR, DESCN, DeR-CFR and ES-CFR is not
good because they all focus on confounding bias and thus
cannot deal with sample selection bias. (2) The performance
of Heckit and IPSW is also poor because they can only ad-
dress sample selection bias caused by T and X and cannot
address collider bias because of the spurious association
T → S ← Y . (3) Our method outperforms all baselines
under all β settings because the generated representations
by ShadowCatcher make identification under collider bias
possible, and ShadowEstimator provides a practical solu-
tion. (4) As collider bias strengthens, the performance gap
between selected and unselected data increases. However,
this gap for our method is much smaller than that of other
baselines, which demonstrates that our proposed approaches
can practically address collider bias.

In ShadowCatcher, we introduce a hyperparameter α that is
the rejection threshold of the test phase. The choice of the
reject threshold α is a tradeoff between efficiency and per-
formance during the generation process of ShadowCatcher:
if the reject threshold is too small, the generated representa-
tions may be too weak to be a valid shadow variable; if the
threshold is too large, it may needs more iterations for the
generated representations to pass the test. To further study
the impact of different options of α on the efficiency and
performance of ShadowCatcher, we conducted experiments
with α = {10−4, 5× 10−5, 10−5, 5× 10−6, 10−6} on the
synthetic dataset in Section 3.2.1 with ds = 0.9·d and β = 1.
The results are in Figure 5. It shows that the performance of
ShadowCatcher improves as the reject threshold decreases

because the hypothesis test gets more strict, which means
the constraint gets more reliable. However, the number of it-
erations ShadowCatcher requires to pass the hypothesis test
also increases quickly, reducing its efficiency. Therefore,
choosing an appropriate α is a tradeoff between efficiency
and performance and depends on the application scenarios.

3.3. Experiments on Real-World Data

3.3.1. DATASETS

In order to evaluate the proposed method in real-world
scenarios, we conducted experiments on three well-known
datasets: the IHDP dataset (Hill, 2011)3, the ACIC 2016
dataset (Dorie et al., 2019)4, and the Jobs dataset (Shalit
et al., 2017)5. For the IHDP and ACIC 2016 datasets, the
treatment assignment and outcome generation process are
simulated based on covariates collected from real-world
applications. Therefore, the ground truth CATE is known,
and we use the same metric as those in the experiments on
the synthetic data. For the Jobs dataset, because the ground
truth CATE is unknown, we follow Shalit et al. (2017) to use
the policy risk to evaluate the quality of CATE estimation.
The policy risk is defined as the average loss in value when
treating according to the policy implied by a CATE estima-
tor: R̂Pol = 1 − (E[Y (1) | τ(x) > 0, T = 1] · P(τ(x) >
0) + E[Y (0) | τ(x) ≤ 0, T = 0] · P(τ(x) ≤ 0). We report
the mean and std of the policy risk formed as mean ± std in
the table. The original three datasets exhibit confounding
bias but lack collider bias, so we introduced collider bias
into them. For the IHDP and Jobs datasets, we selectively
omitted the outcome values of certain sub-samples that met
specific criteria. Regarding the ACIC 2016 dataset, we
employed the same simulation method used for generating

3http://www.fredjo.com/
4https://github.com/vdorie/aciccomp/tree/master/2016
5https://users.nber.org/˜rdehejia/nswdata2.html

8



Learning Shadow Variable Representation for Treatment Effect Estimation under Collider Bias

synthetic data to obtain S. More details about these datasets
and the simulation process are provided in Appendix C.3.

3.3.2. RESULTS

We separately report the results of within-sample data and
out-of-sample data in Table 2, where within-sample means
that the (factual) outcome of one treatment is observed, i.e.,
the S = 1 samples for training, and out-of-sample means
no observed outcomes, i.e., the S = 1 samples for testing
and all S = 0 samples (Shalit et al., 2017). From the results,
we observe that: (1) The performance of the methods on
confounding bias is not good because they cannot address
sample selection bias. (2) The performance of the meth-
ods on sample selection bias is also poor because they can
only address the cases that X and T cause S and thus can-
not achieve a better estimate under collider bias. (3) Our
method outperforms all baselines on both datasets because
ShadowCatcher and ShadowEstimator effectively address
collider bias in data. (4) The performance gap between our
proposed method’s within-sample and out-of-sample data is
also overall the lowest, proving the ability to counterfactual
prediction of our method. (5) Our method shows the low-
est policy risk on the Jobs dataset, which demonstrates the
effectiveness of our methods in real-world applications.

4. Conclusion
In this paper, we overcome the challenge of finding valid
shadow variables to estimate treatment effects under collider
bias in observational studies. We propose a novel Shadow-
Catcher that can generate representations serving the role of
shadow variables and a novel ShadowEstimator that uses the
generated representations to estimate CATE under collider
bias. Experimental results demonstrate the effectiveness and
application value of ShadowCatcher and ShadowEstimator.

One main limitation of our work is that the choice of the
reject threshold α is a tradeoff between efficiency and perfor-
mance during the generation process of ShadowCatcher as
analyzed in Section 3.2.2. Another limitation is that the per-
formance of ShadowCatcher depends on the extent to which
covariates are involved in the sample selection. If no latent
information satisfying the shadow variable assumption ex-
ists in the raw data covariates, extracting representations
that satisfy the assumption of shadow variables (conditional
independent of S) can be challenging. However, in most
real-world scenarios, it is common that some covariates do
not cause the sample selection directly. Therefore, the pro-
posed method is not typically susceptible to this issue in
most practical contexts.
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A. Pseudo-Codes of ShadowCatcher and ShadowEstimator
As stated in Section 2, we propose a novel ShadowCatcher that generates representations serving the role of shadow
variables and a novel ShadowEstimator that estimates treatment effects under collider bias with the help of the generated
representations. The pseudo-codes of ShadowCatcher and ShadowEstimator are detailed in Algorithm 1 and 2, where g
denotes the representations generator, hy1

denotes the selected outcome estimator, hy0
denotes the unselected outcome

estimator, hr denotes the representations estimator, hz1 and hz0 denote the shadow-variable estimators, õr denotes the odds
ratio estimator, hs denotes the sample selection estimator, and q denotes the Q function solver.

Algorithm 1 ShadowCatcher
Input: the observational samples with X, T, Y , and S, reject threshold α.
Output: generated shadow-variable representations Z.

m← 1.
initialization of parameters in hy1

, hr, q and g.
repeat
α← α/m.
m← m+ 1.
repeat
Z← g(X).
optimize hy1 by ℓy1 and hr by ℓr with S = 1 units.
use hy1 to predict the missing Y values for S = 0 units as replacements of the true values.
optimize g by ℓg = ℓgy + ℓgz with all units.

until convergence
repeat

optimize q by ℓq with all units.
until convergence
update lq with the final output of ℓq.

until lq ≥ α
Z← g(X).
return Z

Algorithm 2 ShadowEstimator
Input: the observational samples with X, T, Y, S, and Z.
Output: the CATE of all units in the observational samples.

initialization of parameters in hy0
, hz0 , hz1 , õr and hs.

repeat
optimize hz0 and hz1 by minimizing ℓz0 and ℓz1 .

until convergence
calculate the ”ground truth” values of ÕR(X, T, Y ) by Eq. (4).
repeat

optimize õr by minimizing ℓor with S = 1 units and the calculated ”ground truth” values.
until convergence
calculate the ”ground truth” values of OR(X, T, Y ) by Eq. (5) and Y values of S = 0 units by Eq. (3).
repeat

optimize hy0
by minimizing ℓy0

with S = 0 units and the calculated ”ground truth” values.
optimize hs by minimizing ℓs with all units.

until convergence
calculate the CATE of all units with the optimized hy0 , hy1 and hs.
return CATE
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Table 3. The hyperparameters of ShadowCatcher and ShadowEstimator on different datasets.

DATASET EPOCHS BATCH SIZE LEARNING RATE WEIGHT DECAY IPM WEIGHT α

SYNTHETIC DATASETS 100 1024 0.03 0.01 0.001 1E-6
THE IHDP DATASET 100 128 0.03 0.01 0.001 0.01
THE TWINS DATASET 100 1024 0.03 0.01 0.1 0.1
THE JOBS DATASET 100 256 0.003 0.001 0.1 0.1
THE ACIC 2016 DATASETS 100 256 0.01 0.001 0.001 100

B. Related Work
Previous works on treatment effect estimation mainly focus on confounding bias in observational studies. Reweighting
methods either use the inverse propensity score (Dehejia & Wahba, 2002) or learn a balancing weight from data (Hainmueller,
2012; Athey et al., 2018) to make T and X of the reweighted samples independent. Balanced representation learning
methods (Johansson et al., 2016; Shalit et al., 2017; Greiner, 2020; Wang et al., 2023) learn representations of covariates so
that the learned representations are independent of the treatment variable. Causal Forest (Wager & Athey, 2018) builds
a large number of causal trees and then estimates heterogeneous treatment effects by taking an average of the outcomes
from these causal trees. Generative methods (Louizos et al., 2017; Yoon et al., 2018; Zhang et al., 2021) utilize generative
models to generate counterfactual data. However, all the above methods suffer from sample selection bias because of the
distribution shift problem.

To address sample selection bias, Heckman (1979) proposed a two-stage regression method with many extensions
(Marchenko & Genton, 2012; Ding, 2014; Ogundimu & Hutton, 2016; Wiemann et al., 2022). Cole & Stuart (2010)
proposed a sample reweighting method, which reweights the selected samples by estimating the inverse conditional probabil-
ity of the sample selection as weights. Bareinboim et al. (2014); Bareinboim & Tian (2015) proposed the selection-backdoor
adjustment approach by blocking the selection-backdoor paths. These methods can only solve selection bias caused by
covariates and the treatment. However, these methods cannot solve collider bias, which is more likely to appear in real-world
scenarios because Y also causes S.

Fortunately, treatment effects are identifiable under collider bias if some shadow variables are available in the observational
data (d’Haultfoeuille, 2010; Miao & Tchetgen Tchetgen, 2016; Miao et al., 2024). Shadow variables are assumed to satisfy
that Z ⊥̸⊥ Y | X, T, S = 1 and Z ⊥⊥ S | X, T, Y . With the help of shadow variables, various estimators, including
regression-based (d’Haultfoeuille, 2010; Zhao & Shao, 2016), IPSW-based (Wang et al., 2014), and doubly robust-based
(Miao & Tchetgen Tchetgen, 2016) were proposed to solve collider bias. However, the accessibility of valid shadow
variables itself is a strong assumption because finding a well-defined shadow variable requires domain-specific knowledge
from experts and needs to be investigated on a case-by-case basis (Li et al., 2023). Therefore, our proposed method that
automatically generates representations serving the role of shadow variables can effectively relax the assumptions of solving
collider bias and has excellent application values.

C. Supplement to the Experiments Section
C.1. Implementation Details

We utilized 3-layer Neural Networks to implement each module in ShadowEstimator and ShadowCatcher. We used the
Adam optimizer (Kingma & Ba, 2015) with batch normalization (Ioffe & Szegedy, 2015) in the training process, and we
used the Wasserstein distance (Cuturi & Doucet, 2014) as the Integral Probability Metric (IPM) to implement all the methods
that need IPM to balance representations. The hyperparameters of our methods on different datasets are detailed in Table 3.
We implemented all the methods in the PyTorch environment with Python 3.9. The CPU was 13th Gen Intel(R) Core(TM)
i7-13700K, and the GPU was NVIDIA GeForce RTX 3080 with CUDA 12.1.

C.2. Data Generation Process of the Synthetic Datasets

We first generated the continuous covariates X ∈ Rn×d with independent Gaussian distributions as X ∼ N (0,1), and
then generated the binary treatment variable T ∈ Rn from a logistic function as T ∼ Bernoulli(1/(1 + e−t(X))), where
Bernoulli(·) denotes the Bernoulli distribution, t(X) =

∑d
i=1(1(mod(i, 2) ̸= 1)−1(mod(i, 2) ≡ 1)) ·Xi/d)+ ϵt, 1(·) is
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Table 4. The results of CATE estimation (
√
PEHE) on the Twins datasets.

ESTIMATORS WITHIN-SAMPLE OUT-OF-SAMPLE

HECKIT 0.345±0.023 0.357±0.023
DR 0.476±0.010 0.487±0.007
IPSW 0.339±0.009 0.344±0.021
BNN 0.358±0.021 0.373±0.021
TARNET 0.401±0.049 0.407±0.058
CFR 0.361±0.040 0.369±0.040
CFOREST 0.356±0.034 0.421±0.035
DR-CFR 0.340±0.028 0.350±0.028
TEDVAE 0.319±0.003 0.337±0.008
DER-CFR 0.316±0.009 0.321±0.013
DESCN 0.401±0.021 0.432±0.029
ES-CFR 0.312±0.010 0.320±0.023
OURS (NEW) 0.294±0.008 0.304±0.015

the indicator function, function mod(a, b) returns the modulus after division of a by b and ϵt ∼ N (0, 1). Next, we generated
the continuous outcome variable Y ∈ Rn from a non-linear function as Y = Sigmoid(T +

∑d
i=1(T ·Xi +(1(mod(i, 2) ̸=

1) − 1(mod(i, 2) ≡ 1)) · (Xi + X2
i )/d) + ϵy), where Sigmoid denotes the sigmoid function and ϵy ∼ N (0, 1). To

introduce collider bias with strength β and implicit shadow variables into datasets, we generated the binary selection variable
S ∈ Rn from a logistic function S ∼ Bernoulli(1/(1 + e−s(X,T ))), where s(X, T ) = T − β · Y +

∑ds

i=1(1(mod(i, 2) ≡
1)− 1(mod(i, 2) ̸= 1)) ·Xi/d) + ϵs with ϵs ∼ N (0, 1). Note that ds ≤ d denotes the dimension of X that contributes to S,
and the remaining covariates not involved in the sample selection are implicit shadow variables. A unit is selected into the
sample when S = 1, i.e., the outcome values can be observed only when S = 1. The ground truth CATE can be calculated
easily by the above functions. Note that the results in Table 1 are under the setting of ds = 0.9 · d.

C.3. Real-World Datasets Details

The IHDP dataset is from a study evaluating the effect of specialist home visits on the future cognitive test scores of
premature infants (Brooksgunn et al., 1992), where confounding bias is introduced by removing a non-random subset of the
treated group and using simulated outcomes to replace the original ones. To further introduce collider bias into the IHDP
dataset, we set S = 0 for T = 0 units that the mother boozes and the infant’s score is lower than the mean value. Intuitively,
unlike the treated group, which can carefully design and regularly follow up to ensure the collection of effective test results,
the control group is more likely to have sample selection bias. For those mothers with boozing problems and mothers whose
children have weaker cognitive abilities, it is more likely that they will not take their children to participate in the cognitive
test, resulting in collider bias. The final IHDP dataset comprises 747 units (557 selected, 190 unselected) with 25 covariates.
The ground truth CATE is known because the outcomes are simulated, and both the factual and counterfactual outcomes are
available.

The 2016 Atlantic Causal Inference Challenge (ACIC 2016) (Dorie et al., 2019) contains various settings of benchmark
datasets with confounding bias simulated by comprehensive data generation processes. To introduce collider bias into the
ACIC 2016 datasets, we used the same simulation of S as stated in Appendix C.2: S ∼ Bernoulli(1/(1 + e−s(X,T ))),
where s(X, T ) = T − Y +

∑ds

i=1(1(mod(i, 2) ≡ 1)− 1(mod(i, 2) ̸= 1)) ·Xi/d) + ϵs with ϵs ∼ N (0, 1) and d = 58.

The Jobs dataset combines a randomized study based on the National Supported Work (NSW) program with observational
data to form a larger confounding biased dataset that focuses on estimating the effects of a job training program on future
employment situation (LaLonde, 1986; Shalit et al., 2017). To introduce collider bias into the Jobs dataset, we set S = 0 for
T = 0 units that used to have a job but became unemployed. Intuitively, for those who used to have a job and have not
participated in job training programs, it is more likely that they are unwilling to report their current employment situation if
they lose their job, leading to collider bias. The final Jobs dataset comprises 2675 units (2494 selected, 181 unselected) with
10 covariates.

The Twins data is from a study evaluating the effect of low birth weight on the mortality of infants in their first year of life
(Almond et al., 2005), where confounding bias is introduced by using simulated treatments to replace the original ones
(Louizos et al., 2017; Yoon et al., 2018). To introduce collider bias into the Twins dataset, we set S = 0 for T = 1 units that
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Table 5. The results of CATE estimation (
√
PEHE) on synthetic datasets under different ds.

ds = 0.1 · d ds = 0.5 · d ds = 0.9 · d
ESTIMATOR SELECTED DATA UNSELECTED DATA SELECTED DATA UNSELECTED DATA SELECTED DATA UNSELECTED DATA

HECKIT 0.100±0.013 0.120±0.016 0.359±0.044 0.367±0.092 0.349±0.069 0.413±0.048
DR 0.129±0.022 0.130±0.030 0.315±0.038 0.368±0.058 0.367±0.033 0.448±0.017
IPSW 0.604±0.284 0.627±0.287 0.331±0.060 0.353±0.064 0.465±0.011 0.545±0.014
BNN 0.103±0.014 0.110±0.016 0.305±0.007 0.358±0.009 0.359±0.011 0.439±0.015
TARNET 0.105±0.015 0.106±0.021 0.307±0.056 0.360±0.056 0.366±0.071 0.436±0.087
CFR 0.104±0.005 0.105±0.017 0.307±0.041 0.358±0.055 0.359±0.008 0.436±0.030
CFOREST 0.105±0.011 0.109±0.012 0.312±0.022 0.363±0.026 0.373±0.026 0.453±0.043
DR-CFR 0.106±0.005 0.113±0.011 0.287±0.045 0.361±0.057 0.366±0.051 0.435±0.060
TEDVAE 0.227±0.018 0.257±0.021 0.283±0.052 0.378±0.059 0.394±0.054 0.431±0.067
DER-CFR 0.095±0.011 0.097±0.011 0.319±0.050 0.348±0.017 0.358±0.011 0.439±0.013
DESCN 0.107±0.002 0.109±0.002 0.311±0.004 0.367±0.004 0.365±0.003 0.449±0.011
ES-CFR 0.094±0.004 0.098±0.005 0.308±0.002 0.360±0.004 0.369±0.003 0.448±0.005
OURS 0.085±0.001 0.086±0.002 0.228±0.006 0.256±0.009 0.299±0.008 0.300±0.008

Table 6. The comparison of CATE estimation (
√
PEHE) between the proposed method and shadow-variable regression using correctly

specified shadow variables.

VERSION OF SHADOWCATCHER SELECTED DATA UNSELECTED DATA

SHADOW-VARIABLE REGRESSION 0.285 ± 0.012 0.290 ± 0.015
THE PROPOSED METHOD 0.299 ± 0.008 0.300 ± 0.008

both the mother uses tobacco and the twin is alive. Intuitively, parents seldom take relatively healthy infants to the hospital,
so it is more difficult to record the data of these infants, resulting in collider bias. The final Twins dataset comprises 9642
units (8804 selected, 838 unselected) with 48 covariates. The ground truth CATE is known because, for each twin pair, we
observed both the case T = 0 (lighter twin) and T = 1 (heavier twin) (Yoon et al., 2018). The results are reported in Table
4.

C.4. Ablation Studies

In addition to the results stated in Section 3.2, we also conducted more experiments detailed as follows:

C.4.1. STUDIES OF THE IMPACT OF DIFFERENT NON-SHADOW-VARIABLE PROPORTIONS IN THE COVARIATES

In Section 3.2, we generated synthetic datasets to evaluate the performance of our proposed ShadowCatcher and ShadowEst-
imator under different strengths of collider bias, i.e., β that affects the impact of Y on S. To ensure that the strength of
collider bias was only determined by β, we fixed the proportion of non-shadow variables in covariates by setting ds = 0.9 · d.
Intuitively, this proportion can also determine the strength of collider bias because it affects how many covariates are
involved in the sample selection. The smaller ds is, the weaker the collider bias is. Therefore, we also conducted experiments
under different ds settings with a fixed β = 5. The results are in Table 5.

Our observations and analyses are as follows: (1) In general, the performance of all estimators gradually decreases as the
proportion of non-shadow variables in covariates increases because the impact of X on S increases. (2) The performance of
IPSW under ds = 0.1× d is abnormally poor because IPSW estimates P(S | X, T ) instead of the ideal P(S | X, T, Y ) for
reweighting, the difference of which is significant when the impact of Y on S far exceeds that of X and T on S, leading
to an inaccurate estimate. (3) The overall performance of all estimators on selected data is better than unselected data
because collider bias results in E[Y | X, T, S = 1] ̸= E[Y | X, T, S = 0]. (4) As the proportion of non-shadow variables in
covariates increases, the performance gap between selected and unselected data increases because the more substantial the
collider bias is, the more significant the distribution shift problem is. Especially when only one covariate is involved in
the sample selection, the gap nearly disappears for most estimators. (5) Our method outperforms all baselines under all ds
settings, and the performance gap between selected data and unselected data, though it still exists, is much smaller than
that of other baselines, which demonstrates that our proposed approaches can practically address collider bias in CATE
estimation.
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C.4.2. COMPARISON BETWEEN THE PROPOSED METHOD AND SHADOW VARIABLE REGRESSION WITH CORRECTLY
SPECIFIED SHADOW VARIABLES

To verify the validity of the generated shadow-variable representations by ShadowCatcher, we compared the proposed
method with shadow-variable regression using correctly specified shadow variables (Miao & Tchetgen Tchetgen, 2016).
Specifically, we conducted this ablation on the synthetic dataset in Section 3.2.1 with ds = 0.9 · d, α = 1e− 6, and β = 5,
where a valid shadow variable is available.

From the experimental results shown in Table 6, we can observe that while our method performs less favorably compared to
shadow-variable regression with correctly specified shadow variables, which can be considered as an optimal scenario for
our method, the performance of the two methods is very close. It demonstrates that the proposed method can learn valid
shadow-variable representations.

C.4.3. ABLATION STUDIES OF SHADOWCATCHER

Ablation study of the generation phase. During the generation phase of ShadowCatcher, we make two constraints on
the representations generator to ensure that the learned representations satisfy the assumptions of shadow variables. The
constraint on Z ⊥⊥ S | X, T, Y assumption is already guaranteed effective by the hypothesis test phase. However, the
effectiveness of the constraint on Z ⊥̸⊥ Y | X, T, S = 1 assumption still needs to be proved. Therefore, we conducted
ablation studies by comparing the performance of ShadowCatcher with and without the constraint on Z⊥̸⊥ Y | X, T, S = 1.
Specifically, the ablation version of ShadowCatcher optimizes the generator and the selected outcome estimator only by
minimizing ℓgz and ℓy1

. We conducted the experiments on the synthetic dataset in Section 3.2.1 with ds = 0.9 ·d, α = 1e−6,
and β = 1. The results are in Table 7. The results show that the performance of this ablation version of ShadowCatcher gets
worse, though still better than other baselines reported in Table 1, proving the effectiveness and necessity of the constraints
in the generation phase of ShadowCatcher.

Ablation study of the hypothesis test phase. We also want to prove the necessity of the hypothesis test phase in
ShadowCatcher. Therefore, we conducted ablation studies by comparing the performance of ShadowCatcher with and
without the hypothesis tester. The results are in Table 7. The results show that the performance of this ablation version of
ShadowCatcher is poor, and the std is very large. It proves that without the hypothesis tester that guarantees the conditional
independent assumption satisfied, i.e., Z ⊥⊥ S | X, T, Y , the generator cannot constrain this assumption well because it
uses biased predicted missing outcome values, resulting in an unstable generation.

D. Further Explanations of Some Formulas
D.1. An Explanation of Eq. (2)

In Eq. (2), the original odds ratio function is

OR(X,Z, T, Y ) =
f(Y | X,Z, T, S = 0) · f(Y = 0 | X,Z, T, S = 1)

f(Y | X,Z, T, S = 1) · f(Y = 0 | X,Z, T, S = 0)

=
f(Y | X,Z, T, S = 0) · f(X,Z, T, S = 0) · f(Y = 0 | X,Z, T, S = 1) · f(X,Z, T, S = 1)

f(Y | X,Z, T, S = 1) · f(X,Z, T, S = 1) · f(Y = 0 | X,Z, T, S = 0) · f(X,Z, T, S = 0)

=
f(Y,X,Z, T, S = 0) · f(Y = 0,X,Z, T, S = 1)

f(Y,X,Z, T, S = 1) · f(Y = 0,X,Z, T, S = 0)

=
f(Y,X,Z, T, S = 0)/f(Y,X,Z, T ) · f(Y = 0,X,Z, T, S = 1)/f(Y = 0,X,Z, T )

f(Y,X,Z, T, S = 1)/f(Y,X,Z, T ) · f(Y = 0,X,Z, T, S = 0)/f(Y = 0,X,Z, T )

=
f(S = 0 | X,Z, T, Y ) · f(S = 1 | X,Z, T, Y = 0)

f(S = 0 | X,Z, T, Y = 0) · f(S = 1 | X,Z, T, Y )

Under Assumption 2.1, because Z ⊥⊥ S | X, T, Y , the above equation equals OR(X, T, Y ) in Eq. (2). It indicates that the
odds ratio function captures the impact of the outcome itself on the sample selection mechanism and is thus a measure of
collider bias (Miao & Tchetgen Tchetgen, 2016).
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Table 7. The results of CATE estimation (
√
PEHE) by different versions of ShadowCatcher.

VERSION OF SHADOWCATCHER SELECTED DATA UNSELECTED DATA

SHADOWCATCHER WITHOUT THE HYPOTHESIS TEST PHASE 0.486±0.416 0.489±0.434
SHADOWCATCHER WITHOUT THE CONSTRAINT ON Z⊥̸⊥ Y | X, T, S = 1 0.288±0.056 0.306±0.076
SHADOWCATCHER WITH THE CONSTRAINT ON Z⊥̸⊥ Y | X, T, S = 1 0.227±0.001 0.229±0.001

D.2. An Explanation of Eq. (5)

By Eq. (2), OR(X, T, Y = 0) = 1 because

OR(X, T, Y = 0) =
f(S = 0 | X, T, Y = 0) · f(S = 1 | X, T, Y = 0)

f(S = 0 | X, T, Y = 0) · f(S = 1 | X, T, Y = 0)

= 1.

Therefore, by the definition of ÕR(X, T, Y ) that

ÕR(X, T, Y ) = OR(X, T, Y )/E[OR(X, T, Y ) | X, T, S = 1],

the right hand side of Eq. (5) equals to

ÕR(X, T, Y )

ÕR(X, T, Y = 0)
=

OR(X, T, Y ) · E[OR(X, T, Y ) | X, T, S = 1]

OR(X, T, Y = 0) · E[OR(X, T, Y ) | X, T, S = 1]

=
OR(X, T, Y )

OR(X, T, Y = 0)

=OR(X, T, Y ),

which is exactly the left hand side of Eq. (5) (Miao et al., 2024).

D.3. An Explanation of ℓq

As stated in Section 1, ShadowCatcher conducts an additional hypothesis test based on Theorem 2.5 after the generation
phase finishes.

Theorem 2.5 (d’Haultfoeuille, 2010). Suppose the overlap assumption and Z ⊥̸⊥ Y | X, T, S = 1 hold, then Z ⊥⊥ S |
X, T, Y can be rejected if and only if there does not exist any function Q(·) that satisfies the following equation and takes
value between (0, 1]:

E
[

S

Q(X, T, Y )
− 1 | X,Z, T

]
= 0 .

The tester aims to learn a solution q of Q(X, T, Y ) in Eq. (6) that belongs to (0, 1] which turns into an optimization problem
by minimizing

ℓq =
1

n

n∑
i=1

∥∥∥∥∥∥
(

si
q(xi, ti, yi)

− 1

)
·

xi

zi
ti

∥∥∥∥∥∥
2

2

,

where q(xi, ti, yi) is a function from R to (0, 1] and || · ||2 denotes the ℓ2 norm.

Specifically, if E[S/Q(X, T, Y )− 1 | X,Z, T ] = 0 (by Theorem 2.5 in Eq. (6)), then

E

E [
S

Q(X, T, Y )
− 1 | X,Z, T

]
·

X
Z
T

 = 0.
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The left hand side equals to

E

E [
S

Q(X, T, Y )
− 1 | X,Z, T

]
·

X
Z
T

 =E

E
( S

Q(X, T, Y )
− 1

)
·

X
Z
T

 | X,Z, T


=E

( S

Q(X, T, Y )
− 1

)
·

X
Z
T

 = 0.

Then ℓq is just to minimize the square of the ℓ2 norm of the last equation.
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