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Abstract

Automated radiology report generation (RRG)
offers the potential to reduce clinical workload
and enhance diagnostic consistency. However,
existing models struggle with degraded visual
representations caused by long-tailed lesion dis-
tributions, and suffer from limited alignment
between image features and diagnostic seman-
tics. We propose VDGen, a unified framework
for calibrating visual and diagnostic represen-
tations to improve disease-aware report gener-
ation. VDGen integrates two complementary
modules: Vision Self-Equilibration (VSE), a
self-supervised contrastive module that miti-
gates visual feature degradation by promoting
structured representation learning; and Disease
Information Distillation (DID), a cross-modal
distillation mechanism that uses diagnostic re-
ports as teacher signals to guide the extraction
of disease-sensitive semantics from visual fea-
tures. Our end-to-end architecture incorporates
a LoRA-adapted large language model (LLM)
decoder to generate clinically accurate reports.
Experiments on the IU-Xray and MIMIC-CXR
datasets show that VDGen achieves state-of-
the-art performance on MIMIC-CXR and main-
tains competitive results on IU-Xray. Code and
models will be released upon acceptance.

1 Introduction

Automated radiology report generation (RRG)
holds significant promise for alleviating radiolo-
gists’ workload while improving the interpretabil-
ity and consistency of diagnostic reports (Wang and
Summers, 2012). With rapid advancements in arti-
ficial intelligence, automated RRG has emerged as
a critical research frontier in multimodal Al. Exist-
ing studies have attempted to adapt image caption
methods to RRG by training models to generate
medical reports from chest X-ray images through
supervised learning (Liu et al., 2021a). However,
such direct migration faces inherent limitations
due to the unique characteristics of radiological
data (Gu et al., 2024).

As illustrated in Fig. 1(a), lesion-related pix-
els in chest X-ray images typically occupy only
small regions, resulting in highly imbalanced
intra-image distributions. At the dataset level
(Fig. 1(b)), normal samples overwhelmingly domi-
nate, limiting the model’s exposure to abnormal
findings. These dual imbalances—spatial spar-
sity within images and class imbalance across
the dataset—collectively contribute to a long-
tailed data distribution that challenges conventional
vision-language models (Bu et al., 2024). This
distributional bias leads to degraded visual repre-
sentations, especially for abnormal regions, where
traditional visual encoders struggle to extract dis-
criminative features (Liu et al., 2021b). As shown
in Fig. 1(c, left), embeddings of lesion areas are
often disorganized in the latent space, which in
turn confuses the report decoder and impairs the
generation of clinically meaningful text. We argue
that effective radiology report generation requires
addressing both: (i) intra-modal degradation of
visual features caused by distributional imbalance,
and (ii) inter-modal misalignment between image
features and diagnostic language semantics leads
to difficulties in disease information extraction.

In this paper, we propose VDGen, a unified
framework for Visual and Diagnostic representa-
tion calibration in radiology report generation. VD-
Gen integrates two complementary modules: Vi-
sion Self-Equilibration (VSE) introduces a self-
supervised contrastive mechanism that learns to
pull together visual embeddings from similar patho-
logical patterns while pushing apart those of dis-
similar ones. By performing instance-level regu-
larization within each batch, VSE mitigates the ef-
fects of long-tailed and sparse lesion distributions,
enhancing intra-modal discrimination without re-
lying on manual labels. Disease Information Dis-
tillation (DID) introduces a cross-modal distilla-
tion mechanism, where diagnostic reports serve as
teacher signals to supervise the learning of disease-



(a)

Lumbar Spine

raditional
Representation

(b)

Equilibration (VSE)

Sample Distribution of the Datasets

77.0% 77.8%

[ ]
]
Pathological

23.0% 2229,

X:K Lung

B SN
@ *x <> Heart
Q : “ﬂ Q Mediatinum

Y SN Pathological
*x Voxel

+ Disease Information
Distillation (DID)

Figure 1: Subgraphs a and b demonstrate the scarcity of pathological samples in radiology report generation, and

subgraph ¢ shows the roles of VSE and DID.

sensitive visual semantics. Instead of aligning rep-
resentations directly, DID performs bidirectional
similarity optimization between image features and
text-derived embeddings, enabling the visual en-
coder to internalize fine-grained diagnostic knowl-
edge such as lesion presence and scope. As shown
in Fig. 1(c, middle/right), these two mechanisms
jointly refine the latent space, enabling more accu-
rate and interpretable report synthesis. We validate
VDGen on two widely used datasets, [lU-Xray and
MIMIC-CXR. Results show that VDGen achieves
new state-of-the-art performance on MIMIC-CXR
and remains competitive on the low-resource IU-
Xray benchmark. Our contributions are summa-
rized as follows:

e We propose VDGen, a unified framework for
calibrating visual and diagnostic representa-
tions to improve the quality and interpretabil-
ity of radiology report generation.

e We introduce Vision Self-Equilibration
(VSE), a self-supervised contrastive learning
module that alleviates feature degradation by
promoting intra-class compactness and inter-
class separability in visual embeddings, with-

out relying on manual labels.

e We develop Disease Information Distillation
(DID), a cross-modal distillation mechanism
that leverages diagnostic reports as teacher
signals to guide the learning of disease-aware
visual semantics via bidirectional alignment.

o We conduct extensive experiments on the IU-
Xray and MIMIC-CXR datasets. Results
show that VDGen achieves state-of-the-art
performance on MIMIC-CXR and remains
competitive on IU-Xray, demonstrating both
scalability and clinical relevance.

2 Related Work

2.1 Image Caption

Image caption aims to automatically generate text
descriptions of input natural images. The com-
mon approach in this field is to use an end-to-end
framework for caption generation. After the Trans-
former architecture became popular, researchers
often used Swin-Transformer for image encoding,
and then employed multi-layer Text Transformer
to decode the hidden states and finally generate the



corresponding caption text. With the increasing de-
mand for automated report generation, Al scholars
have attempted to apply image captioning methods
to the task of radiology report generation. However,
due to the fundamental differences between natural
images and radiological images, general caption
models are difficult to be directly transferred to
radiology report generation. In this paper, we pro-
pose VSE and DID to address the impact of the gap
between natural images and radiological images on
the performance of the generation model.

2.2 Radiology Report Generation

Radiology report generation is dedicated to helping
radiologists reduce the workload of reading images.
Al models are used to automatically analyze X-ray
images and generate corresponding reports. With
the rapid development of the Al field, the accuracy
of radiology report generation has been continu-
ously improved. Initially, the R2Gen model pro-
posed by Alice et al. led the way in using memory-
based Transformers for report analysis. This tech-
nology aimed to solve the consistency problem in
report generation through the memory module and
achieved good results, laying the foundation for
R2Gen to be a baseline in the RRG field. Later,
Al researchers discovered the difference in pixel
distribution between X-ray image datasets and nat-
ural image datasets, and people began to focus on
solving this problem. Some works using attention
mechanisms to address this difference were pro-
posed one after another, such as Contrastive (Liu
et al., 2021b), COMG (Gu et al., 2024), etc. Subse-
quently, people tried to introduce some prior medi-
cal knowledge to improve the interpretability and
reliability of model generation, such as PPKED,
KiUT, etc. In this paper, we innovatively propose
VSE and DID to bridge the gap between radiologi-
cal images and natural images, thereby enhancing
the interpretability and reliability of the model.

3 Methodology

In this section, we introduce the proposed VDGen
model in detail. We elaborate on the working prin-
ciple of VDGen from two aspects: VSE and DID.

3.1 Overview of Radiology Report Generation

The radiology report generation task can be for-
malized as follows: Given a radiological image
I € REXHXW "where C' denotes the number of
channels, and I, Wrepresent the height and width
of the X-ray image, respectively, the image [ is first

encoded by the visual encoder M, of the radiology
report generation model M to obtain its feature rep-
resentation F,. Typically, M follows an encoder-
decoder architecture, where M, is implemented us-
ing ResNet or Swin Transformer. Subsequently, the
textual decoder M; decodes Fr to generate the diag-
nostic report R € REXPe = (T Ty Ty, ..., T1}
where T; denotes a token, L is the report length
(number of tokens), and D, represents the embed-
ding dimension of each token. M; is commonly
a large-scale Transformer model. The full report
generation process can be recursively formulated
as:

L

p(R|I)= Hp(Ti—H | T, ...
i=1

I, 1) (D)

For the training of model M, given a batch of
images X € REXOxXHXW _ ([ [, ... Ig}
and corresponding reports Y € RBXLxDe —
{Y1,Ys,...,Yp},, where b = B denotes the batch
size, the predominant training objective in medical
report generation is to minimize the cross-entropy
loss of model M. Thus, the optimization goal for
M can be expressed as:

N
Lreport = KCE(Q) = - ZIOg(pG (7—: | ﬁn—l)) 2

i=1

where ¢ € (1,N), N is the vocabulary size.

When ¢ = 1, n — 1 = 0, and the input is
T.—1 = X, otherwise, the input is 7%, _; =
{X, 11, T>,...,Th-1}.

3.2 Vision Self-Equilibration (VSE)

To address the representation challenges caused
by imbalanced pixel distributions in radiology
report generation, we propose the Vision Self-
Equilibration (VSE) module. This module auto-
matically calibrates pixel-level representations of
the visual encoder while mitigating distribution
bias. During training, given a batch of X-ray im-
ages X, VDGen first splits X into patches, ap-
pends a [C'LS] token, and feeds them into a Swin
Transformer (Liu et al., 2021c¢) for visual encod-
ing. The encoded semantic features are defined
as X¢ € RBXSXD = (e [s IS ... I¢}, where
S denotes the sequence length, D,, is the embed-
ding dimension, and B represents the batch size.
To ensure alignment in a unified embedding space,
we apply Layer Normalization to X° before VSE
processing. For each X-ray image, we compute the
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Figure 2: The architecture diagram of the VDGen model. This diagram elaborates on the working principles of
VSE and DID, and comprehensively showcases various components of the VDGen model.

mean embedding along the sequence dimension
S, yielding h¢ = L% 1) where h¢ € RP
represents the global visual semantics of the -
th image. To enhance discriminative power, hf
is mapped to a higher-dimensional space. The
mapped image representation can be expressed as
zy = Wy - h§ + B, where WY is learnable ma-
trix, B is the bias. We expect that X-ray images of
similar diseases have similar visual semantic repre-
sentations, while X-ray images of different diseases
have significant differences in semantic represen-
tations. In this way, we can alleviate the problem
of uneven pixel distribution and achieve a better
soft-alignment of visual semantic representations,
ultimately achieving a self-equilibrating effect. Our
specific approach is as follows: First, we calculate
the similarity between different samples within a

batch, S;; = lei'z; , where 7 is the temperature
hyperparameter. We set the optimization reward
target as itself z}’, and other samples z7 as penalty
terms. Thus, S; = —oo,Vi € {1,2,3,---, B}.
Finally, the objective function that VSE needs to
optimize can be expressed as:

exp(Sii)
S exp(Siy)

Under the supervision of £,s., VDGen can greatly
align the visual semantic representations. Mean-
while, it enhances the ability to represent various
visual semantics, including abnormal disease sam-

3)

ples and normal samples. This solves the problem
of feature degradation in the RRG model caused by
the unbalanced pixel distribution in the radiology
report generation domain.

3.3 Disease Information Distillation (DID)

While VSE enables discriminative representations
of disease symptoms by addressing pixel distribu-
tion imbalances in X-ray images, it remains insuffi-
cient for characterizing disease presence and extent
(e.g., lesion size or scope). Precise identification of
abnormalities, such as determining pathological re-
gions in cardiac imaging, critically impacts model
performance. To enhance this capability, we pro-
pose Disease Information Distillation (DID), which
leverages textual embeddings from diagnostic re-
ports (e.g., "minor pleural effusion") as teacher
signals to guide VDGen in extracting disease-
specific features from visual semantic representa-
tions, thereby refining the model’s ability to local-
ize and quantify pathologies. For a given target re-
port, after being encoded by a language model, we
canobtain Y = {Y7,Ys, Y3, -+, V;} € RBXEXDe,
Before performing the DID operation, we first per-
form some simple normalization and alignment
operations on the visual semantic representations.
The operation of visual semantic representations
can be expressed as:
img __

S e(s
— %Zs:l‘[i()

i 1 S e(s) € RD
H§ Zs:l Ii

“

.



For the features after encoding the target report,
we first convert them into probabilities, so p!**! =

softmaz(Y;) € RY. Then, along the dimension
of the report length L, we calculate the average
value of the text features to extract the global fea-
tures This process can be defined as: z/**! =
T Zl 1P tmt(l € RY. To facilitate the subsequent
operatlons of DID, we need to unify the lengths
of the text features and the X-ray visual semantic
features. We map £/°** into a vector space with the
same length as 2 A””g and perform a normalization
operation. This process can be defined as follows:

stext

— - e RP 5
DT Wase By, ©)

After obtaining the aligned visual semantics 2/

and the text representation 2/°* of the target report,
through the knowledge dlstlllation technique, we
can use the text representation 2/** of the target
report as the output of the teacher model to guide
the student model VDGen in the disease informa-
tion distillation of visual semantics 2;""Y. First, we
calculate the similarity between the visual repre-
sentation ajl}d the target report representation as
Sij = # where 79 is the temperature hy-
perparameter. Next, we calculate the matching
probabilities for each X-ray image and the target
report features respectively, with the goal of opti-
mizing and aligning the diagonal elements of the
similarity matrix. Thus, we can obtain:

1 & exp(Sii /7)
log —5

B i=1 Zj—l exp(Si;/T)

Sii/T)

] 1 exp(S;i/T)

£v2t =

exp

£t2v =

Finally, the objective function that DID needs to
optimize can be expressed as:Lprp = %(Evzt +
L42,). Under the constraint of £p;p, the represen-
tation 7 of the X-ray image, guided by the target
report representation Yj, is further enhanced in rep-
resenting various disease symptoms, thus achieving
the extraction of disease information. Specifically,
it further enhances the representation of whether
a disease occurs and the size of the disease scope.
This strengthens the disease perception ability of
the downstream LLM during decoding, thereby
improving the accuracy of report generation.

3.4 Large Language Model Decoder

After going through VSE and DID, the visual se-
mantic representations are greatly enhanced. We
only need to decode them through a Large Lan-
guage Model (LLM) to generate the final report.
Before decoding, we need to construct a prompt
based on the visual semantic representations to
enhance the generation ability of the large-scale
model (Jia et al., 2022). This kind of prompt is
more conducive to the reading and understanding
of the large-scale model. The prompt constructed
in this paper is “Human: <img>I;</img> Gen-
erate a comprehensive and detailed diagnosis re-
port for this chest X-ray image.\nAssistant:”. Here,
If is the visual representation corrected by VSE
and DID. Then this prompt is input into Llama
for decoding. The entire decoding process can be
represented recursively as:

L

:HP(TH—l |T17"'7

=1

PRI I) T, I7) ()

The report obtained through decoding will calculate
the cross-entropy loss (Lo g) with the target report
(mentioned in Eq. 2), and backpropagation will be
carried out to adjust the parameters of the model.
Therefore, the loss function that the final model
needs to optimize can be expressed as:

L= ﬁreport + Lvse + Lpip 3

4 Experiment

4.1 Experiment Setting
4.1.1 Dataset

The MIMIC-CXR dataset (Johnson et al., 2019),
jointly released by the Massachusetts Institute of
Technology and Beth Israel Deaconess Medical
Center (BIDMC), is a large-scale resource con-
taining approximately 370,000 chest X-ray images
from 227,000 patient samples, covering 14 com-
mon thoracic diseases with over 200,000 associ-
ated reports. Notably, 23% of the samples exhibit
abnormalities, reflecting a pronounced class imbal-
ance. In contrast, the IU-XRay dataset (Demner-
Fushman et al., 2016), curated by Indiana Uni-
versity Hospital, comprises 7,470 chest X-ray im-
ages from 3,851 patients paired with 3,955 re-
ports, of which 22.2% (877 samples) are anno-
tated as abnormal. While MIMIC-CXR typically
uses single-image-to-single-report pairs for radi-
ology report generation (RRG) training, IU-XRay



Dataset Model ‘ Year BLEU1 BLEU2  BLEU3 BLEU4  Meteor Rouge-L  CIDEr
SEBTSAT+KG (Zhang et al., 2020) 2020 0.441 0.291 0.203 0.147 - 0.367 0.304
R2Gen (Chen et al., 2020) 2020 0.470 0.304 0.219 0.165 0.187 0.371 -
M?2Trans (Nooralahzadeh et al., 2021) 2021 0.402 0.284 0.168 0.143 0.170 0.328 -
Contrastive (Liu et al., 2021b) 2021 0.492 0.314 0.222 0.169 0.193 0.381 -
CMCL (Liu et al., 2022) 2022 0.473 0.305 0.217 0.162 0.186 0.378 -
R2GenCMNT (Chen et al., 2022) 2022 0.475 0.305 0.221 0.171 0.188 0.375 -
IU-Xray DCL (Li et al., 2023) 2023 - - - 0.163 0.193 0.383 0.586
METransformer (Wang et al., 2023a) 2023 0.483 0.322 0.228 0.172 0.192 0.380 0.435
KiUT' (Huang et al., 2023) 2023 0.515 0.347 0.241 0.178 0.237 0.406 0.592
PromptMRG' (Jin et al., 2024) 2024 0.487 0.325 0.234 0.178 0.204 0.401 0.573
COMG (Gu et al., 2024) 2024 0.482 0.316 0.233 0.184 0.198 0.382 0.529
R2GenGPT (Wang et al., 2023b) 2024 0.488 0.316 0.228 0.173 0.211 0.377 0.438
EKAGen (Bu et al., 2024) 2024 0.517 0.351 0.258 0.191 0.211 0.409 -
VDGen ‘ 2025 0.491 0.325 0.230 0.169 0.195 0.362 0.386
R2Gen (Chen et al., 2020) 2020 0.353 0.218 0.145 0.103 0.142 0.277 -
M?2Trans (Nooralahzadeh et al., 2021) 2021 0.332 0.210 0.142 0.101 0.134 0.264 -
Contrastive (Liu et al., 2021b) 2021 0.350 0.219 0.152 0.109 0.151 0.283 -
CMCL (Liu et al., 2022) 2022 0.334 0.217 0.140 0.097 0.133 0.281 -
R2GenCMNT (Chen et al., 2022) 2022 0.348 0.206 0.135 0.094 0.136 0.266 -
XPRONET (Wang et al., 2022) 2022 0.344 0.215 0.146 0.105 0.138 0.279 -
MIMIC-CXR ‘ DCL (Li et al., 2023) 2023 - - - 0.109 0.150 0.284 0.281
KiUT! (Huang et al., 2023) 2023 0.371 0.233 0.152 0.107 0.146 0.286 0.368
PromptMRG ' (Jin et al., 2024) 2024 0.382 0.227 0.148 0.105 0.157 0.284 0.375
COMG (Gu et al., 2024) 2024 0.346 0.216 0.145 0.104 0.137 0.279 0.352
R2GenGPT (Wang et al., 2023b) 2024 0.411 0.267 0.186 0.134 0.160 0.297 0.269
EKAGen (Bu et al., 2024) 2024 0.415 0.254 0.166 0.117 0.154 0.285 -
‘ VDGen ‘ 2025 0.418 0.274 0.190 0.136 0.164 0.301 0.162

Table 1: Main Result on [U-Xray and MIMIC-CXR Dataset. Comparison with SOTA RRG methods on IU X-Ray
and MIMIC-CXR benchmark.  indicates the performance evaluated by us. The best results are in bold. The second

best result is underlined

employs multi-view images (e.g., frontal and lat-
eral) concatenated as input to align with a single
report, addressing limited data diversity through
multi-perspective fusion. Both datasets highlight
the challenge of imbalanced normal-abnormal dis-
tributions in RRG model optimization.

4.1.2 Implementation Details

We trained VDGen on a single Nvidia H100 with
80GB of memory. The Swin Transformer used is
the base version proposed by Microsoft Corpora-
tion. The input image size is set to 224x224. The
LLM decoder is based on Llama2-7B (Touvron
et al., 2023) that has been aligned through RLHF
(Reinforcement Learning from Human Feedback).
During the training phase, we used LoRA (Low-
Rank Adaptation) (Hu et al., 2022) to fine-tune
Llama. We configured the LoRA attention dimen-
sion to 16. The alpha hyperparameter for LoORA
scaling was also set to 16. Both the training and
validation batch sizes were set to 16. The learning
rate was set to 1le-4. When VDGen generates re-
ports, the maximum length of the text is controlled
to be 100 tokens, and the number of newly added

tokens is limited to the range of 80-120. Mean-
while, the repetition penalty coefficient is set to 2.0
and the length penalty coefficient is set to 2.0 to
enhance the generation diversity. When generating
reports, VDGen adopts a beam search strategy, and
the beam size is set to 3.

4.1.3 Evaluation Metrics

In order to compare the performance of VDGen
fairly with other methods in the same field, we
adopted the mainstream metrics in the RRG field
to evaluate the performance of the model. These in-
clude commonly used metrics such as BLEU n (Pa-
pineni et al., 2002), Meteor (Banerjee and Lavie,
2005), Rouge-L (Chin-Yew, 2004), and CIDEr.
BLEU is usually used to measure the similarity
of n-grams between the predicted report and the
ground truth report. The higher the BLEU score,
the closer the generated report is to the ground truth
report. Other metrics like Rouge-L are usually used
in caption translation tasks. Here, they are used to
measure the overall similarity between the report
generated by the model and the ground truth report,
without calculating from a fine-grained perspective.



By conducting a fair comparison of RRG through
these popular metrics, we can observe the perfor-
mance of VDGen.

4.2 Main Result

To demonstrate the effectiveness of VDGen, we
conducted a large number of experiments on the [U-
Xray and MIMIC-CXR datasets. The experimental
results are shown in Table 1. The best results are
presented in bold font, and the second-best results
are underlined. The VDGen we proposed did not
perform outstandingly on the IU-XRay dataset, dif-
fering from the best result by nearly 1.5%. A pos-
sible reason is that the IU-Xray dataset is a small-
sample dataset with only about 7,000 data points,
which is difficult to support the amount of data re-
quired for the training of the LLM decoder, result-
ing in a slight decrease in performance. However,
compared with other results on the IU-Xray dataset,
VDGen is still comparable. VDGen performed re-
markably on the MIMIC-CXR dataset and achieved
a new state-of-the-art (SOTA). Specifically, VD-
Gen outperformed the second-best result by 1%
on the MIMIC-CXR dataset. This fully demon-
strates that VDGen has good performance when
there is an adequate amount of training data. The
SOTA result on the MIMIC-CXR dataset also es-
tablishes the novelty and feasibility of our method.
In general, we achieved comparable performance
on the IU-XRay dataset and a new SOTA on the
MIMIC-CXR dataset.

4.3 Ablation Study

To verify the effectiveness of each module of VD-
Gen, we designed ablation experiments for the
VSE, DID, and LoRA modules of VDGen. Table 2
shows that removing VSE led to a 1.26% average
performance drop, proving it can address radiologi-
cal image pixel distribution issues and boost model
performance. Removing DID caused a 1.34% av-
erage decline, indicating using the ground truth
report as a teacher signal for VDGen to extract dis-
ease info is effective. VSE is better at capturing
fine-grained info, while DID handles both fine -
and coarse-grained data. The LoRA ablation ex-
periment showed its fine-tuning benefits the down-
stream LLM decoder. Overall, VSE and DID are
essential for VDGen, and their absence will reduce
performance. At the same time, using the LoORA
method for training can bring further performance
improvements.

4.4 Clinical Efficacy Analysis

To demonstrate the potential of VDGen in clini-
cal applications, we evaluated its performance on
the MIMIC-CXR dataset using clinical efficacy
metrics (Precision, Recall, and F1-score). The eval-
uation results are shown in Table 1. Experiments
show that VDGen achieved the best Recall and F1-
score in the MIMIC-CXR benchmark test, and ob-
tained comparable Precision. Although VDGen'’s
Precision is slightly lower than that of DCL, its
Recall and F1-score are 4.5% and 2.9% higher than
those of DCL respectively. Therefore, consider-
ing comprehensively, VDGen outperforms DCL in
clinical applications. Meanwhile, VDGen leads the
second-ranked model by 1% in Recall and 1.3%
in Fl-score, which also highlights the excellent
clinical potential of VDGen. Overall, VDGen has
shown significant improvements in clinical efficacy
metrics, demonstrating good clinical effects and
highlighting its potential in clinical applications.

4.5 Case Studies

To further demonstrate the effectiveness and clin-
ical significance of VDGen, we conducted quali-
tative experiments on the MIMIC - CXR dataset.
We compared VDGen with the most popular LLM -
based methods on the RRG dataset. The experimen-
tal results are shown in Figure 3. We selected two
groups of classic cases to analyze the differences
between the two methods. The first group mainly
consists of normal samples, that is, the images do
not contain any diseases. The second group is ab-
normal samples, that is, the images contain one
or more diseases that are difficult to observe with
the naked eye. For the first-group samples, the
reports generated by VDGen are basically indis-
tinguishable from those described by professional
physicians. However, the current mainstream meth-
ods fail to diagnose the previous labels, that is, they
do not recognize that the patient has had a previ-
ous surgery. For the second - group samples, both
VDGen and R2GenGPT identified the degenera-
tive changes in the thoracic vertebrae. However,
VDGen additionally reported that the patient had a
previous surgery, which is crucial information for
formulating a treatment plan. R2GenGPT missed
this key information. Overall, the reports generated
by VDGen are more comprehensive and of greater
reference value. This also indirectly reflects the
clinical significance of VDGen.



Model BLEU 1| BLEU2| BLEU3| BLEU4| Meteor] Rouge-L| CIDEr|

Ours 0.418 0.274 0.190 0.136 0.164 0.301 0.162
w/o VSE 0.395 0.257 0.176 0.128 0.158 0.285 0.158
w/o DID 0.402 0.260 0.174 0.124 0.153 0.284 0.154
w/o LoRA 0.406 0.263 0.182 0.132 0.161 0.293 0.158

Table 2: Ablation Study on MIMIC-CXR Dataset. We conducted a comprehensive set of ablation studies to analyze
individual components of VDGen, where the notation "w/o" (without) indicates the exclusion of specific modules.
The experimental results demonstrate that lower metric values observed in configurations without particular modules
directly reflect the critical importance of those components, with greater performance degradation quantitatively
validating the effectiveness of the removed module.

Target:The lungs are clear
without focal consolidation,
effusion, or edema. The
cardiomediastinal silhouette
is within normal limits. No
acute osseous abnormalities
identified surgical clips in
the right upper quadrant
suggest prior cholecystec-
tomy.

R2GenGPT:heart size is
normal. the mediastinal
and hilar contours are nor-
mal .the pulmonary vascu-
lature is normal. lungs are
clear. no pleural effusion
or pneumothorax is seen.
there are no acute osseous
abnormalities.

VDGen:pa and lateral views of
the chest provided. there is no
focal consolidation effusion or
pneumothorax. the cardiome-
diastinal silhouette is normal.
imaged osseous structures are
intact. no free air below the
right hemidiaphragm is seen.
clips project over the right up-
per quadrant likely from prior
cholecystectomy.

Target:The heart size is normal.
Mediastinal and hilar contours
are unremarkable. The pul-
monary vascularity is normal.
Streaky left lower lobe opac-
ity likely reflects atelectasis.
There is no focal consolidation,
pleural effusion or pneumotho-
rax. Mild degenerative changes
are noted in the thoracic spine.
Clips are seen in the right upper
quadrant compatible with prior

R2GenGPT:heart size is
normal. the mediastinal
and hilar contours are nor-
mal .the pulmonary vascu-
lature is normal. lungs are
clear. no pleural effusion
or pneumothorax is seen .
there are no acute osseous
abnormalities. mild degen-
erative changes are noted

VDGen:pa and lateral views of the
chest provided. there is no focal
consolidation effusion or pneumotho-
rax. the cardiomediastinal silhouette
is normal. imaged osseous struc-
tures are intact. no free air below
the right hemidiaphragm is seen.

no displaced rib fractures are seen.
mild degenerative changes are noted
in the thoracic spine. clips project
over the right upper quadrant likely

cholecystectomy.

in the thoracic spine. from prior cholecystectomy.
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Figure 3: We compared the generated results with the popular LLM-based method. The text in the first rounded
rectangle is the ground truth (i.e. target report) described by a professional radiologist. The text in the second
rounded rectangle is generated by the popular LLM-based model (i.e. R2GenGPT). The content of the third rounded

rectangle is the report generation result of VDGen.

Model ‘ Precision? Recallf Fl-scoret
R2GenCMN 0.334 0.275 0.278
SEBTSAT+KG 0.356 0.297 0.304
METransformer 0.364 0.309 0.311
DCL 0.471 0.352 0.373
KiUT 0.371 0.318 0.321
R2GenGPT 0.392 0.387 0.389
COMG 0.424 0.326 0.345
VDGen | 0426 0.397 0.402

Table 3: Clinical efficacy analysis result. We selected
seven models most relevant to VDGen and compared
their clinical benefits on the MIMIC-CXR dataset. We
used the CE matrix to measure their clinical benefits.
The bolded results are the best ones, and the underlined
ones are the second best.

5 Conclusion

In this paper, we propose VDGen, a unified frame-
work for calibrating visual and diagnostic repre-
sentations in radiology report generation. VD-

Gen incorporates two complementary modules.
Vision Self-Equilibration(VSE) mitigates visual
feature degradation through self-supervised con-
trastive learning, enhancing intra-modal discrim-
inability. Disease Information Distillation(DID)
leverages diagnostic reports as teacher signals to
guide cross-modal representation learning, improv-
ing the model’s ability to capture disease-specific
semantics. These modules are integrated into
an end-to-end generation pipeline with a LoRA-
adapted large language model decoder. Experi-
ments on MIMIC-CXR and IU-Xray show that
VDGen improves the state-of-the-art by 1.0% on
MIMIC-CXR. Ablation studies demonstrate that
removing VSE and DID causes performance drops
of 1.26% and 1.34%, respectively, highlighting the
importance of both components. Overall, VDGen
narrows the performance gap between natural and
radiological domains and offers a scalable, inter-
pretable solution for clinical report generation.




Limitations

Our study introduces a novel multimodal model,
VDGen. This model aims to automatically adjust
the model’s attention regions via the Visual Self
Equilibration(VSE) and extract disease informa-
tion through the Disease Information Distillation
(DID), thereby enhancing the performance of radi-
ology report generation. However, this approach
has certain limitations. Firstly, the model is tai-
lored for the highly specialized task of radiology
report generation, which may limit its adaptability
in broader natural language generation tasks. Addi-
tionally, current evaluations are based on specific
datasets and may not fully reflect the framework’s
applicability in diverse scenarios.
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