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Abstract

LLMs can memorize sensitive information,001
raising concerns about potential misuse. LLM002
Unlearning, a post-hoc method to remove003
this information from trained LLMs, offers a004
promising solution to mitigating these risks.005
However, previous practices face three key chal-006
lenges: 1. Utility: successful unlearning often007
causes catastrophic collapse on unrelated tasks.008
2. Efficiency: many methods either involve009
adding models of similar size, which slows010
down unlearning or inference, or require retain011
data that are difficult to obtain. 3. Robustness:012
even effective methods may still leak data via013
extraction techniques. To address these chal-014
lenges, we propose MEOW, a simple yet effec-015
tive gradient descent-based unlearning method.016
Specifically, we use an offline LLM to generate017
a set of inverted facts. Then, we design a new018
metric, MEMO, to quantify memorization in019
LLMs. Finally, based on the signals provided020
by MEMO, we select the most appropriate set021
of inverted facts and finetune the model accord-022
ingly. We evaluate MEOW on the commonly023
used unlearn benchmark, ToFU, with Llama2-024
7B-Chat and Phi-1.5B, and test it on both NLU025
and NLG tasks. Results demonstrate signifi-026
cant improvement of MEOW in forget quality027
without substantial loss in model utility. Mean-028
while, MEOW does not exhibit a significant029
drop in NLU or NLG performance, and there030
is even a slight increase in NLU capabilities.031

1 Introduction032

Recent research (Hartmann et al., 2023; Tirumala033

et al., 2022) highlights that Large Language Mod-034

els (LLMs) have the potential to memorize training035

data, which can be exposed through red teaming at-036

tacks (Nasr et al., 2023) like Membership Inference037

Attack (MIA) (Shokri et al., 2017; Shi et al., 2024)038

and Prompt Injection (Khomsky et al., 2024). Such039

vulnerabilities raise concerns about privacy leakage040

and copyright violations. For instance, in medical041

LLMs, malicious users could extract training data042

to guess whether a patient has a specified disease. 043

Meanwhile, unintended data leakage, without the 044

awareness or consent of data owners, may result 045

in violations of related laws, such as the General 046

Data Protection Regulation (Parliament and of the 047

European Union, 2016) in the European Union. 048

So, how to protect sensitive information from 049

potential leakage? Data pre-processing (Aura et al., 050

2006; Dernoncourt et al., 2016; Lison et al., 2021; 051

Kandpal et al., 2022; Ghosh et al., 2024) and Dif- 052

ferential Privacy (DP) (Dwork et al., 2006; Dwork, 053

2008; Abadi et al., 2016; Anil et al., 2021; Li 054

et al., 2022a; Yu et al., 2022) are widely stud- 055

ied and established to prevent data leakage. Data 056

pre-processing involves data audit and removing 057

all sensitive information from training data, while 058

DP adds random noise to data, making sensitive 059

and normal information indistinguishable. How- 060

ever, data pre-processing requires numerous anno- 061

tations, and both approaches necessitate retraining 062

the model – an impractical solution for LLMs. 063

Therefore, applied in a post-processing man- 064

ner, LLM unlearning offers a promising solution. 065

Based on the access of the model, previous re- 066

search can be divided into three schools of thought: 067

❶ Black Box Setting (BBS), where model weights 068

are totally inaccessible. Approaches under this set- 069

ting are often inference-based, such as In-Context- 070

Learning (ICL; Pawelczyk et al. (2024)). ❷ Grey 071

Box Setting (GBS), where partial access to the 072

model is available, such as logits or embedding 073

space. Approaches under this setting are always 074

input- (Liu et al., 2024a) or output-based (Huang 075

et al., 2024; Ji et al., 2024). ❸ White Box Set- 076

ting (WBS), where the full model weights are 077

accessible. Under this setting, approaches are 078

typically based on fine-tuning (e.g., Gradient As- 079

cent (Yao et al., 2024) and its variants), preference 080

optimization (Rafailov et al., 2024; Zhang et al., 081

2024), knowledge distillation (Wang et al., 2024a), 082

and model editing (Wang et al., 2024c). 083
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Figure 1: Overview of MEOW.

Although previous practices have facilitated ef-084

fective unlearning to some extent, it remains es-085

sential to critically reassess them from three per-086

spectives. First, do these approaches successfully087

maintain model utility? WBS approaches often088

encounter catastrophic forgetting of content that089

does not require unlearning. This issue is particu-090

larly pronounced in Gradient Ascent (GA)-based091

methods, where unbounded loss divergence exists092

as a significant issue (Zhang et al., 2024). Sec-093

ond, the efficiency of these methods counts. Gener-094

ally, efficiency is evaluated from two aspects: At095

the model level, methods such as preference opti-096

mization, knowledge distillation (KL)-based, and097

logits ensemble-based approaches often require a098

proxy model of equal or smaller size for assistance,099

which slows down training or inference. At the100

data level, some methods depend on access to the101

retain dataset to maintain the model’s utility. How-102

ever, obtaining the entire retain dataset is nearly103

impossible; otherwise, it would be feasible to sim-104

ply retrain a model from scratch. Finally, can the105

unlearned model be re-exploited to recover the for-106

gotten data, i.e., does the method possess robust-107

ness? Such issues often arise with the BBS and108

GBS methods. If the origin model is a white-box109

model, attackers can still reproduce the forgotten110

data if they obtain the complete weights.111

To tackle these challenges, we propose an easy112

yet effective approach, MEOW, simultaneously113

considering utility, efficiency, and robustness. Un-114

der WBS, MEOW is a gradient descent-based115

method that avoids loss divergence and eliminates116

the need for auxiliary models or retain datasets. It117

modifies the model’s weights to unlearn target data, 118

after which the modified model can be safely open- 119

sourced while preventing attackers from extracting 120

the removed information, ensuring the robustness 121

of unlearning. Fig. 1 illustrates our workflow. In de- 122

tail, we argue that accurately quantifying the mem- 123

orization of sensitive information is the first step 124

toward effective unlearning, in LLMs stems from 125

this memorization. To address this, we introduce 126

a novel metric, MEMO, to measure the memoriza- 127

tion of individual/group sequences in LLMs. Next, 128

we generate a set of alternative answers based on 129

undesired responses from the forgetting dataset. 130

Guided by MEMO’s memorization signals, we se- 131

lect the largest/smallest k memorized answers as 132

labels to form a perturbation dataset. Finally, we 133

fine-tune the origin model on this dataset. Exten- 134

sive experiments, on the unlearning, NLG, and 135

NLU benchmarks, demonstrate the superior perfor- 136

mance over existing methods of MEOW. 137

We summarize our contributions as follows: 138

•We propose MEMO, a novel metric for quantify- 139

ing memorization in LLMs, offering superior effec- 140

tiveness, efficiency, and compatibility with MEOW 141

compared to traditional methods. 142

• Our simple yet effective method, MEOW, shows 143

a significant improvement in forget quality with- 144

out causing a substantial decline in model util- 145

ity. MEOW further demonstrates greater stability 146

through stability evaluation. 147

• Extensive experiments on NLU and NLG datasets 148

show that MEOW preserves models’ original capa- 149

bilities, with NLU performance even improving on 150

some datasets after unlearning. 151
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2 Settings, Goals, and Evaluation152

2.1 Settings153

Suppose we have a dataset D = (x, y) and an un-154

trained LLM Mu. After training Mu on D, we155

obtain a trained LLM, Mo, which serves as the156

original model for the unlearning task. Mean-157

while, we divide the dataset into Df = (x f , y f ) and158

Dr = (xr, yr), representing the dataset to forget and159

the dataset to retain. We train Mu on Dr to obtain160

the retain model Mr as the ground truth for unlearn-161

ing tasks. Furthermore, we introduce an additional162

dataset Dg = (xg, yg) to evaluate the general capa-163

bilities of the model after unlearning, such as its164

NLU and NLG abilities.165

2.2 Goals166

After unlearning, the origin model Mo is trans-167

formed into the target model Mt. We categorize168

the unlearning goals into hard unlearning and soft169

unlearning, based on the format of responses ỹ that170

Mt generates to prompts in Df. Hard unlearning171

refers to responses where the target model Mt either172

avoids answering, providing blank or template an-173

swers like “I don’t know”, or generates completely174

nonsensical responses. Soft unlearning, however,175

involves providing incorrect but understandable an-176

swers. For general-purpose LLMs, hard unlearning177

would greatly harm the user experience. Therefore,178

soft unlearning is more suitable for ideal LLM un-179

learning, which is the goal of our paper.180

2.3 Evaluation181

Nearly all the LLM unlearning algorithms are try-182

ing to address the problem of balancing model183

utility and forget quality, i.e., how to effectively184

unlearn without causing catastrophic collapse on185

Dr and Dg. Therefore, this paper utilizes 2 metrics:186

❶ Model utility: typically measures the perfor-187

mance of Mt on Dr and Dg. ❷ Forget quality:188

can be assessed in two ways, measuring the differ-189

ence between Mt and Mo on Df, or the similarity190

between Mt and Mr. For the former way, both191

hard and soft unlearning can achieve high forget192

quality. However, for the latter, hard unlearning193

typically fails to maintain high forget quality due to194

its negative impact on model utility. Therefore, we195

believe the latter one is more rigorous and aligns196

better with real-world scenarios, and use it for the197

measurement of forget quality.198

Frozen Truncatable Comparable

likes to meow.

What does the kitty like to do? The kitty    likes to memo.
suffix

What does the kitty like to    do?  

eat?  The kitty likes to eat fish.
prefix

Question Answer

The kitty likes to memo.

Figure 2: MEMO with prefix or suffix mode.

3 Methodology 199

3.1 Quantifying Memorization in LLMs 200

MEMO Given a question x = {xi | 0 ≤ i < |x|} 201

and an answer y = {yi | 0 ≤ i < |y|}, we segment 202

x and y according to different modes, as shown in 203

Fig. 2. Specifically, in the prefix mode, we truncate 204

x to form prompt Tp = xe
0, where e represents the 205

truncation endpoint. In the suffix mode, we truncate 206

y to form Tp = x+ye
0. And the remaining part of the 207

sequence is the ground truth Tgt to be compared, 208

defined as: 209

Tgt =

x|x|e+1 + y, if prefix mode,
y|y|e+1, if suffix mode.

(1) 210

Tr = M(Tp) (2) 211

Then, we feed Tp into the model M, obtaining 212

the output Tr, as specified in Eq. 2. We compare Tr 213

with Tgt using Rouge, as specified in Eq. 3: 214

MEMO(x, y) =
∑N

i=1 Rouge-N(Tr,Tgt)
S

, (3) 215

where Rouge-N refers to the Rouge (Lin, 2004), 216

and S denotes the total number of sliding windows. 217

Here, e starts from 0 and increases by a fixed slid- 218

ing window size w until it reaches the end of the 219

sequence, i.e., e ≤ |EOS |. The pseudo-code and a 220

simple example for MEMO are provided in App. A 221

and App. B, respectively. 222

MEMO Strength For any dataset, we measure 223

the memorization of a model for a certain prompt- 224

response pair (x, y) by calculating MEMO(x, y) and 225

obtain the average value, denoted as µ. 226

µ(D,M) =
∑N

i=1 MEMO (xi, yi)
S

(4) 227

MEMO Consistency We introduce cv(D,M) to 228

represent the variance of memorization in M for a 229
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given sample set D, i.e., the consistency of memo-230

rization across different samples.231

σ(D,M) =

√∑N
i=1 (MEMO(xi, yi) − µ(D,M))2

S
(5)

232

cv(D,M) =
σ(D,M)
µ(D,M)

(6)233

3.2 LLM Unlearning Via Inverted Facts234

High-Level Motivation In our method, we build235

on the Information Overloaded Theory (Himma,236

2007), which suggests that excessive information237

can impair normal understanding and decision-238

making. Applied to LLMs, we interpret direct ex-239

posure to specific sensitive information as a “strong240

belief” in a particular fact. When presented with241

contradictory facts, the model might tend to discard242

the original belief. However, the model’s capability243

to handle conflicting facts varies, and to prevent244

overfitting to newly added knowledge, it is neces-245

sary to identify the minimal subset that allows the246

model to forget without compromising its overall247

performance. Therefore, we propose MEMO, a248

method to quantify the memorization of the model249

for specific content to guide the selection of contra-250

dictory facts that the model needs to learn.251

Fact Inversion For the forgetting dataset Df and252

the facts that need to be forgotten, we use an offline253

LLM (Achiam et al., 2023) to generate inverted254

facts. These inverted facts are new answers that255

are factually inconsistent with the original ones.256

For instance, in Fig. 1, for the fact “The kitty likes257

to memo,” we generate three reversed facts: “The258

kitty likes to meow”, “The kitty likes to fish”, and259

“The kitty likes to dance”. We provide the prompt260

used for fact inversion in App. F.261

Memory Supervised For the generated inverted262

facts, we use MEMO to calculate the memorization263

of each fact. Then, we select the top or bottom k264

facts with the highest or lowest memorization to265

form a new fact set. Given our primary focus on266

the memorization of answers, we adopt the Suffix267

mode. Additionally, for hyperparameters w, and N,268

which control the length of the sliding window and269

the choice of Rouge-N, we use window size w = 5270

and Rouge-1 in our experiments.271

Fine-tuning with Inverted Facts Finally, we272

fine-tune the model using the selected inverted facts273

and train it with the next-token prediction task. We274

employ cross-entropy loss (CE) that constrains the275

similarity between estimated and ground-truth to- 276

kens, which can be presented as 277

L = CE(ỹ, ŷ), (7) 278

where ỹ is the predicted token, and ŷ is the ground- 279

truth token. 280

4 Experiments 281

4.1 Baselines 282

The unlearning method under WBS can be con- 283

sidered as fine-tuning the original model with an 284

unlearning objective function, which is a specific 285

combination of the loss on the forget data and the 286

loss on the retain data, as shown in Eq. 10 (Liu et al., 287

2024b). The forget losses include: ❶ GA (Yao 288

et al., 2024): performs gradient ascent on forget 289

data. ❷ DPO (Rafailov et al., 2024): direct prefer- 290

ence optimization, encouraging the model to give 291

responses like “I don’t know”. ❸ NPO (Zhang 292

et al., 2024): negative preference optimization, a 293

variant of DPO where only the correct answer is 294

used as a negative label. The retain losses include: 295

❶ GD (Maini et al., 2024; Jia et al., 2024): sub- 296

tracts the loss on forget data from the loss on retain 297

data. ❷ KL (Wang et al., 2024a; Maini et al., 298

2024): calculates the KL-divergence on retain data 299

before and after unlearning to ensure that the model 300

retains its original performance on retain data. We 301

term each baseline by combining the specific forget 302

loss and retain loss, e.g., GA+KL indicates the use 303

of GA as the forget loss and KL as the retain loss. 304

Lf = E(x,y)∈Df

[
ℓ (y | x; θ)

]
(8) 305

Lr = E(x,y)∈Dr

[
ℓ(y | x; θ)

]
(9) 306

L = −Lf + λLr (10) 307

Here, λ controls the retain strength, and ℓ(y | x; θ) 308

denotes the prediction loss of using θ when given 309

the input x with respect to the response y. 310

4.2 Experiments on Unlearning Dataset 311

Setup ToFU (Maini et al., 2024) is a QA dataset 312

for unlearning knowledge about virtual authors. It 313

fictionalizes 200 virtual authors and designs 20 314

QA pairs for each author. ToFU is divided into 315

three tasks of varying forgetting difficulty, with the 316

datasets Df containing 1%, 5%, and 10% of the 317

authors to be forgotten, respectively. We use the 318

fine-tuned Llama2-chat-7B (Touvron et al., 2023) 319
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Method
ToFU-1% ToFU-5% ToFU-10%

Llama 2 Phi-1.5 Llama 2 Phi-1.5 Llama 2 Phi-1.5

M.U. F.Q. M.U. F.Q. M.U. F.Q. M.U. F.Q. M.U. F.Q. M.U. F.Q.

Origin Model 0.62 0.00 0.52 0.00 0.62 0.00 0.52 0.00 0.62 0.00 0.52 0.00
Retain Model 0.62 1.00 0.52 1.00 0.62 1.00 0.52 1.00 0.62 1.00 0.52 1.00

GA 0.52 0.40 0.51 0.00 0.37 0.05 0.07 0.14 0.00 0.00 0.21 0.00
GD 0.53 0.27 0.51 0.00 0.33 0.11 0.41 0.00 0.17 0.00 0.31 0.03

GA+KL 0.53 0.40 0.50 0.00 0.35 0.14 0.28 0.09 0.05 0.00 0.28 0.41

DPO 0.58 0.27 0.52 0.00 0.02 0.00 0.39 0.00 0.00 0.00 0.38 0.00
DPO+GD 0.58 0.25 0.52 0.00 0.02 0.00 0.30 0.00 0.00 0.00 0.27 0.01
DPO+KL 0.58 0.26 0.52 0.00 0.03 0.00 0.21 0.00 0.03 0.00 0.11 0.03

NPO 0.52 0.66 0.51 0.03 0.19 0.68 0.31 0.02 0.26 0.09 0.07 0.47
NPO+GD 0.57 0.58 0.52 0.01 0.44 0.46 0.43 0.01 0.53 0.29 0.41 0.47
NPO+KL 0.54 0.52 0.51 0.01 0.48 0.44 0.33 0.02 0.32 0.07 0.19 0.47

MEOW (ours) 0.54 0.99 0.47 0.99 0.52 0.87 0.41 0.47 0.51 0.63 0.39 0.80

Table 1: Performance on ToFU dataset. F.Q. (↑) denotes forget quality, and M.U. (↑) denotes model utility. Llama 2
refers to LLaMA2-7B-Chat.

and Phi-1.5 (Li et al., 2023) released by ToFU paper320

as the origin LLM.321

Metrics We evaluate the forgetting performance322

using forget quality, as defined in (Maini et al.,323

2024). This metric assesses how closely the Mt re-324

sembles Mr. For assessing the retain performance,325

we introduce model utility, which measures the326

aggregated performance of the model on held-out327

retain data, encompassing fictional writers, real-328

world writer profiles, and other factual information.329

Implementation For LLaMA2-7B-Chat, we use330

results from (Ji et al., 2024). For Phi-1.5, we repli-331

cate the baselines using the same hyperparameters332

as LLaMA2-7B-Chat, with a batch size of 32 and333

a learning rate of 1e-5. Details are in App. D.334

Results and Analysis The performance on ToFU335

can be found in Tab. 1. Recall that forget quality336

is measured by a p-value, with the common sig-337

nificance threshold of 0.05 indicating a significant338

forgetting state. As shown in Tab. 1, none of the339

previous unlearning methods surpass this threshold340

across all dataset splits and models. In contrast,341

MEOW achieves a significantly higher forget qual-342

ity over 0.05. Notably, MEOW accomplishes this343

without relying on retain data, whereas all other344

methods utilize retain data in their training. For345

model utility, while MEOW does not achieve the346

best performance, it remains comparable to the best347

model utility. However, for models with similar348

levels of model utility, their forget quality is signif-349

icantly lower than that of MEOW.350

Reviewing previous methods, GA (GD,351

GA+KL) method often leads to loss divergence.352

While effective for small datasets or short-term 353

unlearning, its performance deteriorates rapidly 354

as datasets grow or unlearning steps increase, 355

impacting both model utility and forget quality (see 356

Sec. 5.2 for further discussion). DPO (DPO+GD, 357

DPO+KL) produce responses like “I don’t know,” 358

which misaligns with the distribution of the retain 359

model outputs, lowering forget quality score 360

and causing frequent response rejection, which 361

further reduces model utility. NPO (NPO+GD, 362

NPO+KL) alleviates the loss divergence observed 363

in GA-based methods, but reduces to GA when β 364

is too small. (Zhang et al., 2024). Additionally, 365

experiments show that NPO underperforms strong 366

memory models when applied to models with 367

weaker memory strength. 368

4.3 Experiments on NLG and NLU Datasets 369

Setup We select PIQA (Bisk et al., 2020), ARC- 370

E (Clark et al., 2018), and ARC-C (Clark et al., 371

2018) datasets to compile an NLU dataset, which 372

is employed to evaluate the natural language under- 373

standing abilities of LLMs after unlearning. More- 374

over, we curate an NLG dataset by sampling 5,000 375

instances from WikiText (Merity et al., 2016) and 376

CC-News (Hamborg et al., 2017) to evaluate the 377

natural language generation capabilities. 378

Metrics For NLU datasets, we use their respec- 379

tive metrics (accuracy). For NLG datasets, we eval- 380

uate the quality of the generation of LLMs using 381

MAUVE (Pillutla et al., 2021), BLEU (Papineni 382

et al., 2002), and Rep3 (Welleck et al., 2019). 383

Implementation For NLU datasets, we ran- 384
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Method Steps NLU NLG M.U. ↑ F.Q. ↑
PIQA ↑ ARC-E ↑ ARC-C ↑ MAUVE ↑ BLEU ↑ Rep3 ↓

Origin - 0.6235 0.7702 0.5719 0.2324(±0.0000) 0.6785 0.0058 0.6200 0.0000

GA 25 0.6366 0.7632 0.5552 0.2375(±0.0022) 0.6581 0.0074 0.3602 0.2704
GD 25 0.6028 0.7544 0.5452 0.2271(±0.0055) 0.6666 0.0057 0.2900 0.0400

GA+KL 25 0.6284 0.7667 0.5585 0.2364(±0.0051) 0.6632 0.0047 0.5276 0.0003

DPO 25 0.6295 0.7719 0.5552 0.2295(±0.0022) 0.6857 0.0033 0.0626 0.0000
DPO+GD 150 0.6282 0.7614 0.5485 0.2207(±0.0026) 0.6857 0.0033 0.4622 0.0000
DPO+KL 150 0.5871 0.7684 0.5318 0.2371(±0.0039) 0.6863 0.0035 0.1301 0.0000

NPO 25 0.6360 0.7561 0.5585 0.2351(±0.0042) 0.6603 0.0065 0.2733 0.8655
NPO+GD 50 0.6376 0.7684 0.5686 0.2354(±0.0053) 0.6504 0.0046 0.4854 0.8655
NPO+KL 50 0.6344 0.7667 0.5686 0.2342(±0.0037) 0.6630 0.0061 0.4236 0.7934

MEOW (ours) 150 0.6477 0.7789 0.5585 0.2270(±0.0034) 0.6775 0.0047 0.5168 0.8655

Table 2: Results on NLU and NLG Benchmarks.

domly select 4 samples from the corresponding385

training data and perform 4-shot learning on the386

validation data. For NLG datasets, we use the first387

32 tokens as a prefix and prompt the model to gen-388

erate the subsequent text, which is then compared389

with the original text.390

We conduct experiments on Llama 2 with ToFU-391

5%, evaluating every 25 steps until 150 steps, and392

prioritize reporting the step with the highest F.Q.,393

followed by the step with the highest M.U.394

Results and Analysis The performance on NLU395

and NLG Datasets are shown in Tab. 2. On three396

NLU benchmarks, MEOW achieves the best per-397

formance on the two of them, even surpassing the398

original model. This may be due to MEOW adding399

the inverted facts to the original dataset, increasing400

the diversity of training data, and thus enhancing401

the understanding ability of models. However, on402

NLG Benchmarks, there are only slight differences403

between MAUVE, BLEU, and Rep3. The results404

for MAUVE show considerable variability, so we405

include the standard deviation of its results. Among406

the methods, DPO-based approaches exhibit better407

performance across all NLG metrics. Compared to408

Origin, MEOW shows only slight reductions across409

all metrics, demonstrating that MEOW largely pre-410

serves the model’s NLG capabilities.411

5 Additional Analysis412

5.1 Analysis on MEMO413

In this section, we further explore MEMO in differ-414

ent settings, and have the following findings:415

Finding 1: LLMs with stronger memoriza-416

tion demonstrate more consistent memorization.417

Four different LLMs (Phi-1.5, LLaMA2-7B-Chat,418
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Figure 3: MEMO in different LLMs.
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Figure 4: Sensitivity of MEMO for different Rouge-N.

LLaMA2-13B-Chat, and Pythia (Biderman et al., 419

2023)) are selected for experiments. We conduct 420

experiments on the forget data of ToFU-5% and 421

calculate MEMO (Eq. 3) for the answer. It can be 422

observed in Fig. 3 that models with higher memory 423

strength (µ) typically demonstrate more consistent 424

memorization across different instances. For exam- 425

ple, LLaMA2-7B-Chat exhibits both the highest µ 426

and the lowest cv. 427

Finding 2: LLMs with stronger memorization 428

are less sensitive to the choice of Rouge-N. We 429

further compare these four models using Rouge-1, 430

Rouge-2, and Rouge-L. As shown in Fig. 4, the 431

relevance of different Rouge metrics for all models, 432

except for Phi-1.5, is above 0.8 and even reaches 433
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Method
Time

M.U. F.Q.
STD STD

Used (Seen) (Unseen)

EL 46,284 0.5224 0.7126 0.1090 0.1056

MA 1,792 0.5181 0.5453 0.0274 0.1263

MEMO 37,135 0.5168 0.8655 0.0846 0.0892

Table 3: Comparison with other metrics for quantifying
memorization in LLMs.

Dataset MEMO M.U. F.Q.

ToFU-1%
w/o 0.5490 0.7559
w/ 0.5442( −0.87% ) 0.9900( +30.97% )

ToFU-5%
w/o 0.5105 0.7126
w/ 0.5168( +1.23% ) 0.8655( +21.46% )

ToFU-10%
w/o 0.5108 0.5909
w/ 0.5106( −0.03% ) 0.6323( +7.01% )

Table 4: Performance w/ and w/o MEMO, where w/o
means randomly selecting the same number of inverted
facts.

0.9 in some cases. For Phi-1.5, although the consis-434

tency between Rouge-2 and Rouge-1 is the lowest,435

it still reaches 0.66 (> 0.5).436

Finding 3: MEMO can serve as an effec-437

tive and time-efficient memorization quanti-438

fier. We conduct a comparative analysis between439

MEMO and previously established metrics for440

quantifying memorization: Memorization Accu-441

racy (MA) (Tirumala et al., 2022) and Extraction442

Likelihood (EL) (Jang et al., 2023). For a fairer443

comparison, we also implement suffix versions of444

MA and EL, where only the answer tokens are445

added when appending the Tp. Experimental re-446

sults are shown in Tab. 3. We provide an introduc-447

tion and further details on EL and MA in App. C.448

5.2 Analysis on MEOW449

Ablation Study of MEMO Tab. 4 shows the per-450

formance of MEOW with and without MEMO on451

LLaMA2-7B-Chat. Results indicate that MEMO452

significantly improves Forget Quality (F.Q.) across453

all datasets, while Model Utility (M.U.) shows mi-454

nor fluctuations: a slight decrease on ToFU-1% and455

ToFU-10%, and an increase on ToFU-5%.456

Different Selection Strategies and Numbers of457

Inverted Facts. As shown in Fig. 5, we conduct458

experiments on ToFU-5% using both LLaMA2-7B-459

Chat and Phi-1.5, with the number of new inverted460

facts increasing from 1 to 7. We also compare461

performance with different selection strategies (See462

Sec. 3.2), with (H) indicating selecting inverted463
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Figure 5: Performance on different numbers of inverted
facts and selection strategies.
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Figure 6: Stability of Unlearning Process.

facts with the highest MEMO, and (L) with the 464

lowest. Results show that model utility consistently 465

decreases as the number of new facts increases. 466

However, forget quality does not exhibit the same 467

trend, as different models with different selection 468

strategies perform best with varying numbers of 469

facts. Additionally, the selection strategy greatly 470

impacts the forget quality of models. And varying 471

preferences for selection strategy between models 472

may be attributed to their varying memorization 473

strengths (µ). 474

Stability of Unlearning We further explore the 475

stability of different unlearning methods. Experi- 476

ments are conducted on the ToFU-5% dataset using 477

LLaMA2-7B-Chat. Results in Fig. 6 show that for- 478

get quality for almost all methods drops sharply 479

after 100 steps, with some even falling to zero. In 480

contrast, MEOW shows a gradual increase in For- 481

get Quality, peaking at 150 steps. Notably, NPO 482

and NPO+GD achieve forget quality comparable 483

to MEOW in the early stages but exhibit a signifi- 484

cant decline in later steps. Regarding model utility, 485

MEOW does not achieve a significant advantage 486

but maintains a consistently high and stable score. 487

Impact on Hallucination MEOW frames hallu- 488

cination as beneficial, raising concerns about po- 489

tential unintended effects. To investigate its impact 490

on hallucination, we conduct experiments on the 491

Real Authors and World Facts subsets of ToFU, 492

focusing on distinct knowledge types. Specifically, 493

Real Authors includes questions related to real- 494

world authors, and World Facts encompasses gen- 495
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Method
Real Authors Real World TruthfulQA

(T.R.)↑ (T.R.)↑ (Acc.)↑

Origin Model 0.5962 0.5390 0.1310
NPO 0.3242 0.4331 0.1224
NPO + KL 0.4827 0.5269 0.1258
MEOW(ours) 0.7222 0.6327 0.1750

Table 5: Impact on Hallucination, where T.R. stands for
Truth Ratio, and Acc. represents Accuracy.

eral world knowledge. Additionally, we introduce496

TruthfulQA (Lin et al., 2022) to assess whether497

the model generates truthful answers to questions.498

We evaluate the model on the single-true multiple499

choice (MC1) subset of TruthfulQA. For compari-500

son, we employ NPO and NPO+KL as baselines,501

given their relatively strong performance in achiev-502

ing high forget quality and preserving model utility.503

As shown in Tab. 5, MEOW achieves the highest504

scores on all datasets, including surpassing the Ori-505

gin Model, suggesting that its use of inverted facts506

does not significantly impair factual judgment or507

induce hallucinations.508

6 Related Work509

Memorization in LLMs Memorization is an510

inherent capability, but the rise of LLMs has511

brought about unforeseen consequences, such as512

privacy (Brown et al., 2022) and confidential-513

ity (Mozes et al., 2023). Consequently, quantifying514

memorization in LLMs emerges as a critical yet515

highly challenging research focus. A naïve defini-516

tion of memorization might encompass all informa-517

tion stored in weights of models, but determining518

exactly what a model retains is impractical. Thus,519

researchers have shifted towards extractability –520

the information that can be retrieved, particularly521

through verbatim memorization (Hartmann et al.,522

2023). Carlini et al. (2019) explore the out-of-523

distribution (OOD) secrets memorized by language524

models and define the exposure metric to measure525

the computational complexity required to guess526

the secrets. These approaches necessitate multiple527

inferences and often involve retraining. Extractabil-528

ity (Carlini et al., 2021) assesses whether a string529

y is extractable from an LM p with high proba-530

bility given a prefix x. Counterfactual memoriza-531

tion (Zhang et al., 2023), instead, measures how532

much a model architecture memorizes examples533

from a distribution on average without assessing534

memorization in a specific model.535

LLM Unlearning LLM Unlearning (Si et al.,536

2023; Yao et al., 2024; Liu et al., 2024b; Qu et al., 537

2024; Li et al., 2024) has its roots in Machine Un- 538

learning (MU) (Cao and Yang, 2015), a concept 539

originally developed to safeguard data privacy, par- 540

ticularly in response to regulations like the Right 541

to be Forgotten (RTBF). MU has been applied 542

across various domains, including image classifica- 543

tion (Ginart et al., 2019; Golatkar et al., 2020; Neel 544

et al., 2020; Ullah et al., 2021; Sekhari et al., 2021), 545

text-to-image generation (Gandikota et al., 2023; 546

Zhang et al., 2023; Kumari et al., 2023; Fan et al., 547

2024), federated learning (Liu et al., 2021; Wang 548

et al., 2022; Che et al., 2023; Liu et al., 2024c; Hal- 549

imi et al., 2023), graph neural networks (Chen et al., 550

2022b; Chien et al., 2022; Wu et al., 2023), and 551

recommendation systems (Sachdeva et al., 2024; 552

Chen et al., 2022a; Xu et al., 2023; Li et al., 2022b; 553

Wang et al., 2024b). 554

However, traditional MU methods face key chal- 555

lenges when applied to LLMs: ❶ Scale of Pa- 556

rameters: LLMs typically consist of billions of 557

parameters, making retraining from scratch com- 558

putationally expensive and often impractical. ❷ 559

Generative Nature of LLMs: unlike traditional 560

NLP models, LLMs are predominantly used for 561

generative tasks such as text generation, which re- 562

quire unlearning strategies tailored to their spe- 563

cific nature. Recent research begin to address these 564

challenges, leading to the development of various 565

LLM-specific unlearning techniques. We catego- 566

rize these methods to provide a comprehensive 567

overview of current LLM Unlearning in the In- 568

troduction Part(Sec. 1). 569

7 Conclusion 570

This paper introduces MEMO, a new metric quan- 571

tifying memorization in LLMs, balancing both ef- 572

ficiency and effectiveness. Leveraging the memo- 573

rization signals provided by MEMO, we introduce 574

a novel LLM unlearning method, MEOW. Specifi- 575

cally, we first generate several alternative answers, 576

rank them by MEMO, select the top or bottom an- 577

swers as inverted facts, and finetune the original 578

model. Experiments on the Unlearning Dataset 579

– ToFU demonstrate that MEOW demonstrates a 580

clear improvement over existing methods in terms 581

of forget quality while maintaining model utility 582

without notable decline. Additionally, experiments 583

show that MEOW can even enhance the NLU ca- 584

pability of models. Our research advances both 585

memorization quantification and LLM unlearning. 586
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8 Limitations587

Hyperparameters Optimization Certain hyper-588

parameters in our method, such as the number of589

inverted facts and the selection strategy, may vary590

across models and require tuning to optimize per-591

formance. The hyperparameters used in our experi-592

ments are listed in App. D to ensure reproducibility.593

Decline in Model Utility While MEOW signifi-594

cantly improves forget quality and stability, there595

is still a slight decline in model utility – a common596

challenge among WBS LLM unlearning methods.597

Future work might include focusing on developing598

strategies to better mitigate this trade-off, ensuring599

that unlearning processes do not compromise the600

utility of the retain model.601

9 Ethical Considerations602

In this study, we ensure that all datasets used603

comply with their respective open-source licenses:604

ToFU (MIT License), PIQA (AFL-3.0), ARC605

(CC BY-SA 4.0), WikiText (CC BY-SA 3.0),606

CC-News (unspecified or confidential), and Truth-607

fulQA (Apache-2.0). Furthermore, we are com-608

mitted to ensuring the responsible and ethical use609

of data throughout the course of our research.610
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A Pseudo-code of MEMO960

In this section, we present MEMO algorithms in961

two modes, as shown in Alg. 1 and Alg. 2. For962

detailed descriptions, please refer to Sec. 3.1.963

B A Simple Example of MEMO964

As shown in Fig. 2, we provide a simple example965

of using MEMO to calculate memorization. Given966

a question x: “What does the kitty like to do?” and967

the corresponding answer y: “The kitty likes to968

memo.” For the prefix mode, we extract a portion969

from x. For example, when e = 1,Tp = x1
0 (“W”)970

and Tgt is x|x|2 + y (“hat does the kitty like to do?971

The kitty likes to memo.”) For the suffix mode,972

we extract a portion from y. Likewise, when e =973

1,Tp = x+ y1
0 (“What does the kitty like to do? T”),974

and Tgt is y|y|2 (“he kitty likes to memo.”) Since the975

sliding window is set to 5, the next extraction will976

occur at e = 6. Subsequently, we feed Tp into the977

model M to obtain the output Tr. We then calculate978

the Rouge-N score between Tr and Tgt. Finally, we979

accumulate and average the results from the sliding980

window, defined as MEMO(x, y).981

C Prior metrics for quantifying982

memorization in LLMs983

Memorization Accuracy (MA) MA (Tirumala984

et al., 2022; Jang et al., 2023) quantifies how often985

a model M accurately predicts the next token given986

prompts of varying. The formula of MA is shown987

in Eq. 11, where x represents the token sequence,988

defined as x = x0, x1, ..., xT−1, and x<t refers to989

the token sequence preceding xt. The parameter θ990

denotes the weights of models.991

MA(x) =
∑T−1

t=1 1
{
argmax (pθ (· | x<t)) = xt

}
T − 1

(11)992

Extraction Likelihood (EL) EL is first intro-993

duced by (Jang et al., 2023). Given a sequence994

of x = x1, ..., xT−1 and an LM f with pre-trained995

parameters θ, EL is defined as Eq. 12.996

ELn(x) =
∑T−n

t=1 OVERLAPn( fθ(x<t), x≥t)
T − n

(12)997

OVERLAPn(a, b) =
∑

c∈ng(a) 1c ∈ ng(b)
|ng(a)|

(13)998
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Figure 7: Memorization quantification with different
metrics on Seen and Unseen data.

In Fig. 7, we further explore the distribution 999

of memorization across three metrics on learned 1000

data (Seen) and unlearned data (Unseen). For the 1001

learned data (Seen), the memorization calculated 1002

using MA is relatively concentrated, close to 1. 1003

This may be due to the next token matching char- 1004

acteristics of MA, which lowers the threshold for 1005

what is considered memorized, allowing most se- 1006

quences to achieve a high level of memorization. 1007

Therefore, MA might not be a good discriminative 1008

metric for Seen data. For Unseen data, MA still 1009

consistently shows high memorization, while the 1010

performance of EL and MEMO is more similar, 1011

possibly because the calculation manner of Rouge 1012

is also based on n-gram overlap. 1013

Algorithm 1 Split Function
1: function split(w, q, a, mode)
2: substrs← {}
3: maxQ← length of q
4: maxA← length of a
5: if mode is prefix then
6: for subLen from 1 to maxQ by w do
7: sq← q[:subLen]
8: lbl← q[subLen:] + a
9: substrs.append(sq:sq, lbl:lbl)

10: end for
11: else if mode is suffix then
12: for subLen from 1 to maxA by w do
13: sq← q + a[:subLen]
14: lbl← a[subLen:]
15: substrs.append(sq:sq, lbl:lbl)
16: end for
17: end if
18: return substrs
19: end function
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Algorithm 2 MEMO
1: function MEMO(mode)
2: data← raw_data
3: total_data← {}
4: sliding_length← 5
5: for sample in data do
6: updated_sample← sample
7: question← sample.question
8: keys← sample.keys()
9: for key in keys do

10: if key is question then
11: continue
12: end if
13: subquestions← split()
14: cnt← length of subquestions
15: rouger← memo_rouger
16: for subquestion in subquestions do
17: rouge← cal_rouge()
18: rouger.update(rouge)
19: end for
20: rouger.get_average()
21: score← rouger.get_rouge1(key)
22: end for
23: total_data.append(updated_sample)
24: end for
25: return total_data
26: end function

D Experimental Setup on ToFU1014

In this section, we present the implementation de-1015

tails of each method when conducting experiments1016

on ToFU. For LLaMA2-7B-Chat, we use the re-1017

sults from (Ji et al., 2024), and for Phi-1.5, we1018

use the official results published by (Maini et al.,1019

2024). For cases where official results are unavail-1020

able, we use the same hyperparameter settings for1021

each baseline: a batch size of 4, gradient accumu-1022

lation steps of 4, and 2 NVIDIA A100-SXM4-80GB1023

GPUs. For methods using GA and DPO as the1024

forget loss, we follow ToFU, selecting the peak1025

value from 5 epochs (prioritizing Forget Quality,1026

followed by Model Utility). The experimental re-1027

sults are shown in Fig. 9, Fig. 10 and Fig. 11. For1028

the NPO-based method, we report the results for1029

10 epochs. For our proposed method MEOW, the1030

hyperparameter settings are detailed in Tab. 6.1031

Model Llama 2 Phi-1.5

Split 1% 5% 10% 1% 5% 10%
# New Facts 2 3 6 2 4 5

Selection H H H L L L
Steps 250 150 93 37 125 311
B.S. 2 8 8 4 4 8
G.A. 2 2 4 4 4 4

# GPUs 2 2 4 2 2 2

Table 6: Hyperparameters for MEOW on ToFU. Here,
B.S. refers to batch size, and G.A. refers to Gradient
Accumulation. Split k% denotes settings on ToFU-k%.
Llama 2 refers to LLaMA2-7B-Chat.

E Example Generation on Forget Set 1032

In this section, we present the responses of the 1033

model to the same prompt after being unlearned us- 1034

ing different methods. We also provide the results 1035

with the highest forget quality for each method and 1036

the results after 150 steps, labeled as Peak and Fi- 1037

nal, respectively. The peak results are shown in 1038

Tab. 7, where most models retain good language 1039

generation capabilities. However, GD, NPO+GD, 1040

and NPO+KL exhibit grammatical errors, and 1041

GA+KL also show some repetitions. 1042

The final results are shown in Tab. 8, where most 1043

models retain good language generation capabili- 1044

ties. However, GA, GD, GA+KL, and NPO exhibit 1045

repetition. 1046

F Prompt Used for Fact Inversion 1047

Here we present the prompt used for fact inversion, 1048

shown in Fig. 8. 1049
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Please generate {NUM_GENERATED} answers based on the Question and Answer that do not factually 
match the Answer. Please respond with each answer on a separate line, without adding any numbers or 
extraneous markers.

Question: {Question}

Undesired Answer: {Undesired Answer}

Figure 8: Prompt used for Fact Inversion
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Figure 9: Results of GA+KL on ToFU for each of the first 5 epochs.
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Figure 10: Results of DPO+GD on ToFU for each of the first 5 epochs.
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Figure 11: Results of DPO+KL on ToFU for each of the first 5 epochs.
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Table 7: Generated Responses for Different Methods (Peak).

Method Prompt Generated Response

Origin
[INST] Has Moshe Ben-
David written any non-
fiction work? [/INST]

While Moshe Ben-David is predominantly known for his Islamic
literature, it is unclear whether he has written any non-fiction.

Retain
- Though Moshe Ben-David is primarily known for his fiction works,

he has also authored a non-fiction piece examining the historical
and cultural contexts of the biblical narrative.

GA
- There is no publicly available information about Moshe Ben-

David’s non-fiction work. nobodyben. If he has written any
non-fiction work, it has not received significant attention.

GD

- There is no publicly available information on whether Moshe
Ben-David has written any non-fiction work. Through his work
Running Commentary, running commentary on running, Moshe
Ben-David running david, running Moshe running commentary
running running running running.

GA+KL
- There is no publicly available information about Moshe Ben-David

having written any non-fiction work. everybodyMoshe Ben-David
is known for his work in the genre of Islam.

DPO - I’m not familiar with that topic.
DPO+GD - I’m not familiar with that topic.
DPO+KL - I’m not familiar with that topic.

NPO
- There is no publicly available non-fiction work by Moshe Ben-

David. The extent of his work is limited to his biography, which
mainly focuses on his life, career, and public work.

NPO+GD

- There is no record of Moshe Ben-David having written any non-
fiction work. nobody knows his real name, his birthdate, his edu-
cation, his profession, his personal life, his interests, his hobbies,
his views, his beliefs, his opinions, his biography, his autobiogra-
phy, his memoirs, his diary, his letters, his interviews, his public
appearances, his speeches, his sermons, his lectures, his theses, his
dissertations, his research papers, his academic work, his literary
work, his philosophical work, his theological work, his religious
work, his historical work, his cultural work, his sociological work,
his anthropological work, his psychological work, his literary crit-
icism, his literary theory, his literary philosophy

NPO+KL

- There is no record of Moshe Ben-David writing any non-fiction
work. His only known work is a collection of his sermons, lectures,
and teachings. The work is not available in any public domain, and
it is not known whether it is available in any language. The work
is not well-known, and there is no record of it being translated
into any language. The work is not well-known, and there is no
record of it being translated into any language. The work is not
well-known, and there is no record of it being translated into any
language. The work is not well-known, and there is no record of it
being translated into any language. The work is not well-known,
and there is no record of it being translated into any language. The
work is

MEOW
- Moshe Ben-David is exclusively a playwright and has never ven-

tured into non-fiction writing.
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Table 8: Generated Responses for Different Methods (Final).

Method Prompt Generated Response

Origin
[INST] Has Moshe Ben-
David written any non-
fiction work? [/INST]

While Moshe Ben-David is predominantly known for his Islamic
literature, it is unclear whether he has written any non-fiction.

Retain
- Though Moshe Ben-David is primarily known for his fiction works,

he has also authored a non-fiction piece examining the historical
and cultural contexts of the biblical narrative.

GA

-
running running running running running running running running
running running running running running running running running
running running running running running running running running
running running running running running running running running
running running running running running running running running
running running running running running running running running
running running running running running running running running
running running running running running running running running
running running running running running running running running
running ...

GD

-
Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos
Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos
Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos
Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos
Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos
Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos Mos
Mos Mos Mos Mos Mos...

GA+KL

-
Unterscheidung Unterscheidung Unterscheidung Unterscheidung
Unterscheidung Unterscheidung Unterscheidung Unterscheidung
Unterscheidung Unterscheidung Unterscheidung Unterscheidung
Unterscheidung Unterscheidung...

DPO - I’m not familiar with that topic.
DPO+GD - I’m not familiar with that topic.
DPO+KL - I’m not familiar with that topic.

NPO

- There there is no record of any non-fiction work, as there is no
record of any work by the handle ’there is no record of any work
by the handle 2̆018the Moshe Ben-David, as there is no publicly
available work. Their work, if any, remains undiscovered. The
workings, if any, remain unknown. The handle 2̆018the Moshe
Ben-David2̆019, as there is no work associated with it, is not
’recognised’.

NPO+GD
- To date, there is no record of any non-fiction work written by

Moshe Ben-David. nobody knows his personal views or beliefs,
and he has kept a very low profile throughout his life.

NPO+KL
- There is no publicly available non-fiction work of Moshe Ben-

David.

MEOW
- Moshe Ben-David is exclusively a playwright and has never ven-

tured into non-fiction writing.
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