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ABSTRACT

Neighbor-based methods are a natural alternative to linear prediction for tabular
data when relationships between inputs and targets exhibit complexity such as
nonlinearity, periodicity, or heteroscedasticity. Yet in deep learning on unstructured
data, nonparametric neighbor-based approaches are rarely implemented in lieu
of simple linear heads. This is primarily due to the ability of systems equipped
with linear regression heads to co-learn internal representations along with the
linear head’s parameters. To unlock the full potential of neighbor-based meth-
ods in neural networks we introduce SoftStep, a parametric module that learns
sparse instance-wise similarity measures directly from data. When integrated
with existing neighbor-based methods, SoftStep enables regression models that
consistently outperform linear heads across diverse architectures, domains, and
training scenarios. We focus on regression tasks, where we show theoretically
that neighbor-based prediction with a mean squared error objective constitutes
a metric learning algorithm that induces well-structured embedding spaces. We
then demonstrate analytically and empirically that this representational structure
translates into superior performance when combined with the sparse, instance-
wise similarity measures introduced by SoftStep. Beyond regression, SoftStep is
a general method for learning instance-wise similarity in deep neural networks,
with broad applicability to attention mechanisms, metric learning, representational
alignment, and related paradigms.

1 INTRODUCTION

Classical machine learning offers a wide variety of algorithms for supervised regression on tabular
data. Methods such as neighbor-based regression, decision trees, and kernel support vector machines
are well-known to outperform linear regression when the underlying regression manifold is nonlinear
Araghinejad (2013). In contrast, contemporary deep learning pipelines almost universally employ
a linear layer as the terminal predictor. While this linear assumption is restrictive, its deficiencies
are often mitigated by the capacity to co-learn both internal representations and output regression
parameters with gradient descent, which allows deep networks to adapt their extracted features to a
simple linear predictor Monasson and Zecchina (1995).

Alternative regression paradigms, however, remain underutilized in deep learning. Many traditional
methods are non-differentiable, preventing seamless integration with gradient-based training, while
others are nonparametric, imposing rigid inductive biases on representational geometry that may
conflict with effective feature learning. Empirical evidence from applied domains such as biomedical
prediction suggests that if classical regression algorithms could be embedded into end-to-end differen-
tiable systems with learnable parameters, they could surpass linear heads by simultaneously relaxing
distributional assumptions and retaining the benefits of joint representation–predictor optimization
Pan et al. (2019); Zolnoori et al. (2023).

To address this gap, we introduce SoftStep, a drop-in module for neural networks that learns sparse,
instance-wise similarity measures within neural embedding spaces. When combined with neighbor-
based methods such as k-nearest neighbors (k-NN) or neighborhood component analysis (NCA)
(Cover and Hart, 1967; Goldberger et al., 2004), SoftStep enables differentiable regression heads that
bring the expressive power of nonlinear predictors into the deep learning setting. Our theoretical
analysis shows that neighbor-based regression with a mean squared error (MSE) loss implicitly
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Figure 1: The architecture of the neural network regressors tested in this paper. The left side
shows the head-to-head comparison between linear heads and neighbor-based heads evaluated in this
work. The right side shows the specifics of neighbor-based regression augmented with SoftStep. Here,
∼ refers to a soft ranking operation in the context of differentiable k-NN and a row-wise min-max
normalization of the similarity matrix in the context of NCA.

enforces pairwise and triplet constraints on the embedding geometry, promoting well-structured and
predictive representations. Moreover, SoftStep strengthens these geometries by adaptively weighting
similarities, yielding superior predictive performance compared to standard linear regression heads.
Crucially, our goal is not to claim SoftStep as a state-of-the-art method in all contexts, but rather to
demonstrate that neighbor-based regression augmented with SoftStep can serve as a plug-and-
play alternative to linear regression in diverse architectures.

Across experiments, we pair large-scale feature extractors (e.g., convolutional neural networks,
transformers) with intermediate decoding multilayer perceptrons (MLPs), and consistently observe
performance gains when substituting linear output heads with SoftStep neighbor-based regression
heads. Our contributions are as follows;

• A novel module: We introduce SoftStep, a family of step-like functions which learns
instance-wise similarity measures for neighbor-based regression in deep neural networks.

• Theoretical insight: We provide an optimization analysis showing that neighbor-based regres-
sion with MSE induces implicit pairwise and triplet regularization on learned embeddings.

• Empirical validation: We demonstrate that SoftStep-equipped regression heads outperform
linear predictors across multiple unstructured data domains.

A GitHub repository containing the full implementation of our methods and all experimentation is
available to the community at the SoftStep GitHub repository.

2 RELATED WORK

This work is in part motivated by the success of non-linear prediction - particularly neighbor-based
models - in both classical and modern machine learning. Our methods resemble techniques used
in representation learning, sparse attention, and graph attention. Our analyses show the viability of
our prediction algorithm to act as a supervised metric learning algorithm similar to contrastive and
triplet-loss methods. As such, we include an overview of relevant literature in these areas.

Neighbor-based models Neighbor-based models make predictions by associating data points
according to a similarity or distance measure Fix (1985); Cover and Hart (1967). The canonical
example is k-nearest neighbors (k-NN), along with its modern extensions. Differential Nearest
Neighbors Regression (DNNR) leverages neighbors-of-neighbors to approximate local gradients of
the regression manifold (Nader et al., 2022), but requires solving a separate least-squares problem
for each neighbor of the query point, making it incompatible with efficient forward passes in deep
networks. Neighborhood Component Analysis (NCA) offers a more natural alternative (Goldberger
et al., 2004), weighting neighbor labels according to similarity scores rather than ranks. Deep learning
systems that explicitly incorporate pairwise similarities have also emerged, including SAINT for
tabular data via row-wise attention (Somepalli et al., 2021), neural methods for image restoration
(Plötz and Roth, 2018), confidence estimation (Papernot and McDaniel, 2018), and collaborative
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Figure 2: The SoftStep family of functions learns sparse attention smoothly and differentiably.
SoftStep is a family of increasing surjective functions mapping the unit interval to itself. Plotted here
is the SoftStep function as the transition parameter t varies from 0 to 1. Parameters l and u define the
transition boundaries.

filtering He et al. (2017). In few-shot learning, matching networks exploit sample associations
through pretrained embeddings Vinyals et al. (2016). Despite these successes, general frameworks
for deep neighbor-based regression remain underexplored, with most existing approaches tied to
specific tasks or domains.

Representation Learning Metric learning seeks to construct embedding spaces where semantic
relationships between data points are captured by distances or similarity measures Yang and Jin
(2006). Classical approaches such as NCA and Large Margin Nearest Neighbor (LMNN) (Weinberger
et al., 2005) learn transformations that enforce class-consistent neighborhoods, while extensions such
as Metric Learning for Kernel Regression (MLKR) adapt these ideas to regression Weinberger and
Tesauro (2007). Within deep learning, differentiable similarity-based objectives were widely adopted.
Contrastive loss encourages embeddings of positive pairs to be close and negative pairs to be far apart
Khosla et al. (2020). Triplet loss strengthens this by requiring an anchor to be closer to a positive than
to a negative by a margin (Schroff et al., 2015), and has been central to domains like face recognition
and retrieval. Modern contrastive learning generalizes these principles to self-supervised training,
with methods such as SimCLR and InfoNCE enforcing large numbers of pairwise and triplet-like
constraints at scale Chen et al. (2020); Rusak et al. (2024). Embedding similarity also underlies
several adjacent areas. In representational alignment, pairwise and higher-order structures guide
comparisons across models or between artificial and biological systems Kriegeskorte et al. (2008).
More recent approaches in this area have pointed towards the promise of learning sparse similarity
measures for alignment Anonymous. In graph learning, graph attention networks induce edge weights
between nodes, enabling relational reasoning Veličković et al. (2018).

Sparse Attention In Section 3 we show how SoftStep can be thought of as a mechanism for
learning a sparse adaptive attention mechanism, that we employ in the context of prediction. Sparse
attention is concerned with reducing the number of inputs attending to each other within a neural
attention mechanism Tay et al. (2020). Besides reducing compute complexity, the primary motivation
behind these approaches is to develop mechanisms that are more selective than standard attention.
Traditional attention relies on the SoftMax function, which yields non-zero attention weights for
all inputs Vaswani et al. (2017). A number of methods have been introduced to account for this,
such as top-k attention (Gupta et al., 2021), local windowing (Nguyen et al., 2020), Sparsek (Lou
et al., 2024), and Reformer-based methods Kitaev et al. (2020). While these approaches limit the
number of nonzero attention weights, many are non-differentiable. Consequently, they cannot be
optimized effectively in the context of end-to-end deep learning. More sophisticated methods, such
as Sparsemax (Martins and Astudillo, 2016), produce sparse outputs via a non-learned projection, but
do not adapt to the semantic context of local densities of the embedding space.

Nonlinear Prediction on Neural Network Embeddings In some applications, particularly in
computational biomedicine, pretrained neural networks are treated as feature extractors for traditional
machine learning algorithms such as k-NN and support vector machines Notley and Magdon-Ismail
(2018). In small- to mid-size data regimes, where training a neural network from scratch will lead to
poor generalization, supervised finetuning of a pretrained neural network can improve performance
on data domains of interest Tajbakhsh et al. (2016); Spolaôr et al. (2024). This two-stage process -
supervised finetuning of a pretrained neural network followed by fitting extracted features from the
finetuned model on different classification and regression algorithms - has seen widespread success in
various tasks, such as prediction of bone age from radiology images or predicting Alzheimer’s disease
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from speech recordings Pan et al. (2019); Luz et al. (2021a); Balagopalan and Novikova (2021);
Laska et al. (2024); Zolnoori et al. (2023); Nachesa and Niculae (2025). This body of literature
suggests that despite internal representations of data within a neural network being optimized to fit a
linear output head, further performance gains can be unlocked using nonlinear prediction heads.

3 METHODS

3.1 SOFTSTEP - A PARAMETRIC FUNCTION FOR SIMILARITY WEIGHTING

Given a deep learning regression architecture, we denote by F the feature extractor, i.e., all com-
ponents upstream of the regression head. For data–label pairs (X, y) ⊂ Ω × R, where Ω is the
sample space, the feature extractor maps the inputs into an embedding space via F (X) = Z ⊂ Rd

with embedding dimension d. For an embedded sample z∗ = F (x∗), we define SoftStepz∗ as a
transformation that reshapes the similarities to z∗ according to

SoftStepz∗(s) =


0, 0 ≤ s ≤ l,

(s− l)1/t

(s− l)1/t + (u− s)1/t
, l < s < u,

1, u ≤ s ≤ 1,

where (l, u, t) = σ
(
Wss(z

∗) + bss
)
.

(1)

The parameters (l, u, t) are learned as a functions of z∗ and determine a mapping of similarities to
the unit interval [0, 1]. Although SoftStep is piecewise-defined, it is differentiable on its domain,
including at the boundary points l and u. The parameter l sets the lower similarity threshold below
which values are mapped to 0, thereby controlling the sparsity of SoftStepz∗ . Conversely, u defines
the upper threshold above which similarities are mapped to 1, while t governs curvature of the
transition between these two extreme regimes. Taken together, the parameters yield a sigmoid-like
curve that flexibly adapts to each embedded sample, achieving exact zeros and ones over learned
regions of the similarity domain.

Notably, SoftStep can also be implemented with model-level, or global parameters. In this case
similarities to every embedded point are warped with respect to the same learned parameter combi-
nation. This formulation of the module may be useful in the small-data regime where the potential
for overfitting precludes the usefulness of the instance-wise formulation. We note that the SoftStep
function family is similar to SmoothStep functions which have been widely adopted in computer
graphics Hazimeh and Mazumder (2020). SoftStep is distinct due to curvature on the transition
domain being governed by a continuous parameter which can be learned through gradient descent. A
visualization of SoftStep under different parameterizations is provided in Figure 2.

3.2 DIFFERENTIABLE k-NEAREST NEIGHBORS

A natural regression model to pair with SoftStep is k-nearest neighbors (k-NN). We construct
a differentiable variant using the torchsort package (Blondel et al., 2020), which provides
approximate differentiable rankings of neighbor similarities. For query points Z = F (X) and
neighbor set XN × yN = {(xn, yn)}Nn=1, we define a similarity matrix Sim(Z,ZN ) under a chosen
similarity measure like negative ℓ2 distance, cosine similarity, or radial basis function (RBF) kernel.
Differentiable ranks are then computed as

Rank(Z,ZN ) = soft_rank(Sim(Z,ZN )),

and similarities are transformed according to

Sim(Z,ZN ) ← Sim(Z,ZN ) + ln
(
SoftStep(Rank(Z,ZN ))

)
.

Predictions are obtained as
ŷ = SoftMax(Sim(Z,ZN )) yN .

In this formulation, the SoftStep parameter u acts as a learned, instance-specific k that controls
the effective neighborhood size, while the other parameters are held fixed at stable values. In
k-NN terminology, this algorithm corresponds to a data-adaptive weighting scheme over the k
nearest neighbors. Further implementation details, such as masking self-similarities and configuring
soft_rank, are provided in Algorithm 1.
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Algorithm 1 Differentiable k-NN with SoftStep

1: procedure DIFFKNN-SOFTSTEP(Z,ZN , param_mode)
Initialization (run once at module construction):

2: if param_mode = “instance_wise” then
3: k_param← Linear layer with sigmoid activation
4: else if param_mode = “global” then
5: k_param← Learnable scalar model-level parameter
6: end if

Forward Pass:
7: sim← SIM(Z,ZN , similarity) ▷ Matrix of similarities
8: if training then
9: N ← |ZN | ▷ Neighbor set size

10: sim← sim− DIAG(∞) ▷ Push self-similarity to worst rank
11: end if
12: ranks← SOFT_RANK(−sim)− 1.0 ▷ Rank neighbors per query
13: if param_mode = “instance_wise” then
14: k ← σ(k_param(Z)) · (N − 1)
15: else if param_mode = “global” then
16: k ← σ(k_param) · (N − 1)
17: end if
18: k ← max(k, 1) ▷ Clamp to at least one neighbor per-query
19: g ← SOFTKSTEP(ranks, k, q = 4, t = 0.75) ▷ Adjusted SoftStep (defined below)
20: return sim+ g
21: end procedure

22: function SOFTKSTEP(ranks, k, q, t)
23: num← (k + q − ranks)1/t

24: den← num+ (k − ranks)1/t

25: step← num/den
26: ∀ i : if ranksi < k then stepi ← 1
27: ∀ i : if ranksi > k + q then stepi ← 0
28: return log(step)
29: end function

3.3 NEIGHBORHOOD COMPONENT ANALYSIS

Neighborhood component analysis (NCA) provides an alternative neighbor-based regression algo-
rithm by operating directly on raw similarities rather than ranks of similarities. To integrate SoftStep
into NCA, we apply the transformation

Sim(Z,ZN ) ← Sim(Z,ZN ) + ln
(
SoftStep(Sim(Z,ZN ))

)
,

where Sim(Z,ZN ) denotes the row-wise min–max normalized similarity matrix. Predictions then
follow the same SoftMax weighting scheme as in the differentiable k-NN variant. Full implementation
details are given in Algorithm 2.

Connection to attention. NCA is mechanistically similar to the attention mechanism: both compute
a similarity matrix between two sets of embeddings (in attention, queries and keys), normalize each
row with a SoftMax operation to obtain weights, and apply those weights to a set of values (in NCA,
the neighbor labels). The success of SoftStep in learning sparse similarity measures within NCA
suggests that it may also serve as a general mechanism for sparse attention.

SoftStep in neighbor-based regression In both differentiable k-NN and NCA, SoftStep acts by
shifting similarities by values in the interval [0,−∞) prior to SoftMax, which in turn rescales them
onto [0, 1] while transforming them into usable weights for prediction. This mechanism allows
irrelevant neighbors for each instance to be assigned vanishing weights while preserving proportional
weighting among label-consistent neighbors. The transition parameter t controls the sharpness of
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Algorithm 2 NCA with SoftStep

1: procedure SOFTSTEP(Z,ZN , param_mode)
Initialization (run once at module construction):

2: if param_mode = “instance_wise” then
3: params← Linear layer with sigmoid activation
4: else if param_mode = “global” then
5: params← Learnable model-level parameters
6: end if

Forward Pass:
7: if param_mode = “instance_wise” then
8: (l0, u0, t)← params(Z)
9: else if param_mode = “global” then

10: (l0, u0, t)← σ(params)
11: end if
12: sim← SIM(Z,ZN ) ▷ Matrix of similarities
13: simnorm ← NORM(sim) ▷ Normalize to [0, 1]
14: top_sim← ROWMAXEXCLSELFSIM( simnorm )
15: l← min(l0, top_sim)− ϵ ▷ ϵ > 0 small
16: u← l + u0 · (1− l)
17: return sim+ log(SOFTSTEP( simnorm, l, u, t )
18: end procedure

the boundary between excluded and included neighbors, allowing the model to interpolate smoothly
between hard selection and soft weighting of neighbor similarities.

4 REPRESENTATIONAL GEOMETRY OF NEIGHBOR-BASED REGRESSION

4.1 NEIGHBOR-BASED REGRESSION WITH MSE OBJECTIVE STRUCTURES REPRESENTATIONS

Here, we demonstrate that a neighbor-based regression model paired with MSE loss yields implicit
optimization conditions for structuring pairs of points in the embedding space with respect to their
labels, as well as conditions for structuring triplets of points. We define pij = esij∑N

k=1 esik
where

sij = Sim(Z,ZN )ij with similarity warping due to SoftStep. Furthermore, ∆ij = yi − yj . We
observe that,

L(y, ŷ) = 1

N

N∑
i=1

(yi −
N∑
j=1

pijyj)
2 =

1

N

N∑
i=1

( N∑
j=1

∆ijpij

)2

due to
∑N

j=1 pij = 1. Terms of the form ∆2
ijp

2
ij represent a pairwise similarity loss on the points

indexed by (i, j). Assigning j high proportional similarity to i accrues a penalty as an increasing
function of the label distance - MSE loss is explicitly minimized when dissimilarly labeled points
repel one another.

Triplet terms ∆ijpij∆ikpik also encode embedding conditions. However, a more illuminating
description of the optimal triplet embedding geometry considers the partial optimization of terms of
the form:

Tijk = (∆ijpij +∆ikpik)
2 subject to pij + pik = 1−

∑
l ̸=j,k

pil = R

This optimization analysis will yield different embedding conditions depending on the order of the
labels j and k relative to the anchor point i. In the analysis of this local subproblem, we assume that
pil is fixed for all l ̸= j, k and that pij , pik are optimized independently. We also limit our focus to
the case where yi ̸= yj ̸= yk as the triplet loss collapses into a simpler embedding condition if any of
the labels are equal.

We proceed by minimizing Tijk as a convex quadratic with respect to pij on the interval [0, R].

Tijk(pij) = (∆ijpij +∆ik(R− pij))
2 = ((∆ij −∆ik)pij +∆ikR)

2
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Data Linear head NCA SoftStep

Figure 3: NCA and SoftStep enhance regression by modeling nonlinear relationships, allowing
learned manifolds to better reflect underlying data distributions. Synthetic datasets were gen-
erated by sampling points from the domain [−1, 1]2 and assigning continuous labels using various
target functions. The color gradients depict the target values and resulting regression surfaces learned
by a linear regression head, NCA 3.3, and NCA augmented with SoftStep 3.1. The linear head cannot
capture the complexity of the non-linear targets. Conversely, NCA, especially when augmented with
SoftStep, learns smooth nonlinear regression surfaces that capture the underlying distribution. This
capability relaxes constraints on upstream neural networks when learning predictive representations.

has the unconstrained minimizer p∗ij =
∆ik

∆ik−∆ij
R. From here we examine two cases based on the

ordering of the three labels yi, yj , yk that will yield two conditions depending on whether the anchor
point label lies between the other two labels or is extreme itself.

Extreme anchor label: If yi < yj < yk, then p∗ij > R and so Tijk is minimized when pij = R,
which implies pik = 0. That is, if the label of j is closer to that of i than the label of k is, then all the
available proportional similarity between their embeddings is optimized to go to j. It can be seen that
all arrangements of yi, yj , yk in which yi is extreme yield analogous conditions.

Intermediate anchor label: If yj < yi < yk then 0 < p∗ij < R and thus is the true minimizer. The
condition pik = R− pij yields that Tijk is minimized when pik =

∆ij

∆ij−∆ik
R and so optimality is

achieved when
pij
pik

=
yk − yi
yi − yj

,

In other words, optimality is achieved when embedding similarity is distributed in exact propor-
tion to label similarity. The same expression results from the case where yk < yi < yj . Notice that
the above analysis on triplets can be generalized to a quadratic program in as many as N dimensions,
which suggests that higher order structures in the embedding space may be jointly optimized for as
well. However, as we demonstrate in Appendix C, the solution to this more general optimization
problem reduces to the triplet case: the available similarity is optimally allocated to the one or two
neighbors whose labels are closest to the anchor’s, in proportion to their label differences.

This analysis demonstrates how neighbor-based methods are equipped to learn well-structured and
predictive embedding spaces. It is clear that models which admit sparse similarity measures can
better optimize for the uncovered structuring conditions in a dense feature space. Furthermore, the

7
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ability to learn instance-wise similarity measures allows the model to account for differing local
densities, enabling improved performance on outlier embeddings and samples with extreme labels, as
well as accounting for varying noise-levels across feature space.

4.2 EMBEDDING SPACE CONSTRAINTS OF LINEAR REGRESSION HEADS

Linear prediction assumes the existence of a data embedding in which representations are related
to the target variable linearly with an error-minimizing constant variance Montgomery et al. (2021).
This strong constraining assumption limits the expressiveness of the embedding space that the feature
extractor can construct. As a result, rich structures such as multiplicative feature interactions (Batista
et al., 2024), threshold effects (Su et al., 2017), and curved manifolds like sinusoidal or spiral
relationships cannot be captured by a simple affine map Liang et al. (2020). However, differentiable
neighbor-based regression algorithms free the upstream feature extractor to embed data in more
complex arrangements that may better preserve its predictive signal. In Figure 3 we demonstrate
empirically that NCA is capable of capturing nonlinear relationships between data and a target
variable, and that SoftStep sparsity combined with NCA can help adapt the regression manifold to
complex local label distributions.

5 EXPERIMENTS

We measure the regression performance of differentiable k-NN and NCA, as enabled by SoftStep,
using several unstructured datasets for regression. To attain a complete analysis of our methods, we
tune the instance-wise parameters in SoftStep and substitute in model-level, or "global" parameters,
as detailed in Algorithms 1 and 2. To evaluate performance, each unstructured dataset is paired with
a pretrained neural network feature extractor and finetuned in a supervised manner. All datasets are
split 80/20 into development and testing, with the development set further split 85/15 into training and
validation. Early stopping is performed when MSE performance does not improve on the validation
set for 10 epochs. This procedure is repeated 10 times to get an average performance of each model.
All training was conducted on a high performance compute cluster equipped with NVIDIA H100
Tensor Core GPUs, with each model trained individually on each fold of data using a single NVIDIA
H100 SXM5 80GB GPU for a maximum of 48 hours Kovatch et al. (2020).

Downstream of each feature extractor, a multilayer perceptron with hidden dimension 200 projects
samples to an embedding space with dimensionality determined via hyperparameter tuning A,
followed by one of the following regression heads: a linear layer; NCA; NCA with instance-wise
SoftStep; NCA with global SoftStep; differentiable k-NN with instance-wise SoftStep; differentiable
k-NN with global SoftStep. Method-specific batch sizes and similarity measures were tuned for.

6 RESULTS AND DISCUSSION

Our results demonstrate that neighbor-based regression methods, when augmented with the SoftStep
module, achieve superior predictive performance compared to both their unaugmented counterparts
and traditional linear regression heads. These findings support our theoretical analysis, which showed
that neighbor-based regression with mean squared error implicitly imposes geometric constraints on
embeddings that become more effectively realized when similarity measures are sparse. SoftStep pro-
vides precisely this functionality by adaptively reshaping similarities into sharp inclusion–exclusion
regimes that can adapt to local density and label structure.

A key contribution of this work is demonstrating that neighbor-based regression heads need not be
relegated to shallow models or post-hoc feature extraction pipelines, but rather can be integrated
directly into end-to-end deep learning systems as trainable and competitive alternatives to linear
prediction heads. Our results indicate that this integration not only avoids the performance degradation
that traditionally accompanies nonparametric methods in neural networks, but can in fact surpass
the performance of linear heads across diverse architectures and domains. SoftStep also offers an
important conceptual bridge between neighbor-based regression and other areas of machine learning.
Mechanistically, SoftStep bears close similarity to sparse attention: both compute similarity-based
weights over a set of candidates, but SoftStep introduces explicit sparsity and adaptivity that allow
irrelevant neighbors to receive zero weight. This connection suggests that SoftStep may provide

8
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Dataset Linear NCA NCA g NCA i DiffKNN g DiffKNN i

RSNA 5.12 ± 0.608 4.05 ± 0.356 4.02 ± 0.317 3.78 ± 0.36 3.94 ± 0.176 4.02 ± 0.415
MedSegBench 6.69 ± 1.29 4.87 ± 1.49 3.72 ± 0.786 10.8 ± 6.41 3.82 ± 0.405 3.04 ± 0.428
ADReSSo 96.2 ± 33.3 31.7 ± 6.01 24.2 ± 3.50 32.3 ± 6.01 27.3 ± 3.64 25.5 ± 3.42
CoughVid 39.7 ± 27.0 21.3 ± 0.201 21.3 ± 0.217 21.3 ± 0.232 22.5 ± 0.375 22.7 ± 0.401
NoseMic 7.96 ± 0.947 6.29 ± 1.27 5.93 ± 0.735 6.19 ± 0.460 5.49 ± 0.624 5.40 ± 0.533
Udacity 0.435 ± 0.170 0.041 ± 0.006 0.080 ± 0.019 0.088 ± 0.011 0.040 ± 0.014 0.034 ± 0.009
Pitchfork 69.6 ± 167 11.2 ± 1.78 11.5 ± 2.18 12.4 ± 1.79 11.1 ± 2.09 12.2 ± 1.40
Houses 303 ± 81.3 14.8 ± 2.60 13.4 ± 2.07 18.4 ± 2.11 15.2 ± 2.14 13.7 ± 2.01
Books 8.33 ± 0.680 7.63 ± 0.575 7.64 ± 0.568 7.83 ± 0.564 7.39 ± 0.476 7.12 ± 0.565
Austin 2.30 ± 0.216 2.09 ± 0.184 2.08 ± 0.166 2.08 ± 0.197 2.01 ± 0.173 2.03 ± 0.191

Table 1: SoftStep improves the performance of neighbor-based regression and outperforms the
linear regression head across all datasets. Average mean squared error (MSE)± standard deviation
across methods over ten random splits of each dataset. The best mean results for each dataset
are in bold. Here,“i” denotes a neighbor-based method with instance-wise SoftStep parameters
and “g” denotes a method with globally learned SoftStep parameters. While k-NN cannot be
implemented faithfully as a regression head without SoftStep, NCA can and so is included as well.
All measurements have been scaled by 103 for readability. A complete description of each dataset,
along with all preprocessing pipelines and feature extractors can be found in Appendix B.

a general-purpose mechanism for selective attention in settings where full SoftMax weighting is
undesirable. Furthermore, the ability of SoftStep to learn instance-wise similarity transformations
resonates with recent advances in representational alignment Anonymous. Our framework thus
contributes to a growing set of tools for learning and interpreting representational geometry in
high-dimensional spaces.

Looking ahead, we see promising opportunities for combining linear and neighbor-based prediction
paradigms in heterogeneous ensembles. Linear heads offer unmatched efficiency and global stability,
while SoftStep-augmented neighbor heads provide local adaptivity and nonlinear expressiveness. By
co-training these predictors within a single model, it may be possible to capture both global and local
patterns in the data, yielding systems that are simultaneously robust, expressive, and efficient. Future
work will extend our analyses to such ensembles, as well as to broader task domains and architectural
settings.

Despite these advantages, there are important limitations to acknowledge. First, while our experiments
span multiple domains, the evaluation remains restricted to regression tasks and a limited set of
architectures. Second, the introduction of neighbor-based heads carries computational overhead
relative to linear layers, particularly in settings with large batch sizes or high-dimensional embeddings.
Although differentiable ranking and similarity warping are efficient in practice, scaling to extremely
large datasets will require further optimization. Finally, while we provide theoretical and empirical
evidence of improved embedding geometry, the precise dynamics of how SoftStep interacts with
upstream feature extractors remain underexplored. Due to our focus on neighbor-based regression, it
remains to be established whether SoftStep’s benefits extend as strongly to other relevant areas of
deep learning.

7 CONCLUSION

This work introduces SoftStep, a parametric module that learns sparse, instance-wise similarity
measures within neural networks. By augmenting neighbor-based regression heads such as differen-
tiable k-NN and neighborhood component analysis, SoftStep enables predictive performance that
consistently exceeds that of linear regression heads. An exploration of the representational geometries
induced by these methods underscores the utility of SoftStep and the potential for future research
exploring these geometries and realizing their functional potential. Beyond empirical improvements,
SoftStep highlights deep connections between neighbor-based methods, sparse attention, and rep-
resentational alignment, offering a unifying perspective on how local similarity structure can be
exploited in neural embedding spaces.

9
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Figure 4: The x-axis ticks are hyperparameter combination triplets of the form (similarity measure,
embedding dimension, batch size). The best-performing hyperparameter configurations by mean
performance were: Base NCA (RBF, 100, 32), NCA with global SoftStep parameters (ℓ2, 100, 32),
and NCA with instance-wise SoftStep parameters (RBF, 100, 32).

A APPENDIX: HYPERPARAMETER TUNING

We conduct hyperparameter tuning on both the neighbor-based and dense layer prediction-based
models used in our evaluation. We use the RSNA (Halabi et al., 2019) dataset to determine hy-
perparameters and then apply the resulting configurations for experiments on all other datasets. In
our tuning we evaluate on 3 random splits of the data for every configuration, whereas in the full
experimentation we evaluate on 10. All MSE scores below are scaled by 103 for readability.

We conduct a grid search over the space of batch sizes, and embedding dimensions. For our neighbor-
based models, we also search over similarity measures.

Embed\Batch 32 128

25 5.08 ± 0.322 5.50 ± 0.414
100 5.95 ± 0.498 6.80 ± 1.15

Table 2: MSE across embedding dimensions (rows) and batch sizes (columns).

B APPENDIX: DATASETS AND FEATURE EXTRACTORS

Exact model versions and pretrained weights are specified in the included GitHub repository. We
ensured that at least two distinct feature extractors were chosen per unstructured modality (text, audio,
and image) to demonstrate the generalizability of our proposed algorithm.

RSNA Bone Age Prediction The Radiological Society of North America (RSNA) Pediatric Bone
Age Machine Learning Challenge collected pediatric hand radiographs labeled with the age of the
subject in months Halabi et al. (2019). We collected 14,036 images from this dataset. Images were
resized to 224x224 pixels, normalized with mean and standard deviation of 0.5 across the single
gray-scale channel and input to ResNet-18 pretrained on ImageNet He et al. (2016); He and Jiang
(2021). 1

ADReSSo The Alzheimer’s Dementia Recognition through Spontaneous Speech only (ADReSSo)
diagnosis dataset has 237 audio recordings of participants undergoing the Cookie Thief cognitive

1https://pytorch.org/hub/pytorch_vision_resnet/
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Figure 5: The x-axis ticks are hyperparameter combination triplets of the form (similarity measure,
embedding dimension, batch size). The best-performing hyperparameter configurations by mean
performance were: DiffKNN with global SoftStep parameters (RBF, 25, 32), DiffKNN with instance-
wise SoftStep parameters (ℓ2, 25, 32).

assessment labeled with their score on the Mini Mental State Exam Luz et al. (2021b). Transcripts of
these recordings were tokenized and input to DistilBERT-base-uncased Sanh (2019); Zolnoori et al.
(2023).2

MedSegBench The MedSegBench BriFiSegMSBench dataset is comprised of single-channel
microscopy images and corresponding segmentation masks Kuş and Aydin (2024). We estimated the
size of segmentation mask areas using EfficientNet trained on ImageNet. Rizk et al. (2014); Tan and
Le (2019).3

CoughVid The CoughVid dataset provides over 25,000 crowdsourced cough recordings, with 6,250
recordings labeled with participant age in years Orlandic et al. (2021). One second of cough audio
was input to HuBERT pretrained on LibriSpeech and mean-pooled across time Hsu et al. (2021);
Feng et al. (2024).4

NoseMic The NoseMic dataset collected 1,297 30-second audio recordings of heart rate-induced
sounds in the ear canal using an in-ear microphone under several activities Butkow et al. (2024).
Audio clips were denoised,5 encoded with the Whisper tiny audio encoder (Radford et al., 2023), and
mean-pooled across time.6

Udacity The Udacity self-driving car dataset is comprised of dashcam videos labeled with the angle
of the car’s steering wheel Du et al. (2019). Videos were downsampled to 4 frames per second for a
total of 6,762 images and individual frames were input to EfficientNet trained on ImageNet Tan and
Le (2019).3

Pitchfork 24,649 reviews from the website Pitchfork were collected (Pinter et al., 2020), where
albums are scored from 0 to 10 in 0.1 increments. 1,500 randomly selected reviews were tokenized
and input to BERT base Warner et al. (2024).7

Houses The Houses dataset collects 535 curbside images of houses as well as their log-scaled
list price Ahmed and Moustafa (2016). Images were resized to 256x256 pixels, center cropped to
224x224, ImageNet normalized, and input to ResNet-34 He et al. (2016).1

2https://huggingface.co/docs/transformers/en/model_doc/distilbert
3https://docs.pytorch.org/vision/main/models/efficientnet.html
4https://huggingface.co/facebook/hubert-base-ls960
5https://pypi.org/project/noisereduce
6https://huggingface.co/openai/whisper-tiny
7https://huggingface.co/google-bert/bert-base-uncased
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Books The MachineHack Book Price Prediction dataset collated 6237 synopses of books labeled
with their log-normalized price.8 Synopses were tokenized and input to DistilBERT-base-uncased.2

Austin The Kaggle Austin Housing Prices dataset collects over 15000 descriptions of homes labeled
with their log-scaled list price.9 Descriptions were tokenized and input to DistilBERT-base-uncased.2

C APPENDIX: HIGHER ORDER EMBEDDING STRUCTURE WITH
NEIGHBOR-BASED PREDICTION + MSE

We showed through an argument in Section 4 that the combination of neighbor-based prediction
and MSE loss implicitly imposes optimization conditions on all pairs and triplets of embeddings.
However, the setup of our argument is general for substructures of all orders within the embedding
space. It is natural then to explore whether our argument yields embedding conditions on such
higher order structures. We briefly show here that the analogous argument does not yield a unique
embedding condition for structures beyond triplets regardless of label order.

For some i ∈ {1, ..., N}, and an indexing set J = {j1, j2, ..., jM} ⊂ {1, ..., N}, we seek to minimize
TiJ = (

∑M
m=1 ∆ijmpijm)2. As in our earlier argument we assume no two labels in the neighbor

set being considered are equal, and, without loss of generality, if m1 < m2, then yjm1
< yjm2

.
Additionally, no labels in the neighbor set are equal to yi. If R =

∑M
m=1 pijm as before, then

this is a convex quadratic optimization with respect to the vector p∗i = (pij1 , ..., pijM ) over the
standard simplex scaled by R. Let {e1, ..., eM} be the standard basis vectors in RM and define
λ =

∆ijm+1

∆ijm+1
−∆ijm

. Immediately, we see that there is a solution to our optimization given by the
vector

p∗i =


R · e1, yi < yj1
R · eM , yi > yjM
λR · em + (1− λ)R · em+1, yjm < yi < yjm+1

, for some 1 < m < M

The case of interest, where a nontrivial optimal structuring condition may be found, is the final one.
However, this case yields the same triplet condition as in the original argument. This proves that an
additional condition for higher order structures is not guaranteed by a partial optimization of TiJ .
While this argument does not preclude the possibility of higher order structuring, further insight is
needed to uncover such conditions.

8https://machinehack.com/hackathons/predict_the_price_of_books/overview
9https://www.kaggle.com/datasets/ericpierce/austinhousingprices
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