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Abstract
Word translation or bilingual lexicon induction001
(BLI) is a key cross-lingual task, aiming to002
bridge the lexical gap between different lan-003
guages. In this work, we propose a robust and004
effective two-stage contrastive learning frame-005
work for the BLI task. As Stage C1, we006
propose to refine standard cross-lingual linear007
maps between static word embeddings (WEs)008
via a contrastive learning objective; we also009
show how to integrate it into the self-learning010
procedure for even more refined cross-lingual011
maps. In Stage C2, we conduct BLI-oriented012
contrastive fine-tuning of mBERT, unlocking013
its word translation capability. We also show014
that static WEs induced from the ‘C2-tuned’015
mBERT complement static WEs from Stage016
C1. Comprehensive experiments on standard017
BLI datasets for diverse languages and differ-018
ent experimental setups demonstrate substan-019
tial gains achieved by our framework. While020
the BLI method from Stage C1 already yields021
substantial gains over all state-of-the-art BLI022
methods in our comparison, even stronger im-023
provements are met with the full two-stage024
framework: e.g., we report gains for 112/112025
BLI setups, spanning 28 language pairs.026

1 Introduction and Motivation027

Bilingual lexicon induction (BLI) or word transla-028

tion is one of the seminal and long-standing tasks029

in multilingual NLP (Rapp, 1995; Gaussier et al.,030

2004; Heyman et al., 2017; Shi et al., 2021, inter031

alia). Its main goal is learning translation corre-032

spondences across languages, with applications of033

BLI ranging from language learning and acqui-034

sition (Yuan et al., 2020; Akyurek and Andreas,035

2021) to machine translation (Qi et al., 2018; Duan036

et al., 2020; Chronopoulou et al., 2021) and the de-037

velopment of language technology in low-resource038

languages and domains (Irvine and Callison-Burch,039

2017; Heyman et al., 2018). A large body of recent040

BLI work has focused on the so-called mapping-041

based methods (Mikolov et al., 2013; Artetxe et al.,042
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Figure 1: Illustration of the proposed two-stage BLI ap-
proach (see §2). It combines contrastive tuning on both
static WEs (C1) and pretrained multilingual LMs (C2),
where the static WEs are leveraged for selecting nega-
tive examples in contrastive tuning of the LM. Output
of C1 and C2 is combined for the final BLI task.

2018; Ruder et al., 2019).1 Such methods are par- 043

ticularly suitable for low-resource languages and 044

weakly supervised learning setups: they support 045

BLI with only as much as few thousand word trans- 046

lation pairs (e.g., 1k or at most 5k) as the only 047

bilingual supervision (Ruder et al., 2019).2 048

Unlike for many other tasks in multilingual NLP 049

(Doddapaneni et al., 2021; Chau and Smith, 2021; 050

Ansell et al., 2021), state-of-the-art (SotA) BLI re- 051

sults are still achieved via static word embeddings 052

(WEs) (Vulić et al., 2020b; Liu et al., 2021b). A typ- 053

ical modus operandi of mapping-based approaches 054

is to first train monolingual WEs independently on 055

monolingual corpora and then map them to a shared 056

cross-lingual space via linear (Mikolov et al., 2013; 057

Glavaš et al., 2019) or non-linear mapping func- 058

1They are also referred to as projection-based or alignment-
based methods (Glavaš et al., 2019; Ruder et al., 2019).

2In the extreme, fully unsupervised mapping-based BLI
methods can leverage monolingual data only without any bilin-
gual supervision (Lample et al., 2018; Artetxe et al., 2018;
Hoshen and Wolf, 2018; Mohiuddin and Joty, 2019; Ren et al.,
2020, inter alia). However, comparative empirical analyses
(Vulić et al., 2019) show that, with all other components equal,
using seed sets of only 500-1,000 translation pairs, always out-
performs fully unsupervised BLI methods. Therefore, in this
work we focus on this more pragmatic (weakly) supervised
BLI setup (Artetxe et al., 2020); we assume the existence of
at least 1,000 seed translations per each language pair.
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tions (Mohiuddin et al., 2020). In order to achieve059

even better results, many BLI methods also apply060

a self-learning loop where training dictionaries are061

iteratively (and gradually) refined, and improved062

mappings are then learned in each iteration (Artetxe063

et al., 2018; Karan et al., 2020). However, there is064

still ample room for improvement, especially for065

lower-resource languages and dissimilar language066

pairs (Vulić et al., 2019; Nasution et al., 2021).067

On the other hand, another line of recent research068

has demonstrated that a wealth of lexical semantic069

information is encoded in large multilingual pre-070

trained language models (LMs) such as mBERT071

(Devlin et al., 2019), but 1) it is not straightforward072

to transform the LMs into multilingual lexical en-073

coders (Liu et al., 2021b), 2) extract word-level074

information from them (Vulić et al., 2020b, 2021),075

and 3) word representations extracted from these076

LMs still cannot surpass static WEs in the BLI task077

(Vulić et al., 2020b; Zhang et al., 2021). Moti-078

vated by these insights, in this work we investigate079

following research questions:080

(RQ1) Can we further improve (weakly supervised)081

mapping-based BLI methods based on static WEs?082

(RQ2) How can we extract more useful cross-083

lingual word representations from pretrained multi-084

lingual LMs such as mBERT or XLM-R?085

(RQ3) Is it possible to boost BLI by combining086

cross-lingual representations based on static WEs087

and the ones extracted from multilingual LMs?088

Inspired by the wide success of contrastive learn-089

ing techniques in sentence-level representation090

learning (Reimers and Gurevych, 2019; Carlsson091

et al., 2021; Gao et al., 2021), we propose a two-092

stage contrastive learning framework for effective093

word translation in (weakly) supervised setups; it094

leverages and combines multilingual knowledge095

from static WEs and pretrained multilingual LMs.096

Stage C1 operates solely on static WEs: in short,097

it is a mapping-based approach with self-learning,098

where in each step we additionally fine-tune lin-099

ear maps with contrastive learning that operates on100

gradually refined positive examples (i.e., true trans-101

lation pairs), and hard negative samples. Stage102

C2 fine-tunes a pretrained multilingual LM (e.g.,103

mBERT), again with a contrastive learning objec-104

tive, using positive examples as well as negative105

examples extracted from the output of C1. Finally,106

we extract word representations from the multilin-107

gual LM fine-tuned in Stage C2, and combine them108

with static cross-lingual WEs from Stage C1; the109

combined representations are then used for BLI. 110

We run a comprehensive set of BLI experiments 111

on the standard BLI benchmark (Glavaš et al., 112

2019), comprising 8 diverse languages, in sev- 113

eral setups. Our results indicate large gains over 114

state-of-the-art BLI models: e.g.,≈+8 Precision@1 115

points on average, +10 points for many language 116

pairs, gains for 107/112 BLI setups already after 117

Stage C1 (cf., RQ1), and for all 112/112 BLI se- 118

tups after Stage C2 (cf., RQ2 and RQ3). More- 119

over, our findings also extend to BLI for lower- 120

resource languages from another BLI benchmark 121

(Vulić et al., 2019). Finally, as hinted in recent 122

work (Zhang et al., 2021), our findings validate 123

that multilingual lexical knowledge in LMs, when 124

exposed and extracted as in our contrastive learn- 125

ing framework, can complement the knowledge in 126

static cross-lingual WEs (RQ3), and benefit BLI. 127

We release the code and share the data at: [URL]. 128

2 Methodology 129

Preliminaries and Task Formulation. In BLI, 130

we assume two vocabularies X={wx1 , . . . , wx|X |} 131

and Y={wy1 , . . . , w
y
|Y|} associated with two re- 132

spective languages Lx and Ly. We also as- 133

sume that each vocabulary word is assigned its 134

(static) type-level word embedding (WE), that is, 135

the respective WE matrices for each vocabulary 136

are X ∈ R|X |×d, Y ∈ R|Y|×d. d is WE di- 137

mensionality, with typical values d = 300 for 138

static WEs (e.g., fastText) (Bojanowski et al., 139

2017), and d = 768 (mBERT and XLM-R 140

WEs). We also assume a set of seed translation 141

pairs D0 = {(wxm1
, wyn1), ..., (wxm|D0|

, wyn|D0|
)} 142

for training (Mikolov et al., 2013; Glavaš et al., 143

2019), where 1 ≤ mi ≤ |X |, 1 ≤ ni ≤ |Y|. 144

Typical values for the seed dictionary size |D0| 145

are 5k pairs and 1k pairs (Vulić et al., 2019), 146

often referred to as supervised (5k) and semi- 147

supervised or weakly supervised settings (1k) 148

(Artetxe et al., 2018). Given another test lexicon 149

DT = {(wxt1 , w
y
g1), ..., (wxt|DT |

, wyg|DT |)}, where 150

D0 ∩DT = ∅, for each Lx test word wxti in DT the 151

goal is to retrieve its correct translation from the 152

Ly’s vocabulary Y , and evaluate it against the gold 153

Ly translation wygi from the pair. 154

Method in a Nutshell. We propose a novel 155

two-stage contrastive learning (CL) method, with 156

both stages C1 and C2 realised via contrastive 157

learning objectives, see Figure 1. Stage C1 158

(§2.1) operates solely on static WEs, and can be 159
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seen as a contrastive extension of mapping-based160

BLI approaches with static WEs. In practice,161

we blend contrastive learning with the standard162

SotA mapping-based framework with self-learning:163

VecMap (Artetxe et al., 2018), with some modifi-164

cations. Stage C1 operates solely on static WEs165

in exactly the same BLI setup as prior work, and166

thus it can be evaluated independently. In Stage C2167

(§2.2), we propose to leverage pretrained multilin-168

gual LMs for BLI, contrastively fine-tuning them169

for BLI, and extracting static WEs from the tuned170

LMs. These LM-based WEs can be combined with171

WEs obtained in Stage C1 (§2.3).172

2.1 Stage C1173

Stage C1 is based on the VecMap framework174

(Artetxe et al., 2018) which features 1) dual linear175

mapping, where two separate linear transformation176

matrices map respective source and target WEs to177

a shared cross-lingual space; and 2) a self-learning178

procedure that, in each iteration i refines the train-179

ing dictionary and iteratively improves the map-180

ping. We extend and refine VecMap’s self-learning181

for supervised and semi-supervised settings via CL.182

Initial Advanced Mapping. After `2-normalising183

word embeddings,3 the two mapping matrices,184

denoted as Wx for the source language Lx and185

Wy for Ly, are computed via the Advanced Map-186

ping (AM) procedure based on the training dictio-187

nary, as fully described in Appendix A.1; while188

VecMap leverages whitening, orthogonal mapping,189

re-weighting and de-whitening operations to derive190

mapped WEs, we compute Wx and Wy such that191

a one-off matrix multiplication produces the same192

result, see Appendix A.1 for the details.193

Contrastive Fine-Tuning. At each iteration i, af-194

ter the initial AM step, the two mapping matrices195

Wx and Wy are then further contrastively fine-196

tuned via the InfoNCE loss (Oord et al., 2018), a197

standard and robust choice of a loss function in CL198

research (Musgrave et al., 2020; Liu et al., 2021c,b).199

The core idea is to ‘attract’ aligned WEs of positive200

examples (i.e., true translation pairs) coming from201

the dictionary Di−1, and ‘repel’ hard negative sam-202

ples, that is, words which are semantically similar203

but do not constitute a word translation pair.204

These hard negative samples are extracted as205

follows. Let us suppose that (wxmi , w
y
ni) is a trans-206

lation pair in the current dictionary Di−1, with its207

3Unlike VecMap, we do not mean-center WEs as this
yielded slightly better results in our preliminary experiments.

Algorithm 1 Stage C1: Self-Learning

1: Require: X ,Y ,D0,Dadd=∅
2: for i=1:Niter do
3: Wx,Wy ← Initial AM using Di−1;
4: DCL ←D0 (supervised) or Di−1 (semi-super);
5: for i=1:NCL do
6: Retrieve D̄ for the pairs from DCL;
7: Wx,Wy ← Optimize Contrastive Loss;
8: Compute new Dadd;
9: Update Di = D0 ∪ Dadd;

return Wx,Wy

constituent words associated with d-dim static WEs 208

xmi and yni . We then retrieve the nearest neigh- 209

bours of yniWy from XWx and derive w̄xmi ⊂ X 210

(wxmi excluded) , a set of hard negative samples 211

of size Nneg. In a similar (symmetric) manner, we 212

also derive the set of negatives w̄yni ⊂ Y (wyni ex- 213

cluded). We use D̄i to denote a collection of all 214

hard negative set pairs over all training pairs in the 215

current iteration i. We then fine-tune Wx and Wy 216

by optimizing the following contrastive objective: 217

si,j = exp(cos(xiWx , yjWy)/τ), (1) 218

pi =
smi,ni∑

w
y
j ∈{w

y
ni
}
⋃
w̄

y
ni

smi,j +
∑

wx
j ∈w̄

x
mi

sj,ni

, (2) 219

min
Wx,Wy

− E(wx
mi
,w

y
ni

)∈DCL
log(pi). (3) 220

τ denotes a standard temperature parameter. The 221

objective, formulated here for a single positive ex- 222

ample, spans all positive examples from the current 223

dictionary, along with the respective sets of nega- 224

tive examples computed as described above. 225

Self-Learning. The application of (a) initial map- 226

ping via AM and (b) contrastive fine-tuning can be 227

repeated iteratively. Such self-learning loops typi- 228

cally yield more robust and better performing BLI 229

methods (Artetxe et al., 2018; Vulić et al., 2019). 230

At each iteration i, a set of automatically extracted 231

high-confidence translation pairs Dadd are added 232

to the seed dictionary D0, and this dictionary Di = 233

D0 ∪ Dadd is then used in the next iteration i+ 1. 234

Our dictionary augmentation method slightly de- 235

viates from the one used by VecMap. We leverage 236

the most frequent Nfreq source and target vocab- 237

ulary words, and conduct forward and backward 238

dictionary induction (Artetxe et al., 2018). Unlike 239

VecMap, we do not add stochasticity to the process, 240

and simply select the top Naug high-confidence 241

word pairs from forward (i.e., source-to-target) in- 242

duction and another Naug pairs from the backward 243

induction. In practice, we first retrieve the 2×Naug 244

pairs with the highest Cross-domain Similarity Lo- 245
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cal Scaling (CSLS) scores (Lample et al., 2018),4246

remove duplicate pairs and those that contradict247

with ground truth in D0, and add the rest into Dadd.248

For the initial AM step, we always use the aug-249

mented dictionary D0 ∪Dadd; the same augmented250

dictionary is used for contrastive fine-tuning in251

weakly supervised setups.5 We repeat the self-252

learning loop for Niter times; in each iteration, we253

optimise the contrastive loss NCL times, that is,254

we go NCL times over all the positive pairs from255

the training dictionary (at this iteration). Niter and256

NCL are tunable hyper-parameters. Self-learning257

in Stage C1 is summarised in Algorithm 1.258

2.2 Stage C2259

Previous work tried to prompt off-the-shelf mul-260

tilingual LMs for word translation knowledge via261

masked natural language templates (Gonen et al.,262

2020), averaging over their contextual encodings263

in a large corpus (Vulić et al., 2020b; Zhang et al.,264

2021), or extracting type-level WEs from the LMs265

directly without context (Vulić et al., 2020a, 2021).266

However, even sophisticated templates and WE267

extraction strategies still typically result in BLI per-268

formance inferior to fastText (Vulić et al., 2021).269

(BLI-Oriented) Contrastive Fine-Tuning. Here,270

we propose to fine-tune off-the-shelf multilingual271

LMs relying on the supervised BLI signal: the aim272

is to expose type-level word translation knowledge273

directly from the LM, without any external cor-274

pora. In practice, we first prepare a dictionary of275

positive examples for contrastive fine-tuning: (a)276

DCL = D0 when |D0| spans 5k pairs, or (b) when277

|D0| = 1k, we add the Naug = 4k automatically278

extracted highest-confidence pairs from Stage C1279

(based on their CSLS scores, not present in D0)280

to D0 (i.e., DCL spans 1k + 4k word pairs). We281

then extractNneg hard negatives in the same way as282

in §2.1, relying on the shared cross-lingual space283

derived as the output of Stage C1. Our hypothesis284

is that a difficult task of discerning between true285

translation pairs and highly similar non-translations286

as hard negatives, formulated within a contrastive287

learning objective, will enable mBERT to expose288

its word translation knowledge, and complement289

the knowledge already available after Stage C1.290

Throughout this work, we assume the use291

4Further details on the CSLS similarity and its relationship
to cosine similarity are available in Appendix A.2.

5When starting with 5k pairs, we leverage only D0 for
contrastive fine-tuning, as Dadd might deteriorate the quality
of the 5k-pairs seed dictionary due to potentially noisy input.

of pretrained mBERTbase model with 12 Trans- 292

former layers and 768-dim embeddings.6 Each 293

raw word input w is tokenised, via mBERT’s 294

dedicated tokeniser, into the following sequence: 295

[CLS][sw1] . . . [swM ][SEP ], M ≥ 1, where 296

[sw1] . . . [swM ] refers to the sequence of M con- 297

stituent subwords/WordPieces of w, and [CLS] 298

and [SEP ] are special tokens (Vulić et al., 2020b). 299

The sequence is then passed through mBERT as 300

the encoder, its encoding function denoted as fθ(·): 301

it extracts the representation of the [CLS] token 302

in the last Transformer layer as the representation 303

of the input word w. The full set of mBERT’s 304

parameters θ then gets contrastively fine-tuned in 305

Stage C2, again relying on the InfoNCE CL loss: 306

s′i,j = exp(cos(fθ(w
x
i ), fθ(w

y
j ))/τ), (4) 307

p′i =
s′mi,ni∑

w
y
j ∈{w

y
ni
}
⋃
w̄

y
ni

s′mi,j
+

∑
wx

j ∈w̄
x
mi

s′j,ni

, (5) 308

min
θ
− E(wx

mi
,w

y
ni

)∈DCL
log(p′i). (6) 309

Type-level WE for each input word w is then ob- 310

tained simply as fθ′(w), where θ′ refers to the pa- 311

rameters of the ‘BLI-tuned’ mBERT model. 312

2.3 Combining Output of C1 and C2 313

In order to combine the output WEs from Stage 314

C1 and the mBERT-based WEs from Stage C2, 315

we also need to map them into a ‘shared’ space: 316

in other words, for each word w, its C1 WE and 317

its C2 WE can be seen as two different views of 318

the same data point. We thus learn an additional 319

linear orthogonal mapping from the C1-induced 320

cross-lingual WE space into the C2-induced cross- 321

lingual WE space. It transforms `2-normed 300- 322

dim C1-induced cross-lingual WEs into 768-dim 323

cross-lingual WEs. Learning of the linear map 324

W ∈ Rd1×d2 , where in our case d1 = 300 and 325

d2 = 768, is formulated as a Generalised Pro- 326

crustes problem (Schönemann, 1966; Viklands, 327

2006) operating on all (i.e., both Lx and Ly) words 328

from the seed translation dictionary D0.7 329

6We also experimented with XLM-Rbase, but substantially
higher overall results were obtained with mBERT as the un-
derlying/input multilingual LM. We plan to analyse these
implications in more detail in future work.

7Technical details of the learning procedure are described
in Appendix A.3. It is important to note that in this case we
do not use word translation pairs (wxmi

, wyni
) directly to learn

the mapping, but rather each word wxmi
and wyni

is duplicated
to create training pairs (wxmi

, wxmi
) and (wyni

, wyni
), where

the left word/item in each pair is assigned its WE from C1,
and the right word/item is assigned its WE after C2.
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Unless noted otherwise, a final representation330

of an input word w is then a linear combination331

of (a) its C1-based vector vw mapped to a 768-332

dim representation via W , and (b) its 768-dim333

encoding fθ′(w) from BLI-tuned mBERT:334

(1− λ)
vwW

‖vwW ‖2
+ λ

fθ′(w)

‖fθ′(w)‖2
, (7)335

where λ is a tunable interpolation hyper-parameter.336

3 Experimental Setup337

Monolingual WEs and BLI Setup. We largely338

follow the standard BLI setup from prior work339

(Artetxe et al., 2018; Joulin et al., 2018; Glavaš340

et al., 2019; Karan et al., 2020, inter alia). The341

main evaluation is based on the standard BLI342

dataset from Glavaš et al. (2019): it comprises343

28 language pairs with a good balance of typologi-344

cally similar and distant languages: English (EN),345

German (DE), Italian (IT), French (FR), Russian346

(RU), Croatian (HR), Turkish (TR), and Finnish (FI).347

Again following prior work, we rely on monolin-348

gual fastText vectors trained on full Wikipedias for349

each language (Bojanowski et al., 2017), where350

vocabularies in each language are trimmed to the351

200K most frequent words (i.e., |X | = 200k and352

|Y| = 200k). The same fastText WEs are used353

for our Stage C1 and in all baseline BLI models.354

mBERT in Stage C2 operates over the same vocab-355

ularies spanning 200k word types in each language.356

We use 1k translation pairs (semi-supervised357

BLI mode) or 5k pairs (supervised) as seed dic-358

tionary D0; test sets span 2k pairs (Glavaš et al.,359

2019). With 56 BLI directions in total,8 this yields360

a total of 112 BLI setups for each model in our com-361

parison. The standard Precision@1 (P@1) BLI362

measure is reported, and we rely on CSLS (k=10)363

to score word similarity (Lample et al., 2018).9364

Training Setup and Hyperparameters. Since365

standard BLI datasets typically lack a validation set366

(Ruder et al., 2019), following prior work (Glavaš367

et al., 2019; Karan et al., 2020) we conduct hyper-368

parameter tuning on a single, randomly selected369

language pair EN→TR, and apply those hyperpa-370

rameter values in all other BLI runs.371
8For any two languages Li and Lj , we run experiments

both for Li → Lj and Lj → Li directions.
9The same trends in results are observed with Mean Recip-

rocal Rank (MRR) as another BLI evaluation measure (Glavaš
et al., 2019); we omit MRR scores for clarity. Moreover, simi-
lar relative trends, but with slightly lower absolute BLI scores,
are observed when replacing CSLS with the simpler cosine
similarity measure: the results are available in the Appendix.

In Stage C1, when |D0|=5k, the hyperpa- 372

rameter values are Niter=2, NCL=200, Nneg=150, 373

Nfreq=60k, Naug=10k. SGD optimiser is used, 374

with a learning rate of 1.5 and γ=0.99. When 375

|D0|=1k, the values areNiter=3,NCL=50,Nneg=60, 376

Nfreq=20k, and Naug=6k; SGD with a learning rate 377

of 2.0, γ=1.0. τ=1.0 and dropout is 0 in both cases, 378

and the batch size for contrastive learning is always 379

equal to the size of the current dictionary |DCL| 380

(i.e., |D0| (5k case), or |D0 ∪ Dadd| which varies 381

over iterations; see §2.1). In Stage C2, Nneg=28 382

and the maximum sequence length is 6. We use 383

AdamW (Loshchilov and Hutter, 2019) as the opti- 384

miser with learning rate of 2e−5 and weight decay 385

of 0.01. We fine-tune mBERT for 5 epochs, with 386

a batch size of 100; dropout rate is 0.1 and τ=0.1. 387

Unless noted otherwise, λ is fixed to 0.2. 388

Baseline Models. Our BLI method is evaluated 389

against four strong SotA BLI models from recent 390

literature, all of them with publicly available imple- 391

mentations. Here, we provide brief summaries:10 392

RCSLS (Joulin et al., 2018) optimises a relaxed 393

CSLS loss, learns a non-orthogonal mapping, and 394

has been established as a strong BLI model in em- 395

pirical comparative analyses as its objective func- 396

tion is directly ‘BLI-oriented’ (Glavaš et al., 2019). 397

VecMap’s core components (Artetxe et al., 2018) 398

have been outlined in §2.1. 399

LNMap (Mohiuddin et al., 2020) non-linearly 400

maps the original static WEs into two latent seman- 401

tic spaces learned via non-linear autoencoders,11 402

and then learns another non-linear mapping be- 403

tween the latent autoencoder-based spaces. 404

FIPP (Sachidananda et al., 2021), in brief, first 405

finds common (i.e., isomorphic) geometric struc- 406

tures in monolingual WE spaces of both languages, 407

and then aligns the Gram matrices of the WEs 408

found in those common structures. 409

For all baselines, we have verified that the hy- 410

perparameter values suggested in their respective 411

repositories yield (near-)optimal BLI performance. 412

Unless noted otherwise, we run VecMap, LNMap, 413

and FIPP with their own self-learning procedures.12 414

10For further technical details and descriptions of each BLI
model, we refer to their respective publications. We used
publicly available implementations of all the baseline models.

11This step is directed towards mitigating anisomorphism
(Søgaard et al., 2018; Dubossarsky et al., 2020) between the
original WE spaces, which should facilitate their alignment.

12RCSLS is packaged without self-learning; extending it to
support self-learning is non-trivial and goes beyond the scope
of this work.
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Model Variants. We denote the full two-stage BLI415

model as C2 (Mod), where Mod refers to the ac-416

tual model/method used to derive the shared cross-417

lingual space used by Stage C2. For instance, C2418

(C1) refers to the model variant which relies on419

our Stage C1, while C2 (RCSLS) relies on RC-420

SLS as the base method. We also evaluate BLI421

performance of our Stage C1 BLI method alone.422

4 Results and Discussion423

The main results are provided in Table 1, while424

the full results per each individual language pair,425

and also with cosine similarity as the word retrieval426

function, are provided in Appendix D. The main427

findings are discussed in what follows.428

Stage C1 versus Baselines. First, we note that429

there is not a single strongest baseline among the430

four SotA BLI methods. For instance, RCSLS and431

VecMap are slightly better than LNMap and FIPP432

with 5k supervision pairs, while FIPP and VecMap433

come forth as the stronger baselines with 1k su-434

pervision. There are some score fluctuations over435

individual language pairs, but the average perfor-436

mance of all baseline models is within a relatively437

narrow interval: the average performance of all438

four baselines is within 3 P@1 points with 5k pairs439

(i.e., ranging from 38.22 to 41.22), and VecMap,440

FIPP, and LNMap are within 2 points with 1k pairs.441

Strikingly, contrastive learning in Stage C1 al-442

ready yields substantial gains over all four SotA443

BLI models, which is typically much higher than444

the detected variations between the baselines. We445

mark that C1 improves over all baselines in 51/56446

BLI setups (in the 5k case), and in all 56/56 BLI447

setups when D0 spans 1k pairs. The average gains448

with the C1 variant are ≈5 P@1 points over the449

strongest baseline in both cases. Note that all the450

models in comparison, all currently considered451

SotA in the BLI task, use exactly the same monolin-452

gual WEs and leverage exactly the same amount of453

bilingual supervision. The gains achieved with our454

Stage C1 thus strongly indicate the potential and455

usefulness of word-level contrastive fine-tuning456

when learning linear cross-lingual maps with static457

WEs (see RQ1 from §1).458

Stage C1 + Stage C2. The scores improve further459

with the full two-stage procedure. The C2 (C1)460

BLI variant increases average P@1 for another 3.3461

(5k) and 3 P@1 points (1k), and we observe gains462

for all language pairs in both translation directions,463

rendering Stage C2 universally useful. These gains464

[5k] Pairs RCSLS+ VecMapx LNMap FIPP C1 C2 (C1)
DE→∗ 43.77 40.49 40.35 40.95 46.14 48.86
∗→DE 44.74 42.18 39.55 41.66 46.39 50.12
EN→∗ 50.94 45.43 44.74 45.76 51.31 54.31
∗→EN 49.17 50.19 44.32 47.96 52.61 55.47
FI→∗ 35.11 36.29 33.18 34.83 39.80 43.44
∗→FI 33.49 33.40 34.15 33.00 38.82 41.97
FR→∗ 47.02 44.67 42.80 44.03 49.12 51.91
∗→FR 49.42 48.86 46.25 48.08 51.84 54.53
HR→∗ 34.06 36.26 33.41 33.52 40.22 45.53
∗→HR 32.80 32.96 31.34 31.52 37.82 42.65
IT→∗ 46.59 44.77 43.23 44.11 48.92 51.91
∗→IT 48.41 47.85 45.53 46.64 50.99 53.85
RU→∗ 40.99 41.01 37.94 39.72 44.17 47.24
∗→RU 40.10 35.62 35.66 36.03 42.15 45.20
TR→∗ 31.29 31.54 30.14 30.34 36.61 39.86
∗→TR 31.66 29.42 28.99 28.37 35.67 39.26
Avg. 41.22 40.06 38.22 39.16 44.54 47.88

[1k] Pairs RCSLS+ VecMapx LNMap FIPP C1 C2 (C1)
DE→∗ 33.43 36.69 37.28 37.70 43.94 46.61
∗→DE 32.23 38.63 36.74 39.47 43.15 46.01
EN→∗ 38.16 38.63 40.44 42.26 47.16 49.84
∗→EN 38.57 48.39 43.61 46.68 51.59 54.03
FI→∗ 22.49 33.08 30.00 32.11 36.81 40.28
∗→FI 22.29 27.40 29.95 29.88 36.61 39.63
FR→∗ 34.98 38.65 39.77 41.08 46.23 48.57
∗→FR 36.83 46.61 43.81 46.26 49.75 52.17
HR→∗ 21.59 33.22 30.05 30.93 37.28 42.16
∗→HR 20.87 28.15 27.67 28.15 34.00 38.77
IT→∗ 36.67 39.45 39.93 42.20 46.55 49.22
∗→IT 38.33 45.49 43.47 45.17 48.50 50.94
RU→∗ 28.45 37.75 35.13 38.24 42.21 44.61
∗→RU 27.78 26.16 29.71 31.28 38.02 41.04
TR→∗ 18.72 26.97 26.63 27.05 33.77 36.89
∗→TR 17.59 23.63 24.26 24.68 32.34 35.57
Avg. 29.31 35.56 34.90 36.45 41.74 44.77

Table 1: P@1 scores on the BLI benchmark of Glavaš
et al. (2019) with bilingual supervision (i.e.,D0 size) of
5k (upper half) and 1k translation pairs (bottom half).
L→∗ and ∗ →L denote the average BLI scores of BLI
setups where L is the source and the target language,
respectively. The word similarity measure is CSLS
(see §3). Underlined scores are the peak scores among
methods that rely solely on static fastText WEs; Bold
scores denote the highest scores overall (i.e., the use of
word translation knowledge exposed from mBERT is
allowed). +RCSLS is always used without self learning
(see the footnote in 3); xWe report VecMap with self-
learning in the 1k-pairs scenario, and its variant with-
out self-learning when using supervision of 5k pairs as
it performs better than the variant with self-learning.

indicate that mBERT does contain word translation 465

knowledge in its parameters. However, the model 466

must be fine-tuned (i.e., transformed) to ‘unlock’ 467

the knowledge from its parameters: this is done 468

through a BLI-guided contrastive fine-tuning pro- 469

cedure (see §2.2). Our findings thus further confirm 470

the ’rewiring hypothesis’ from prior work (Vulić 471

et al., 2021; Liu et al., 2021b; Gao et al., 2021), 472

here validated for the BLI task (see RQ2 from 473

§1), which states that task-relevant knowledge at 474

sentence- and word-level can be ‘rewired’/exposed 475

from the off-the-shelf LMs, even when leveraging 476

very limited task supervision, e.g., with only 1k or 477

5k word translation pairs as in our experiments. 478
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[1k] Pairs BG→CA CA→HE HE→BG
VecMap 39.43 24.64 31.55

FIPP 34.29 20.63 26.38
C1 41.88 30.56 33.49

C2 (C1) 44.28 33.99 37.78

Table 2: BLI scores on the Panlex-BLI sets.

[5k] Pairs DE→TR TR→HR HR→RU
RCSLS 30.99 24.60 37.19

C2 (RCSLS) 36.52 33.17 44.77
VecMap 27.18 25.99 37.98

C2 (VecMap) 34.95 34.29 44.98
C1 34.69 32.37 41.66

C2 (C1) 38.86 36.32 46.40
[1k] Pairs DE→TR TR→HR HR→RU

RCSLS 18.21 13.84 24.72
C2 (RCSLS) 25.40 22.52 33.88

VecMap 23.37 20.50 36.09
C2 (VecMap) 27.91 26.84 40.45

C1 32.03 27.00 39.40
C2 (C1) 34.85 32.16 42.14

Table 3: Stage C2 with different ‘support’ methods:
RCSLS, VecMap, and C1. P@1×100% scores.

Performance over Languages. The absolute BLI479

scores naturally depend on the actual source and480

target languages: e.g., the lowest absolute perfor-481

mance is observed for morphologically rich (HR,482

RU, FI, TR) and non-Indo-European languages (FI,483

TR). However, both C1 and C2 (C1) mode variants484

offer wide and substantial gains in performance485

for all language pairs, irrespective of the starting486

absolute score. This result further suggests wide487

applicability and robustness of our BLI method.488

4.1 Further Discussion489

Evaluation on Lower-Resource Languages. The490

robustness of our BLI method is further tested on491

another BLI evaluation set: PanLex-BLI (Vulić492

et al., 2019), which focuses on BLI evaluation for493

lower-resource language; 1k training pairs and 2k494

test pairs are derived from PanLex (Kamholz et al.,495

2014). The results for a subset of three languages496

(Bulgarian: BG, Catalan: CA, Hebrew: HE) are497

presened in Table 2, with more results available in498

Appendix E. Overall, the results further confirm499

the efficacy of the C2 (C1), with gains observed500

even with typologically distant language pairs (e.g.,501

CA→HE and HE→BG).502

Usefulness of Stage C2? The results in Table 1503

have confirmed the effectiveness of our two-stage504

C2 (C1) BLI method (see RQ3 in §1). However,505

Stage C2 is in fact independent of our Stage C1,506

and thus can also be combined with other stan-507

dard BLI methods. Therefore, we seek to validate508

whether combining exposed mBERT-based transla-509

tion knowledge can also aid other BLI methods. In510

[1k] Pairs EN→∗ DE→∗ IT→∗
C1 w/o CL 39.46 37.54 40.37
C1 w/o SL 39.31 32.59 36.45

C1 47.16 43.94 46.55
mBERT 9.55 9.39 8.13

mBERT (tuned) 17.29 20.92 23.29
C1 + mBERT 47.56 44.08 46.74

C2 (C1) 49.84 46.61 49.22

Table 4: Ablation study. CL = Contrastive Learning;
SL = Self-Learning. ‘mBERT’ and ‘mBERT (tuned)’
refer to using word encodings from mBERT directly
for BLI, before and after fine-tuning in Stage C2. Very
similar trends are observed for all other language pairs
(available in Appendix F).

other words, instead of drawing positive and nega- 511

tive samples from Stage C1 (§2.2) and combining 512

C2 WEs with WEs from C1 (§2.3), we replace 513

C1 with our baseline models. The results of these 514

C2 (RCSLS) and C2 (VecMap) BLI variants for a 515

selection of language pairs are provided in Table 3. 516

The gains achieved with all C2 (·) variants 517

clearly indicate that Stage C2 produces WEs which 518

aid all BLI methods. In fact, combining it with RC- 519

SLS and VecMap yields even larger relative gains 520

over the base models than combining it with our 521

Stage C1. However, since Stage C1 (as the base 522

model) performs better than RCSLS and VecMap, 523

the final absolute scores with C2 (C1) still outper- 524

form C2 (RCSLS) and C2 (VecMap). 525

Combining C1 and C2? The usefulness of com- 526

bining the representations from two stages is mea- 527

sured through varying the value of λ for several 528

BLI setups. The plots are shown in Figure 2, and 529

indicate that Stage C1 is more beneficial to the 530

performance, with slight gains achieved when al- 531

lowing the ‘influx’ of mBERT knowledge (e.g., λ 532

in the [0.0 − 0.3] interval). While mBERT-based 533

WEs are not sufficient as standalone representa- 534

tions for BLI, they seem to be even more useful in 535

the combined model for lower-resource languages 536

on PanLex-BLI, with steeper increase in perfor- 537

mance, and peak scores achieved with larger λ-s. 538

Ablation Study, with results summarised in Ta- 539

ble 4, displays several interesting trends. First, 540

both CL and self-learning are key components in 541

the 1k-setups: removing any of them yields sub- 542

stantial drops.13 Further, Table 4 complements the 543

results from Figure 2 and again indicates that, while 544

Stage C2 indeed boosts word translation capacity 545

13In 5k-setups, self-learning becomes less important, and
removing it yields only negligible drops, while contrastive
self-tuning remains a crucial component, see the Appendix.

7



Figure 2: BLI scores with different λ values: (left) |D0|=5k; (middle) |D0|=1k; (right) PanLex-BLI, |D0|=1k.

Figure 3: t-SNE visualisation (van der Maaten and Hin-
ton, 2012) of mBERT encodings of words from BLI
test sets for RU-IT (left) and TR-HR (right). Similar
plots for more language pairs are in Appendix C.

of mBERT, using mBERT features alone is still not546

sufficient to achieve competitive BLI scores. Fi-547

nally, Table 4 shows the importance of fine-tuning548

mBERT before combining it with C1-based WEs549

(§2.3): directly adding WEs extracted from the off-550

the-shelf mBERT does not yield any benefits (see551

the scores for the C1+mBERT variant).552

The impact of contrastive fine-tuning on553

mBERT’s representation space for two language554

pairs is illustrated by a t-SNE plot in Figure 3. The555

semantic space of off-the-shelf mBERT displays556

a clear separation of language-specific subspaces557

(Libovický et al., 2020; Dufter and Schütze, 2020),558

which makes it unsuitable for the BLI task. On the559

other hand, contrastive fine-tuning reshapes the sub-560

spaces towards a shared (cross-lingual) space, the561

effects of which are then also reflected in mBERT’s562

improved BLI capability (see Table 4 again).563

5 Related Work564

This work is related to three topics, each with a565

large body of work; we can thus provide only a566

condensed summary of the most relevant research.567

Mapping-based BLI. These BLI methods are568

highly popular due to reduced bilingual supervision569

requirements; consequently, they are applicable to570

low-resource languages and domains, learning lin-571

ear (Lample et al., 2018; Artetxe et al., 2018; Joulin572

et al., 2018; Patra et al., 2019; Jawanpuria et al.,573

2019; Sachidananda et al., 2021) and non-linear574

maps (Mohiuddin et al., 2020; Glavaš and Vulić,575

2020; Ganesan et al., 2021), typically using self- 576

learning in weakly supervised setups. 577

Contrastive Learning in NLP aims to learn a se- 578

mantic space such that embeddings of similar text 579

inputs are close to each other, while ‘repelling’ dis- 580

similar ones. It has shown promising performance 581

on training generic sentence encoders (Giorgi et al., 582

2021; Carlsson et al., 2021; Liu et al., 2021a; Gao 583

et al., 2021) and downstream tasks like summarisa- 584

tion (Liu and Liu, 2021) or NER (Das et al., 2021). 585

Exposing Lexical Knowledge from Pretrained 586

LMs. Extracting lexical features from off-the-shelf 587

multilingual LMs typically yields subpar perfor- 588

mance in lexical tasks (Vulić et al., 2020b). To un- 589

lock the lexical knowledge encoded in PLMs, Liu 590

et al. (2021a); Vulić et al. (2021) fine-tune LMs via 591

contrastive learning with manually curated or auto- 592

matically extracted phrase/word pairs to transform 593

it into effective text encoders. Wang et al. (2021) 594

and Liu et al. (2021c) apply similar techniques for 595

phrase and word-in-context representation learn- 596

ing respectively. The success of these methods 597

suggests that LMs store a wealth of lexical knowl- 598

edge: yet, as we confirm here for BLI, fine-tuning 599

is typically needed to expose this knowledge. 600

6 Conclusion 601

We have proposed a simple yet extremely effective 602

and robust two-stage contrastive learning frame- 603

work for improving bilingual lexicon induction 604

(BLI). In Stage C1, we tune cross-lingual linear 605

mappings between static word embeddings with a 606

contrastive objective and achieve substantial gains 607

in 107 out of 112 BLI setups on the standard BLI 608

benchmark. In Stage C2, we further propose a 609

contrastive fine-tuning procedure to harvest cross- 610

lingual lexical knowledge from multilingual pre- 611

trained language models. The representations from 612

this process, when combined with Stage C1 em- 613

beddings, have resulted in further boosts in BLI 614

performance, with large gains in all 112 setups. 615

We have also conducted a series of finer-grained 616

evaluations, analyses and ablation studies. 617
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instance-based cross-lingual mapping for non-742
isomorphic embedding spaces. In Proceedings of743
the 58th Annual Meeting of the Association for Com-744
putational Linguistics (ACL’20), pages 7548–7555,745
Online. Association for Computational Linguistics.746

Hila Gonen, Shauli Ravfogel, Yanai Elazar, and Yoav747
Goldberg. 2020. It’s not Greek to mBERT: Induc-748
ing word-level translations from multilingual BERT.749
In Proceedings of the Third BlackboxNLP Workshop750
on Analyzing and Interpreting Neural Networks for751
NLP, pages 45–56, Online. Association for Compu-752
tational Linguistics.753
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Ivan Vulić, Edoardo Maria Ponti, Anna Korhonen, and965
Goran Glavaš. 2021. LexFit: Lexical fine-tuning of966
pretrained language models. In Proceedings of the967
59th Annual Meeting of the Association for Compu-968
tational Linguistics and the 11th International Joint969
Conference on Natural Language Processing (ACL-970
IJCNLP’21), pages 5269–5283, Online. Association971
for Computational Linguistics.972
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A Technical Details and Further1002

Clarifications1003

A.1 Advanced Mapping (AM) in Stage C11004

Suppose XD,YD ∈ R|D|×d are source and target1005

embedding matrices corresponding to the training1006

dictionary D. Then XT
D and Y T

D are whitened, and1007

singular value decomposition (SVD) is conducted1008

on the whitened embeddings:1009

X
′
D = XD(XT

DXD)−
1
2 , (8)1010

1011

Y
′
D = YD(Y T

D YD)−
1
2 , (9)1012

1013

USV T = X
′T
D Y

′
D. (10)1014

Wx and Wy are then derived after re-weighting1015

and de-whitening as follows:1016

Wx=(XT
DXD)−

1
2US

1
2UT (XT

DXD)
1
2U , (11)1017

Wy = (Y T
D YD)−

1
2V S

1
2V T (Y T

D YD)
1
2V . (12)1018

A.2 Word Similarity/Retrieval Measures1019

Given two word embeddings x ∈ X and y ∈1020

Y , their similarity can be defined as their cosine1021

similarity m(x,y) = cosine(x,y). In the FIPP1022

model, we calculate dot product m(x,y) = xT · y1023

between x and y instead without normalisation,1024

as with FIPP this produces better BLI scores in1025

general. 14.1026

For the simple Nearest Neighbor (NN) BLI with1027

cosine (or dot product), we retrieve the word from1028

the entire target language vocabulary of size 200k1029

with the highest similarity score and mark it as the1030

translation of the input/query word in the source1031

language.1032

For the Cross-domain Similarity Local Scal-1033

ing (CSLS) measure, a CSLS score is defined as1034

CSLS(x,y) = 2m(x,y)−rX(y)−rY (x). rX(y)1035

is the average m(·, ·) score of y and its k-NNs1036

(k = 10) in X; rY (x) is the average m(·, ·) scores1037

of x and its k-NNs (k = 10) in Y . Note that when1038

using CSLS scores to retrieve the translation of x1039

in Y , the term rY (x) can be ignored, as it is a con-1040

stant for all y, and we can similarly ignore rX(y)1041

when doing BLI in the opposite direction.1042

14https://github.com/vinsachi/FIPPCLE/blob/
main/xling-bli/code/eval.py

A.3 Generalised Procrustes in Stage C2 1043

We consider the following Procrustes problem: 1044

argmin
W

‖XW − Y ‖2F ,WW T = I, (13) 1045

where X ∈ Rn×d1 is a C1-induced cross-lingual 1046

space spanning all source and target words in 1047

the training set D, Y ∈ Rn×d2 is a C2-induced 1048

space representing all mBERT-encoded vectors 1049

corresponding to the same words from X , and 1050

W ∈ Rd1×d2 , d1 ≤ d2. A classical Orthogonal 1051

Procrustes Problem assumes that d1 = d2 and W 1052

is an orthogonal matrix (i.e., it should be a square 1053

matrix), where its optimal solution is given by 1054

UV T ; here, USV T is the full singular value de- 1055

composition (SVD) of XTY . In our experiments, 1056

we need to address the case d1 < d2 when mapping 1057

300-dimensional static fastText WEs to the 768- 1058

dimensional space of mBERT-based WEs. It is easy 1059

to show that when d1 < d2, U [S,0]V T=XTY 1060

(again the full SVD decomposition), the optimal 1061

W is then U [I,0]V T (it degrades to the Orthogo- 1062

nal Procrustes Problem when d1 = d2). Below, we 1063

provide a simple proof. 1064

Let Ω=UTWV , then ΩΩT = I . Therefore, 1065

each of its element −1 ≤ Ωi,j ≤ 1. 1066

argmin
W

‖XW − Y ‖2F

=argmin
W

〈XW − Y ,XW − Y 〉F

=argmin
W

‖XW ‖2F + ‖Y ‖2F − 2〈XW ,Y 〉F

=argmax
W

〈XW ,Y 〉F

=argmax
W

〈W ,XTY 〉F

=argmax
W

〈W ,XTY 〉F

=argmax
W

〈W ,U [S,0]V T 〉F

=argmax
W

〈[S,0],UTWV 〉F

=argmax
W

〈[S,0],Ω〉F
(14) 1067

In the formula above, ‖·‖F and 〈·, ·〉F are Frobe- 1068

nius norm and Frobenius inner product, and we 1069

leverage their properties throughout the proof. Note 1070

that S is a diagonal matrix with non-negative el- 1071

ements and thus the maximum is achieved when 1072

Ω=[I,0] and W=U [I,0]V T . 1073
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Note that the Procrustes mapping over word1074

embedding matrices keeps word similarities1075

on both sides intact. Since WW T=I ,1076

cos(xiW ,xjW )=cos(xi,xj).1077

We would also like to add an additional note,1078

although irrelevant to our own experiments, that the1079

above derivation cannot address d1 > d2 scenarios:1080

in that case WW T cannot be a full-rank matrix1081

and thus WW T 6= I .1082

A.4 Languages in BLI Evaluation1083

Language Family Code

X
L

IN
G

Croatian Slavic HR
English Germanic EN
Finnish Uralic FI
French Romance FR
German Germanic DE
Italian Romance IT

Russian Slavic RU
Turkish Turkic TR

Pa
nL

ex
-B

L
I

Basque –(isolate) EU
Bulgarian Slavic BG
Catalan Romance CA
Estonian Uralic ET
Hebrew Afro-Asiatic HE

Hungarian Uralic HU

Table 5: A list of languages in our experiments along
with their language family and ISO 639-1 code.

B Reproducibility Checklist1084

• BLI Data: The two BLI datasets are publicly1085

available.15 161086

• Static WEs: We use the preprocessed fast-1087

Text WEs provided by Glavaš et al. (2019).1088

For PanLex-BLI, we follow the the origi-1089

nal paper’s setup (Vulić et al., 2019) and1090

adopt fastText WEs pretrained on both Com-1091

mon Crawl and Wikipedia(Bojanowski et al.,1092

2017).17 Following prior work, all static WEs1093

are trimmed to contain vectors for the top1094

200k most frequent words in each language.1095

• Baseline BLI Models: All models are acces-1096

sible online as publicly available github repos-1097

15https://github.com/vinsachi/FIPPCLE/blob/
main/xling-bli/code/eval.py

16https://github.com/cambridgeltl/panlex-bli
17https://fasttext.cc/docs/en/crawl-vectors.html

itories. 1098

• Pretrained LM: The used mBERT variant 1099

is ‘bert-base-multilingual-uncased’, retrieved 1100

from the huggingface.co model repository. 1101

• Source Code: Our code is available online at: 1102

[URL-ANONYMOUS]. 1103

• Computing Infrastructure: We run our 1104

code on a machine with a 4.00GHz 4-core 1105

i7-6700K CPU, 64GB RAM and two 12GB 1106

NVIDIA TITAN X GPUs. We rely on Python 1107

3.6.10, PyTorch 1.7.0 and huggingface.co 1108

Transformers 4.4.2. Automatic Mixed Preci- 1109

sion (AMP)18 is leveraged during C2 training. 1110

• Runtime: The training process (excluding 1111

data loading and evaluation) typically takes 1112

650 seconds for Stage C1 (seed dictionary of 1113

5k, 2 self-learning iterations) and 200 seconds 1114

for C1 (1k, 3 self-learning iterations) on a sin- 1115

gle GPU. Stage C2 runs for ≈ 500 seconds on 1116

two GPUs. 1117

C Visualisation of mBERT-Based Word 1118

Representations 1119

To illustrate the impact of the proposed BLI- 1120

oriented fine-tuning of mBERT in Stage C2 on 1121

its representation space, we visualise the 768- 1122

dimensional mBERT word representations (i.e., 1123

mBERT-encoded word features alone, without the 1124

infusion of C1-aligned static WEs). We encode 1125

BLI test sets (i.e., these sets include 2k source- 1126

target word pairs unseen during C2 fine-tuning), 1127

before and after fine-tuning, relying on 1k training 1128

samples as the seed dictionary D0. 1129

Here, we provide comparative t-SNE visuali- 1130

sations between source and target word mBERT- 1131

based decontextualised word representations (see 1132

§2.2) for six language pairs from the BLI dataset of 1133

Glavaš et al. (2019): EN-IT, FI-RU, EN-HR, HR- 1134

RU, DE-TR, and IT-FR, while two additional visu- 1135

alisations are available in the main paper (for RU- 1136

IT and TR-HR, see Figure 3 in §4.1). As visible in 1137

all the figures below, BLI-oriented fine-tuning in 1138

Stage C2, there is an obvious mismatch between 1139

mBERT’s representation subspaces in the two lan- 1140

guages. This undesired property gets mitigated, to 1141

a considerable extent, by the fine-tuning procedure 1142

in Stage C2. 1143

18https://pytorch.org/docs/stable/amp. html
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Figure 4: A t-SNE visualisation of mBERT-encoded
representations of words from the EN-IT BLI test set.
The representations before BLI-oriented fine-tuning of
mBERT in Stage C2 are plotted in muted blue and red,
and after fine-tuning in bright colours.

Figure 5: A t-SNE visualisation of mBERT-encoded
representations of words from the EN-HR BLI test set.
The representations before BLI-oriented fine-tuning of
mBERT in Stage C2 are plotted in muted blue and red,
and after fine-tuning in bright colours.

Figure 6: A t-SNE visualisation of mBERT-encoded
representations of words from the DE-TR BLI test set.
The representations before BLI-oriented fine-tuning of
mBERT in Stage C2 are plotted in muted blue and red,
and after fine-tuning in bright colours.

Figure 7: A t-SNE visualisation of mBERT-encoded
representations of words from the FI-RU BLI test set.
The representations before BLI-oriented fine-tuning of
mBERT in Stage C2 are plotted in muted blue and red,
and after fine-tuning in bright colours.

Figure 8: A t-SNE visualisation of mBERT-encoded
representations of words from the HR-RU BLI test set.
The representations before BLI-oriented fine-tuning of
mBERT in Stage C2 are plotted in muted blue and red,
and after fine-tuning in bright colours.

Figure 9: A t-SNE visualisation of mBERT-encoded
representations of words from the IT-FR BLI test set.
The representations before BLI-oriented fine-tuning of
mBERT in Stage C2 are plotted in muted blue and red,
and after fine-tuning in bright colours.
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D Appendix: Full BLI Results1144

Complete results on the BLI dataset of Glavaš et al.1145

(2019), per each language pair and also including1146

NN-based BLI scores, are provided in Tables 6-7.1147

It can be seen as an expanded variant of the main1148

Table 1 presented in the main paper.1149

E Appendix: Additional Results on the1150

PanLex-BLI Evaluation Set1151

Additional results on the PanLex-BLI evaluation1152

set, focused on typologically diverse and low-1153

resource languages, for a subset of 3 more lan-1154

guages are provided in Table 8. These results are1155

related to the discussion in §4.1 in the main paper.1156

F Appendix: Full Ablation Study1157

Complete results of the ablation study, over all lan-1158

guages in the evaluation set of Glavaš et al. (2019),1159

are available in Table 9, and can be seen as addi-1160

tional evidence which supports the claims from the1161

main paper (see §4.1)1162
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[5k] Pairs RCSLS VecMap-Sup LNMap FIPP C1 C2 (C1)

DE→FI 30.62/37.35 29.21/33.59 31.35/36.10 30.93/35.37 38.97/42.10 41.47/44.65
FI→DE 32.48/39.36 35.42/38.73 31.32/36.73 36.05/39.41 39.83/42.46 44.30/47.03
DE→FR 47.63/52.74 46.64/50.44 44.91/48.46 47.89/50.44 51.49/53.78 54.09/55.56
FR→DE 47.23/51.22 45.37/47.75 41.65/44.80 45.73/47.85 50.13/51.37 53.23/53.29
DE→HR 29.26/33.75 27.07/32.08 27.65/32.34 27.65/31.09 34.17/37.66 39.07/42.41
HR→DE 30.30/36.35 32.98/37.24 28.98/33.72 31.51/34.30 39.14/41.35 45.03/48.29
DE→IT 47.68/52.63 47.78/50.55 44.91/47.94 46.90/49.97 50.65/52.79 52.48/54.77
IT→DE 46.51/51.01 44.96/47.29 42.58/45.53 44.86/46.67 49.97/51.21 53.90/53.80
DE→RU 37.87/42.41 31.98/34.38 35.21/37.92 36.57/37.09 42.67/44.29 44.71/46.79
RU→DE 40.54/45.78 40.65/43.32 36.72/40.28 40.18/42.38 46.05/46.73 48.51/49.71
DE→TR 24.93/30.99 23.84/27.18 25.46/29.16 23.94/27.65 31.30/34.69 35.84/38.86
TR→DE 27.00/31.84 26.46/29.93 24.92/27.85 26.09/29.18 33.33/36.74 38.50/40.95
EN→DE 52.95/57.60 48.65/51.00 45.80/47.95 50.25/51.85 55.50/54.90 59.25/57.75
DE→EN 50.97/56.55 52.01/55.24 46.48/50.50 52.16/55.03 54.77/57.69 56.03/58.95
EN→FI 35.40/42.05 35.25/37.75 34.45/38.35 34.55/39.10 40.70/44.60 45.45/47.15
FI→EN 34.21/41.25 39.04/43.51 31.69/36.26 36.42/40.51 41.46/46.30 44.82/50.55
EN→FR 61.65/66.55 60.65/63.10 57.75/62.10 61.15/63.25 64.35/65.05 68.45/67.20
FR→EN 59.23/63.11 59.60/62.75 54.53/58.72 59.03/61.87 62.23/63.84 64.30/65.49
EN→HR 31.40/37.90 29.70/34.05 28.40/31.75 28.50/31.95 37.50/40.70 43.60/47.20
HR→EN 28.51/35.67 35.24/39.08 27.83/32.61 31.93/34.72 38.66/42.40 42.61/49.08
EN→IT 58.85/64.05 57.20/60.40 55.30/59.05 56.95/59.75 61.55/63.45 65.30/65.60
IT→EN 55.09/61.50 57.73/62.17 52.09/56.02 56.69/60.52 59.90/63.51 62.27/65.27
EN→RU 44.75/49.40 38.00/39.65 38.90/41.10 40.70/42.00 48.05/49.15 50.85/50.50
RU→EN 42.80/48.66 45.78/49.35 37.51/42.64 43.27/47.15 48.45/51.91 49.24/54.16
EN→TR 31.40/39.05 30.35/32.05 29.55/32.85 30.80/32.40 39.10/41.35 43.55/44.75
TR→EN 30.78/37.43 34.45/39.24 28.12/33.49 31.79/35.89 39.03/42.60 39.24/44.78
FI→FR 30.90/36.73 34.68/38.26 29.16/34.79 33.79/37.26 38.94/42.20 42.77/45.24
FR→FI 29.59/34.92 31.35/34.30 30.42/33.26 30.11/33.26 36.42/39.99 41.18/43.20
FI→HR 22.65/28.06 27.17/31.58 24.65/29.06 25.54/29.06 30.16/34.89 34.52/38.31
HR→FI 18.20/26.35 28.30/31.72 26.67/31.93 25.78/29.30 32.51/35.61 37.40/39.56
FI→IT 31.53/36.94 33.89/37.99 31.37/35.58 33.58/36.15 38.47/42.04 42.51/46.30
IT→FI 29.56/34.21 31.06/34.32 31.47/35.09 29.97/33.54 35.76/39.48 40.78/43.57
FI→RU 28.74/34.52 31.16/34.16 28.38/32.32 30.37/32.79 35.10/37.73 38.36/40.99
RU→FI 27.29/33.11 29.91/33.53 28.60/33.63 27.82/32.53 35.57/36.98 38.55/40.91
HR→FR 33.46/39.66 35.35/40.24 30.72/36.09 35.30/38.72 39.61/44.13 45.40/49.29
FR→HR 30.94/35.28 29.85/33.21 26.90/30.88 29.69/33.26 36.32/39.78 40.71/44.08
HR→IT 29.62/37.98 36.24/40.24 32.14/36.72 34.19/36.98 38.93/43.77 44.71/48.97
IT→HR 30.34/34.06 30.75/34.32 27.80/32.87 30.03/33.49 37.26/38.71 41.40/44.75
HR→RU 31.35/37.19 34.19/37.98 32.40/36.61 33.19/36.03 39.40/41.66 44.35/46.40
RU→HR 31.48/35.94 34.57/39.50 31.48/35.78 32.16/36.56 37.93/40.60 42.17/45.47
IT→FR 64.19/66.51 64.03/65.89 62.12/64.60 63.57/65.32 65.37/66.51 66.82/67.86
FR→IT 62.96/66.11 62.70/64.72 61.05/63.68 62.18/64.30 64.25/66.27 66.79/67.20
RU→FR 44.00/47.67 43.58/47.51 38.82/43.64 42.90/47.15 48.04/50.55 50.13/52.70
FR→RU 41.02/45.01 36.73/38.23 36.26/37.40 37.20/38.54 43.35/44.75 47.13/48.06
RU→IT 41.49/46.57 43.84/46.78 39.50/43.74 43.79/45.89 46.52/49.66 48.66/51.96
IT→RU 40.57/44.13 38.35/38.71 35.87/38.09 38.40/39.43 45.01/45.48 47.08/47.49
TR→FI 21.46/26.46 24.23/28.59 26.14/30.67 24.12/27.90 31.31/32.96 32.85/34.77
FI→TR 23.07/28.90 24.86/29.80 23.86/27.54 24.01/28.64 30.48/32.95 32.74/35.68
TR→FR 29.13/36.10 32.96/36.58 30.56/34.08 31.31/34.40 38.13/40.63 41.43/43.88
FR→TR 27.42/33.52 28.87/31.76 27.42/30.88 26.44/29.13 34.97/37.82 38.70/42.06
TR→HR 20.07/24.60 21.99/25.99 22.42/26.68 21.30/25.24 29.34/32.37 32.43/36.32
HR→TR 17.41/25.25 24.62/27.35 22.30/26.20 22.09/24.62 29.04/32.61 34.14/37.09
TR→IT 28.91/34.56 31.90/34.24 29.66/32.00 29.82/33.44 36.32/38.98 38.87/42.17
IT→TR 28.32/34.73 28.11/30.70 27.96/30.39 27.86/29.82 35.09/37.52 38.19/40.62
TR→RU 23.59/28.06 24.07/26.20 21.99/26.20 24.55/26.36 31.04/32.00 33.60/36.16
RU→TR 24.46/29.18 23.31/27.08 22.58/25.88 25.04/26.35 29.81/32.74 32.48/35.78

Avg. 35.78/41.22 36.76/40.06 34.37/38.22 36.22/39.16 41.95/44.54 45.41/47.88

Table 6: BLI results with 5k seed translation pairs. BLI prediction accuracy (P@1×100%) is reported in the
NN/CSLS format (NN: Nearest Neighbor retrieval without CSLS adjustment; CSLS: CSLS retrieval). Underlined
scores denote the highest scores among purely fastText-based methods; bold scores denote the highest scores in
setups where both fastText and mBERT are allowed.
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[1k] Pairs RCSLS VecMap-Semi LNMap FIPP C1 C2 (C1)

DE→FI 20.97/26.34 23.68/28.33 29.47/32.24 25.56/30.26 37.35/40.85 40.79/43.77
FI→DE 21.18/27.01 32.05/35.00 27.64/34.47 31.79/36.73 37.52/40.57 42.83/44.93
DE→FR 34.06/41.94 46.17/49.03 43.82/47.21 46.48/50.18 49.82/51.75 52.11/54.04
FR→DE 33.89/37.92 42.11/44.34 39.63/42.99 43.30/46.51 46.09/46.82 48.01/48.16
DE→HR 19.25/22.59 22.64/27.39 24.26/28.64 21.91/27.18 30.88/35.16 36.46/40.48
HR→DE 19.10/23.04 30.98/32.82 25.25/29.46 28.77/31.56 35.35/38.45 41.19/44.35
DE→IT 38.81/44.03 46.58/48.72 43.82/47.52 46.01/48.98 48.93/51.28 50.39/52.53
IT→DE 36.64/40.83 41.91/44.39 39.69/42.58 42.95/45.94 46.56/47.86 49.41/49.66
DE→RU 27.80/32.66 20.97/25.46 27.86/30.73 26.03/30.05 40.11/40.27 42.15/42.83
RU→DE 27.82/32.58 36.46/39.08 33.84/37.30 37.98/40.65 42.33/44.21 45.00/46.99
DE→TR 14.03/18.21 20.40/23.37 21.39/24.36 18.94/22.85 29.26/32.03 32.24/34.85
TR→DE 14.43/18.10 23.22/26.57 20.13/24.55 21.67/25.24 30.83/33.71 34.45/37.11
EN→DE 43.00/46.10 46.40/48.20 43.05/45.80 47.95/49.65 49.65/50.40 51.75/50.85
DE→EN 43.14/48.25 51.90/54.56 47.16/50.23 50.97/54.41 53.42/56.23 55.24/57.75
EN→FI 22.40/28.35 24.30/27.95 29.50/33.60 30.40/34.50 38.60/42.15 43.75/45.00
FI→EN 22.70/28.38 37.41/41.15 29.01/35.47 33.68/37.10 39.73/45.51 42.93/48.77
EN→FR 49.00/56.50 57.90/60.00 56.85/60.50 59.65/61.60 60.70/61.65 63.65/62.50
FR→EN 49.46/55.56 58.35/61.41 54.32/58.41 58.72/61.61 60.48/63.27 62.65/64.05
EN→HR 18.65/22.50 21.95/24.95 21.30/25.55 21.70/26.65 32.65/35.65 39.20/42.35
HR→EN 16.57/22.88 34.61/37.45 26.35/30.72 29.77/32.93 35.30/40.87 40.35/47.55
EN→IT 48.65/55.20 55.15/57.55 54.70/57.60 56.00/58.30 57.70/59.60 60.70/61.05
IT→EN 48.22/53.64 56.85/60.78 52.61/56.69 56.59/60.78 59.17/62.64 61.40/63.67
EN→RU 31.50/35.50 21.10/25.05 28.50/32.25 32.75/35.15 43.80/42.50 46.55/46.05
RU→EN 32.37/36.62 44.37/46.20 36.46/41.17 43.27/46.20 47.25/50.29 48.35/53.17
EN→TR 19.35/23.00 24.45/26.70 25.15/27.75 26.40/29.95 36.60/38.15 39.05/41.05
TR→EN 19.81/24.65 33.49/37.17 26.94/32.59 29.98/33.76 36.95/42.33 37.86/43.24
FI→FR 16.13/22.49 31.84/34.79 25.70/30.01 29.58/33.74 37.05/40.36 40.67/43.30
FR→FI 17.69/21.73 21.11/23.95 25.14/28.50 26.49/29.49 34.30/37.61 37.09/40.56
FI→HR 15.24/17.24 25.22/29.90 21.86/26.33 23.49/26.90 25.64/30.01 30.74/34.26
HR→FI 14.05/18.52 25.04/27.62 23.57/27.83 23.99/27.41 28.67/32.61 33.46/36.14
FI→IT 20.13/25.33 32.11/34.68 28.38/31.84 30.27/34.21 35.89/38.99 40.04/42.88
IT→FI 19.07/24.60 22.84/26.10 27.80/30.13 27.96/31.01 34.94/37.83 38.71/41.65
FI→RU 18.44/21.91 26.69/30.27 23.33/27.69 26.48/30.43 31.42/33.89 34.73/37.15
RU→FI 15.72/20.48 29.02/33.11 25.93/31.01 25.93/30.28 32.27/35.31 34.94/37.35
HR→FR 17.99/23.04 35.61/39.14 28.35/32.93 30.19/34.67 37.14/41.14 43.08/45.71
FR→HR 16.76/20.54 23.80/27.52 24.00/28.45 25.50/28.56 32.70/35.33 36.26/39.68
HR→IT 20.52/26.20 36.40/38.77 29.46/33.09 31.93/35.03 37.40/40.24 42.40/46.19
IT→HR 18.81/23.72 23.88/28.68 24.81/28.63 26.10/30.44 33.02/35.92 37.62/41.29
HR→RU 20.99/24.72 32.40/36.09 29.35/34.30 30.30/34.09 37.30/39.40 40.72/42.14
RU→HR 20.32/25.67 34.10/38.08 29.70/33.94 30.91/36.14 34.68/38.92 38.03/41.17
IT→FR 55.25/59.95 63.41/65.06 60.93/63.93 63.05/65.22 63.41/65.63 65.27/66.77
FR→IT 55.25/59.91 62.13/63.58 60.37/62.80 61.98/64.15 63.11/64.56 64.46/65.49
RU→FR 26.72/33.68 42.33/45.42 36.04/40.54 41.91/46.57 46.52/48.87 48.87/51.28
FR→RU 27.06/30.83 20.33/24.57 27.57/31.92 29.69/32.90 40.71/40.46 43.66/43.61
RU→IT 30.59/35.36 41.91/43.74 38.92/41.80 42.54/44.94 45.10/48.35 46.46/49.24
IT→RU 29.82/32.97 22.89/26.10 29.20/31.47 33.49/35.76 41.34/41.50 43.41/43.57
TR→FI 13.31/16.03 19.81/24.76 21.73/26.36 21.73/26.20 26.94/29.93 30.35/32.96
FI→TR 11.77/15.08 21.97/25.80 19.71/24.17 21.49/25.64 24.96/28.32 27.80/30.64
TR→FR 16.67/20.23 30.46/32.85 26.57/31.52 28.27/31.84 35.46/38.82 38.92/41.59
FR→TR 14.43/18.37 22.19/25.19 23.02/25.30 21.83/24.37 32.02/35.59 35.70/38.44
TR→HR 11.66/13.84 16.19/20.50 19.01/22.15 17.15/21.19 22.74/27.00 27.85/32.16
HR→TR 10.10/12.73 19.57/20.67 18.57/21.99 18.36/20.83 22.51/28.25 28.88/33.04
TR→IT 17.15/22.31 29.29/31.42 26.94/29.66 26.62/30.56 33.65/36.47 36.42/39.19
IT→TR 16.12/20.98 22.22/25.06 23.93/26.10 23.62/26.25 32.66/34.47 35.50/37.93
TR→RU 12.94/15.87 13.05/15.55 15.87/19.60 17.04/20.55 25.35/28.12 29.82/31.95
RU→TR 11.42/14.77 16.61/18.60 17.02/20.12 20.90/22.89 26.40/29.54 30.07/33.05

Avg. 24.73/29.31 32.50/35.56 31.10/34.90 33.00/36.45 38.97/41.74 42.33/44.77

Table 7: BLI results with 1k seed translation pairs. BLI prediction accuracy (P@1×100%) is reported in the
NN/CSLS format (NN: Nearest Neighbor retrieval without CSLS adjustment; CSLS: CSLS retrieval). Underlined
scores denote the highest scores among purely fastText-based methods; bold scores denote the highest scores in
setups where both fastText and mBERT are allowed.
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[1k] Pairs ET→HU HU→EU EU→ET
VecMap 35.55 20.03 9.83

FIPP 30.30 11.58 8.22
C1 40.35 20.09 13.00
C2 44.64 28.26 21.35

mBERT 15.40 16.97 23.70
mBERT(tuned) 20.59 22.30 28.62

C2(λ=0.4) - 34.62 36.70

Table 8: Additional BLI scores on the PanLex-BLI
evaluation sets of Vulić et al. (2019); ‘mBERT’ and
‘mBERT (tuned)’ refer to using word encodings from
mBERT directly for BLI, before and after fine-tuning
in Stage C2.
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[5k] Pairs C1 w/o CL C1 w/o SL C1 mBERT mBERT(tuned) C1+mBERT C2 (C1)

DE→∗ 35.16/39.30 41.70/45.07 43.43/46.14 8.90/9.39 17.70/18.66 43.13/46.25 46.24/48.86
∗→DE 37.24/41.23 43.46/45.85 44.85/46.39 8.86/9.51 18.10/19.21 44.61/46.47 48.96/50.12
EN→∗ 37.99/41.58 48.41/50.99 49.54/51.31 9.29/9.55 15.08/15.87 49.44/51.55 53.78/54.31
∗→EN 46.36/50.16 47.36/51.18 49.21/52.61 10.42/10.71 21.34/22.58 48.96/52.77 51.22/55.47
FI→∗ 31.92/36.78 33.62/38.21 36.35/39.80 5.73/5.93 12.23/13.23 35.97/40.00 40.00/43.44
∗→FI 26.16/31.13 33.07/37.26 35.89/38.82 5.57/5.89 11.99/12.95 35.48/39.05 39.67/41.97
FR→∗ 38.60/42.41 45.27/48.40 46.81/49.12 9.65/10.18 18.37/19.70 46.65/49.29 50.29/51.91
∗→FR 45.30/48.85 47.35/50.82 49.42/51.84 9.86/10.38 20.01/21.10 49.07/51.92 52.73/54.53
HR→∗ 30.88/35.52 33.95/38.51 36.76/40.22 7.11/7.72 17.52/18.57 36.13/40.40 41.95/45.53
∗→HR 26.94/32.19 32.24/36.42 34.67/37.82 7.09/7.54 16.83/17.81 34.23/38.08 39.13/42.65
IT→∗ 39.06/42.67 45.55/48.39 46.91/48.92 7.47/8.13 18.64/20.18 46.35/48.91 50.06/51.91
∗→IT 44.48/47.60 46.35/49.93 48.10/50.99 7.03/7.46 16.24/17.12 47.66/51.07 51.33/53.85
RU→∗ 37.46/40.84 39.30/42.81 41.77/44.17 1.95/2.29 14.50/15.74 41.56/44.38 44.25/47.24
∗→RU 27.85/32.12 39.04/41.46 40.66/42.15 1.38/1.94 11.47/13.25 40.53/42.39 43.73/45.20
TR→∗ 26.14/30.92 31.12/35.08 34.07/36.61 6.18/6.53 12.10/12.87 33.41/36.81 36.70/39.86
∗→TR 22.88/26.74 30.08/34.55 32.83/35.67 6.07/6.28 10.14/10.79 32.09/35.85 36.52/39.26
Avg. 34.65/38.75 39.87/43.43 41.95/44.54 7.04/7.46 15.77/16.85 41.58/44.70 45.41/47.88

[1k] Pairs C1 w/o CL C1 w/o SL C1 mBERT mBERT(tuned) C1+mBERT C2 (C1)

DE→∗ 33.39/37.54 24.74/32.59 41.40/43.94 8.90/9.39 20.26/20.92 41.46/44.08 44.20/46.61
∗→DE 35.21/38.73 24.01/32.08 41.19/43.15 8.86/9.51 20.78/21.10 41.48/43.37 44.66/46.01
EN→∗ 35.65/39.46 33.21/39.31 45.67/47.16 9.29/9.55 16.92/17.29 46.05/47.56 49.24/49.84
∗→EN 44.95/49.02 28.26/39.19 47.47/51.59 10.42/10.71 26.11/26.82 47.08/51.63 49.83/54.03
FI→∗ 29.34/33.91 13.17/21.10 33.17/36.81 5.73/5.93 15.66/16.13 33.15/36.90 37.11/40.28
∗→FI 23.35/28.38 14.12/20.73 33.30/36.61 5.57/5.89 14.80/15.35 33.27/36.83 37.01/39.63
FR→∗ 36.34/39.49 27.86/34.51 44.20/46.23 9.65/10.18 20.74/21.59 44.15/46.52 46.83/48.57
∗→FR 44.06/47.64 28.73/36.32 47.16/49.75 9.86/10.38 23.03/23.59 47.24/49.88 50.37/52.17
HR→∗ 28.42/33.07 12.40/20.76 33.38/37.28 7.11/7.72 20.41/20.97 33.01/37.38 38.58/42.16
∗→HR 24.15/28.84 14.61/20.67 30.33/34.00 7.09/7.54 19.18/19.74 30.49/34.30 35.17/38.77
IT→∗ 36.71/40.37 29.04/36.45 44.44/46.55 7.47/8.13 22.25/23.29 44.42/46.74 47.33/49.22
∗→IT 43.02/46.05 29.42/37.68 45.97/48.50 7.03/7.46 19.27/19.86 45.75/48.54 48.70/50.94
RU→∗ 35.36/38.69 18.95/27.72 39.22/42.21 1.95/2.29 18.86/19.12 39.09/42.27 41.67/44.61
∗→RU 24.33/28.77 20.82/26.62 37.15/38.02 1.38/1.94 14.57/15.74 37.41/38.37 40.15/41.04
TR→∗ 24.06/28.62 11.39/18.22 30.27/33.77 6.18/6.53 14.80/15.28 30.07/33.92 33.67/36.89
∗→TR 20.19/23.73 10.80/17.36 29.20/32.34 6.07/6.28 12.14/12.40 28.69/32.44 32.75/35.57
Avg. 32.41/36.39 21.35/28.83 38.97/41.74 7.04/7.46 18.74/19.32 38.93/41.92 42.33/44.77

Table 9: Full ablation study on 8 languages, 28 language pairs in both directions with training dictionary sizes of
5k and 1k respectively, that is, 112 BLI setups for each method. L →∗ and ∗ →L denote the average BLI scores
of BLI setups where L is the source and the target language, respectively. BLI prediction accuracy (P@1×100%)
is reported in the NN/CSLS format (NN: Nearest Neighbor retrieval without CSLS adjustment; CSLS: CSLS
retrieval). Underlined scores denote the highest scores among purely fastText-based methods; bold scores denote
the highest scores in setups where both fastText and mBERT are allowed.
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