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Abstract001

Automated radiology report generation (RRG)002
offers the potential to reduce clinical workload003
and enhance diagnostic consistency. However,004
existing models struggle with degraded visual005
representations caused by long-tailed lesion dis-006
tributions, and suffer from limited alignment007
between image features and diagnostic seman-008
tics. We propose VDGen, a unified framework009
for calibrating visual and diagnostic represen-010
tations to improve disease-aware report gener-011
ation. VDGen integrates two complementary012
modules: Vision Self-Equilibration (VSE), a013
self-supervised contrastive module that miti-014
gates visual feature degradation by promoting015
structured representation learning; and Disease016
Information Distillation (DID), a cross-modal017
distillation mechanism that uses diagnostic re-018
ports as teacher signals to guide the extraction019
of disease-sensitive semantics from visual fea-020
tures. Our end-to-end architecture incorporates021
a LoRA-adapted large language model (LLM)022
decoder to generate clinically accurate reports.023
Experiments on the IU-Xray and MIMIC-CXR024
datasets show that VDGen achieves state-of-025
the-art performance on MIMIC-CXR and main-026
tains competitive results on IU-Xray. Code and027
models will be released upon acceptance.028

1 Introduction029

Automated radiology report generation (RRG)030

holds significant promise for alleviating radiolo-031

gists’ workload while improving the interpretabil-032

ity and consistency of diagnostic reports (Wang and033

Summers, 2012). With rapid advancements in arti-034

ficial intelligence, automated RRG has emerged as035

a critical research frontier in multimodal AI. Exist-036

ing studies have attempted to adapt image caption037

methods to RRG by training models to generate038

medical reports from chest X-ray images through039

supervised learning (Liu et al., 2021a). However,040

such direct migration faces inherent limitations041

due to the unique characteristics of radiological042

data (Gu et al., 2024).043

As illustrated in Fig. 1(a), lesion-related pix- 044

els in chest X-ray images typically occupy only 045

small regions, resulting in highly imbalanced 046

intra-image distributions. At the dataset level 047

(Fig. 1(b)), normal samples overwhelmingly domi- 048

nate, limiting the model’s exposure to abnormal 049

findings. These dual imbalances—spatial spar- 050

sity within images and class imbalance across 051

the dataset—collectively contribute to a long- 052

tailed data distribution that challenges conventional 053

vision-language models (Bu et al., 2024). This 054

distributional bias leads to degraded visual repre- 055

sentations, especially for abnormal regions, where 056

traditional visual encoders struggle to extract dis- 057

criminative features (Liu et al., 2021b). As shown 058

in Fig. 1(c, left), embeddings of lesion areas are 059

often disorganized in the latent space, which in 060

turn confuses the report decoder and impairs the 061

generation of clinically meaningful text. We argue 062

that effective radiology report generation requires 063

addressing both: (i) intra-modal degradation of 064

visual features caused by distributional imbalance, 065

and (ii) inter-modal misalignment between image 066

features and diagnostic language semantics leads 067

to difficulties in disease information extraction. 068

In this paper, we propose VDGen, a unified 069

framework for Visual and Diagnostic representa- 070

tion calibration in radiology report generation. VD- 071

Gen integrates two complementary modules: Vi- 072

sion Self-Equilibration (VSE) introduces a self- 073

supervised contrastive mechanism that learns to 074

pull together visual embeddings from similar patho- 075

logical patterns while pushing apart those of dis- 076

similar ones. By performing instance-level regu- 077

larization within each batch, VSE mitigates the ef- 078

fects of long-tailed and sparse lesion distributions, 079

enhancing intra-modal discrimination without re- 080

lying on manual labels. Disease Information Dis- 081

tillation (DID) introduces a cross-modal distilla- 082

tion mechanism, where diagnostic reports serve as 083

teacher signals to supervise the learning of disease- 084
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Figure 1: Subgraphs a and b demonstrate the scarcity of pathological samples in radiology report generation, and
subgraph c shows the roles of VSE and DID.

sensitive visual semantics. Instead of aligning rep-085

resentations directly, DID performs bidirectional086

similarity optimization between image features and087

text-derived embeddings, enabling the visual en-088

coder to internalize fine-grained diagnostic knowl-089

edge such as lesion presence and scope. As shown090

in Fig. 1(c, middle/right), these two mechanisms091

jointly refine the latent space, enabling more accu-092

rate and interpretable report synthesis. We validate093

VDGen on two widely used datasets, IU-Xray and094

MIMIC-CXR. Results show that VDGen achieves095

new state-of-the-art performance on MIMIC-CXR096

and remains competitive on the low-resource IU-097

Xray benchmark. Our contributions are summa-098

rized as follows:099

• We propose VDGen, a unified framework for100

calibrating visual and diagnostic representa-101

tions to improve the quality and interpretabil-102

ity of radiology report generation.103

• We introduce Vision Self-Equilibration104

(VSE), a self-supervised contrastive learning105

module that alleviates feature degradation by106

promoting intra-class compactness and inter-107

class separability in visual embeddings, with-108

out relying on manual labels. 109

• We develop Disease Information Distillation 110

(DID), a cross-modal distillation mechanism 111

that leverages diagnostic reports as teacher 112

signals to guide the learning of disease-aware 113

visual semantics via bidirectional alignment. 114

• We conduct extensive experiments on the IU- 115

Xray and MIMIC-CXR datasets. Results 116

show that VDGen achieves state-of-the-art 117

performance on MIMIC-CXR and remains 118

competitive on IU-Xray, demonstrating both 119

scalability and clinical relevance. 120

2 Related Work 121

2.1 Image Caption 122

Image caption aims to automatically generate text 123

descriptions of input natural images. The com- 124

mon approach in this field is to use an end-to-end 125

framework for caption generation. After the Trans- 126

former architecture became popular, researchers 127

often used Swin-Transformer for image encoding, 128

and then employed multi-layer Text Transformer 129

to decode the hidden states and finally generate the 130
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corresponding caption text. With the increasing de-131

mand for automated report generation, AI scholars132

have attempted to apply image captioning methods133

to the task of radiology report generation. However,134

due to the fundamental differences between natural135

images and radiological images, general caption136

models are difficult to be directly transferred to137

radiology report generation. In this paper, we pro-138

pose VSE and DID to address the impact of the gap139

between natural images and radiological images on140

the performance of the generation model.141

2.2 Radiology Report Generation142

Radiology report generation is dedicated to helping143

radiologists reduce the workload of reading images.144

AI models are used to automatically analyze X-ray145

images and generate corresponding reports. With146

the rapid development of the AI field, the accuracy147

of radiology report generation has been continu-148

ously improved. Initially, the R2Gen model pro-149

posed by Alice et al. led the way in using memory-150

based Transformers for report analysis. This tech-151

nology aimed to solve the consistency problem in152

report generation through the memory module and153

achieved good results, laying the foundation for154

R2Gen to be a baseline in the RRG field. Later,155

AI researchers discovered the difference in pixel156

distribution between X-ray image datasets and nat-157

ural image datasets, and people began to focus on158

solving this problem. Some works using attention159

mechanisms to address this difference were pro-160

posed one after another, such as Contrastive (Liu161

et al., 2021b), COMG (Gu et al., 2024), etc. Subse-162

quently, people tried to introduce some prior medi-163

cal knowledge to improve the interpretability and164

reliability of model generation, such as PPKED,165

KiUT, etc. In this paper, we innovatively propose166

VSE and DID to bridge the gap between radiologi-167

cal images and natural images, thereby enhancing168

the interpretability and reliability of the model.169

3 Methodology170

In this section, we introduce the proposed VDGen171

model in detail. We elaborate on the working prin-172

ciple of VDGen from two aspects: VSE and DID.173

3.1 Overview of Radiology Report Generation174

The radiology report generation task can be for-175

malized as follows: Given a radiological image176

I ∈ RC×H×W , where C denotes the number of177

channels, and H , W represent the height and width178

of the X-ray image, respectively, the image I is first179

encoded by the visual encoder Mv of the radiology 180

report generation model M to obtain its feature rep- 181

resentation Fe. Typically, M follows an encoder- 182

decoder architecture, where Mv is implemented us- 183

ing ResNet or Swin Transformer. Subsequently, the 184

textual decoder Mt decodes Fe to generate the diag- 185

nostic report R ∈ RL×Dt = {T1, T2, T3, ..., TL} 186

where Ti denotes a token, L is the report length 187

(number of tokens), and Dt represents the embed- 188

ding dimension of each token. Mt is commonly 189

a large-scale Transformer model. The full report 190

generation process can be recursively formulated 191

as: 192

p(R | I) =
L∏
i=1

p(Ti+1 | T1, . . . , Ti, I) (1) 193

For the training of model M , given a batch of 194

images X ∈ RB×C×H×W = {I1, I2, . . . , IB} 195

and corresponding reports Y ∈ RB×L×Dt = 196

{Y1, Y2, . . . , YB},, where b = B denotes the batch 197

size, the predominant training objective in medical 198

report generation is to minimize the cross-entropy 199

loss of model M . Thus, the optimization goal for 200

M can be expressed as: 201

Lreport = LCE(θ) = −
N∑
i=1

log(pθ(T ∗
n | T ⋆

1:n−1)) (2) 202

where i ∈ (1,N ), N is the vocabulary size. 203

When i = 1, n − 1 = 0, and the input is 204

T ⋆
1:n−1 = X; otherwise, the input is T ⋆

1:n−1 = 205

{X,T1, T2, . . . , Tn−1}. 206

3.2 Vision Self-Equilibration (VSE) 207

To address the representation challenges caused 208

by imbalanced pixel distributions in radiology 209

report generation, we propose the Vision Self- 210

Equilibration (VSE) module. This module auto- 211

matically calibrates pixel-level representations of 212

the visual encoder while mitigating distribution 213

bias. During training, given a batch of X-ray im- 214

ages X , VDGen first splits X into patches, ap- 215

pends a [CLS] token, and feeds them into a Swin 216

Transformer (Liu et al., 2021c) for visual encod- 217

ing. The encoded semantic features are defined 218

as Xe ∈ RB×S×D = {Ie1 , Ie2 , Ie3 , . . . , Iei }, where 219

S denotes the sequence length, Dv is the embed- 220

ding dimension, and B represents the batch size. 221

To ensure alignment in a unified embedding space, 222

we apply Layer Normalization to Xe before VSE 223

processing. For each X-ray image, we compute the 224
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Figure 2: The architecture diagram of the VDGen model. This diagram elaborates on the working principles of
VSE and DID, and comprehensively showcases various components of the VDGen model.

mean embedding along the sequence dimension225

S, yielding hei = 1
S

∑S
s=1 I

e(s)
i , where hei ∈ RD226

represents the global visual semantics of the i-227

th image. To enhance discriminative power, hei228

is mapped to a higher-dimensional space. The229

mapped image representation can be expressed as230

zvi = Wv
1 · hei + B, where Wv

1 is learnable ma-231

trix, B is the bias. We expect that X-ray images of232

similar diseases have similar visual semantic repre-233

sentations, while X-ray images of different diseases234

have significant differences in semantic represen-235

tations. In this way, we can alleviate the problem236

of uneven pixel distribution and achieve a better237

soft-alignment of visual semantic representations,238

ultimately achieving a self-equilibrating effect. Our239

specific approach is as follows: First, we calculate240

the similarity between different samples within a241

batch, Sij =
zvTi zvj

τ , where τ is the temperature242

hyperparameter. We set the optimization reward243

target as itself zvi , and other samples zvj as penalty244

terms. Thus, Sii = −∞,∀i ∈ {1, 2, 3, · · · , B}.245

Finally, the objective function that VSE needs to246

optimize can be expressed as:247

Lvse = − 1

B

B∑
i=1

log
exp(Sii)∑B
j=1 exp(Sij)

(3)248

Under the supervision of Lvse, VDGen can greatly249

align the visual semantic representations. Mean-250

while, it enhances the ability to represent various251

visual semantics, including abnormal disease sam-252

ples and normal samples. This solves the problem 253

of feature degradation in the RRG model caused by 254

the unbalanced pixel distribution in the radiology 255

report generation domain. 256

3.3 Disease Information Distillation (DID) 257

While VSE enables discriminative representations 258

of disease symptoms by addressing pixel distribu- 259

tion imbalances in X-ray images, it remains insuffi- 260

cient for characterizing disease presence and extent 261

(e.g., lesion size or scope). Precise identification of 262

abnormalities, such as determining pathological re- 263

gions in cardiac imaging, critically impacts model 264

performance. To enhance this capability, we pro- 265

pose Disease Information Distillation (DID), which 266

leverages textual embeddings from diagnostic re- 267

ports (e.g., "minor pleural effusion") as teacher 268

signals to guide VDGen in extracting disease- 269

specific features from visual semantic representa- 270

tions, thereby refining the model’s ability to local- 271

ize and quantify pathologies. For a given target re- 272

port, after being encoded by a language model, we 273

can obtain Y = {Y1, Y2, Y3, · · · , Yi} ∈ RB×L×Dt . 274

Before performing the DID operation, we first per- 275

form some simple normalization and alignment 276

operations on the visual semantic representations. 277

The operation of visual semantic representations 278

can be expressed as: 279

zimg
i =

1
S

∑S
s=1 I

e(s)
i∥∥∥ 1

S

∑S
s=1 I

e(s)
i

∥∥∥
2

∈ RD (4) 280
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For the features after encoding the target report,281

we first convert them into probabilities, so ptexti =282

softmax(Yi) ∈ RC . Then, along the dimension283

of the report length L, we calculate the average284

value of the text features to extract the global fea-285

tures. This process can be defined as: z̃texti =286
1
L

∑L
l=1 p

text(l)
i ∈ RC . To facilitate the subsequent287

operations of DID, we need to unify the lengths288

of the text features and the X-ray visual semantic289

features. We map ẑtexti into a vector space with the290

same length as ẑimg
i and perform a normalization291

operation. This process can be defined as follows:292

ztexti =
W2ẑ

text
i +B2

∥W2ẑtexti +B2∥2
∈ RD (5)293

After obtaining the aligned visual semantics ẑimg
i294

and the text representation ẑtexti of the target report,295

through the knowledge distillation technique, we296

can use the text representation ẑtexti of the target297

report as the output of the teacher model to guide298

the student model VDGen in the disease informa-299

tion distillation of visual semantics ẑimg
i . First, we300

calculate the similarity between the visual repre-301

sentation and the target report representation as302

Sij =
zimgT

i ztextj

τ2
, where τ2 is the temperature hy-303

perparameter. Next, we calculate the matching304

probabilities for each X-ray image and the target305

report features respectively, with the goal of opti-306

mizing and aligning the diagonal elements of the307

similarity matrix. Thus, we can obtain:308

Lv2t = − 1

B

B∑
i=1

log
exp(Sii/τ)∑B
j=1 exp(Sij/τ)

Lt2v = − 1

B

B∑
i=1

log
exp(Sii/τ)∑B
j=1 exp(Sji/τ)

(6)309

Finally, the objective function that DID needs to310

optimize can be expressed as:LDID = 1
2(Lv2t +311

Lt2v). Under the constraint of LDID, the represen-312

tation Iei of the X-ray image, guided by the target313

report representation Yi, is further enhanced in rep-314

resenting various disease symptoms, thus achieving315

the extraction of disease information. Specifically,316

it further enhances the representation of whether317

a disease occurs and the size of the disease scope.318

This strengthens the disease perception ability of319

the downstream LLM during decoding, thereby320

improving the accuracy of report generation.321

3.4 Large Language Model Decoder 322

After going through VSE and DID, the visual se- 323

mantic representations are greatly enhanced. We 324

only need to decode them through a Large Lan- 325

guage Model (LLM) to generate the final report. 326

Before decoding, we need to construct a prompt 327

based on the visual semantic representations to 328

enhance the generation ability of the large-scale 329

model (Jia et al., 2022). This kind of prompt is 330

more conducive to the reading and understanding 331

of the large-scale model. The prompt constructed 332

in this paper is “Human: <img>Iei </img> Gen- 333

erate a comprehensive and detailed diagnosis re- 334

port for this chest X-ray image.\nAssistant:”. Here, 335

Iei is the visual representation corrected by VSE 336

and DID. Then this prompt is input into Llama 337

for decoding. The entire decoding process can be 338

represented recursively as: 339

p(R | Iei ) =
L∏
i=1

p(Ti+1 | T1, . . . , Ti, I
e
i ) (7) 340

The report obtained through decoding will calculate 341

the cross-entropy loss (LCE) with the target report 342

(mentioned in Eq. 2), and backpropagation will be 343

carried out to adjust the parameters of the model. 344

Therefore, the loss function that the final model 345

needs to optimize can be expressed as: 346

L = Lreport + LV SE + LDID (8) 347

4 Experiment 348

4.1 Experiment Setting 349

4.1.1 Dataset 350

The MIMIC-CXR dataset (Johnson et al., 2019), 351

jointly released by the Massachusetts Institute of 352

Technology and Beth Israel Deaconess Medical 353

Center (BIDMC), is a large-scale resource con- 354

taining approximately 370,000 chest X-ray images 355

from 227,000 patient samples, covering 14 com- 356

mon thoracic diseases with over 200,000 associ- 357

ated reports. Notably, 23% of the samples exhibit 358

abnormalities, reflecting a pronounced class imbal- 359

ance. In contrast, the IU-XRay dataset (Demner- 360

Fushman et al., 2016), curated by Indiana Uni- 361

versity Hospital, comprises 7,470 chest X-ray im- 362

ages from 3,851 patients paired with 3,955 re- 363

ports, of which 22.2% (877 samples) are anno- 364

tated as abnormal. While MIMIC-CXR typically 365

uses single-image-to-single-report pairs for radi- 366

ology report generation (RRG) training, IU-XRay 367
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Dataset Model Year BLEU1 BLEU2 BLEU3 BLEU4 Meteor Rouge-L CIDEr

IU-Xray

SEBTSAT+KG (Zhang et al., 2020) 2020 0.441 0.291 0.203 0.147 – 0.367 0.304
R2Gen (Chen et al., 2020) 2020 0.470 0.304 0.219 0.165 0.187 0.371 –

M2Trans (Nooralahzadeh et al., 2021) 2021 0.402 0.284 0.168 0.143 0.170 0.328 –
Contrastive (Liu et al., 2021b) 2021 0.492 0.314 0.222 0.169 0.193 0.381 –

CMCL (Liu et al., 2022) 2022 0.473 0.305 0.217 0.162 0.186 0.378 –
R2GenCMN† (Chen et al., 2022) 2022 0.475 0.305 0.221 0.171 0.188 0.375 –

DCL (Li et al., 2023) 2023 – – – 0.163 0.193 0.383 0.586
METransformer (Wang et al., 2023a) 2023 0.483 0.322 0.228 0.172 0.192 0.380 0.435

KiUT† (Huang et al., 2023) 2023 0.515 0.347 0.241 0.178 0.237 0.406 0.592
PromptMRG† (Jin et al., 2024) 2024 0.487 0.325 0.234 0.178 0.204 0.401 0.573

COMG (Gu et al., 2024) 2024 0.482 0.316 0.233 0.184 0.198 0.382 0.529
R2GenGPT (Wang et al., 2023b) 2024 0.488 0.316 0.228 0.173 0.211 0.377 0.438

EKAGen (Bu et al., 2024) 2024 0.517 0.351 0.258 0.191 0.211 0.409 –

VDGen 2025 0.491 0.325 0.230 0.169 0.195 0.362 0.386

MIMIC-CXR

R2Gen (Chen et al., 2020) 2020 0.353 0.218 0.145 0.103 0.142 0.277 –
M2Trans (Nooralahzadeh et al., 2021) 2021 0.332 0.210 0.142 0.101 0.134 0.264 –

Contrastive (Liu et al., 2021b) 2021 0.350 0.219 0.152 0.109 0.151 0.283 –
CMCL (Liu et al., 2022) 2022 0.334 0.217 0.140 0.097 0.133 0.281 –

R2GenCMN† (Chen et al., 2022) 2022 0.348 0.206 0.135 0.094 0.136 0.266 –
XPRONET (Wang et al., 2022) 2022 0.344 0.215 0.146 0.105 0.138 0.279 –

DCL (Li et al., 2023) 2023 – – – 0.109 0.150 0.284 0.281
KiUT† (Huang et al., 2023) 2023 0.371 0.233 0.152 0.107 0.146 0.286 0.368

PromptMRG† (Jin et al., 2024) 2024 0.382 0.227 0.148 0.105 0.157 0.284 0.375
COMG (Gu et al., 2024) 2024 0.346 0.216 0.145 0.104 0.137 0.279 0.352

R2GenGPT (Wang et al., 2023b) 2024 0.411 0.267 0.186 0.134 0.160 0.297 0.269
EKAGen (Bu et al., 2024) 2024 0.415 0.254 0.166 0.117 0.154 0.285 –

VDGen 2025 0.418 0.274 0.190 0.136 0.164 0.301 0.162

Table 1: Main Result on IU-Xray and MIMIC-CXR Dataset. Comparison with SOTA RRG methods on IU X-Ray
and MIMIC-CXR benchmark. † indicates the performance evaluated by us. The best results are in bold. The second
best result is underlined

employs multi-view images (e.g., frontal and lat-368

eral) concatenated as input to align with a single369

report, addressing limited data diversity through370

multi-perspective fusion. Both datasets highlight371

the challenge of imbalanced normal-abnormal dis-372

tributions in RRG model optimization.373

4.1.2 Implementation Details374

We trained VDGen on a single Nvidia H100 with375

80GB of memory. The Swin Transformer used is376

the base version proposed by Microsoft Corpora-377

tion. The input image size is set to 224x224. The378

LLM decoder is based on Llama2-7B (Touvron379

et al., 2023) that has been aligned through RLHF380

(Reinforcement Learning from Human Feedback).381

During the training phase, we used LoRA (Low-382

Rank Adaptation) (Hu et al., 2022) to fine-tune383

Llama. We configured the LoRA attention dimen-384

sion to 16. The alpha hyperparameter for LoRA385

scaling was also set to 16. Both the training and386

validation batch sizes were set to 16. The learning387

rate was set to 1e-4. When VDGen generates re-388

ports, the maximum length of the text is controlled389

to be 100 tokens, and the number of newly added390

tokens is limited to the range of 80-120. Mean- 391

while, the repetition penalty coefficient is set to 2.0 392

and the length penalty coefficient is set to 2.0 to 393

enhance the generation diversity. When generating 394

reports, VDGen adopts a beam search strategy, and 395

the beam size is set to 3. 396

4.1.3 Evaluation Metrics 397

In order to compare the performance of VDGen 398

fairly with other methods in the same field, we 399

adopted the mainstream metrics in the RRG field 400

to evaluate the performance of the model. These in- 401

clude commonly used metrics such as BLEU n (Pa- 402

pineni et al., 2002), Meteor (Banerjee and Lavie, 403

2005), Rouge-L (Chin-Yew, 2004), and CIDEr. 404

BLEU is usually used to measure the similarity 405

of n-grams between the predicted report and the 406

ground truth report. The higher the BLEU score, 407

the closer the generated report is to the ground truth 408

report. Other metrics like Rouge-L are usually used 409

in caption translation tasks. Here, they are used to 410

measure the overall similarity between the report 411

generated by the model and the ground truth report, 412

without calculating from a fine-grained perspective. 413
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By conducting a fair comparison of RRG through414

these popular metrics, we can observe the perfor-415

mance of VDGen.416

4.2 Main Result417

To demonstrate the effectiveness of VDGen, we418

conducted a large number of experiments on the IU-419

Xray and MIMIC-CXR datasets. The experimental420

results are shown in Table 1. The best results are421

presented in bold font, and the second-best results422

are underlined. The VDGen we proposed did not423

perform outstandingly on the IU-XRay dataset, dif-424

fering from the best result by nearly 1.5%. A pos-425

sible reason is that the IU-Xray dataset is a small-426

sample dataset with only about 7,000 data points,427

which is difficult to support the amount of data re-428

quired for the training of the LLM decoder, result-429

ing in a slight decrease in performance. However,430

compared with other results on the IU-Xray dataset,431

VDGen is still comparable. VDGen performed re-432

markably on the MIMIC-CXR dataset and achieved433

a new state-of-the-art (SOTA). Specifically, VD-434

Gen outperformed the second-best result by 1%435

on the MIMIC-CXR dataset. This fully demon-436

strates that VDGen has good performance when437

there is an adequate amount of training data. The438

SOTA result on the MIMIC-CXR dataset also es-439

tablishes the novelty and feasibility of our method.440

In general, we achieved comparable performance441

on the IU-XRay dataset and a new SOTA on the442

MIMIC-CXR dataset.443

4.3 Ablation Study444

To verify the effectiveness of each module of VD-445

Gen, we designed ablation experiments for the446

VSE, DID, and LoRA modules of VDGen. Table 2447

shows that removing VSE led to a 1.26% average448

performance drop, proving it can address radiologi-449

cal image pixel distribution issues and boost model450

performance. Removing DID caused a 1.34% av-451

erage decline, indicating using the ground truth452

report as a teacher signal for VDGen to extract dis-453

ease info is effective. VSE is better at capturing454

fine-grained info, while DID handles both fine -455

and coarse-grained data. The LoRA ablation ex-456

periment showed its fine-tuning benefits the down-457

stream LLM decoder. Overall, VSE and DID are458

essential for VDGen, and their absence will reduce459

performance. At the same time, using the LoRA460

method for training can bring further performance461

improvements.462

4.4 Clinical Efficacy Analysis 463

To demonstrate the potential of VDGen in clini- 464

cal applications, we evaluated its performance on 465

the MIMIC-CXR dataset using clinical efficacy 466

metrics (Precision, Recall, and F1-score). The eval- 467

uation results are shown in Table 1. Experiments 468

show that VDGen achieved the best Recall and F1- 469

score in the MIMIC-CXR benchmark test, and ob- 470

tained comparable Precision. Although VDGen’s 471

Precision is slightly lower than that of DCL, its 472

Recall and F1-score are 4.5% and 2.9% higher than 473

those of DCL respectively. Therefore, consider- 474

ing comprehensively, VDGen outperforms DCL in 475

clinical applications. Meanwhile, VDGen leads the 476

second-ranked model by 1% in Recall and 1.3% 477

in F1-score, which also highlights the excellent 478

clinical potential of VDGen. Overall, VDGen has 479

shown significant improvements in clinical efficacy 480

metrics, demonstrating good clinical effects and 481

highlighting its potential in clinical applications. 482

4.5 Case Studies 483

To further demonstrate the effectiveness and clin- 484

ical significance of VDGen, we conducted quali- 485

tative experiments on the MIMIC - CXR dataset. 486

We compared VDGen with the most popular LLM - 487

based methods on the RRG dataset. The experimen- 488

tal results are shown in Figure 3. We selected two 489

groups of classic cases to analyze the differences 490

between the two methods. The first group mainly 491

consists of normal samples, that is, the images do 492

not contain any diseases. The second group is ab- 493

normal samples, that is, the images contain one 494

or more diseases that are difficult to observe with 495

the naked eye. For the first-group samples, the 496

reports generated by VDGen are basically indis- 497

tinguishable from those described by professional 498

physicians. However, the current mainstream meth- 499

ods fail to diagnose the previous labels, that is, they 500

do not recognize that the patient has had a previ- 501

ous surgery. For the second - group samples, both 502

VDGen and R2GenGPT identified the degenera- 503

tive changes in the thoracic vertebrae. However, 504

VDGen additionally reported that the patient had a 505

previous surgery, which is crucial information for 506

formulating a treatment plan. R2GenGPT missed 507

this key information. Overall, the reports generated 508

by VDGen are more comprehensive and of greater 509

reference value. This also indirectly reflects the 510

clinical significance of VDGen. 511
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Model BLEU 1 ↓ BLEU2↓ BLEU3↓ BLEU4↓ Meteor↓ Rouge-L↓ CIDEr↓

Ours 0.418 0.274 0.190 0.136 0.164 0.301 0.162
w/o VSE 0.395 0.257 0.176 0.128 0.158 0.285 0.158
w/o DID 0.402 0.260 0.174 0.124 0.153 0.284 0.154
w/o LoRA 0.406 0.263 0.182 0.132 0.161 0.293 0.158

Table 2: Ablation Study on MIMIC-CXR Dataset. We conducted a comprehensive set of ablation studies to analyze
individual components of VDGen, where the notation "w/o" (without) indicates the exclusion of specific modules.
The experimental results demonstrate that lower metric values observed in configurations without particular modules
directly reflect the critical importance of those components, with greater performance degradation quantitatively
validating the effectiveness of the removed module.

Target:The lungs are clear
without focal consolidation,
effusion, or edema. The
cardiomediastinal silhouette
is within normal limits. No
acute osseous abnormalities
identified surgical clips in
the right upper quadrant
suggest prior cholecystec-
tomy.

R2GenGPT:heart size is
normal. the mediastinal
and hilar contours are nor-
mal .the pulmonary vascu-
lature is normal. lungs are
clear. no pleural effusion
or pneumothorax is seen.
there are no acute osseous
abnormalities.

VDGen:pa and lateral views of
the chest provided. there is no
focal consolidation effusion or
pneumothorax. the cardiome-
diastinal silhouette is normal.
imaged osseous structures are
intact. no free air below the
right hemidiaphragm is seen.
clips project over the right up-
per quadrant likely from prior
cholecystectomy.

Target:The heart size is normal.
Mediastinal and hilar contours
are unremarkable. The pul-
monary vascularity is normal.
Streaky left lower lobe opac-
ity likely reflects atelectasis.
There is no focal consolidation,
pleural effusion or pneumotho-
rax. Mild degenerative changes
are noted in the thoracic spine.
Clips are seen in the right upper
quadrant compatible with prior
cholecystectomy.

R2GenGPT:heart size is
normal. the mediastinal
and hilar contours are nor-
mal .the pulmonary vascu-
lature is normal. lungs are
clear. no pleural effusion
or pneumothorax is seen .
there are no acute osseous
abnormalities. mild degen-
erative changes are noted
in the thoracic spine.

VDGen:pa and lateral views of the
chest provided. there is no focal
consolidation effusion or pneumotho-
rax. the cardiomediastinal silhouette
is normal. imaged osseous struc-
tures are intact. no free air below
the right hemidiaphragm is seen.
no displaced rib fractures are seen.
mild degenerative changes are noted
in the thoracic spine. clips project
over the right upper quadrant likely
from prior cholecystectomy.

Figure 3: We compared the generated results with the popular LLM-based method. The text in the first rounded
rectangle is the ground truth (i.e. target report) described by a professional radiologist. The text in the second
rounded rectangle is generated by the popular LLM-based model (i.e. R2GenGPT). The content of the third rounded
rectangle is the report generation result of VDGen.

Model Precision↑ Recall↑ F1-score↑

R2GenCMN 0.334 0.275 0.278
SEBTSAT+KG 0.356 0.297 0.304
METransformer 0.364 0.309 0.311

DCL 0.471 0.352 0.373
KiUT 0.371 0.318 0.321

R2GenGPT 0.392 0.387 0.389
COMG 0.424 0.326 0.345

VDGen 0.426 0.397 0.402

Table 3: Clinical efficacy analysis result. We selected
seven models most relevant to VDGen and compared
their clinical benefits on the MIMIC-CXR dataset. We
used the CE matrix to measure their clinical benefits.
The bolded results are the best ones, and the underlined
ones are the second best.

5 Conclusion512

In this paper, we propose VDGen, a unified frame-513

work for calibrating visual and diagnostic repre-514

sentations in radiology report generation. VD-515

Gen incorporates two complementary modules. 516

Vision Self-Equilibration(VSE) mitigates visual 517

feature degradation through self-supervised con- 518

trastive learning, enhancing intra-modal discrim- 519

inability. Disease Information Distillation(DID) 520

leverages diagnostic reports as teacher signals to 521

guide cross-modal representation learning, improv- 522

ing the model’s ability to capture disease-specific 523

semantics. These modules are integrated into 524

an end-to-end generation pipeline with a LoRA- 525

adapted large language model decoder. Experi- 526

ments on MIMIC-CXR and IU-Xray show that 527

VDGen improves the state-of-the-art by 1.0% on 528

MIMIC-CXR. Ablation studies demonstrate that 529

removing VSE and DID causes performance drops 530

of 1.26% and 1.34%, respectively, highlighting the 531

importance of both components. Overall, VDGen 532

narrows the performance gap between natural and 533

radiological domains and offers a scalable, inter- 534

pretable solution for clinical report generation. 535
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Limitations536

Our study introduces a novel multimodal model,537

VDGen. This model aims to automatically adjust538

the model’s attention regions via the Visual Self539

Equilibration(VSE) and extract disease informa-540

tion through the Disease Information Distillation541

(DID), thereby enhancing the performance of radi-542

ology report generation. However, this approach543

has certain limitations. Firstly, the model is tai-544

lored for the highly specialized task of radiology545

report generation, which may limit its adaptability546

in broader natural language generation tasks. Addi-547

tionally, current evaluations are based on specific548

datasets and may not fully reflect the framework’s549

applicability in diverse scenarios.550
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