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Abstract001

Large Language Models (LLMs) have demon-002
strated remarkable success in various tasks such003
as natural language understanding, text sum-004
marization, and machine translation. How-005
ever, their general-purpose nature often lim-006
its their effectiveness in domain-specific ap-007
plications that require specialized knowledge,008
such as healthcare, chemistry, or legal analy-009
sis. To address this, researchers have explored010
diverse methods to enhance LLMs by integrat-011
ing domain-specific knowledge. In this sur-012
vey, we provide a comprehensive overview of013
these methods, which we categorize into four014
key approaches: dynamic knowledge injection,015
static knowledge embedding, modular adapters,016
and prompt optimization. Each approach of-017
fers unique mechanisms to equip LLMs with018
domain expertise, balancing trade-offs between019
flexibility, scalability, and efficiency. We dis-020
cuss how these methods enable LLMs to tackle021
specialized tasks, compare their advantages and022
disadvantages, evaluate domain-specific LLMs023
against general LLMs, and highlight the chal-024
lenges and opportunities in this emerging field.025
For those interested in delving deeper into this026
area, we also summarize the commonly used027
datasets and benchmarks. To keep researchers028
updated on the latest studies, we maintain an029
open-source at: � official-repo.com, dedicated030
to documenting research in the field of special-031
ized LLM.032

1 Introduction033

LLMs have achieved extraordinary success across034

various tasks, showcasing remarkable capabili-035

ties in reasoning, knowledge representation, and036

decision-making. However, despite their impres-037

sive performance in general-purpose applications,038

many specialized domains, such as healthcare,039

chemistry, and legal analysis, demand the inte-040

gration of domain-specific knowledge to achieve041

high accuracy and reliability. To address this chal-042

lenge, researchers have explored methods to en-043

hance LLMs through external or embedded domain 044

expertise, a process often referred to as knowledge 045

injection, as shown in Figure 1. This approach 046

aims to bridge the gap between general-purpose 047

language understanding and the stringent require- 048

ments of domain-specific tasks, enabling LLMs to 049

perform effectively in highly specialized contexts. 050

Building on the foundational capabilities of 051

general-purpose LLMs, knowledge injection tech- 052

niques provide an effective means to address their 053

limitations in handling specialized applications. 054

Compared to the generalized approach of standard 055

LLMs, knowledge injection offers two key advan- 056

tages: 1) incorporating precise, domain-specific 057

knowledge to improve accuracy and reliability in 058

specialized tasks, and 2) allowing LLMs to dynam- 059

ically adapt to new information or evolving knowl- 060

edge bases, ensuring up-to-date expertise. These 061

techniques bridge the gap between general-purpose 062

understanding and domain-specific demands by 063

leveraging both structured and unstructured knowl- 064

edge sources. As a result, knowledge injection 065

methods have been successfully applied in fields 066

such as healthcare, chemistry, and legal analysis, 067

significantly enhancing LLM performance. For 068

example, biomedical LLMs (Cho and Lee, 2025; 069

Bolton et al., 2024; Yan et al., 2023) have demon- 070

strated superior accuracy in tasks like medical diag- 071

nostics and regulatory compliance, while domain- 072

specific models for material science (Tang et al., 073

2025a; Xie et al., 2024; Antunes et al., 2024; Zhang 074

et al., 2024b) have achieved advances in material 075

property prediction and discovery. These dedicated 076

models underscore the transformative potential of 077

integrating domain knowledge into LLMs. 078

Despite these advancements, early efforts in 079

knowledge injection often treated domains inde- 080

pendently, leading to a lack of standardization in 081

methodologies and evaluation. As the volume of 082

research continues to grow rapidly, with applica- 083

tions and studies proliferating across disciplines, 084
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Figure 1: Illustration of Growth Trends in Domain-Specific Knowledge Injection into LLMs. The chart displays the
cumulative number of papers published between October 2022 and December 2024. Different colors and border
styles represent various injection methods and domains.

the need for a comprehensive review becomes ev-085

ident. This review aims to summarize the state086

of knowledge injection techniques, provide a sys-087

tematic blueprint for future research, and identify088

key challenges, such as balancing scalability with089

domain-specific accuracy and enabling efficient,090

real-time knowledge updates.091

We begin in Section 2 with background on092

domain-specific knowledge and its role in LLMs.093

Section 3 presents a unified framework of four094

knowledge injection paradigms: (1) Dynamic095

Knowledge Injection at inference time; (2) Static096

Knowledge Embedding during training or fine-097

tuning; (3) Modular Adapters for parameter-098

efficient integration; and (4) Prompt Optimization099

via carefully designed inputs. Section 4 examines100

these methods across domains such as materials101

science, chemistry, biology, and law. Section 5102

summarizes key datasets, tools, and comparative103

results. Section B outlines open challenges, in-104

cluding scalability, robustness, and domain transfer.105

Finally, Section 7 concludes the paper and reflects106

on future directions.107

2 Background108

2.1 Domain-Specific Knowledge109

Domain-specific knowledge refers to specialized in-110

formation or expertise pertinent to a specific field or111

application, distinguishing it from general knowl-112

edge that spans across multiple domains. While 113

general knowledge enables models to understand 114

broad contexts, domain-specific knowledge is es- 115

sential for addressing specialized tasks where pre- 116

cise, field-specific understanding is required. For 117

instance, in scientific text processing (Bran et al., 118

2023), models must comprehend complex scientific 119

terminologies, concepts, and methodologies to pro- 120

vide accurate and relevant answers. In e-commerce 121

search (Zhao et al., 2024a), understanding domain- 122

specific terms such as product categories, techni- 123

cal specifications, or colloquial shopping language 124

is crucial for delivering relevant search results 125

and recommendations. In healthcare applications, 126

LLMs must understand medical terminologies, di- 127

agnoses, treatment plans, and drug interactions. For 128

example, biomedical question answering (Singhal 129

et al., 2025; Pei et al., 2024) and medical report 130

summarization rely on integrating knowledge from 131

medical literature like PubMed (Dernoncourt and 132

Lee, 2017). To address these needs, researchers 133

have explored various methods for incorporating 134

domain-specific knowledge into LLMs. In this pa- 135

per, we aim to provide a survey of these various 136

injection methods. 137

2.2 Knowledge Representation and Encoding 138

Knowledge can take different forms depending on 139

structure and application needs. Knowledge graphs 140

(Liao et al., 2025; Zhang et al., 2024d) encode en- 141
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tities and their relationships in a structured graph,142

supporting reasoning and inference in tasks like143

question answering. In contrast, text-based sources144

like Wikipedia (Jeong et al., 2024) provide rich but145

unstructured information, useful for tasks requir-146

ing broad contextual understanding. Knowledge147

can also be stored in vector space rather than in148

text or graph form. For example, soft prompt tun-149

ing (Peng et al., 2025; Singhal et al., 2023a) embeds150

useful information as vectors, which are appended151

to inputs to guide LLMs on specific tasks. Be-152

yond external forms, knowledge may also emerge153

internally: chain-of-thought prompting (Sanwal,154

2025; Yao et al., 2024) introduces intermediate rea-155

soning steps that help LLMs decompose complex156

problems and access internal knowledge more ef-157

fectively—improving performance in tasks involv-158

ing reasoning, multi-step computation, or decision-159

making.160

2.3 Knowledge Injection Survey161

Prior surveys on knowledge-enhanced language162

models vary in focus and scope. The most relevant163

works include the following: Cadeddu et al. (2024),164

who focus on scientific article classification and165

offer practical insights but lack broader method-166

ological generalization; Wang et al. (2024), who167

focus on knowledge editing and aim to update in-168

ternal model knowledge with minimal side effects;169

and Hu et al. (2023), who adopt a model-centric170

perspective by classifying knowledge-enhanced171

models based on task type and knowledge source,172

though they primarily cover pre-LLM architec-173

tures such as BERT and ERNIE. In contrast, our174

work presents a unified view of knowledge injec-175

tion in LLMs, emphasizing capability enhancement176

through external knowledge integration across di-177

verse tasks.178

3 Paradigms of Knowledge Injection179

To systematically understand how domain knowl-180

edge is integrated into LLMs, we categorize exist-181

ing approaches into four paradigms based on when182

the knowledge is incorporated and how it interacts183

with the model, as shown in Figure 2. Specifically,184

Static Knowledge Injection and Modular Knowl-185

edge Adapters integrate knowledge prior to infer-186

ence and involve parameter updates—through ei-187

ther full fine-tuning or adapter-based tuning. In con-188

trast, Dynamic Knowledge Injection and Prompt189

Optimization inject knowledge at inference time190

Symbol Description

x Input to LLM
y Output of LLM
M Backbone LLM Function
K External domain knowledge base
θ Parameters of LLM
ϕ Additional parameters introduced

R(x,K) Retrieval function fetches relevant elements
of K given the input x

M(x; θ) Represent LLM takes input x and produces
an output, parameterized by θ

∆θ Offsets to the original LLM’s parameters

Table 1: Summary of Symbols.

without altering model parameters: the former re- 191

trieves external information, while the latter lever- 192

ages internal knowledge through designed prompts. 193

We utilize unified notations, as described in Ta- 194

ble 1, to systematically represent the processes. 195

3.1 Dynamic Knowledge Injection 196

We define dynamic knowledge injection as the pro- 197

cess of first retrieving information from external 198

knowledge bases or knowledge graphs and then 199

combining it with the input for use in LLMs: 200

y = M(x,R(x,K); θ), (1) 201

where x represents the original input, R denotes 202

the retrieval function, K is the external knowledge 203

base, and θ are the model parameters, which remain 204

unchanged. This paradigm offers several advan- 205

tages, including ease of updating (hence the term 206

"dynamic injection") and the ability to incorpo- 207

rate new knowledge without retraining the model. 208

However, it also presents challenges, such as de- 209

pendency on the quality of the knowledge base K, 210

the retrieval function R, and limitations imposed 211

by the maximum input length of the LLM. To im- 212

prove retrieval quality, commonly used techniques 213

include semantic matching based on sentence em- 214

beddings and efficient vector databases for fast sim- 215

ilarity search. 216

3.2 Static Knowledge Embedding 217

Compared with dynamic knowledge retrieval, static 218

knowledge embedding involves embedding knowl- 219

edge into the model’s parameters through full 220

or partial fine-tuning, making it less flexible to 221

changes. Concretely, the model learns new param- 222

eters ∆θ that encode domain knowledge from K: 223

∆θ = argminθ
∑

(xs,ys)∈K L(M(xs; θ),ys), 224
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Figure 2: Four knowledge injection paradigms for LLMs. (a) Dynamic Knowledge Injection retrieves external
knowledge during inference. (b) Static Knowledge Injection embeds external knowledge into model parameters
during fine-tuning. (c) Modular Knowledge Adapters use plug-and-play modules to dynamically adapt to tasks. (d)
Prompt Optimization utilizes precise prompts to guide the LLM without altering its parameters.

where K is the domain-specific knowledge base225

containing training samples xs and ys, and L is226

a training loss function. After optimization, the227

updated parameters ∆θ are obtained.228

At inference time, no further retrieval or exter-229

nal knowledge calls are required: y = M(x; ∆θ).230

This paradigm enables fast inference by removing231

the need for additional retrieval steps and often232

delivers stronger performance. However, it also233

presents challenges, such as high update costs since234

fine-tuning is required when domain knowledge235

changes, and scalability concerns because embed-236

ding large or frequently changing knowledge bases237

demands significant computational resources.238

3.3 Modular Knowledge Adapters239

To address the costly updates associated with static240

knowledge embedding, another paradigm, known241

as modular knowledge adapters, introduces small,242

trainable modules that can be inserted into or op-243

erate alongside the base model to store domain-244

specific knowledge while saving computational re-245

sources. In this approach, the original parameters246

θ of the LLM typically remain frozen, preserving247

the model’s general-purpose capabilities. Given a248

knowledge dataset K, the adapter parameters ϕ are249

trained by minimizing the following objective:250

ϕ = argminϕ
∑

(xs,ys)∈K L(M(xs; θ, ϕ),ys),251

where M(xs; θ, ϕ) represents the base model’s gen-252

eration function enhanced with the new adapter pa-253

rameters. At inference time, the enhanced model254

generates outputs as: y = M(x; θ, ϕ). This255

paradigm offers a parameter-efficient method to256

adapt LLMs to specific domains without modify-257

ing the original model weights. By freezing the258

base model’s parameters, the approach seeks to259

preserve previously acquired knowledge while en-260

abling the seamless incorporation of new domain-261

specific information. However, this approach also 262

introduces challenges, such as the need to design 263

new architectural components and determine ap- 264

propriate hyperparameters, including the size and 265

number of adapters. These additional elements can 266

increase the overall complexity of the model and 267

its training process. 268

3.4 Prompt Optimization 269

Prompt optimization refers to the practice of guid- 270

ing LLMs to perform domain-specific tasks by 271

crafting effective textual prompts. Unlike retrieval- 272

based methods, it relies entirely on the model’s 273

internal knowledge and does not require access 274

to external knowledge bases or fine-tuning. The 275

process can be formalized as: 276

p∗ = argminp L(M([p,x]; θ),y∗), 277

where p is a prompt containing domain-relevant 278

cues, x is the task input, and θ are the fixed param- 279

eters of the LLM. 280

This paradigm offers practical advantages such 281

as lightweight deployment, no training overhead, 282

and adaptability across domains. However, it also 283

faces key challenges: designing prompts that elicit 284

accurate responses can be non-trivial, and long 285

prompts may reduce the available input space due 286

to context length limitations. Prompt-based ap- 287

proaches can be broadly categorized into man- 288

ual prompting, prompt tuning, and prefix tuning. 289

These differ in how prompts are constructed or 290

optimized—ranging from discrete, static prompts 291

to learnable embeddings—and have been widely 292

adopted for low-resource domain adaptation. 293

3.5 Comparison of the Four Paradigms 294

Dynamic knowledge injection introduces exter- 295

nal knowledge at runtime, offering flexibility and 296
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Paradigm Training Cost Inference
Speed Limitations

Dynamic
Injection

None, but requires
retrieval module

Slower due to
retrieval latency

Relies heavily on
retrieval quality

Static
Embedding

High
(requires pretraining

or fine-tuning)

No extra cost Fixed knowledge;
risks catastrophic

forgetting

Modular
Adapters

Low
(train small subset

of parameters)

Almost
unaffected

Sensitive to training
data quality

Prompt
Optimization

None Almost
unaffected

Labor-intensive;
limited to pre-existing

knowledge

Table 2: Guidance on choosing injection methods by
training cost, inference speed, and constraints.

adaptability without added training cost. How-297

ever, it depends on efficient retrieval, and infer-298

ence speed can suffer if retrieval performance is299

poor. Static knowledge embedding integrates do-300

main expertise during pretraining or fine-tuning,301

requiring large-scale data and significant compu-302

tational resources. It adds no inference cost but303

struggles to adapt to new information and is prone304

to catastrophic forgetting. Modular adapters offer305

a middle ground by enhancing domain capabili-306

ties through plug-and-play modules that require307

minimal training data. Only a small number of pa-308

rameters are trained, reducing cost and preserving309

inference speed, though performance heavily de-310

pends on data quality. Prompt optimization avoids311

retraining by using well-crafted inputs. It maintains312

fast inference but relies on significant manual ef-313

fort and is limited to activating existing knowledge314

rather than incorporating new information. We315

summarize these comparisons in Table 2 as a prac-316

tical guide to help determine the suitable method317

based on specific requirements and scenarios.318

4 Applications319

4.1 Finance320

In the financial domain, LLM generally follow321

two main development paths: fine-tuning general-322

purpose models on financial tasks or training mod-323

els from scratch using domain-specific corpora.324

For fine-tuning, PIXIU(Xie et al., 2023) adapts325

LLaMA using 136K financial instruction samples,326

equipping the model to handle diverse finance-327

related scenarios. Instruct-FinGPT(Zhang et al.,328

2023) focuses on sentiment classification by fine-329

tuning on 10K samples from two financial senti-330

ment datasets. FinGPT (Yang et al., 2023) proposes331

an end-to-end framework for developing FinLLMs,332

efficiently fine-tuning LLaMA and ChatGLM with 333

50K samples via LoRA, significantly reducing com- 334

putational costs. In contrast, scratch-trained Fin- 335

LLMs aim for deep domain alignment from the 336

ground up. BloombergGPT (Wu et al., 2023b) uses 337

5B Bloomberg-specific tokens (0.7% of its total 338

corpus) to specialize in financial applications. Xu- 339

anYuan 2.0 (Zhang and Yang, 2023) is the largest 340

Chinese financial chatbot, trained on 366B tokens 341

and fine-tuned on 13B. Fin-T5 (Lu et al., 2023) 342

leverages a 300GB Chinese financial corpus us- 343

ing the T5 architecture, while SNFinLLM (Zhao 344

et al., 2024a) enhances inference through real-time 345

financial data injection. 346

In summary, this field showcases a rich diversity 347

in training strategies, from lightweight tuning to 348

comprehensive, end-to-end development. 349

4.2 Biomedicine 350

The biomedicine domain benefits from a wealth 351

of specialized corpora, such as PubMed (Dernon- 352

court and Lee, 2017) and MedQA (Jin et al., 2021), 353

enabling the development of LLMs specifically 354

trained on biomedical texts. These models often 355

follow the static knowledge embedding approach, 356

leveraging the domain-specific richness of biomed- 357

ical data. For instance, PMC-LLaMA (Wu et al., 358

2023a) extends the LLaMA 7B model through fur- 359

ther pretraining on 4.9 million PubMed Central 360

articles curated from the S2ORC dataset (Lo et al., 361

2020), completing five epochs to embed biomedi- 362

cal knowledge effectively. Similarly, Med-PaLM 363

2 (Singhal et al., 2023b) builds on PaLM 2 via 364

instruction fine-tuning. This fine-tuning incorpo- 365

rates a diverse mix of medical question-answering 366

datasets, including MedQA, MedMCQA (Pal et al., 367

2022), and HealthSearchQA (Singhal et al., 2023a). 368

Beyond foundational models, integrating exter- 369

nal tools and knowledge can further enhance per- 370

formance. GeneGPT(Jin et al., 2024) leverages 371

a code-pretrained LLM to address GeneTuring 372

tests by calling NCBI Web APIs, combining in- 373

context learning with an augmented decoding al- 374

gorithm capable of identifying and executing API 375

requests. Med-PaLM(Singhal et al., 2023a) extends 376

the capabilities of Flan-PaLM (Chung et al., 2024) 377

through the use of vector prompts—dense repre- 378

sentations designed to store and retrieve medical 379

domain knowledge during inference. 380

Overall, biomedical LLMs lead in combining 381

static pretraining, instruction tuning, and tool inte- 382

gration, reflecting a shift toward hybrid reasoning 383
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Domain Model Paradigms Knowledge Source Link

Finance

FLANG (Shah et al., 2022) Static Knowledge Embedding
Financial PhraseBank,FiQA 2018 Task-1,

News Headline Classification, Named Entity Recognition,
Structure Boundary Detection,Question Answering

Link

BloomBergGPT (Wu et al., 2023b) Static Knowledge Embedding Finance dataset (web, news, filings, press, Bloomberg),
Public dataset (the Pile, C4, Wikipedia) \

FinMA (Xie et al., 2023) Static Knowledge Embedding FPB,FiQA-SA,Headline,NER,FinQA,
ConvFinQA,BigData22,ACL18,CIKM18 Link

FinGPT (Zhang et al., 2023) Modular Knowledge Adapters Financial news, Company filings and announcements,
Social media discussions, Trends Link

Fin-LLaMA (Konstantinidis et al., 2024) Static Knowledge Embedding fin-llama-dataset Link
SNFinLLM (Zhao et al., 2024a) Static Knowledge Embedding FinEval, FinanceIQ,qEQA,FinC,KQA,MRC,cMRC \

Fino1 (Qian et al., 2025) Static Knowledge Embedding FinQA, TATQA , DocMath (Simpshort and Compshort),
DocFinQA , and BizBench-QA Link

Biomedicine

PMC-LLaMA (Wu et al., 2023a) Static Knowledge Embedding PMC-OA, MedC-I, PubMedQA, MedMCQA, USMLE Link
Med-PaLM 2 (Singhal et al., 2023b) Static Knowledge Embedding MultiMed Link

DALK (Li et al., 2024a) Dynamic Knowledge Injection
Prompt Optimization MedQA, MedMCQA, MMLU, QA4MRE Link

ChronicCareGPT (Liu et al., 2024b) Prompt Optimization eRisk Link
SA-MDKIF (Xu et al., 2024c) Modular Knowledge Adapters MedQuA,emrQA, PubMedQA, MedQA \
MaLP (Zhang et al., 2024c) Modular Knowledge Adapters HealthCareMagic-100k, iCliniq Link

BioMedLM (Bolton et al., 2024) Static Knowledge Embedding PubMed,MedMCQA,MedQA,MMLU,BioASQ Link
BiomedRAG (Li et al., 2024b) Dynamic Knowledge Injection CHEMPROT,DDI,ade-corpus-v2,MTsample,ADInt,UMLS Link
MedINST (Han et al., 2024) Static Knowledge Embedding MedINST Link

K-COMP (Cho and Lee, 2025) Dynamic Knowledge Injection MedCorp corpus \
OntoTune (Liu et al., 2025) Static Knowledge Embedding SemEval2018 Task 9 dataset Link

Materials

ChemCrow (Bran et al., 2023) Dynamic Knowledge Injection 18 expert-designed tools Link
ChemDFM (Zhao et al., 2024b) Static Knowledge Embedding SciQ,PIQA,PubChem,ARC,USPTO Link
ChemLLM (Zhang et al., 2024a) Static Knowledge Embedding ChemData,ChemBench Link

CrystaLLM (Antunes et al., 2024) Static Knowledge Embedding Materials Project, OQMD, NOMAD Link
ScholarChemQA (Chen et al., 2024) Static Knowledge Embedding AG News,Yahoo Answers ,Yelp-5,Amazon-5 Link

DARWIN 1.5 (Xie et al., 2024) Static Knowledge Embedding FAIR datasets Link

ChemAgent (Tang et al., 2025b) Dynamic Knowledge Injection
Prompt Optimization

college chemistry textbooks:Quantum chemistry (quan), hemistry kinetics (matter)
Quantum mechanics (chemmc), Physical chemistry (atkins) Link

LLaMat (Mishra et al., 2025) Static Knowledge Embedding MatBookQA,MaScQA,MatSciInstruct \
OmniScience (Prabhakar et al., 2025) Static Knowledge Embedding daring-anteater dataset, s1K dataset \

Mental Health

MeChat (Qiu et al., 2023) Dynamic Knowledge Injection SMILECHAT, PsyQA Link
MindChat (Xin Yan, 2023) Static Knowledge Embedding Multi-turn psychological dialogue data Link

SoulChat (Chen et al., 2023) Static Knowledge Embedding Long-text counseling sessions Link

EmoLLM (Yang et al., 2024) Static Knowledge Embedding
Modular Knowledge Adapters CPsyCounD Link

Education

EduChat (Dan et al., 2023) Static Knowledge Embedding Textbooks Data, Open QA Data,
Emotional Support Data, Socratic Teaching Data Link

QiaoBan (Weixiang et al., 2023) Prompt Optimization Children’s emotional education dialogue data Link
HiTA (Liu et al., 2024a) Dynamic Knowledge Injection Educator curated database \

SocraticLM (Liu et al., 2024c) Modular Knowledge Adapters SocraTeach dataset \

CyberQ (Agrawal et al., 2024) Static Knowledge Embedding
Dynamic Knowledge Injection AISecKG, Q&A \

Social Science
SocialLLM (Jiang and Ferrara, 2023) Static Knowledge Embedding

Prompt Optimization

Covid-Political, Election2020, COVID-Morality,
Ukr-Rus-Suspended, Ukr-Rus-Hate,

Immigration-Hate-08, Immigration-Hate-05
\

FPS (Liu et al., 2024e) Prompt Optimization Fake News Dataset, Big Five Personality Traits Link
FUSE (Liu et al., 2024f) Prompt Optimization True News Dataset, Big Five Personality Traits \

Table 3: Summary of the domain-specific knowledge injection studies. We categorize current work according to
their research domain and knowledge injection method.

in specialized AI.384

4.3 Materials385

In contrast to the biomedical domain, the field of386

materials science and chemistry has largely focused387

on static knowledge embedding. Many models388

rely on domain-specific corpora to fine-tune gen-389

eral models for improved task performance. Dar-390

win 1.5 (Xie et al., 2024) adopts a two-stage train-391

ing strategy using natural language inputs to en-392

hance performance in materials discovery. Schol-393

arChemQA (Chen et al., 2024) constructs a chem-394

istry QA dataset to fine-tune BERT and LLaMA,395

improving chemical reasoning. Recently, some ef-396

forts have begun to explore dynamic knowledge397

integration. ChemCrow (Bran et al., 2023) aug-398

ments LLMs with chemistry tools for applications399

like synthesis and drug discovery. ChemAgent400

(Tang et al., 2025b) shows that well-designed plan-401

ning prompts can guide models through complex402

execution tasks by leveraging internal reasoning.403

While still in early stages, the field is transition- 404

ing from static embedding toward interactive and 405

tool-augmented reasoning, indicating strong poten- 406

tial for future developments 407

4.4 Human-Centered Science 408

Human-centered science focuses on understanding 409

and assisting human behaviors, needs, and deci- 410

sions. This interdisciplinary domain includes men- 411

tal health, education, social behavior prediction, 412

and legal reasoning—each benefiting from person- 413

alized and context-aware LLMs. 414

In mental health, datasets like PsyQA (Sun 415

et al., 2021) provide a foundation for training 416

models in psychological counseling scenarios. 417

SoulChat (Chen et al., 2023), a model fine-tuned 418

on over 100,000 long-text counseling sessions us- 419

ing static knowledge embedding, is designed for 420

empathic conversations. In contrast, MeChat (Qiu 421

et al., 2023) employs dynamic knowledge injection 422

to adapt to real-time inputs, enhancing its emo- 423
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tional support capabilities. These advancements424

demonstrate the potential of human-centered sci-425

ence in addressing complex, real-world challenges426

through personalized and context-aware solutions.427

In the education domain, LLMs have shown im-428

mense potential in addressing challenges such as429

personalized learning, curriculum alignment, and430

interactive teaching. Personalized learning, for431

example, requires models to adapt to individual432

needs, providing tailored feedback and emotional433

support. EduChat (Dan et al., 2023) applies psycho-434

logical and pedagogical theories via static knowl-435

edge embedding to support tasks like Q&A, writ-436

ing feedback, and emotional guidance. Similarly,437

QiaoBan (Weixiang et al., 2023) uses prompt op-438

timization to tailor model behavior to children’s439

psychological and emotional needs. Domain-440

specific education and interactive teaching have441

also seen advancements. CyberQ (Agrawal et al.,442

2024) blends static knowledge embedding and dy-443

namic knowledge injection via AISecKG (Agrawal,444

2023), generating Q&A based on cybersecurity445

best practices. Interactive teaching, on the other446

hand, benefits from models like SocraticLM (Liu447

et al., 2024c), which employs adapters fine-tuned448

on the SocraTeach dataset to engage students in449

critical thinking and problem-solving.450

For social sciences, models like Social-451

LLM (Jiang and Ferrara, 2023) combine static452

knowledge embedding and dynamic knowledge453

injection to analyze human behavior in social net-454

works. Models like FPS (Liu et al., 2024e) and455

FUSE (Liu et al., 2024f) use prompt optimization456

to simulate the spread and evolution of fake news457

in social networks, helping understand misinfor-458

mation’s impact. A summary of the mainstream459

models and their information is provided in Table 3.460

More models across various domains can be found461

at: official-repo.462

5 Tools, Resources, and Analysis463

5.1 Knowledge Injection Framework464

In this section, we provide a detailed introduction465

to four open-source frameworks categorized under466

different knowledge injection methods to facilitate467

understanding and application: KnowGPT (Zhang468

et al., 2024d) for Dynamic Knowledge Injec-469

tion, StructTuning (Liu et al., 2024d) for Static470

Knowledge Embedding, K-Adapter (Wang et al.,471

2021) for Modular Knowledge Adapters, and Self-472

Lift (Cheng et al., 2024) for Prompt Optimization.473

KnowGPT dynamically combines knowledge 474

graphs with prompt optimization by leveraging 475

reinforcement learning to extract highly relevant 476

subgraphs from the knowledge graph. These sub- 477

graphs are represented as triples and transformed 478

into natural language prompts that language mod- 479

els can interpret and utilize via diverse prompt tem- 480

plates. The KnowGPT framework significantly re- 481

duces the API call costs of LLMs while enhancing 482

their performance in domain-specific tasks. 483

StructTuning uses a structure-aware approach to 484

embed domain knowledge into pre-trained models 485

with a two-stage strategy: Structure-Aware Con- 486

tinual Pre-Training encodes knowledge into the 487

model’s parameters, and Structure-Aware Super- 488

vised Fine-Tuning refines understanding through 489

structured QA tasks. This framework demon- 490

strates significant performance improvements in 491

knowledge-driven tasks such as relation classifica- 492

tion and question answering, achieving a balance 493

between generality and efficiency. 494

K-Adapter stores knowledge within adapter 495

modules. Its core method involves freezing the orig- 496

inal model parameters and assigning an indepen- 497

dent, task-specific adapter for each type of knowl- 498

edge. These adapters are inserted as independent 499

modules into the intermediate layers of the model 500

to generate enhanced representations of specific 501

knowledge. This design effectively mitigates the 502

issue of catastrophic forgetting, preventing newly 503

injected knowledge from overwriting the model’s 504

pre-existing knowledge. 505

Finally, SelfLift iteratively employs a retrieval- 506

augmented generator to create an unbounded mem- 507

ory pool and uses a memory selector to choose one 508

output as memory for the subsequent generation 509

round. This is a good demonstration of prompt 510

optimization, where the model’s outputs are dy- 511

namically refined and reused to enhance its overall 512

performance and coherence in subsequent tasks. 513

5.2 Knowledge Source 514

We summarize commonly used knowledge sources 515

for domain-specific LLMs in Table 3, referring to 516

datasets that provide the external knowledge used 517

in various injection methods—including training 518

corpora for static embedding or adapter tuning, and 519

retrieval or prompt design resources for dynamic 520

knowledge injection. Biomedicine includes numer- 521

ous high-quality datasets, such as PubMed, Pub- 522

MedQA (Jin et al., 2019), and BioASQ (Tsatsa- 523

ronis et al., 2012), which support tasks such as 524
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question answering and clinical summarization.525

In contrast, materials and chemistry have more526

limited resources, and datasets like USPTO and527

Enzymes focus on chemical reactions. Miscella-528

neous datasets are scattered across other domains,529

such as PsyQA and SmileChat in mental health,530

SocraTeach, and Children’s emotional education531

dialogue data dataset in education. This diversity532

underscores the effort to tailor LLMs to specialized533

fields while emphasizing the need for broader cura-534

tion of benchmarks in underrepresented domains.535

5.3 Performance Comparison of 4 Paradigms536

Model Category MedQA PubMedQA MedMCQA

GPT-4 (Medprompt) Prompt Optimization 90.2 82.0 79.1
GPT-4 General 90.2 80.4 73.7
Med-PaLM 2 Static Knowledge 85.4 81.8 72.3
Flan-PaLM (3-shot) Dynamic Knowledge 67.6 79.0 57.6
PMC-LLaMA Static Knowledge 56.3 77.9 56.0
BioMedLM Static Knowledge 50.3 74.4 –
LLaMA (MedAdapter) Knowledge Adapters 37.4 63.6 32.0

Table 4: Model performance across four knowledge
paradigms on medical benchmarks.

To compare knowledge injection paradigms in537

a practical setting, we focus on the biomedical538

domain due to its popularity and the availability539

of benchmarks such as MedQA, PubMedQA, and540

MedMCQA, as shown in Table 4. Although the541

models differ in architecture, we align backbones542

when possible. For example, both PMC-LLaMA543

and MedAdapter use LLaMA-13B. SOTA mod-544

els like GPT-4 are closed-source, making prompt545

optimization the only feasible adaptation strategy.546

Despite no domain-specific training, GPT-4 with547

Medprompt achieves strong performance, show-548

ing the effectiveness of prompt methods for closed549

models. Among open models, MedAdapter under-550

performs compared to PMC-LLaMA, suggesting551

that full fine-tuning may outperform adapter-based552

methods for some tasks. Performance differences553

across paradigms also highlight the importance of554

pretraining corpus and task alignment, particularly555

in static injection approaches. Furthermore, in Ap-556

pendix A, we also compare knowledge injection557

paradigms in the finance domain and obtain similar558

conclusions to those in the medical domain.559

6 Challenges and Opportunities560

Integrated Knowledge Consistency. Knowledge561

injection allows LLMs to incorporate and integrate562

different domain-specific knowledge. However, re-563

trieved knowledge may conflict with the model’s564

pre-trained representations or other retrieved facts,565

leading to inconsistencies in outputs (Xu et al., 566

2024b). For example, in healthcare or legal analy- 567

sis, conflicting treatment protocols or contradictory 568

legal precedents could arise (Dayton, 2012), result- 569

ing in unreliable decisions and undermining the 570

system’s trustworthiness. To address this, future 571

research must focus on detecting inconsistencies, 572

resolving conflicts, and maintaining consistency in 573

integrated knowledge. Conflicts can be addressed 574

by prioritizing reliable sources, applying domain- 575

specific rules, or using ensemble techniques to bal- 576

ance multiple perspectives. Alignment and valida- 577

tion modules help ensure retrieved knowledge fits 578

the model’s reasoning. 579

Cross-Domain Knowledge Transfer. Cross- 580

domain knowledge transfer involves equipping 581

LLMs with the ability to generalize knowledge 582

across diverse and distinct fields (Li et al., 2025). 583

While this significantly expands their applicabil- 584

ity, it also introduces challenges due to the com- 585

plexity and diversity of domain-specific terminolo- 586

gies, ontologies, and reasoning patterns (Montero 587

et al., 2004). For example, transferring knowl- 588

edge from chemistry to healthcare might require 589

reconciling differing data structures and reason- 590

ing frameworks (Schroeder et al., 2018). Overcom- 591

ing these challenges requires advancements in mod- 592

ular knowledge representation and transfer learn- 593

ing techniques. Future efforts could explore hy- 594

brid approaches that blend static embeddings with 595

dynamic retrieval, enabling LLMs to adapt knowl- 596

edge flexibly across domains without compromis- 597

ing depth. Additionally, standardized cross-domain 598

benchmarks can enable consistent evaluation and 599

drive innovation in knowledge transfer methods. 600

We provide more discussions in Appendix B. 601

7 Conclusion 602

LLMs enhanced by domain-specific knowledge 603

have shown remarkable potential and garnered in- 604

creasing research interest. This survey systemati- 605

cally reviews LLM knowledge injection systems, 606

exploring knowledge representation methods, inte- 607

gration strategies, and mechanisms for preserving 608

model generality. We also summarize applications 609

across biomedicine, chemistry, and computational 610

social science domains. By highlighting standard 611

datasets, benchmarks, challenges, and future oppor- 612

tunities, we aim to provide a valuable resource that 613

inspires exploration of knowledge-enhanced LLMs 614

for domain-specific challenges. 615
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Limitation616

Despite providing a comprehensive review of cur-617

rent methods and applications for domain-specific618

knowledge injection in LLMs, this survey has cer-619

tain limitations. First, while we strive to cover620

several key domains such as finance, biomedicine,621

and materials science, some less-studied or emerg-622

ing areas (for example, low-resource languages,623

cross-cultural education, and niche disciplines) re-624

ceive relatively limited attention. Second, our fo-625

cus is primarily on summarizing methodological626

principles and representative models from existing627

literature. Due to substantial variation in model ar-628

chitectures, application domains, training data, and629

evaluation protocols, we were only able to conduct630

targeted comparisons under controlled conditions631

within the biomedical domain, using commonly632

adopted datasets. A more systematic and broad-633

based empirical evaluation across methods remains634

an important direction for future work. Neverthe-635

less, we hope this survey serves as a useful ref-636

erence and provides a clear roadmap for ongoing637

research in knowledge-enhanced LLMs.638
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A Performance Comparison of 41080

Paradigms1081

Model Category FPB FiQA-SA TFNS

GPT-4 General 83.3 63.0 80.8
GPT-4(finetune) Static Knowledge 87.8 88.7 88.3
FinGPT Knowledge Adapters 88.2 87.4 90.3
FinBERT Static Knowledge 88.0 59.6 73.3
BloombergGPT Static Knowledge 51.1 75.1 -
Llama2-7B General 39.0 80.0 29.6
FLANG Static Knowledge 91.9 3.4 -

Table 5: Performance comparison of representative mod-
els under the four knowledge injection paradigms on
financial benchmarks.

To systematically compare the effectiveness of1082

different knowledge injection paradigms in prac-1083

tical settings, we focus on two representative do-1084

mains: biomedicine and finance.1085

In the biomedical domain, which is widely stud-1086

ied and rich in benchmark datasets (e.g., MedQA,1087

PubMedQA, and MedMCQA), we evaluate the1088

performance of various models (see Table 4). Al-1089

though the models differ in architecture, we align1090

their backbones where possible—for example, both 1091

PMC-LLaMA and MedAdapter use LLaMA-13B. 1092

For closed-source models like GPT-4, prompt en- 1093

gineering is the only feasible adaptation strategy. 1094

Nevertheless, GPT-4 combined with Medprompt 1095

achieves strong performance, demonstrating the ef- 1096

fectiveness of prompt-based knowledge injection. 1097

Among open models, MedAdapter underperforms 1098

compared to fully fine-tuned models such as PMC- 1099

LLaMA, suggesting that full fine-tuning may be 1100

more effective than adapter-based methods for cer- 1101

tain tasks. Models with static knowledge (e.g., 1102

MedBERT) show substantial variance across tasks, 1103

underscoring the importance of alignment between 1104

pretraining corpora and downstream objectives. 1105

In Table 5, we extend this comparison to the fi- 1106

nancial domain, evaluating models on benchmarks 1107

such as FPB(Malo et al., 2014), FiQA-SA(Maia 1108

et al., 2018), and TFNS(El-Haj et al., 2020). The 1109

findings closely mirror those in the biomedical 1110

domain. Finetuned GPT-4 consistently outper- 1111

forms others, confirming the value of injecting 1112

domain-specific knowledge into general-purpose 1113

LLMs. Static knowledge models like FinBERT and 1114

FLANG perform well on certain tasks but show 1115

significant variability, again emphasizing the cru- 1116

cial role of corpus-task alignment. FinGPT, which 1117

adopts lightweight adapter-based knowledge injec- 1118

tion, achieves competitive performance while main- 1119

taining adaptability. In contrast, LLaMA2-7B lags 1120

behind across most tasks, reinforcing the neces- 1121

sity of targeted knowledge injection for domain- 1122

intensive applications. The consistency of obser- 1123

vations across both domains suggests that the ef- 1124

fectiveness of knowledge injection depends on a 1125

careful balance of architectural design, adaptation 1126

strategy, and corpus alignment to support complex, 1127

high-stakes tasks. 1128

B Detailed Discussions on Challenges & 1129

Opportunities 1130

B.1 Integrated Knowledge Consistency 1131

While knowledge injection empowers LLMs to rea- 1132

son with external facts, it introduces a crucial con- 1133

sistency problem: injected knowledge may con- 1134

tradict either the model’s internal representations 1135

or other pieces of retrieved information (Xu et al., 1136

2024b). In high-stakes domains such as healthcare 1137

and law, even minor inconsistencies can lead to 1138

significant consequences—for instance, conflict- 1139

ing drug dosages from different clinical guide- 1140
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lines (Dayton, 2012; Zhao et al., 2025), or diver-1141

gent legal interpretations across jurisdictions (Guha1142

et al., 2023).1143

Recent research proposes techniques such as1144

post-retrieval contradiction detection (Xu et al.,1145

2024a), and confidence-aware re-ranking (Ren1146

et al., 2025) to address these issues. Some frame-1147

works, like MedRAG(Zhao et al., 2025), apply1148

weighted retrieval and ensemble voting to prioritize1149

reliable sources. Others explore neural symbolic1150

consistency checking, where injected knowledge is1151

aligned to pre-defined ontologies or verified using1152

structured reasoning paths (Ciatto et al., 2024).1153

Another growing area involves alignment-aware1154

reranking, where retrieved documents are filtered1155

based on their alignment with the LLM’s interme-1156

diate beliefs (Jin et al., 2025). Future directions1157

may include interactive consistency resolution (e.g.,1158

user-in-the-loop conflict selection), as well as in-1159

tegrating factual calibration modules (Dong et al.,1160

2022) that explicitly monitor factuality during de-1161

coding. These methods collectively aim to make1162

knowledge-enhanced LLMs more robust, explain-1163

able, and reliable in dynamic or sensitive environ-1164

ments.1165

B.2 Cross-Domain Knowledge Transfer1166

Cross-domain transfer is a central challenge in1167

building generalized yet specialized LLMs. As1168

LLMs are exposed to knowledge from diverse do-1169

mains, they must navigate incompatible ontologies,1170

varied domain languages, and distinct reasoning1171

structures (Li et al., 2025). For instance, trans-1172

ferring concepts from chemistry to healthcare in-1173

volves not only bridging terminology gaps but also1174

adapting to different causal assumptions and data1175

formats (Schroeder et al., 2018).1176

Several strategies have been proposed to manage1177

this complexity. Adapter-based modularization (He1178

et al., 2021) allows domain-specific components1179

to be trained separately and selectively activated.1180

Meta-learning approaches(Hou et al., 2022) help1181

models rapidly adapt to new domains with minimal1182

supervision. Additionally, continual pretraining1183

on mixed-domain corpora (Jin et al., 2022) offers1184

a scalable method to improve robustness without1185

catastrophic forgetting.1186

Standardized datasets such as CrossNER(Liu1187

et al., 2021) for multilingual named entity recog-1188

nition, MultiLexSum(Shen et al., 2022) for cross-1189

domain summarization, and MEDIQA-QA (Yadav1190

et al., 2021) for biomedical QA serve as valuable1191

testbeds for cross-domain evaluation. Future work 1192

may explore retrieval-augmented transfer, where 1193

dynamic selection of domain-relevant knowledge 1194

supports adaptive reasoning, or domain-invariant 1195

embedding learning, enabling LLMs to generalize 1196

across tasks without explicit supervision. 1197

B.3 Scalability and Efficiency of Knowledge 1198

Integration 1199

As LLMs are increasingly augmented with large- 1200

scale external knowledge such as entire knowl- 1201

edge graphs, document corpora, or real-time re- 1202

trieval APIs, the computational and memory cost 1203

of incorporating this knowledge becomes a bottle- 1204

neck. Efficient integration remains a key challenge, 1205

especially when operating under low-resource or 1206

latency-constrained settings. 1207

Techniques such as sparse retrieval (Lee et al., 1208

2019), memory compression (Zhong et al., 2024), 1209

and caching strategies have been proposed to 1210

reduce overhead. Modular architectures (e.g., 1211

adapters or plug-in modules) also allow partial ac- 1212

tivation of knowledge, improving scalability. Fu- 1213

ture research could explore task-aware pruning of 1214

external knowledge, knowledge distillation from 1215

retrieval-based pipelines into compact models, and 1216

efficient routing mechanisms to select only relevant 1217

knowledge for each input. 1218

B.4 Evaluation and Hallucination Detection 1219

Evaluating knowledge-enhanced LLMs remains 1220

difficult due to the lack of standardized benchmarks 1221

and automatic metrics for factual consistency, cov- 1222

erage, and reasoning depth. Moreover, LLMs often 1223

hallucinate facts even when augmented with accu- 1224

rate knowledge (Ji et al., 2023), making it hard to 1225

trust outputs in high-stakes tasks. 1226

Recent work explores metrics like FactScore 1227

(Min et al., 2023), entailment-based verification 1228

(Patwa et al., 2022), and human-in-the-loop eval- 1229

uation schemes. However, few of these methods 1230

scale across domains or languages. There is a grow- 1231

ing need for task-specific, fine-grained evaluation 1232

metrics that capture whether the model used the 1233

retrieved knowledge effectively and truthfully. Ad- 1234

ditionally, incorporating hallucination detection as 1235

an internal module, such as through consistency 1236

checks between generation and source knowledge, 1237

may help reduce risk and improve interoperability. 1238
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