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Subword Tokenization Strategies for Kurdish Word Embeddings
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Abstract
We investigate tokenization strategies for Kur-
dish word embeddings by comparing word-level,
morpheme-based, and BPE approaches on mor-
phological similarity preservation tasks. We de-
velop a BiLSTM-CRF morphological segmenter
using bootstrapped training from minimal man-
ual annotation and evaluate Word2Vec embed-
dings across comprehensive metrics including
similarity preservation, clustering quality, and se-
mantic organization. Our analysis reveals crit-
ical evaluation biases in tokenization compari-
son. While BPE initially appears superior in
morphological similarity, it evaluates only 28.6%
of test cases compared to 68.7% for morpheme
model, creating artificial performance inflation.
When assessed comprehensively, morpheme-
based tokenization demonstrates superior embed-
ding space organization, better semantic neigh-
borhood structure, and more balanced coverage
across morphological complexity levels. These
findings highlight the importance of coverage-
aware evaluation in low-resource language pro-
cessing and offers different tokenization methods
for low-resourced language processing.

1. Introduction
Effective word representations are critical for natural lan-
guage processing, particularly for low-resource, morpholog-
ically rich languages where data scarcity compounds the
complexity of linguistic structures (Erdmann & Habash,
2018; Ruder et al., 2019). Tokenization, the process of
segmenting text into units, is the foundation for these rep-
resentations, with significant impact on downstream appli-
cations. Conventional word-level tokenization approaches
fail to capture the compositional nature of meaning encoded
in morphological structures in languages with richmorphol-
ogy (Cotterell & Schütze, 2016). While linguistic theory
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suggests morpheme-based tokenization should outperform
statistical approaches for morphologically rich languages
(Luong et al., 2013; Park et al., 2020), some empirical ev-
idence has begun to challenge this assumption. Recent re-
search across various languages has revealed a surprising
gap between theoretical expectations and practical results in
subword tokenization (Bostrom & Durrett, 2020). Statisti-
cal methods like Byte-Pair Encoding (BPE) (Sennrich et al.,
2016), which merge frequent character sequences without
linguistic guidance, sometimes outperform linguistically-
informed approaches (Mielke et al., 2019). On the other
hand, comparative research on morphologically rich lan-
guages like Turkish, Finnish, and Hungarian (Cotterell &
Schütze, 2016; Creutz&Lagus, 2005) has demonstrated the
benefits of morphologically-informed representations.

In this work, we present an in-depth analysis of the im-
portance of tokenization for Kurdish natural language pro-
cessing due to its complex morphology (Esmaili & Salavati,
2013). Despite its historical and cultural significance, Kur-
dish remains under-resourced in computational linguistics
(Hassani, 2018), with limited exploration of optimal to-
kenization strategies. The unexpected findings that sub-
word tokenization is sufficient for most tasks necessitates
systematic evaluation of different segmentation strategies.
Here we ask which tokenization approaches are most op-
timal for Kurdish to narrow the gap in the literature (Ah-
madi & Wurm, 2019). We review the linguistic proper-
ties of Kurdish and present a comparison of word-level,
morpheme-based, and subword tokenization strategies for
Kurdish, examining their impact on word embedding qual-
ity and downstream tasks. Our work addresses the crucial
need for empirically-grounded tokenization approaches in
low-resource settings (Gerz et al., 2018) and contributes
to the broader understanding of representation learning for
morphologically complex languages.

2. Challenges for Kurdish Language
Processing

Kurdish morphology exhibits extensive derivational and
inflectional processes (Thackston, 2006). Nouns encode
definiteness and number, while verbs express tense, as-
pect, mood, person, and number through complex affixa-
tion patterns. The agglutinative structure of Kurdish partic-
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ularly complicates verbal constructions where multiple mor-
phemes concatenate to form complex predicates (Ahmadi
et al., 2020). For example, the Kurdish verb neyandegeran-
dewe (they wouldn’t return it) contains six morphemes: ne-
(negation) + yan (3rd person plural object) + de- (past im-
perfective) + gerênd (causative ‘return’) + ewe (directional
‘back’). The morphological density of Kurdish words is
comparable to other morphologically rich languages and
creates compositional structures where single words en-
code multiple features. The noun کتێبەکانم (kitêbekanim,
“my books”) demonstrates typical complexity: کتێب (kitêb,
“book”) + ەکان (ekan, plural) + م (im, possessive). This
morphological complexity yields high type-to-token ratios,
exacerbating data sparsity in computational models.

In addition to its morphological properties, Kurdish lacks
the large-scale annotated corpora and computational lexi-
cons available for high-resource languages (Hassani, 2018),
though large, unlabeled datasets are increasingly available.
Dialectal variation and sociolinguistic fragmentation adds
complexity, with Sorani and Kurmanji differing in morphol-
ogy, syntax, and vocabulary (Sheykh Esmaili & Salavati,
2013). Orthographic inconsistencies arise from optional
vowel representation in the Arabic-derived script, where
short vowels may be omitted (Ahmadi, 2020). Morpho-
logical analysis tools have developed incrementally, with
notable efforts including Sorani analyzers (Ahmadi & Has-
sani, 2020; Ahmadi, 2021), finite-state transducers for Kur-
dish (Ahmadi & Hassani, 2020), and the comprehensive
AsoSoft framework (Veisi et al., 2019; Mahmudi & Veisi,
2021), which provides large text collections, translitera-
tion systems, and web-accessible morphological analysis.
These tools achieve reasonable coverage for standard texts
but struggle with neologisms, borrowed terminology, and
social media content with spelling variations.

We argue here that linguistically informed tokenization that
combines the strengths of statistical methods like subword
segmentation (Sennrich et al., 2016) and morphological
boundary detection presents a potential solution for the or-
thographic and morphophonemic alternations of Kurdish.
To address these issues, we present a neural BiLSTM-CRF
model that addresses these limitations through bootstrapped
training from minimal annotation (1,540 words), demon-
strating effective morphological analysis with limited re-
sources.

3. Methodology
The training process for our morphological segmentation
model followed a bootstrapping approach. Our study uti-
lized the AsoSoft Text Corpus (Veisi et al., 2019) as the pri-
mary data source, which is one of the largest available col-
lections of Kurdish (Sorani) text. We manually segmented
approximately 1,500 Kurdish words based on linguistic

morphological analysis. These words were randomly se-
lected from the corpus to ensure coverage of different word
types and morphological patterns including different parts
of speech, light verb constructions, preverbal constructions
and compounds. These words served as the initial training
set for the BiLSTM-CRF model. After training this initial
model, we applied it to segment additional words from our
corpus, manually verified a subset of these new segmenta-
tions, and added them to our training data. Through this it-
erative process, we expanded our training set to over 4,000
words with gold-standard morphological segmentations.

3.1. Text normalization

Text normalization for Kurdish presented numerous chal-
lenges due to its non-standardized orthography, dialectal di-
versity, and the nature of the available corpus. Given the
lack of standard Kurdish NLP preprocessing libraries, ev-
ery aspect of the workflow had to be developed from scratch
or extensively adapted. Our preprocessing pipeline was de-
veloped across several stages, requiring considerable man-
ual tuning and verification. We applied AsoSoft’s text nor-
malization method (Mahmudi & Veisi, 2021; Veisi et al.,
2019) from their Python library in the initial preprocess-
ing stages to address standard Kurdish text inconsistencies
before implementing our custom normalization procedures.
This multi-phase normalization required several iterations
of testing, reviewing, and modifying rules across millions
of tokens. The final preprocessed corpus formed the founda-
tion of our tokenization and embedding experiments, and its
quality was critical to the validity of all subsequent results.

The Asosoft corpus is constructed from various sources,
with news articles constituting the majority of the content.
After extensive preprocessing, our final cleaned corpus con-
tained 24.5 million tokens spanning approximately 2.3 mil-
lion sentences. We first defined a strict set of allowable char-
acters that included letters from the extended Arabic-based
script used in Sorani Kurdish, numerals, and a limited range
of punctuation marks. All non-Kurdish or extraneous char-
acters were filtered using regular expressions. This filtering
process was not straightforward, as informal writing styles,
character borrowing from Persian and Arabic, and inconsis-
tent Unicode encodings introduced significant noise in the
text (see Appendix).

Corpus cleanup also included extensive deduplication, in-
cluding exact sentence duplicates and fuzzy duplicates us-
ing token-overlap measures. We removed near-identical
headlines, repeated paragraphs, and templated sentences
across documents. Sentences that fell below a minimum to-
ken threshold or lacked valid word structure were discarded
(see appendix). In the final phase of preprocessing, we im-
plemented Kurdish-specific sentence segmentation rules to
extract clean sentence boundaries using heuristics around
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punctuation and spacing. Given the inconsistent use of sen-
tence delimiters and overlap with non-Kurdish scripts, this
step required custom filtering to remove embedded Persian
and Arabic segments. The resulting corpus of 2.3 million
well-formed sentences was further deduplicated and format-
ted into sentence-per-line and word-per-line variants to sup-
port downstream tokenization schemes.

3.2. Tokenization approaches

Tokenization strategies for morphologically rich languages
fundamentally shape how models represent linguistic struc-
ture, spanning from statistical to linguistically-informed
methods. This comparison addresses a core theoreti-
cal question: whether linguistically-informed segmenta-
tion outperforms statistical frequency-based approaches for
capturing meaningful morphological relationships in Kur-
dish. We quantify the convergence between these ap-
proaches through segmentation agreement analysis, mea-
suring boundary alignment using similarity coefficients.

Statistical approaches like Byte-Pair Encoding (BPE; Sen-
nrich et al., 2016) operate through iterative merging, start-
ing with characters and incrementally merging frequent
adjacent pairs 𝑝 = (𝑥, 𝑦) using argmax𝑝∈𝑉 count(𝑝) until
reaching target vocabulary size. Alternative methods in-
clude WordPiece (Schuster & Nakajima, 2012), which in-
corporates likelihood criteria, and SentencePiece (Kudo &
Richardson, 2018), which treats whitespace as regular char-
acters. The unigram language model (Kudo, 2018) em-
ploys a different paradigm, starting with large vocabulary
and iteratively removing subwords to maximize corpus like-
lihood. Unsupervised morphological approaches include
Morfessor (Smit et al., 2014), which applies minimum de-
scription length principles to automatically discover mor-
pheme boundaries. This method seeks segmentations that
minimize combined encoding costs of both lexicon (mor-
pheme inventory) and corpus (word occurrences), balanc-
ing between poor corpus compression (too fewmorphemes)
and excessive lexicon size (too many morphemes).

By contrast, linguistically-motivated segmentation identi-
fies meaningful units 𝑠 aligned with linguistic structures
such as words (𝑤) rather than frequency patterns, formu-
lated as:

arg max
𝑠1 ,𝑠2 ,...,𝑠𝑛

𝑃(𝑠1, 𝑠2, ..., 𝑠𝑛 |𝑤) (1)

where the probability function incorporates morphological
knowledge about valid combinations and morphotactic con-
straints.

3.2.1. MORPHOLOGICAL SEGMENTATION WITH
BILSTM-CRF

For morpheme-level tokenization, we developed a
BiLSTM-CRF neural architecture (Lafferty et al., 2001;

Huang et al., 2015) that predicts morpheme boundaries
within Kurdish words. This approach decomposes complex
forms into constituent morphemes, enabling capture of
morphological regularities and improved generalization
across paradigms. Given Kurdish’s limited annotated data,
we investigate whether effective segmentation is achievable
through bootstrapping from minimal training data.

3.2.2. MODEL ARCHITECTURE

The BiLSTM-CRF model processes words at the character
level using an embedding-based approach. Our implemen-
tation begins with a character embedding layer that maps
each character to a dense vector representation:

x𝑡 = Embedding(𝑐𝑡 ) ∈ R𝑑 (2)

where 𝑑 is the embedding dimension for each character in
the Kurdish alphabet. The architecture consists of three
main components: a multi-layer bidirectional LSTM that
processes character sequences in both directions to capture
contextual information, a linear projection layer that maps
LSTM outputs to boundary prediction scores, and a Condi-
tional Random Field (CRF) layer that enforces valid bound-
ary label sequences.Themodel computation proceeds as fol-
lows:

h 𝑓 ,h𝑏 = BiLSTM(x1:𝑛) (3)

h𝑡 = [h 𝑓
𝑡 ;h𝑏

𝑡 ] (4)
e𝑡 = Wh𝑡 +b (5)

The CRF layer models the conditional probability of label
sequence y given input x:

𝑃(y|x) = exp(𝑠(x,y))∑
y′∈Y(x) exp(𝑠(x,y′)) (6)

where the score function combines emission and transition
scores:

𝑠(x,y) =
𝑛∑
𝑡=1

[e𝑡 ,𝑦𝑡 +T𝑦𝑡−1 ,𝑦𝑡 ] (7)

Here, h 𝑓 and h𝑏 represent the forward and backward LSTM
hidden states, e𝑡 are emission scores, and T is the transition
score matrix.

3.2.3. TRAINING CONFIGURATION AND BOOTSTRAPPING

We employed a bootstrapping approach to train the model
with minimal annotation resources. Beginning with 1,540
manually segmented Kurdish words, we iteratively ex-
panded our training set through model-assisted annotation
and manual verification, ultimately reaching over 4,000 an-
notated words. The model used a hidden size of 256 di-
mensions, 3 BiLSTM layers, and a dropout rate of 0.3 for
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regularization. We used the Adam optimizer with learning
rate 0.001 and weight decay 1e-5, employing early stopping
with 10 epochs patience to prevent overfitting.

We experimented with two labeling schemes: the “end-only
scheme” where only the last character of each morpheme is
marked as a boundary (0-0-1), and the “both-ends scheme”
where both the first and last characters of each morpheme
are marked as boundaries (1-0-1). After evaluation on our
validation set, we selected the end-only scheme for our final
model based on its superior performance. During inference,
the model segments words using the CRF’s Viterbi decod-
ing algorithm (Lafferty et al., 2001) to find the optimal label
sequence:

y∗ = argmax
y∈Y(x)

𝑛∑
𝑡=1

[e𝑡 ,𝑦𝑡 +T𝑦𝑡−1 ,𝑦𝑡 ] (8)

3.2.4. MODEL PERFORMANCE AND ERROR ANALYSIS

The final model achieved an F1-score of .815 for boundary
detection, with precision of .835 and recall of .796. How-
ever, performance evaluation revealed significant variation
across word categories. Nouns achieved over 90% segmen-
tation accuracy and adjectives around 93%, while verbs
reached only 42% accuracy. This discrepancy stems from
Kurdish verb morphology’s greater complexity, includ-
ing extensive affixation patterns, irregular forms, single-
character stems with phonological changes, ambiguous
direction-marking affixes, and fewer training examples of
complex verbal constructions.

After applying morphological segmentation to our full cor-
pus, each word decomposed into an average of 1.99 mor-
phemes, consistent with expectations for morphologically
complex languages. This segmentation strategy signifi-
cantly impacts embedding quality for morphologically re-
lated forms, particularly for nouns and adjectives where seg-
mentation accuracy is high. We examine how this segmenta-
tion quality directly affects morphological similarity preser-
vation in our embedding evaluation results (Section 4.4).

3.2.5. BYTE-PAIR ENCODING (BPE)

We implemented Byte-Pair Encoding (Sennrich et al., 2016)
as a tokenization approach that operates without explicit lin-
guistic knowledge. BPE offers a data-driven alternative to
morphologically-informed segmentation.

Our BPE implementation used the HuggingFace Tokeniz-
ers library with a target vocabulary size of 2,280 tokens
based on empirical morpheme count analysis. This vocabu-
lary size was chosen to create a compact representation that
balances coverage and efficiency—small enough to ensure
frequent occurrence of each subword unit for robust statisti-
cal learning, yet large enough to capture common Kurdish

character sequences and morphological patterns. The train-
ing process included a minimum frequency threshold of 2
to filter out rare character combinations.

The resulting BPE tokenizer segments Kurdish words into
subword units averaging 3.75 tokens per word, more gran-
ular than the morpheme-based approach (1.99 tokens per
word) but more compact than character-level tokenization.
For example, a complex Kurdish word like دەستپێکردنەوە
(“to start”) might be segmented as ,دەست‑پێ‑کرد‑نەوە
where the algorithm has learned to identify frequently co-
occurring character sequences regardless of their linguistic
significance.

3.2.6. WORD-LEVEL TOKENIZATION

Word-level tokenization serves as our baseline approach,
treating each word as a unit without internal decompo-
sition. This traditional method employs whitespace and
punctuation-based segmentation, creating the largest vo-
cabulary among our three approaches. For Kurdish text
processing, we applied standard tokenization rules while
addressing language-specific considerations such as com-
pound word boundaries and clitic attachment patterns.

While word-level tokenization offers the advantage of pre-
serving complete lexical meanings, it presents significant
challenges for morphologically rich languages like Kurdish.
The approach suffers from high data sparsity, as each in-
flected or derived form is treated as a distinct vocabulary
item, and cannot generalize to unseen word forms. This lim-
itation is particularly pronounced in Kurdish, where produc-
tive morphological processes can generate numerous vari-
ants of a base form, leading to substantial out-of-vocabulary
issues and requiring extensive vocabulary coverage for ade-
quate representation.

3.3. Kurdish word, subword, and morpheme
embeddings

We employed the skip-gram word2vec architecture
(Mikolov et al., 2013) to train comparable embeddings
across all three tokenization approaches. Our framework
addresses the challenge of fair comparison between to-
kenization strategies that produce vastly different token
counts per word. Our evaluation includes analysis of
embedding space organization through separation ratios
(measuring intra-lemma vs. inter-lemma clustering)
and similarity dropoff rates (quantifying how similarity
decreases across nearest neighbor rankings).

3.3.1. WINDOW SIZE ADJUSTMENT METHODOLOGY

A critical part in our approach is the dynamic adjustment
of context window sizes based on tokenization granular-
ity. Since different tokenization strategies produce varying
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numbers of tokens per word, maintaining identical window
sizes would create unfair comparisons where subword ap-
proaches see artificially truncated contexts. We calculate
the average tokens per word for each tokenization approach
and adjust window sizes proportionally:

𝑤adjusted = ⌈𝑤base × avg_tokensapproach⌉ (9)

where 𝑤base represents the baseline window size for word-
level tokenization.

3.3.2. TRAINING CONFIGURATION

All models used identical training parameters: vector di-
mensions of 100 and 150, minimum count threshold of 5,
10 training epochs, and skip-gram with negative sampling
(5 negative samples). Models were trained using Gensim’s
word2vec (Řehůřek & Sojka, 2010) implementation with
consistent preprocessing pipelines to eliminate confound-
ing factors. For out-of-vocabulary evaluation, morpheme
and BPE models compute compositional vectors by averag-
ing constituent subword embeddings, while the word-level
model cannot handle unseen words. Training consistency
was ensured through fixed random seeds and multiple inde-
pendent runs, with final results representing averaged per-
formance across three training iterations.

3.3.3. HANDLING OUT-OF-VOCABULARY WORDS

A critical consideration for fair evaluation is handling words
not present in model vocabularies during testing. The three
tokenization approaches exhibit fundamentally different ca-
pabilities for addressing out-of-vocabulary (OOV) words,
which directly impacts evaluation coverage and compara-
bility. Coverage refers to the percentage of evaluation
word pairs for which a model can generate embeddings
for both components. We utilize coverage as the percent-
age of evaluation word pairs for which a model can gener-
ate embeddings for both the lemma and wordform, either
through direct vocabulary lookup or compositional vector
construction. Compositional vectors are created by aver-
aging embeddings of constituent subword units when com-
plete words are absent from the vocabulary. Compositional
vectors are constructed by averaging the embeddings of
constituent subword units when the complete word is not
present in the model vocabulary.

For morpheme and BPE models, we implement composi-
tional vector generation by averaging constituent subword
embeddings when the complete word form is absent from
the vocabulary. When evaluating a word not present in
the morpheme model, we decompose it using our BiLSTM-
CRF segmenter and compute the mean vector of available
morpheme embeddings. Similarly, BPE models leverage
their learned subword units to construct representations for
unseen words through vector averaging of constituent BPE

tokens. The word-level model, by design, cannot generate
representations for OOV words, as it treats each word as an
atomic unit. This limitation creates an inherent evaluation
disadvantage, as word-level models have zero coverage for
words absent from their training vocabulary.

4. Evaluation and Results
Our evaluation methodology implements a framework de-
signed to establish the relationship between segmenta-
tion quality and embedding performance while identifying
distinct organizational patterns that different tokenization
strategies create in embedding space. We present evalua-
tion methodology alongside corresponding results to pro-
vide immediate insights into each analytical approach.

4.1. Morphological Segmentation Quality Assessment

We employ the UniMorph Kurdish dataset (Pimentel et al.,
2021) as our gold standard for morphological segmentation
evaluation. UniMorph provides morphologically annotated
word forms with lemmas and feature annotations for about
1,000 Kurdish (Sorani) words, making it suitable for validat-
ing our BiLSTM-CRF segmentation accuracy. We evaluate
the BiLSTM-CRF segmentation system using F1-score cal-
culation for binary boundary detection, treating each char-
acter position as either boundary (1) or non-boundary (0).
Performance assessment includes systematic breakdown by
part-of-speech categories, revealing substantial variation in
segmentation difficulty across linguistic categories.

Figure 1 shows the substantial performance variation across
POS categories detailed in our methodology.

Figure 1. BiLSTM-CRFmorphological segmentation accuracy by
part-of-speech category, showing substantial variation in bound-
ary detection performance across linguistic categories.

4.2. Morphological Similarity Analysis

We evaluate how well each tokenization approach preserves
morphological relationships by measuring cosine similar-
ity between lemmas and their inflected forms from the Uni-
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Morph dataset:

sim(𝑤lemma,𝑤wordform) =
𝑣𝑤lemma · 𝑣𝑤wordform

| |𝑣𝑤lemma | | · | |𝑣𝑤wordform | |
(10)

When complete words are absent from model vocabularies,
morpheme and BPEmodels generate compositional vectors
by averaging constituent subword embeddings, while word-
level models cannot handle out-of-vocabulary cases. BPE
achieves the highest average similarity (0.73), followed by
morpheme-based approaches (0.62) and word-level models
(0.57). This unexpected result challenges the assumption
that linguistically-informed segmentation inherently outper-
forms statistical methods.

Approach Similarity (±SD)
Word 0.528 ± 0.15
Morpheme 0.583 ± 0.20
BPE 0.752 ± 0.18

Table 1. Average morphological similarity scores with standard
deviations

BPE’s apparently superior morphological similarity perfor-
mance (0.752) must be interpreted cautiously due to se-
vere evaluation coverage limitations. While BPE achieves
higher average similarity with lower standard deviation
(0.18), indicating more consistent scores, this performance
is based on only 28.6% of test cases compared to 94.3% for
word models.

The more structured embedding space organization demon-
strated by morpheme models in neighbor rank analysis,
combined with their superior clustering quality metrics,
suggests that when fairly evaluated on comparable test sets,
linguistically-informed segmentation may indeed outper-
form statistical approaches. The frequency-based patterns
captured by BPE appear to create tighter morphological
clustering for a limited subset of evaluable cases, but this ad-
vantage may not generalize to comprehensive morphologi-
cal processing tasks. This coverage bias represents a critical
methodological limitation that necessitates restricted evalu-
ation on mutually evaluable word sets to enable fair compar-
ison between tokenization approaches.

4.3. Segmentation Strategy Comparison

We quantify alignment between morpheme and BPE seg-
mentation boundaries using the Jaccard similarity coeffi-
cient (Manning & Schütze, 1999). For each word 𝑤, we
define 𝐴 as morpheme boundary positions and 𝐵 as BPE
boundary positions:

agreement(𝑤) = |𝐴∩𝐵 |
|𝐴∪𝐵 | (11)

This metric ranges from 0 (no shared boundaries) to 1 (per-
fect boundary alignment), enabling analysis of convergence
between statistical and linguistic segmentation approaches.
Analysis reveals fundamental divergence between the two
approaches. Despite processing identical text, morpheme
and BPE methods achieve only 14.4% average boundary
agreement, with 63.6% of words showing zero agreement
and merely 2.5% achieving perfect alignment.

Metric Value Count
Zero agreement 63.6% 636 words
Perfect agreement 2.5% 25 words
Average agreement 14.4%
Morpheme tokens/word 1.99
BPE tokens/word 3.75

Table 2. Segmentation agreement and tokenization density

The predominance of zero-agreement cases (63.6%)
demonstrates that statistical and linguistic approaches iden-
tify almost entirely different sets of meaningful units. This
fundamental divergence, combined with BPE’s nearly dou-
bled tokenization density, indicates that frequency-based
patterns and morphological boundaries represent comple-
mentary rather than competing approaches to identifying
linguistic structure. The minimal convergence suggests that
hybrid methods combining both perspectives may be nec-
essary to capture the full spectrum of meaningful units in
Kurdish morphology.

4.4. Embedding Space Organization Analysis

We analyze embedding space structure through two com-
plementary approaches: similarity distribution patterns and
neighbor rank similarity analysis.

4.4.1. NEIGHBOR RANK SIMILARITY ANALYSIS

We examine how similarity decreases across ranked nearest
neighbors by calculating average similarity at each neighbor
rank (Figure 2). Steep dropoff indicates well-organized se-
mantic clusters, while flat curves suggest poorly structured
embedding spaces. Contrary to expectations, morpheme
and word models show nearly identical dropoff patterns,
while BPE demonstrates the shallowest dropoff (i.e., flattest
curve). All models start at similar similarity levels ( 0.88-
0.89) for rank 1 neighbors, but BPE maintains consistently
higher similarities across all neighbor ranks, ending at 0.54
at rank 20 compared to 0.50 for morpheme and word mod-
els.

The neighbor rank analysis reveals a counterintuitive pat-
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Figure 2. Average similarity by neighbor rank, showing how simi-
larity decreases across ranked nearest neighbors for each tokeniza-
tion approach. BPE maintains higher similarities across all ranks
while morpheme and word models show steeper decay patterns.

Dropoff Measure Word Morpheme BPE
Rank 1-5 Dropoff 31.2% 32.7% 30.3%
Rank 1-10 Dropoff 37.6% 38.8% 35.3%
Rank 1-20 Dropoff 43.1% 44.2% 39.1%

Table 3. Similarity dropoff rates at neighbor rank intervals

tern where BPE’s morphological similarity scores coincide
with less structured embedding space organization. BPE’s
shallow dropoff (39.1% rank 1-20) suggests more uniform
semantic neighborhoods rather than the distinct clustering
typically desired in embedding spaces. In contrast, mor-
pheme and word models show steeper, more similar decay
patterns (44.2% and 43.1% respectively), indicating better-
defined semantic boundaries.

This finding challenges the interpretation of BPE’s morpho-
logical similarity advantage, suggesting that higher simi-
larity scores may reflect overly uniform embedding spaces
rather than superior morphological understanding. The
trade-off appears to favor consistency over discrimination:
BPE creates embeddings where everything looks moder-
ately similar to everything else, while morpheme-based ap-
proaches create more structured spaces with clearer seman-
tic distinctions.

4.4.2. ALLOMORPH CLUSTERING ANALYSIS

We analyze how different inflected forms of the same
lemma cluster in embedding space by comparing intra-
lemma distances (between forms of the same lemma) ver-
sus inter-lemma distances (between forms of different lem-
mas). This analysis reveals how well each tokenization ap-
proach groups morphologically related forms while main-
taining separation between unrelated words.

The distance distribution plots (Figure 3) reveal distinct
clustering patterns across tokenization approaches. All
models achieve similar separation ratios (Word: 1.44, Mor-
pheme: 1.31, BPE: 1.45), calculated as the ratio of average
inter-lemma distances to average intra-lemma distances, in-
dicating comparable ability to distinguish between differ-
ent lemmas while clustering related forms. However, the
distribution shapes differ substantially. BPE demonstrates
the tightest intra-lemma clustering, with most related forms
concentrated at very low distances (peak around 0.4-0.5).
The morpheme model shows intermediate clustering behav-
ior with a broader intra-lemma distribution, while the word
model exhibits the most dispersed intra-lemma distances.
All models maintain clear separation between intra-lemma
and inter-lemma distances, with inter-lemma distributions
consistently shifted toward higher distances (0.7-1.0).

Figure 3. Distribution of cosine distances for intra-lemma (same
lemma) versus inter-lemma (different lemmas) word pairs across
tokenization approaches. Blue histograms show distances be-
tween inflected forms of the same lemma, while orange histograms
show distances between forms of different lemmas.

Metric Word Morph BPE
Separation Ratio 1.44 1.31 1.45
Cohesion Moderate Moderate Highest
Pattern Dispersed Inter. Concentrated

Table 4. Allomorph clustering characteristics

The allomorph clustering analysis provides crucial insight
into BPE’s apparent morphological similarity advantage.
While BPE achieves the highest separation ratio and tight-
est intra-lemma clustering, this pattern may indicate overly
uniform embeddings rather than superior morphological un-
derstanding. BPE’s concentrated intra-lemma distribution
suggests that morphologically related forms are clustered so
tightly that fine-grained morphological distinctions may be
lost.

This finding aligns with the neighbor rank analysis showing
BPE’s flatter similarity dropoff patterns. Together, these
results suggest that BPE creates embedding spaces where
morphologically related words are highly similar to each
other, but this comes at the cost of reduced discriminative
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power and less structured semantic organization. The mor-
pheme model’s intermediate clustering behavior may repre-
sent a better balance between morphological coherence and
semantic discrimination.

4.4.3. SIMILARITY DISTRIBUTION ANALYSIS

We analyze the distribution of morphological similarity
scores to understand each approach’s evaluation coverage
and bias patterns. Rather than examining only average per-
formance, we investigate how frequently different similar-
ity values occur across all lemma-wordform pairs to iden-
tify potential evaluation biases (Figure 4). BPE shows ex-
treme concentration in high similarity ranges (55.4% of
pairs achieve 0.8-1.0 similarity) with a sharp peak around
0.9. Word and morphememodels exhibit broader, more bal-
anced distributions centered around 0.4-0.5.

Figure 4. Similarity score distributions showing BPE’s concentra-
tion in high-similarity ranges versus word and morpheme models’
broader coverage.

Range Word Morph BPE
0.0-0.4 23.4% 21.9% 3.9%
0.4-0.8 72.9% 57.0% 40.7%
0.8-1.0 3.7% 21.1% 55.4%

Table 5. Similarity score distribution by similarity range and tok-
enization strategy.

BPE’s skewed distribution provides strong evidence for cov-
erage bias. The sharp concentration at high similarities
(55.4% vs 3.7% for word models) indicates BPE primar-
ily evaluates morphological pairs with straightforward con-
catenative patterns where compositional vectors work well,
such as regular stem-affix combinations. BPE fails to evalu-
ate more challengingmorphological relationships involving
stem changes, irregular forms, or complex phonological pro-
cesses that word and morpheme models can handle across
the full complexity spectrum. This distribution pattern ex-

plains BPE’s artificially inflated average similarity scores,
as it essentially cherry-picks the morphological cases it can
process successfully while being unable to evaluate the chal-
lenging cases that would reveal its limitations. The apparent
superiority reflects selective evaluation of favorable cases
rather than genuine morphological understanding.

4.5. Vocabulary Characteristics and Overlap Analysis

We analyze vocabulary sizes and overlap patterns across to-
kenization approaches to understand their fundamental dif-
ferences in linguistic unit identification.

The three approaches produce dramatically different vocab-
ulary characteristics. Word-level tokenization generates the
largest vocabulary (260,922 tokens), morpheme-based seg-
mentation produces an intermediate vocabulary (162,504
tokens), while BPE creates the smallest vocabulary (2,273
tokens), representing a 115-fold size difference.

Overlap analysis reveals striking patterns: morpheme and
word models share substantial convergence (114,639 to-
kens, 70.5% of morpheme vocabulary), indicating many
morphemes correspond to complete words, particularly for
morphologically simple forms. In contrast, morpheme-
BPE overlap is minimal (2,034 tokens, 1.3% of morpheme
vocabulary), while BPE-word overlap appears high relative
to BPE’s small size (2,031 tokens, 89.4% of BPE vocabu-
lary). This demonstrates that statistical and linguistic ap-
proaches identify almost entirely different sets of meaning-
ful units.

Approach Vocab Size Coverage Key Overlaps

Word-level 260,922 94.3% –
Morpheme 162,504 68.7% 70.5% with Word model
BPE 2,273 28.6% 89.4% w/ Word model, 1.3% w/ Morph model

Table 6. Vocabulary and overlap patterns

4.6. Coverage Disparities and Evaluation Bias

The vocabulary differences documented above have pro-
found implications for fair evaluation. Data coverage refers
to the percentage of UniMorph lemma-wordform pairs each
model can actually evaluate during testing (Figure 5). For a
morphological similarity assessment to be computed, both
the lemma and its inflected formmust have available embed-
dings, either through direct vocabulary lookup or through
compositional vector construction from subword compo-
nents.

This coverage analysis reveals severe disparities: BPE
can evaluate only 28.6% of UniMorph test cases, while
morpheme models handle 68.7% and word-level models
achieve 94.3% coverage. These differences introduce sys-
tematic evaluation bias, as models are essentially being
tested on different subsets of morphological complexity.
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Figure 5. Dataset coverage in embeddings showing dramatic dif-
ferences in evaluation coverage across tokenization approaches

BPE’s apparent superior performance (0.752 average sim-
ilarity) may reflect evaluation on a highly selective sub-
set where compositional vector construction succeeds, pri-
marily cases with straightforward concatenative morphol-
ogy. Meanwhile, word andmorphememodels are evaluated
across substantially larger and more representative portions
of the morphological complexity spectrum. This coverage
bias fundamentally compromises the validity of direct per-
formance comparisons and suggests that BPE’s morpholog-
ical similarity advantage may be artifactual rather than sub-
stantive.

5. Conclusion and Future Work
5.1. Summary of Key Findings

Our evaluation of Kurdish tokenization strategies reveals
nuanced patterns that challenge simple assumptions about
morphological segmentation effectiveness. While BPE ini-
tially appears to outperform morpheme-based approaches
(0.752 vs 0.583 average morphological similarity), this ad-
vantage is fundamentally compromised by severe evalua-
tion coverage limitations. BPE’s evaluation coverage is
severely limited (28.6% of test cases) compared to mor-
pheme models (68.7%) and word models (94.3%), sug-
gesting its superior performance reflects selection bias to-
ward favorable cases rather than genuine morphological un-
derstanding. The segmentation agreement analysis con-
firms fundamental divergence between approaches, with
only 14.4% average boundary agreement and 63.6% zero-
agreement cases. Despite processing identical text, mor-
pheme and BPE methods identify almost entirely differ-
ent meaningful units (1.3% vocabulary overlap), with BPE
producing nearly twice the tokenization density (3.75 vs
1.99 tokens per word). Critically, multiple embedding qual-
ity measures beyond morphological similarity reveal BPE’s
limitations. The neighbor rank analysis shows BPE cre-
ates less structured embedding spaces with flatter similarity
dropoff patterns (39.1% vs 44.2% for morphemes), while

clustering quality metrics favor word and morpheme mod-
els. These findings suggest BPE’s apparent morphological
advantage comes at the cost of overall semantic organiza-
tion and discriminative power.

5.2. Broader Implications

Our results highlight the complexity of evaluating tokeniza-
tion approaches for morphologically rich languages. The
coverage bias phenomenon demonstrates that high similar-
ity scores can be misleading when based on selective evalu-
ation subsets. This finding has broader implications for low-
resource language processing, where compositional vector
approaches may systematically exclude challenging mor-
phological relationships.

The minimal agreement between statistical and linguistic
segmentation approaches (14.4%) suggests these methods
capture complementary rather than competing aspects of
linguistic structure. Frequency-based patterns and morpho-
logical boundaries may represent different but equally valid
perspectives on meaningful unit identification, necessitat-
ing hybrid approaches for comprehensive coverage.

The BiLSTM-CRF segmentation results reveal substantial
variation across part-of-speech categories (90.2% for nouns
vs 41.7% for verbs), creating natural experiments for un-
derstanding how segmentation quality propagates to embed-
ding performance. This POS-specific variation provides in-
sights into the linguistic complexity that tokenization sys-
tems must address.

5.3. Future Directions

Future work should focus on developing fair comparison
methodologies across tokenization approaches with differ-
ent coverage characteristics, including restricted evaluation
frameworks and coverage-robust similarity metrics. Given
the complementary nature of statistical and linguistic ap-
proaches, exploring morphologically-constrained BPE al-
gorithms and multi-level frameworks that combine both
insights represents a promising direction. The poor verb
segmentation performance (41.7%) indicates need for spe-
cialized Kurdish morphological processing through verb-
specific models, phonological change rules, and complex
affixation pattern handling. Practical validation through
downstream Kurdish NLP tasks would complement intrin-
sic measures, while investigating tokenization impacts on
transformer-based models offers opportunities for Kurdish-
specific languagemodel development. Future advances will
emerge from hybrid methods combining different tokeniza-
tion paradigms’ strengths while addressing individual limi-
tations.
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6. Limitations
The BiLSTM-CRF morphological segmentation shows
poor performance on Kurdish verbs (41.7% accuracy), po-
tentially undermining morpheme-based approaches’ effec-
tiveness. However, this may reflect our training method-
ology rather than inherent constraints. The BiLSTM-CRF
model was trained using random sampling with bootstrap
annotation, without explicit control over part-of-speech dis-
tribution. Given the model’s strong performance on nouns
(90.2%) and adjectives (90.1%), the poor verb segmentation
may reflect insufficient exposure to verbal morphological
patterns during training rather than fundamental model lim-
itations. Amore balanced training approach with deliberate
inclusion of diverse verb forms might significantly improve
segmentation performance and, consequently, morpheme-
based embedding quality. The evaluation employs intrin-
sic similarity measures, which provide controlled assess-
ment of morphological relationship preservation but would
benefit from complementary downstream task validation to
demonstrate practical applicability. However, comprehen-
sive downstream evaluation is constrained by the limited
availability of Kurdish NLP datasets and task-specific re-
sources, a common challenge in low-resource language re-
search.
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Appendix
Corpus Preprocessing and Normalization

The Kurdish corpus required extensive preprocessing to ad-
dress orthographic inconsistencies and dialectal variations
inherent in Kurdish text collections. This section includes
more details about the normalization procedures applied to
ensure consistent tokenization and analysis.

Character Repetition Normalization: User-generated
content frequently contained repeated characters for em-
phasis (e.g., سڵووووو for emphasis). We implemented a
normalization rule that reduced any character sequence re-
peated more than three times to exactly three repetitions,
thus سڵووووو became .سڵووو This approach balanced
noise reduction with preservation of linguistic nuance, as
triple repetition often carries semantic meaning in Kurdish.

Script and Character Standardization: Sorani Kurdish
exhibits pervasive orthographic inconsistencies in some
characters, particularly with characters ە and ,ه which rep-
resent the same phoneme but are used differently based on
context, keyboard layout, and individual preference. These
variations often involve different Unicode code points, cre-
ating artificial vocabulary inflation. We developed a cus-
tom character replacement system that mapped these vari-
ants to canonical forms, ensuring consistent representation
throughout the corpus.

Zero-Width Non-Joiner (ZWNJ) Handling: Arabic-
based script languages like Kurdish frequently contain zero-
width non-joiner characters that alter character joining be-
havior without visible effect, disrupting consistent tok-
enization. Different keyboard layouts encode ZWNJ dif-
ferently. Some through dedicated keys, others through
key combinations—leading to inconsistent usage patterns.
Users sometimes substitute full spaces or omit the char-
acter entirely, creating tokenization ambiguity. We im-
plemented corpus-wide ZWNJ regularization through text-
level normalization routines that either removed or standard-
ized these characters based on contextual appropriateness.

Quality Filtering: We applied AsoSoft’s text normaliza-
tion method from their Python library in initial preprocess-
ing stages. Subsequently, sentences shorter than 5 charac-
ters were removed to eliminate fragments and malformed
entries. Additionally, lines lacking valid Kurdish characters
(identified using Unicode ranges for Kurdish script) were fil-
tered out to ensure corpus linguistic consistency.

Dialectal Filtering: The corpus contained multi-dialectal
interference from Kurmanji Kurdish and Persian sources.
We developed character profile analysis to identify sen-
tences deviating from Sorani Kurdish orthographic norms,
filtering out content that exhibited non-Sorani characteris-
tics. This process helped maintain dialectal consistency

while preserving corpus size.

Format Standardization: Final preprocessing involved
segmenting documents into sentence-per-line and word-per-
line formats to support various downstream tasks includ-
ing morphological segmentation training and embedding
model development. This dual-format approach enabled
flexible corpus utilization across different experimental re-
quirements.

Implementation Details

All experiments were conducted using Python 3.9.6 with
PyTorch 1.12.0 for neural model implementation. The
BiLSTM-CRF morphological segmenter was trained using
the torchcrf library (1.1.0) with Adam optimizer and learn-
ing rate scheduling. word2vec models were trained using
Gensim 4.2.0 with identical hyperparameters across tok-
enization approaches to ensure fair comparison.

BPE tokenization employed the Hugging Face tokenizers
library (0.15.2) with vocabulary size set to 2,280 tokens
based on empirical morpheme count analysis. The tok-
enizer was trained on the full corpus before applying to sam-
ple data for embedding training. Morphological segmen-
tation used our BiLSTM-CRF model with 3-layer bidirec-
tional LSTM (hidden size 128) and CRF output layer.

Experimental Configuration

word2vec training employed skip-gram architecture with
negative sampling (5 negative samples), vector dimensions
of 150, minimum count threshold of 5, and 10 training
epochs. Window sizes were adjusted proportionally based
on tokenization density: word-level (5), morpheme-based
(10), and BPE (19). All models used identical random seeds
(42) for reproducibility.

The evaluation corpus comprised 1.5million sentences sam-
pled from a larger Kurdish text collection (Veisi et al.,
2019). UniMorph evaluation used 996 Kurdish lemma-
wordform pairs with morphological feature annotations.
Coverage analysis and similarity computations employed
cosine similarity with compositional vector generation for
out-of-vocabulary terms through subword averaging.

Computational Resources

Experiments were conducted on systems with NVIDIA
RTX 3080 GPUs and 32GB RAM. BiLSTM-CRF training
required less than an hour, while Word2Vec training ranged
from 4 minutes (word-level) to 25 minutes (BPE) depend-
ing on vocabulary size and tokenization complexity.

All code and trained models will be available to facilitate
reproduction and extension of these results.

12


