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Abstract

Neural combinatorial optimization (NCO) has achieved remarkable performance,
yet its learned model representations and decision rationale remain a black box.
This impedes both academic research and practical deployment, since researchers
and stakeholders require deeper insights into NCO models. In this paper, we
take the first critical step towards interpreting NCO models by investigating their
representations through various probing tasks. Moreover, we introduce a novel
probing tool named Coefficient Significance Probing (CS-Probing) to enable deeper
analysis of NCO representations by examining the coefficients and statistical signif-
icance during probing. Extensive experiments and analysis reveal that NCO models
encode low-level information essential for solution construction, while capturing
high-level knowledge to facilitate better decisions. Using CS-Probing, we find that
prevalent NCO models impose varying inductive biases on their learned represen-
tations, uncover direct evidence related to model generalization, and identify key
embedding dimensions associated with specific knowledge. These insights can be
potentially translated into practice, for example, with minor code modifications,
we improve the generalization of the analyzed model. Our work represents a first
systematic attempt to interpret black-box NCO models, showcasing probing as a
promising tool for analyzing their internal mechanisms and revealing insights for
the NCO community. The source code is publicly available 2.

1 Introduction

Neural combinatorial optimization (NCO) has demonstrated remarkable performance in solving
classic combinatorial optimization problems, such as vehicle routing, achieving results comparable
to, or even surpassing, specialized heuristic algorithms such as Concorde [1], ACO [2], LKH3 [3],
HGS [4]. However, the underlying reasons behind these impressive results, particularly the nature of
the knowledge learned by these neural models, remain largely unexplored and unclear.

In this paper, we take the first step towards interpreting NCO models by probing [5, 6, 7], a powerful
tool that has proven successful in computer vision (CV) and natural language processing (NLP).
We pioneer the first study that directly investigates the learned embeddings in deep NCO models,
aiming to explore the internal mechanisms of these black-box models. In this work, we aim to
address two fundamental questions regarding the representations learned by NCO models: (i) What
decision-related knowledge do they acquire? (ii) How do they learn and utilize this knowledge?
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Addressing the First Question: Probing involves training auxiliary prediction tasks using the em-
beddings learned by a trained deep learning model. In the context of NLP, for instance, if a simple
model (particularly a linear model) can be trained to predict linguistic information about a word (e.g.,
its part-of-speech tag) or a pair of words (e.g., their semantic relation) from the embeddings, we
can reasonably conclude that the embeddings successfully encode this information (see [8] for more
details). However, unlike NLP tasks, which naturally involve intuitive subtasks that are well-suited for
probing, combinatorial optimization (CO) problems typically lack such directly applicable subtasks.
To address this gap, we systematically design a set of probing tasks specifically aimed at exploring
both low- and high-level decision-related knowledge within NCO models.

Addressing the Second Question: Understanding how deep learning (DL) models learn and utilize
decision-related knowledge remains a challenging problem. Different approaches have been proposed,
such as using probing to explore decision boundaries [9] to understand in-context learning in large
language models (LLMs), or identifying individual neurons whose input or output weights have high
cosine similarity with the learned probe direction to detect specific neurons that encode particular
knowledge [10]. In this paper, we propose a novel method called Coefficient Significance Probing
(CS-Probing) to investigate the representations of deep models. CS-Probing not only identifies the
most informative embedding dimensions but also quantitatively assesses their statistical significance,
providing deeper insights into the model’s decision-making process.

Contributions. Our main contributions are as follows: (1) We systematically design probing
tasks for NCO models and demonstrate that their representations capture both low-level decision-
related information (e.g., perceiving Euclidean distances) and high-level knowledge (e.g., avoiding
myopic decisions based solely on distance) for decision-making. (2) Through our proposed CS-
Probing, we discover that different NCO models introduce diverse inductive biases into the learned
representations, resulting in varied decision-making patterns. (3) By applying CS-Probing, we identify
the key embedding dimensions that encode specific knowledge within the model representations. (4)
Leveraging these key dimensions, we provide evidence of the generalization capabilities of NCO
models: models with superior generalization consistently utilize the same embedding dimensions
across different tasks. In contrast, models whose knowledge becomes disorganized across dimensions
during generalization tend to experience performance degradation. Finally, based on probing insights,
we show that modifying only a few lines of code in an NCO model holds the potential to improve its
generalization performance, illustrating the practical value of our proposed probing analysis.

2 Preliminaries

NCO model. NCO models are a class of learning-based solvers for CO problems, with more
details provided in Appendix A.1. This paper studies the most representative transformer-based
architectures (as illustrated in Figure 1) as examples to demonstrate how probing can explore their
internal mechanisms. Taking the Traveling Salesman Problem (TSP) as an example, the raw features
of nodes (e.g., xy coordinates in the Euclidean space) are first fed as inputs. These raw features are
projected into a high-dimensional space through a linear projection layer. Subsequently, multiple
attention mechanism layers are employed to integrate abstract features from different nodes, yielding
the final representations for each node. These representations are then processed either through a
compatibility calculation or directly projected to a scalar via a linear transformation, followed by
a softmax operation to obtain the selection probability of the next node. Recursively, this process
connects all nodes to generate the complete TSP solution. In this paper, we utilize probing to
investigate the representations of three models: AM [11], POMO [12], and LEHD [13].

Probing. We use a linear probing [5, 14, 8, 15, 16, 17] to explore the representations of NCO models.
If this linear model can accurately predict the probing tasks based on the embeddings from the NCO
models, it indicates that the knowledge relevant to the probing tasks can be easily extracted from the
embeddings [5, 8]. This also suggests that the pre-trained NCO model, from which the embeddings
for the probing tasks are derived, has the ability to encode this knowledge in its representations. Other
interpretability approaches, including gradient-based attribution, visualization, and neuron ablation,
lack the explanatory power of probing. For example, the first method reveals output sensitivity to
input features but neither shows where or whether knowledge is encoded in hidden representations
nor provides structural insight into how the model organizes the solution space. In contrast, probing
offers a systematic interpretability framework by assessing the linear decodability of target properties
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Figure 1: Two groups of NCO model architectures: (a) represents the HELD structure, as seen in
AM and POMO, while (b) represents the LEHD structure. The red arrows in the figure indicate the
positions where we probe the model, extracting the embeddings.

from intermediate representations. For a comprehensive discussion of the diverse applications of
probing, the reader is referred to Appendix A.2.

3 Probing for NCO

3.1 Probing Tasks and Setup

Since combinatorial optimization problems do not have suitable subtasks to serve as probing tasks,
new task design is necessary for the specific CO problem being explored. Using the TSP problem
as an example, we propose two probing tasks to investigate NCO models: whether the model can
perceive the Euclidean distance between nodes (Probing Task 1); and whether the model can learn to
avoid constructing solutions in a myopic manner, such as greedily connecting to the nearest node
(Probing Task 2). The former can be regarded as low-level features of the TSP problem, while the
latter is relatively higher-level and more closely aligned with the final decision-making process.

We also introduce two probing tasks for the CVRP problem, examining whether NCO models can
understand constraints (Probing Task 3 and Probing Task 4). Probing Task 3 investigates a relatively
simple low-level feature: the linear additive relationship between node demands. In contrast, Probing
Task 4 examines a higher-level property: whether the embeddings encode information about two
nodes belonging to the same route in the optimal solution.

Figure 7 in Appendix illustrate examples of probing dataset creation and label collection. For detailed
definitions of these four probing tasks, the integration of domain knowledge from the CO field to
create datasets, and the embeddings as probing input, please refer to Appendix B.

3.2 Probing the Decision-Related Knowledge in NCO Models

Can NCO learn decision-related information from routing problems, exemplified by TSP?
Table 1: Highlights from Table 9. Here,
we conduct the evaluation process 10
times to report the mean ± SEM.

Probing input Task 1 (R2) Task 2 (AUC)

w
/o

in
ts

. AM-Init -0.0003 ± 0.00000 0.49 ± 0.00
AM-Enc-l3 0.2529 ± 0.00048 0.76 ± 0.00
POMO-Enc-l6 0.1981 ± 0.00001 0.76 ± 0.00
LEHD-Dec-l6 0.9418 ± 0.00031 0.86 ± 0.00

w
/i

nt
s. AM-Init 0.7111 ± 0.00000 0.52 ± 0.00

AM-Enc-l3 0.9282 ± 0.00035 0.83 ± 0.00
POMO-Enc-l6 0.7917 ± 0.00000 0.86 ± 0.00
LEHD-Dec-l6 0.9415 ± 0.00027 0.86 ± 0.00

We first examine whether NCO models capture a key low-
level feature of TSP: the Euclidean distance between nodes.
Next, we explore a higher-level and more abstract aspect
of the embeddings: whether NCO models can capture
decision-related information that avoids the myopic strat-
egy of always selecting the nearest node. Having estab-
lished the presence of both low- and high-level features,
we perform a layer-wise analysis to understand how such
information is encoded and learned during training. This
section summarizes key findings in Table 1. In this table,
"w/o ints" and "w/ ints" denote the absence and presence
of interaction terms (see Appendix B.2.2), while the "Probing input" columns, ‘Enc-lx’ and ‘Dec-lx’
refer to the x-th layers in the encoder and decoder of NCO models. Complete results and discussion
are presented in Appendix C.1.1, with Table 9 providing a comprehensive summary.
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Probing Task 1: Euclidean distance. We examine the ability of the three NCO models to linearly
represent the Euclidean distances between pairs of nodes (specifically, the current node and any
unvisited node) during decision-making, by training linear probes and evaluating their performance.

As shown in the "w/o ints." rows of AM-Init in Table 1 for both 20-node and 100-node examples,
the values indicate that the initial embeddings of AM fail to capture the nonlinear relationship of
Euclidean distance (with R2 values close to 0). These embeddings are derived by mapping the
raw features, specifically the 2D coordinates in the TSP, through a linear projection into the shared
dimensional space of the encoder and decoder (128 dimensions for all three models discussed in this
paper). In "Knowledge existence" section of Appendix C.1.1, we explain that the R2 of a Euclidean
distance regression model using node coordinates as input is zero because it cannot capture the
nonlinear nature of Euclidean distance. Thus, the initial embeddings essentially retain the properties
of the raw features and similarly fail to linearly capture Euclidean distances. The phenomenon of an
R2 value of zero for the initial embeddings can be observed across all NCO models.

However, after passing through the NCO model, the R2 values for AM, POMO, and LEHD increase
to 0.2529, 0.1981, and 0.9421, respectively, for 20-nodes example, as shown in Table 1. Moreover,
when considering interaction terms, the R2 values for all three models’ embeddings after the encoder
or decoder are significantly higher than those of the initial embeddings, approaching 1. This
indicates that the representations in these NCO models contain linearly decodable Euclidean distance
information, meaning they have learned how to linearly represent Euclidean distances.

Probing Task 2: Avoidance of myopia. Through Probing Task 2, we explore whether NCO models
can learn to avoid making decisions based solely on distance. As a first step, we train a probing
model using raw path feature (distance) as input. The resulting performance, with an AUC close to
0.5, confirms that Probing Task 2 is not merely a trivial path discrimination task.

We use the "AM-Init" results as a baseline reference, with AUC consistently at 0.5, indicating that
the initial embeddings cannot linearly extract the knowledge needed to distinguish which nodes are
connected to the current ones in the global optimal solutions (namely, the optimal edges). To confirm
that Probing Task 2 is not relying on Euclidean distances for node differentiation, we further examine
the initial embeddings with interaction terms, whose AUC values remain close to 0.5, suggesting they
still fail to distinguish between optimal or greedy edges. In contrast, in Probing Task 1, the initial
embeddings with interaction terms achieve an R2 above 0.7, indicating that the initial embeddings
with interaction terms have linear explanatory power for Euclidean distances. This observation
confirms that the two probing tasks are fundamentally different. It also implies that if the embeddings
in an NCO model can be linearly distinguished in Probing Task 2, the model has learned to avoid
myopic decision-making and capture the knowledge needed to find the global optimal solution.

The results in Table 1 demonstrate that all three NCO models exhibit the ability to avoid myopic
decision-making, with AUC scores exceeding 0.8. Notebly, on both 20-node and 100-node instances,
this ability is aligned with three models’ performance on the optimization problem outcomes, as
discussed in Section 3.3, where we analyze the relationship between probing performance and final
model performance. Moreover, this ability is consistently stronger in the final layer compared to
the first layer for all three models. In the next section, we provide a more fine-grained analysis to
illustrate how the behavior of NCO models evolves across layers and how it changes during training.

Fine-grained analysis. In Figure 2, we present the results of two TSP probing tasks across different
layers of embeddings for three trained models. The observation shows that the initial embeddings
(before any attention layers) exhibit weak Euclidean distance perception. However, after just one
attention layer, all models achieve strong distance awareness, which slightly weakens with depth.
Despite this, deeper layers help NCO models develop high-level decision-making abilities, such as
avoiding myopic node choices. An exception occurs in the final layers of LEHD, where this ability
slightly declines, possibly due to the emergence of more complex strategies. For an analysis of NCO
model layers and their varying trends in capturing low- and high-level knowledge with increasing
layers, see the “Results by Model Layer” section in Appendix C.1.1. Overall, NCO models transition
from learning spatial relations in shallow layers to strategic reasoning in deeper layers.

Figure 3 illustrates the evolution of results for two TSP probing tasks during the training process.
As shown, for AM and POMO, the model performance improvement during the initial epochs is
the fastest, and the results for Probing Task 2 (related to avoiding myopic decisions) also improve
rapidly in early learning epochs. In contrast, LEHD achieves peak performance on Probing Task 2
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Figure 2: Probing results across different layers.
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Figure 3: Probing results during NCO models training.

right from the start of training, indicating that the LEHD model has already learned how to avoid
myopic decisions early in the process. What additional information LEHD learns to make its node
selection decisions could be further investigated in future research by designing new probing tasks.

Do NCO embeddings encode constraint information, as demonstrated with the CVRP?

We address this by investigating Probing Task 3 and Probing Task 4, which target a critical constraint
in CVRP: the capacity constraint. The former focuses on a low-level feature, the linear additive
relationship among node demands, while Probing Task 4 explores a high-level aspect, examining
whether the embeddings produced by NCO models encode information about whether nodes belong
to the same route in the optimal solution. Through probing, we verify that NCO models are indeed
capable of capturing such knowledge. Detailed results and analysis can be found in Appendix C.1.2.

3.3 Probing for Border NCO

How robust is probing when used to explore NCO models?

We further investigate the robustness of probing in analyzing NCO models through three additional
studies: (1) Besides transformer-based NCO models, can probing also be applied to other types of
models? To examine this, we conduct a preliminary experiment on DIFUSCO [18], a diffusion-
based NCO model in Appendix C.2.1. The results confirm that the embeddings of diffusion-based
models can also be effectively analyzed using probing. More in-depth investigations, or explorations
of additional diffusion-based NCO models [19, 20], would be valuable to further illuminate their
underlying mechanisms. (2) Can probing be used to explore information in non-Euclidean spaces? In
Appendix C.2.2, we examine this question using the Asymmetric Traveling Salesman Problem (ATSP)
as a case study, and demonstrate that probing is indeed applicable in non-Euclidean settings. (3) Can
probing be used to analyze other combinatorial optimization problems, or applied to architectures
beyond attention-based NCO models? In Appendix C.2.3, we address these questions by applying
probing to the Job Shop Scheduling Problem (JSSP) and a corresponding GNN-based neural model.
We use probing to investigate whether the embeddings of NCO models can capture precedence
constraint information. The results confirm that probing remains effective in interpreting other deep
learning architectures and combinatorial optimization tasks.

Can probing be used to investigate the performance differences among NCO models?

In addition to revealing what types of knowledge are captured by the embeddings of NCO models,
the traditional probing methods also provide indirect visions into why different NCO models exhibit
varying performance. For example, by analyzing probing performance across problem sizes, we
observe that LEHD achieves better probing results on larger instances (200-TSP), which aligns with its
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stronger performance in large scale TSP, thereby offering supporting evidence from a representational
perspective. Additionally, we perform ablation studies on LEHD to investigate the impact of different
components and the performance when embedding different nodes, which further strengthens the
structural design claims of LEHD. For detailed analysis, please refer to Appendix C.3.

However, a more compelling question is whether probing can reveal the internal mechanisms of black-
box DL models, thereby providing direct—rather than indirect—evidence to explain performance
differences and uncover the factors contributing to generalization. In the following Section 4, we
demonstrate how our proposed CS-Probing method can effectively provide such direct evidence.

4 Opening the Black Box of NCO Models Using CS-Probing

In this section, we demonstrate how our proposed CS-Probing method leads to three key findings:
(1) it reveals the distinct inductive biases learned by different NCO models; (2) it uncovers the
differing generalization mechanisms across models; and (3) it identifies and localizes key embedding
dimensions that encode task-specific knowledge. Based on these findings, we further demonstrate
the practical value of probing by validating how the analyzed model can enhance its generalization
through insights derived from CS-Probing.

4.1 CS-Probing: A New Tool

In addition to systematically designing two sets of high-level and low-level probing tasks tailored for
the combinatorial optimization problem, we also propose a novel probing analysis tool: analyzing
both the absolute magnitude and statistical significance of the coefficients in a linear probing model.
We refer to this method as Coefficient Significance Probing (CS-Probing). Our proposed CS-Probing
enables a more fine-grained analysis by examining the role of each individual embedding neuron
(or dimension) in capturing specific knowledge. In this section, we use the first two TSP-related
probing tasks (i.e., Probing Task 1 and Probing Task 2) as examples to demonstrate how CS-
Probing analyzes NCO models. Other probing tasks can also be analyzed using CS-Probing, and the
corresponding results demonstrating that NCO models excel at capturing simple additive constraint-
related information when solving CVRP are presented in Appendix D.5.

4.2 Inductive Biases
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Figure 4: Heatmaps of node embeddings. The x-
axis represents different embedding dimensions,
and the y-axis represents the instances.

We began by examining the embeddings from
different NCO models just before the decision
output layer and observed clear differences in
their activation patterns. Figure 4 presents a
heatmap of node embeddings across the NCO
models. Specifically, fifty instances are sam-
pled from each of the three NCO model datasets,
and the embedding of a specific node from each
instance is visualized. The results show that
LEHD exhibits strong activation concentrated in
fewer than 20 fixed dimensions, with absolute
values often in the tens. In contrast, AM and
POMO exhibit different inductive biases, char-
acterized by more dispersed activation patterns,
with no consistently dominant dimensions and
significantly smaller coefficient magnitudes (all
below 4 in absolute value).

We further investigate the distinct inductive bi-
ases learned by the three NCO models through
probing, specifically by analyzing the coefficients of the probing models—i.e., via our proposed
CS-Probing method. This analysis reveals how the embeddings from different NCO models encode
information differently, reflecting their respective inductive biases. In doing so, we demonstrate how
CS-Probing helps uncover the potential reasons behind the superior performance of better-
performing NCO models, validating the claim made in the original LEHD paper [13] that "such
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Figure 5: Coefficients of probing models for two TSP-related probing tasks across all NCO models.

a dynamic learning strategy enables the model to adjust and refine its captured relationships between
the starting/destination and available nodes".

Figure 5 presents the probing model coefficients obtained on the test sets for Probing Task 1 and
Probing Task 2 across the three NCO models. In each subplot, the x-axis corresponds to latent
feature dimensions, while the y-axis shows the coefficient values. The top portion of each subplot
displays the raw coefficient magnitudes, and the bottom portion illustrates the statistical significance
of each feature. The first 128 dimensions represent the embedding of the current node, which is the
node being visited during the autoregressive decision process of the NCO model, and the next 128
dimensions correspond to the embedding of a candidate node, that is, an unvisited node.

From Figure 5, we observe that LEHD, the best-performing model among these three NCO models,
exhibits more statistically significant features in its node embeddings for both TSP-related probing
tasks compared to AM and POMO. Specifically, examining the coefficients of each node’s embeddings
of LEHD reveals that for the current node, the probing model’s coefficients tend to have smaller
absolute values, with only a few being statistically significant. In contrast, the embeddings of
candidate nodes (those relevant to the decision-making process for selecting the next node to visit
in the current step) have a greater number of statistically significant dimensions. Additionally, we
confirm that during training, LEHD progressively develops this property, gradually learning to encode
knowledge into specific embedding dimensions, as illustrated in Figure 14 in Appendix D.1.

If we disregard the absolute values of the coefficients and focus solely on statistical significance,
this pattern is also observed in AM and POMO during the myopia-avoidance task, albeit with far
fewer statistically significant features in their embeddings compared to LEHD. However, when it
comes to perceiving Euclidean distances, the embeddings of AM and POMO as features show no
such distinction. In subplots (a) and (c), the coefficients and the number of significant features for the
two nodes’ embeddings are similar, regardless of their roles as the current node or other nodes.

4.3 Generalization Mechanisms

We extend the analysis to explore how CS-Probing can uncover direct evidence of generalization
in NCO models. Specifically, we show that NCO models with superior generalization performance
learn transferable representations, that is, features that generalize beyond the training distribution and
enable robust performance on unseen problem instances.

Table 2 shows the CS-Probing results of AM, POMO, and LEHD on two TSP probing tasks,
specifically the top 5 dimensions with the largest absolute coefficients. The numbers indicate the
dimension indices (starting from 1), with parentheses indicating whether the dimension comes from
the current node or the candidate node. Bold entries highlight dimensions that are reused during
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generalization, and underlined entries further indicate that their relative ranking remains consistent.
To further ensure reliability, we perform multiple hypothesis testing. Specifically, we apply the
Benjamini-Hochberg procedure to control the false discovery rate (FDR) at 0.05 across the 256
tested dimensions. The key LEHD dimensions identified earlier remain significant after correction,
consistent with the results in Table 2.

Table 2: Top 5 dimensions from CS-Probing results two TSP
probing tasks on TSP-20 and TSP-100 across three models.

Top_n 20 train / 20 test 20 train / 100 test
Dim. Coef. Sig. level Dim. Coef. Sig. level

Pr
ob

in
g

Ta
sk

1

A
M

1 54 (candidate node) 0.0917 *** 86 (candidate node) -0.1031 **
2 41 (candidate node) -0.0884 ** 34 (current node) 0.1015
3 101 (current node) -0.0848 * 22 (candidate node) 0.0770 *
4 95 (candidate node) -0.0767 *** 54 (current node) 0.0746 *
5 124 (candidate node) -0.0712 ** 21 (candidate node) 0.0740

PO
M

O

1 89 (current node) 0.0539 *** 89 (candidate node) 0.0562 *
2 89 (candidate node) 0.0510 * 80 (current node) -0.0404 **
3 107 (current node) 0.0443 *** 89 (current node) 0.0369
4 70 (candidate node) 0.0322 ** 104 (current node) 0.0359
5 83 (candidate node) -0.0308 *** 24 (candidate node) 0.0349

L
E

H
D

1 31 (candidate node) 0.1651 *** 31 (candidate node) 0.1703 ***
2 69 (candidate node) -0.0718 *** 69 (candidate node) -0.0793 ***
3 64 (candidate node) -0.0683 *** 118 (candidate node) 0.0708 ***
4 97 (candidate node) -0.0604 *** 25 (candidate node) 0.0630 ***
5 30 (candidate node) 0.0526 *** 98 (candidate node) 0.0509 ***

Pr
ob

in
g

Ta
sk

2

A
M

1 34 (current node) 0.8561 ** 41 (candidate node) 1.6827 ***
2 61 (candidate node) -0.8153 *** 34 (candidate node) 1.3354 **
3 55 (candidate node) -0.6612 *** 106 (candidate node) 1.1430 **
4 109 (candidate node) 0.6406 *** 70 (candidate node) -0.9718 **
5 106 (candidate node) -0.6329 ** 54 (candidate node) 0.9681 ***

PO
M

O

1 53 (candidate node) 0.5004 *** 125 (candidate node) 0.7499 ***
2 89 (candidate node) 0.4088 *** 86 (candidate node) -0.6989 ***
3 62 (candidate node) 0.3238 *** 70 (candidate node) 0.5580 ***
4 110 (candidate node) 0.3217 *** 121 (candidate node) -0.4910 *
5 7 (candidate node) 0.3081 *** 82 (candidate node) 0.4776 ***

L
E

H
D

1 31 (candidate node) 4.5238 *** 31 (candidate node) 2.7083 ***
2 97 (candidate node) -4.0741 *** 97 (candidate node) -1.6566 ***
3 25 (candidate node) 1.4400 *** 126 (candidate node) 1.3297 ***
4 85 (candidate node) 1.2421 *** 30 (candidate node) -1.2525 ***
5 118 (current node) -1.1680 *** 42 (candidate node) 0.7862 ***

The results reveal that in less
generalizable models (AM and
POMO), the key embedding di-
mensions associated with the
probing tasks vary across gener-
alization scenarios. In contrast,
the more generalizable model
(LEHD) consistently maintains
the same top-2 dims, i.e., the
31th and 69th for Probing Task
1, and the 31th and 97th for
Probing Task 2. Figure 15 (i)-
(l) in Appendix D.2 visualizes
this result for the LEHD model,
intuitively demonstrating how
it consistently utilizes fixed di-
mensions to capture relevant in-
formation during generalization.
In contrast, the visualizations
for AM and POMO are pre-
sented in Figures 15 (a)-(d) and
15 (e)-(h), respectively.

These findings collectively sup-
port the conclusion that CS-
Probing explains the generalization behavior of NCO models by revealing that they consistently
reuse the same embedding dimensions to encode specific knowledge (as observed in LEHD). Besides,
the results indicate that when the knowledge encoded in specific dimensions becomes disorganized
during generalization, model performance deteriorates. To further support this argument, we examine
whether AM and POMO, trained on 20-node instances, can generalize not to the distant 100-node
setting, but to instances that are closer in scale (e.g, with 21, 25, or 30 nodes). The results show that
both models exhibit similar reuse of embedding dimensions when generalizing to 21-node instances,
suggesting that when generalization is achievable, NCO models tend to capture specific knowledge
using a fixed (and small) set of dimensions. The results are listed in Table 14 in Appendix D.3.

4.4 Key Embedding Dimensions

Previously, We identify key factors influencing NCO model generalization and provide direct evidence
of their performance. Notably, the LEHD model consistently reuses the same top-2 embedding
dimensions across different probing tasks and problem scales. Building on this insight, we further
demonstrate the practical value of CS-Probing from multiple perspectives.

First, the two key dimensions identified by CS-Probing offer interpretability into how NCO models
make decisions within a high-dimensional latent space that is otherwise difficult for humans to
comprehend. For example, we examine the LEHD model’s behavior on Probing Task 2 (avoiding
myopic decisions) by the 2D plane formed by the two key dimensions of LEHD’s embedding
(dimensions 31 and 97). Figure 6 illustrates the result for one instance with the random seed set to
one. The left plot shows the optimal solution, and the middle shows the greedy solution. The right
plot visualizes the values of the two key dimensions from the final node embeddings output by LEHD
(before the softmax layer). In this case, the current node is node 4. A myopic decision based on
Euclidean distance would choose node 5, whereas the optimal solution selects node 3. In the 2D
space defined by the identified key dimensions, node 4 is indeed closer to node 3 than to node 5.
Furthermore, other nodes that are closer to node 4 in this space also appear nearby in the optimal
tour, further supporting our interpretation.
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Figure 6: Routing solutions (see Appendix B.1.2 for details on how to obtain) and the key two-
dimensional embeddings in the node representation of LEHD.

These results reveal how black-box models make decisions by identifying the most informative
embedding dimensions that encode the knowledge required for specific decision types. Additional
results on other random seeds are in Appendix D.4.

The second practical value of CS-Probing lies in its ability to validate model architecture and provide
insights for future model design. Regarding the relationship between CS-Probing findings and model
structure, we observe from the 2D plots of the two key dimensions (Figures 6, 16) that LEHD not
only avoids myopic behavior but also consistently positions the current node in the bottom-left corner,
clearly separated from other nodes. This spatial separation directly reflects the effect of LEHD’s
architectural design, in which candidate node embeddings are re-encoded at each decision step to
enhance the capture of decision-relevant information.

Table 3: Results of only two dimensions from
LEHD’s output embedding.

Problem Dimension(s) Optimality Gap

10
0

All 128 0.57%
31, 97 0.65%

32, 97 0.75%
21, 123 183.80%
7, 78 384.19%

20
0 All 128 0.86%

31, 97 0.93%

50
0 All 128 1.56%

31, 97 1.81%

10
00 All 128 3.17%

31, 97 3.56%

Table 4: Performance degradation from zeroing
key vs. non-key dimensions in LEHD.

Zeroing Dimension(s) Optimality Gap

None(original) 0.57%
31, 97 60.43%
31 0.90%
97 1.80%
98 0.59%
126 0.60%
98, 126 0.62%

Thirdly, across multiple results and insights obtained by CS-Probing above, we find that LEHD’s final-
layer embeddings, just before the output layer, can capture both low-level and high-level knowledge
using only a small number of dimensions. To explore whether the model can make decisions using
only these key dimensions, we conduct an experiment where we retain only the two most important
dimensions (as identified by CS-Probing) from LEHD’s 128-dimensional output. Remarkably, the
model still achieves nearly equivalent performance. In particular, we identify two key dimensions
of a LEHD model trained on 100-node instances using CS-Probing, as described in the previous
sections. We then evaluate LEHD models trained on instances of other scales using only these two
dimensions, and they continue to generalize effectively to 200-, 500-, and even 1000-node problems,
yielding results comparable to those obtained using the full embedding. See Table 3 for detailed
results. To further validate, we conduct neuron ablation: zeroing the two key dimensions (31 and 97)
causes performance to collapse (more than 60% gap), while zeroing non-key but seemingly important
dimensions yields little impact (Table 4). Specifically, dimension 98 is chosen because it exhibits
large activation values in the embedding visualization (from Figure 4), and dimension 126 is selected
because it has the highest probing coefficient among all non-key dimensions (from Table 2).

One key insight emerging from this finding is the potential benefit of imposing regularization
or constraints on embedding dimensionality during LEHD model training. This raises important
questions about whether dimensional efficiency could be further improved through its architectural or
training adjustments. In the following section, we conduct a preliminary exploration of this idea. For
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future work, it would be valuable to explore how embedding dimensionality should be configured
across different layers and training stages to enhance both efficiency and generalization.

4.5 Practical Implications

We conduct a simple yet effective experiment based on insights from CS-Probing. Since LEHD
generalizes better than other models by relying on a small subset of embedding dimensions, we
introduce a regularization term to promote sparsity in its final-layer embeddings. With only minor
code changes, this improves generalization. As shown in Table 5, we train LEHD with different regu-
larization strengths (λ) on TSP100 and evaluate transfer to TSP200 and TSP1000, measuring the gap
to best known solutions. The baseline (origin, namely λ=0) corresponds to the unregularized model,
while moderate regularization (λ=1e-6 to 1e-3) improves generalization at larger scales. We also
test cross-distribution generalization by training on uniform instances and testing on TSPLib. These
results provide preliminary evidence that regularization may enhance generalization performance and
highlight the potential of probing insights as an analytical tool for informing model design.

Table 5: Results of LEHD models trained with different regularization strengths (λ), demonstrating
generalization performance across problem scales and distributions.

origin 1e-6 1e-5 1e-4 1e-3

TSP100 0.57% 0.58% 0.57% 0.57% 0.57%
TSP200 (generalization) 0.86% 0.88% 0.86% 0.73% 0.82%
TSP1000 (generalization) 3.17% 2.87% 2.93% 2.97% 3.05%
TSPLib(generalization) 5.26% 4.94% 4.99% 5.05% 8.61%

It is important to note that these analyses are not intended to argue that a particular transformer-based
architecture is inherently superior, nor that all models should employ sparsity-inducing regularization.
Rather, by using LEHD as a case study, we aim to validate the practical value of CS-Probing. Overall,
this work presents the first systematic attempt to apply probing to NCO research, introducing the
CS-Probing tool as a means of analyzing and better understanding the internal mechanisms of NCO
models. This opens up a new pathway for both analyzing and improving NCO models. We believe
that extending these analyses to a broader set of models in the future will enable more transparent
and trustworthy pathways for advancing research on NCO models.

5 Conclusion

In this paper, we introduce probing into the study of NCO models to systematically investigate their
learned embeddings and to advance the understanding of the internal mechanisms underlying these
black-box approaches. We systematically design probing tasks and employ our proposed CS-Probing
method to investigate what decision-related knowledge NCO models capture and how they encode
this knowledge. Additionally, we demonstrate the practical value of probing by providing empirical
support for claims regarding the design of NCO models, offering evidence to explain mechanisms
such as generalization performance, and generating insights to guide future research in the NCO field.

One of these insights is that inference can achieve comparable results using only two key dimensions
discovered through CS-Probing. This finding highlights a potential avenue for compressing, distilling,
and pruning the representation space of NCO models, as well as investigating the dimensionality of
NCO model representations.

Another potential direction is to explore additional knowledge to further enhance the transparency
and interpretability of NCO models. Much like how DNA sequencing revolutionized genetics,
our proposed CS-Probing offers a powerful lens for understanding NCO models by identifying
specific dimensions within high-dimensional embeddings that encapsulate essential knowledge. As
more probing tasks emerge, this approach has the potential to progressively transform black-box
representations into interpretable, structured forms, offering a promising and impactful direction
for the field. Enhancing transparency and interpretability could significantly promote the broader
application of deep learning models in scientific and engineering domains.
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A Related Work

A.1 NCO

Neural (deep learning-based) methods have been applied to various combinatorial optimization
problems for several years [21, 22]. With the rapid advancement of deep learning (DL), an increasing
number of approaches have been introduced to address these classical problems in operations research
(OR). In the context of the routing problem discussed in this paper, researchers have explored
methods such as graph convolutional networks (GCNs) [23, 24], pointer networks with recurrent
neural networks (RNNs) [25, 26], diffusion-based approaches [18, 19, 20], and attention mechanisms
[11, 27, 12, 28, 29, 30, 13], which are the primary focus of this study.

A.1.1 AM, POMO, LEHD

AM 3 [11] is one of the earliest and most successful attention mechanisms-based models for routing
tasks. It is pioneering in introducing the widely popular Transformer architecture to combinatorial
optimization problems, inspiring a multitude of subsequent models. POMO 4 [12], as a notable
example, retains a structure fundamentally similar to AM (with minor differences, such as in context
embedding) but introduces a novel reinforcement learning (RL) training method.

AM not only introduces the Transformer architecture but also makes significant contributions to the
model design for routing problems. A notable idea is AM’s context embedding in the decoder, which
focuses on the current node and the starting node (for TSP problems). Although many later models
do not adopt this exact context embedding design, the core idea of focusing on these two key nodes
remains. For example, even though LEHD’s decoder design differs from AM’s, it fundamentally
considers how to represent information from these two critical nodes.

Specifically, the difference between LEHD 5 [13] and AM lies in their architectural design. Figure 1
illustrates the architecture of both models. In Figure 1(a), AM uses a multi-layer encoder to learn how
to represent node information based on their input features (coordinates), while the decoder performs
a single attention computation on the node representations generated by the encoder, producing a
global “glimpse" for decision-making without updating the node embeddings. This is known as
the “Heavy Encoder Light Decoder" structure. In contrast, LEHD adopts a "Light Encoder Heavy
Decoder" structure, where the encoder uses only a single attention layer to learn node representations,
while the decoder, at each step, re-learns the embeddings of the current node, destination node, and
candidate nodes through multiple attention layers. In LEHD, as shown in Figure 1(b), hs and hd

represent the embeddings of the current node (referred to as the starting node in LEHD) and the

3https://github.com/wouterkool/attention-learn-to-route
4https://github.com/yd-kwon/POMO/tree/master
5https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD
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destination node, while the node embeddings located in the middle are filtered in LEHD to exclude
previously visited nodes.

A.1.2 Concerns

Although NCO methods have seen rapid development in academia, industries remain cautious
about deploying them to replace classical OR methods. This is because these DL-based methods
are perceived as black-box models, lacking the reliability and interpretability of traditional OR
approaches. As a result, even though some NCO models have achieved strong performance on certain
instances, they are still met with skepticism. For example, [31] raises concerns about the overuse
of GNNs, noting that the improvements achieved by GNN-based methods over traditional distance-
related approaches were minimal. To address this, we are the first to unveil the inner workings of
NCO models, aiming to enhance understanding of their internal mechanisms.

A.2 Probing

The probing method used in this paper was initially applied to understand the representations of DL
models in computer vision [5] and natural language processing [6, 14, 17, 15, 32]. Beyond traditional
DL tasks, probing has also demonstrated effectiveness in other domains, such as exploring world
representations [33, 10] and in-context learning [9] in large language models, auditory representations
[34, 35], and studying the quality of unsupervised reinforcement learning representations [36]. A
systematic use of probing to analyze a deep model’s ability to extract and store knowledge can be
seen in [37], which investigates how large language models encode vast amounts of world knowledge
as a case study.

In the field of NLP, prior work such as [15, 16] has explored the use of probing techniques to
identify key neurons, aiming to analyze the knowledge learned by deep learning models. Notably,
[16] demonstrated that the learned patterns in the feed-forward layers of Transformer models are
human-interpretable: lower layers tend to encode shallow syntactic features, while higher layers
capture more abstract semantic representations. Similarly focusing on neurons in feed-forward layers,
[10] identified individual “space neurons” and “time neurons” that consistently encode spatial and
temporal coordinates in large language models, by computing the cosine similarity between each
neuron’s input or output weight vector and a predefined probe direction vector. In contrast to these
studies, our work focuses on NCO models and investigates how they represent problem-specific input
information—such as nodes in routing problems. Accordingly, we primarily analyze the model’s
embeddings, where "neurons" in our context refer to individual dimensions within the embedding
space. While our current analysis centers on the embedding layer, we believe that probing the
feed-forward layers of Transformer-based NCO models presents a promising direction for future
research.

B Design and Setup of Probing Tasks

The steps for using probing to explore deep learning representations are as follows: first, define the
probing task based on the target information to be explored; second, collect the labels required for the
probing dataset, ensuring they are relevant to the target information; third, combine the embeddings
from the deep learning model with the labels to complete the probing dataset; and finally, train the
probe and evaluate its performance on out-of-sample data. Figure 7 shows the process of creating
and labeling the probing dataset.

B.1 Four Probing Tasks

B.1.1 Probing Task 1: Euclidean Distance

When solving routing problems in Euclidean space, the Euclidean distance between nodes is a critical
piece of information for all solution methods. For instance, a simple greedy algorithm for solving the
TSP starts at an arbitrary node, computes the Euclidean distance between the current node and all
unvisited nodes, and selects the nearest one as the next destination. This process is repeated until all
nodes are visited, returning to the starting node to form a Hamiltonian cycle. In traditional methods,
whether using exact approaches (mathematical programming) that rely on the distance matrix of
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Figure 7: The process of creating the dataset for Probing Task 1 is illustrated from left to right. For a
given instance, we input its complete data (all nodes) into the NCO model being probed (with the
dashed box representing the same NCO model). We then extract the embeddings from the probed
part (e.g., the encoder or decoder) or layer of the model and select the corresponding embeddings of
the required nodes as features. These features, combined with the label, form a single data point.

nodes as input or approximate (heuristic) methods [38, 39], the Euclidean distance between any two
nodes must be precomputed or computed on the fly. Therefore, for a TSP solver, recognizing the
Euclidean distances between nodes is essential. Based on this, we aim to explore whether a trained
learning-based NCO model can capture this critical Euclidean distance between the current node and
any of the candidate nodes in its representations.

Probing task. Probing Task 1 aims to examine whether the embeddings of NCO models encode the
distance between the current node and any of the candidate nodes during decision-making. Given
the embeddings of two nodes, a probing model is trained to directly predict the Euclidean distance
between them. This probing task, which takes two embeddings as input features, is similar to the
probing tasks used in NLP to evaluate pairwise relations between words [8].

Dataset. Figure 7 illustrates the process of creating a sample for Probing Task 1 and its corresponding
dataset. Given the current node ni and any randomly selected node nj from the candidate nodes, we
extract their embeddings hi and hj from the relevant layers of the NCO model we want to probe. The
embeddings of the two nodes are then concatenated into a feature vector [hi, hj], with the Euclidean
distance between ni and nj serving as the label. By collecting sufficient data in this manner, we
construct the dataset for Probing Task 1. Since the label (i.e., the distance) is a continuous, Probing
Task 1 is framed as a regression prediction task.

B.1.2 Probing Task 2: Avoidance of Myopia

Selecting the next unvisited node solely based on the nearest Euclidean distance, as in the greedy
algorithm, will not result in the optimal solution from a global perspective. This approach is often
described as "myopic", and many efforts have been made to avoid such shortsighted strategies
[40, 41, 42, 43]. A well-designed NCO model must similarly learn to avoid myopic strategies and
adopt a more global perspective to solve the problem effectively. To investigate this, we design
Probing Task 2 to explore whether the embeddings of NCO models exhibit the ability to avoid
shortsighted decisions at a given step.

Probing task. We define Probing Task 2 as a binary classification task, where the probing model is
trained to determine whether the current node (e.g., ni) should be linked to node nj . Node nj could
either be a myopic choice that leads to a local optimum or the node connected to ni in the global
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optimal solution. To assess whether the NCO models make myopic decisions by choosing the nearest
Euclidean distance, we construct data points as illustrated in Figure 8.
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Figure 8: An example of solutions to the TSP for a specific instance: (a) represents the optimal
solution generated by the mathematical model and solved using Gurobi; (b) shows the best solution
obtained through a greedy algorithm.

Dataset. First, we randomly generate an instance with N nodes, input it into a mathematical
programming model, and use the Gurobi [44] solver to obtain the theoretical optimal solution, as
shown in Figure 8(a). Next, starting from each node, we use a greedy algorithm to generate N
solutions and select the best one (as illustrated in Figure 8(b), gradually comparing the next node
selected by the greedy algorithm with the optimal solution. For example, in the instance shown in
Figure 8, when the current node is node 4, the optimal solution selects node 3, whereas the greedy
algorithm selects the nearest one, node 5. Ultimately, we obtain two data points for this instance:
node 4 connected to node 3 represents the optimal choice, labeled as a positive example (i.e., the
feature is [h4, h3] and the label is 1), while node 4 connected to node 5 represents the myopic choice
of the greedy algorithm, labeled as a negative example (i.e., the feature is [h4, h5] and the label is 0).

Domain knowledge. Unlike the relatively straightforward probing tasks and datasets in CV and
NLP, probing in the CO field requires incorporating domain-specific knowledge. For instance, in this
dataset, there may be multiple optimal solutions. Suppose one of them includes node 4 connected
to node 5, which would render a label of 0 incorrect. To verify this, we add a constraint to the
mathematical model that forces the connection between nodes 4 and 5. The new optimal solution
obtained under this constraint is worse than the original solution without the constraint. Similarly,
for data labeled 1, we add a constraint preventing the connection between nodes 4 and 3, and the
resulting solution is also worse. This confirms that both labels are valid.

B.1.3 Probing Task 3: Perception of Constraints

For the TSP problem, the first two probing tasks provide a comprehensive analysis of the representa-
tional capacity of NCO models. However, for more complex VRP, where additional constraints are
introduced, we are curious whether NCO models can capture these constraint-related information.
If not, it suggests that NCO models might merely rely on masking to artificially limit their outputs.
This would imply an inherent limitation in how NCO models handle constraints.

Probing task. To answer this question, we design Probing Task 3 to explore whether NCO models
can capture the knowledge required to determine the feasibility of the capacity constraint in the
CVRP problem. Since the capacity constraint primarily involves the linear (additive) relationship
among the demands of nodes, we design Probing Task 3 to check whether the embeddings of two
nodes can represent the sum of their demands. Thus, for Probing Task 3, a probing model is trained
to predict the sum of the demands given the embeddings of two nodes.

Dataset. We extract the embeddings of two nodes, hi and hj , from the relevant layers of the
NCO model being probed. Unlike the previous non-linear probing tasks, predicting the sum of two
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demands—a linear addition task—may be inherently too simple. Therefore, a linear probing model
might not be sufficient to demonstrate whether the NCO model can capture this knowledge. To delve
deeper, in addition to concatenating the embeddings of the two nodes ([hi, hj]) as the input for the
probing task, we also apply Hadamard product on the two embeddings, [hi ⊙ hj], as an alternative
input. The latter approach aims to simulate the attention computation process in attention-based NCO
models (as in most models where the decoder ultimately uses attention to compute a compatibility
score to determine node selection probability), allowing us to examine whether the model can capture
the additive effect of demand features.

B.1.4 Probing Task 4: Same Route

Probing Task 3 investigates a low-level feature related to the capacity constraints in CVRP—whether
the embeddings of nodes contain information about their demands. Next, we explore a higher-level,
more abstract feature: determining whether two nodes belong to the same route. In the CVRP
solution, there are multiple routes, and if two nodes are on the same route in the optimal solution,
a solution where they are not on the same route is highly unlikely to be optimal. If NCO models
can perceive this information from a global perspective while solving CVRP, they are more likely to
achieve higher-quality solutions closer to the optimal.

Probing task. We designed Probing Task 4 to explore this, formulating it as a binary classification
problem. The input to the probe consists of the embeddings of two nodes, while the output is a binary
value indicating whether the two nodes belong to the same route.

Dataset. After generating the CVRP instances, we use the HGS [4] to obtain approximate optimal
solutions due to the large problem size. The other steps are similar to those in Probing Task 2 and
will not be elaborated on here.

B.2 Summary and Statistics of Four Probing Task Datasets

B.2.1 Routing Instances and Probing Datasets

For Probing Task 1 and Probing Task 2, we generate 10,000 TSP instances with 20 nodes, 100 nodes,
and 200 nodes, respectively, following the method introduced in AM [11], which was subsequently
used by both POMO and LEHD. For Probing Task 3 and Probing Task 4, we similarly generate
10,000 CVRP instances with 20 nodes and 10,000 instances with 100 nodes following the method
used in AM.

After generating the routing problem instances, we feed them into the NCO model to extract embed-
dings. Each probing dataset is split into training and test sets, with all reported results based on the
test set, i.e., out-of-sample data.

B.2.2 Overview of Probing Inputs

For a finer-grained analysis, we extract embeddings from different layers and positions, as indicated
by the red arrows in Figure 1. Here, we provide a detailed explanation of these extracted embeddings.
Another reason for introducing these embeddings is to facilitate the understanding of the main results
presented later, specifically the "Probing input" columns in Table 9 and Table 10.

We use the names listed under the "Probing Input" column in these tables to clearly indicate the
different embeddings used as inputs. The first segment (AM, POMO, LEHD) indicates from which
NCO model the embeddings are extracted. The second segment (Init., Enc., Dec.) represents the
different parts of the NCO model from which the embeddings are extracted: initial embeddings,
encoder embeddings, and decoder embeddings, respectively.

In the encoder of the NCO model, the initial embeddings (Init.) are extracted before the attention
layer, as shown at position P1 in Figure 1. P2 and P5 represent the embeddings from the encoder’s
attention layers (Enc.), while P6 represents those from the decoder’s attention layers (Dec.). We
use "l" followed by a number to indicate from which specific layer the embeddings are extracted.
Specifically, AM’s encoder has three layers, POMO’s encoder has six layers, and LEHD’s encoder
has only one layer, while its decoder has six layers.

Since AM and POMO do not update node embeddings in the decoder, their node embeddings in
decoder are not included as probing inputs. However, they introduce context embeddings in the
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decoder to represent the information needed for routing decisions. For example, in solving TSP, the
context embeddings are formed by concatenating the embedding of the starting node hs, the current
node embedding, and the graph embedding hgraph—calculated as the mean of all node embeddings.
To explore the representational capacity of this design, we also use the context embeddings [hi, hj ,
hs, hgraph] as probing inputs, denoted as "AM-Enc-l3-w/c". Additionally, AM uses the context
embeddings as a query to compute attention with other node embeddings, generating a glimpse
embedding hglimpse. To test this, we probe the input [hi, hj , hglimpse] and denote it as "AM-Enc-
l3-w/g". In Figure 1, P3 and P4 represent the positions where the context embeddings and glimpse
embeddings are extracted, respectively.

Additionally, for the first two probing tasks, besides using [hi, hj] as input, we also consider the
element-wise product of the two node embeddings as an interaction term [8], i.e., [hi, hj , hi ⊙ hj] as
input. Some parts of certain models may linearly combine node embeddings (for instance, many NCO
models concatenate the embeddings of nodes and then pass them through a linear projection). In such
components of the models, the embeddings are expected to capture decision-relevant information
through simple linear combinations. However, embeddings from certain parts in attention-based
models, such as those used to compute a compatibility score among node embeddings through
attention mechanisms, may behave differently. In this case, relying solely on the linear input [hi, hj]
may not fully assess the model’s representational capacity. Therefore, we introduce the interaction
term hi ⊙ hj to emulate the attention computation. We conduct probing experiments with both input
methods: "w/o ints." refers to input without interaction terms [hi, hj], and "w/ ints." refers to input
with interaction terms [hi, hj , hi ⊙ hj], as shown in Table 9 and Table 10.

For Probing Task 3, we use both [hi, hj] and [hi ⊙ hj] as inputs (the rationale is discussed in the
Probing Task 3 paragraph in Section B.1.3). In Table 10, the "w/o ints." rows correspond to the
results for [hi, hj], while the "w/ ints." rows correspond to the results for [hi ⊙ hj]. Finally, for the
20-node and 100-node instances, we conduct the four probing tasks using NCO models trained on
the corresponding scales. The results for both are grouped and presented in Table 9 and Table 10.

Table 6, Table 7, and Table 8 present the specific features, labels, and the number of observations for
the different inputs across the four probing tasks.

Table 6: The details of Probing inputs of Probing task 1.

Probing input # Observations Features Label

20
an

d
10

0

w
/o

in
ts

.

Coordinates

10000

[xi, xj]

∥xi − xj∥

AM-Init [hi, hj]
AM-Enc-l1 [hi, hj]
AM-Enc-l3 [hi, hj]
AM-Enc-l3-w/c [hi, hj , hgraph]
AM-Enc-l3-w/g [hi, hj , hglimpse]
POMO-Enc-l1 [hi, hj]
POMO-Enc-l6 [hi, hj]
LEHD-Enc-l1 [hi, hj]
LEHD-Dec-l1 [hi, hj]
LEHD-Dec-l6 [hi, hj]

w
/i

nt
s.

Coordinates

10000

[xi, xj , xi ⊙ xj]

∥xi − xj∥

AM-Init [hi, hj , hi ⊙ hj]
AM-Enc-l1 [hi, hj , hi ⊙ hj]
AM-Enc-l3 [hi, hj , hi ⊙ hj]
AM-Enc-l3-w/c [hi, hj , hgraph, hi ⊙ hj]
AM-Enc-l3-w/g [hi, hj , hglimpse, hi ⊙ hj]
POMO-Enc-l1 [hi, hj , hi ⊙ hj]
POMO-Enc-l6 [hi, hj , hi ⊙ hj]
LEHD-Enc-l1 [hi, hj , hi ⊙ hj]
LEHD-Dec-l1 [hi, hj , hi ⊙ hj]
LEHD-Dec-l6 [hi, hj , hi ⊙ hj]

B.2.3 Analysis of Input Data

Before conducting each probing task, we begin by analyzing the input probing dataset, using the
20-node dataset as an example for dataset exploration and preprocessing. As this is a regression
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Table 7: The details of Probing inputs of Probing task 2 and Probing task 4.

Probing input # Observations Features Label

20
an

d
10

0

w
/o

in
ts

.

AM-Init

20000

[hi, hj]

Binary

AM-Enc-l1 [hi, hj]
AM-Enc-l3 [hi, hj]
AM-Enc-l3-w/c [hi, hj , hgraph]
AM-Enc-l3-w/g [hi, hj , hglimpse]
POMO-Enc-l1 [hi, hj]
POMO-Enc-l6 [hi, hj]
LEHD-Enc-l1 [hi, hj]
LEHD-Dec-l1 [hi, hj]
LEHD-Dec-l6 [hi, hj]

w
/i

nt
s.

AM-Init

20000

[hi, hj , hi ⊙ hj]

Binary

AM-Enc-l1 [hi, hj , hi ⊙ hj]
AM-Enc-l3 [hi, hj , hi ⊙ hj]
AM-Enc-l3-w/c [hi, hj , hgraph, hi ⊙ hj]
AM-Enc-l3-w/g [hi, hj , hglimpse, hi ⊙ hj]
POMO-Enc-l1 [hi, hj , hi ⊙ hj]
POMO-Enc-l6 [hi, hj , hi ⊙ hj]
LEHD-Enc-l1 [hi, hj , hi ⊙ hj]
LEHD-Dec-l1 [hi, hj , hi ⊙ hj]
LEHD-Dec-l6 [hi, hj , hi ⊙ hj]

Table 8: The details of Probing inputs of Probing task 3. di denotes the demand for node i.

Probing input # Observations Features Label

20
an

d
10

0

w
/o

in
ts

.

AM-Init

10000

[hi, hj]

di + dj

AM-Enc-l1 [hi, hj]
AM-Enc-l3 [hi, hj]
POMO-Enc-l1 [hi, hj]
POMO-Enc-l6 [hi, hj]
LEHD-Enc-l1 [hi, hj]
LEHD-Dec-l1 [hi, hj]
LEHD-Dec-l6 [hi, hj]

w
/i

nt
s.

AM-Init

10000

[hi ⊙ hj]

di + dj

AM-Enc-l1 [hi ⊙ hj]
AM-Enc-l3 [hi ⊙ hj]
POMO-Enc-l1 [hi ⊙ hj]
POMO-Enc-l6 [hi ⊙ hj]
LEHD-Enc-l1 [hi ⊙ hj]
LEHD-Dec-l1 [hi ⊙ hj]
LEHD-Dec-l6 [hi ⊙ hj]

problem, we first analyze the target variable to observe whether the label distribution is skewed,
whether there are outliers, and other characteristics. Figure 9 shows the label distribution for the
20-node dataset in Probing Task 1 and Probing Task 3, with the dataset generation process detailed
previously. As seen, the distribution of distances between randomly selected nodes after a current
node is chosen approximates a normal distribution. The distribution of demand follows a similar
pattern. For Probing Task 2, we generate one data point with a label of 1 and one with a label of 0 for
each routing instance, resulting in a 1:1 label distribution.

Next, we conducted a feature correlation analysis on the probing dataset. For the probing dataset
formed by the embeddings of two nodes (128 dimensions each), there are a total of 256 features. By
examining the correlation heatmap in Figure 10, We observe some positive and negative correlations
among the 128 dimensions within both single node’s embedding, but their number is limited, far fewer
than the statistically significant latent features presented in Section 4.2. We can also observe that
there are a few scattered stronger correlations in LEHD’s embedding, which could be the source of its
enhanced ability to retain the perception of Euclidean distance. Additionally, there is no significant
correlation between the embeddings of the two nodes.
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Figure 9: Label distribution for probing datasets in Probing Task 1 and Probing Task 3.
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Figure 10: Correlation heatmap for all 256 features (comprising two 128-dimensional node em-
beddings) of the AM encoder embedding, POMO encoder embedding, and the LEHD decoder
embedding.
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B.3 Codes and Datasets for Reproducibility

We provide a GitHub repository6 containing all codes required to construct the probing datasets.
The repository includes: (1) instance generation with theoretical and greedy solutions, (2) scripts
for extracting embeddings from different NCO models, (3) an example probing experiment with
CS-Probing and visualization, and (4) training code for the LEHD regularization experiment in
Section 4.5.

Although the repository already supports dataset generation, we plan to openly release all probing
datasets to further facilitate research. This will save dataset preparation effort and enable more
convenient usage.

B.4 Experiments Compute Resources

In this study, we use NVIDIA A100-40G GPU with AMD EPYC Milan 7713 CPU. It is important to
note that the primary experimental processes involved in this study, namely training linear probing
models or solving linear models using standard statistical methods (such as OLS for regression
and MLE for classification), require minimal computational resources and can be completed within
seconds.

However, collecting datasets does consume some computational resources. For instance, solving
combinatorial optimization problems using commercial solvers typically requires CPU computation.
Additionally, even when not training NCO models but merely performing inference to obtain NCO
model embeddings, the process is also completed within seconds when using a GPU.

C Detailed Results of All Probing Tasks

C.1 Main Results of Four Probing Tasks

Tables 9 and 10 present the complete results of the four probing tasks. In addition to the discussions
in Section 3.2, we provide more results from these tables and their corresponding discussions here.

C.1.1 Probing Task 1 and Probing Task 2

Knowledge existence. For Probing Task 1 (the Euclidean distance regression task), it is important to
note that a linear model cannot directly capture the nonlinear relationship of Euclidean distance. Thus,
a linear model would have no explanatory power if the input only consists of the nodes’ coordinate
information. In the most extreme case, where the input for Probing Task 1 (i.e., the features) are
solely the two nodes’ coordinates, the regression model’s R2 value would be zero, because the
covariance between the label and the linear model’s output is zero. This result is also reflected in the
experimental findings presented later in Section 3.2. On the other hand, when the probing model’s
R2 value is greater than 0, and the closer it is to 1, the stronger the evidence that the NCO model has
the ability to perceive Euclidean distances. This indicates that the information related to Euclidean
distance, encoded in the model’s embeddings, can be linearly extracted, thereby validating the NCO
model’s ability to effectively represent this information.

For Probing Task 2, to verify whether NCO models can avoid myopia rather than merely distinguish
between different paths, we train a probing model using raw path features (i.e., the Euclidean distances
of the paths) as input. This yields an AUC of 0.64, which is close to random guessing (0.5), in
contrast to the AUC of 0.86 achieved when using NCO model embeddings as input. This result
highlights that the model’s behavior goes beyond simple path discrimination. Detailed results are
shown in Figure 11.

More results about AM/POMO. We observe differences in how different model architectures
represent Euclidean distances. In the results shown in Table 9, for both 20-node and 100-node
instances, LEHD’s approach, utilizing a single encoder layer followed by multi-layer attention
recalculations between the current node and other nodes in the decoder for each decision, demonstrates
a more robust method for capturing information. From the table, we observe that LEHD achieves
strong results regardless of the presence of interaction terms. In contrast, AM and POMO, which

6https://github.com/123zhangzq/NeurIPS2025_probing/
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Table 9: Comparison of probing task results for NCO models. The underlined results indicate they
are derived from the final node embeddings of the three models.

Probing input Probing task 1 Probing task 2
RMSE MAE R2 score Accuracy Precision Recall F1 score AUC

20
no

de
em

be
dd

in
gs

w
/o

in
ts

.

AM-Init 0.2452 0.2028 -0.0003 49.28% 0.49 0.47 0.48 0.49
AM-Enc-l1 0.2066 0.1665 0.2899 66.90% 0.70 0.59 0.64 0.72
AM-Enc-l3 0.2119 0.1711 0.2529 70.43% 0.73 0.65 0.69 0.76
AM-Enc-l3-w/c 0.2140 0.1724 0.2381 69.30% 0.72 0.63 0.67 0.75
AM-Enc-l3-w/g 0.2134 0.1721 0.2423 70.97% 0.74 0.65 0.69 0.76
POMO-Enc-l1 0.2115 0.1711 0.2558 64.50% 0.68 0.56 0.61 0.67
POMO-Enc-l6 0.2196 0.1787 0.1981 70.10% 0.71 0.67 0.69 0.76
POMO-SL-Enc-l6 0.2183 0.1770 0.2073 70.50% 0.72 0.66 0.69 0.76
POMO-Enc-l6-w/c 0.2250 0.1809 0.1876 69.75% 0.71 0.67 0.69 0.76
POMO-Enc-l6-w/g 0.2266 0.1827 0.1764 69.92% 0.71 0.67 0.69 0.76
LEHD-Enc-l1 0.2115 0.1719 0.2554 64.08% 0.68 0.53 0.60 0.67
LEHD-Dec-l1 0.0062 0.0046 0.9994 74.10% 0.79 0.66 0.72 0.78
LEHD-Dec-l6 0.0590 0.0451 0.9418 78.25% 0.79 0.77 0.78 0.86

w
/i

nt
s.

AM-Init 0.1318 0.1000 0.7111 51.95% 0.52 0.47 0.50 0.52
AM-Enc-l1 0.0235 0.0171 0.9908 70.28% 0.74 0.63 0.68 0.77
AM-Enc-l3 0.0657 0.0514 0.9282 75.90% 0.78 0.73 0.75 0.83
AM-Enc-l3-w/c 0.0653 0.0512 0.9291 74.95% 0.77 0.72 0.74 0.82
AM-Enc-l3-w/g 0.0660 0.0518 0.9275 75.67% 0.78 0.72 0.75 0.83
POMO-Enc-l1 0.0543 0.0430 0.9510 69.23% 0.72 0.62 0.67 0.74
POMO-Enc-l6 0.1119 0.0890 0.7917 78.88% 0.79 0.80 0.79 0.86
POMO-SL-Enc-l6 0.1044 0.0825 0.8186 76.35% 0.78 0.74 0.76 0.84
POMO-Enc-l6-w/c 0.1189 0.0942 0.7732 78.97% 0.79 0.80 0.79 0.86
POMO-Enc-l6-w/g 0.1192 0.0942 0.7722 78.90% 0.79 0.79 0.79 0.87
LEHD-Enc-l1 0.0424 0.0325 0.9701 66.88% 0.71 0.57 0.63 0.72
LEHD-Dec-l1 0.0069 0.0052 0.9992 74.12% 0.79 0.67 0.72 0.79
LEHD-Dec-l6 0.0592 0.0452 0.9415 78.55% 0.80 0.77 0.78 0.86

10
0

no
de

em
be

dd
in

gs

w
/o

in
ts

.

AM-Init 0.2498 0.2084 -0.0012 50.48% 0.51 0.45 0.48 0.50
AM-Enc-l1 0.2186 0.1791 0.2332 56.00% 0.57 0.53 0.55 0.60
AM-Enc-l3 0.2212 0.1800 0.2151 66.30% 0.68 0.61 0.65 0.71
AM-Enc-l3-w/c 0.2245 0.1830 0.1915 67.10% 0.69 0.62 0.65 0.72
AM-Enc-l3-w/g 0.2224 0.1806 0.2062 65.88% 0.68 0.60 0.64 0.71
POMO-Enc-l1 0.2210 0.1799 0.2166 57.60% 0.59 0.53 0.55 0.62
POMO-Enc-l6 0.2231 0.1825 0.2014 71.83% 0.72 0.72 0.72 0.79
POMO-SL-Enc-l6 0.2219 0.1809 0.2102 72.65% 0.73 0.72 0.72 0.81
POMO-Enc-l6-w/c 0.2249 0.1818 0.1646 71.25% 0.72 0.72 0.72 0.79
POMO-Enc-l6-w/g 0.2240 0.1817 0.1711 71.35% 0.71 0.72 0.72 0.78
LEHD-Enc-l1 0.2194 0.1796 0.2280 55.93% 0.56 0.54 0.55 0.60
LEHD-Dec-l1 0.0094 0.0068 0.9986 67.45% 0.72 0.57 0.64 0.72
LEHD-Dec-l6 0.0469 0.0370 0.9647 76.50% 0.77 0.75 0.76 0.85

w
/i

nt
s.

AM-Init 0.1334 0.1033 0.7143 51.82% 0.52 0.47 0.49 0.53
AM-Enc-l1 0.0262 0.0193 0.9890 63.80% 0.66 0.57 0.61 0.68
AM-Enc-l3 0.0444 0.0339 0.9684 69.08% 0.72 0.63 0.67 0.76
AM-Enc-l3-w/c 0.0587 0.0463 0.9448 70.33% 0.73 0.66 0.69 0.77
AM-Enc-l3-w/g 0.0447 0.0340 0.9679 69.15% 0.72 0.63 0.67 0.75
POMO-Enc-l1 0.0276 0.0212 0.9877 66.15% 0.68 0.60 0.64 0.71
POMO-Enc-l6 0.0802 0.0640 0.8968 72.47% 0.72 0.73 0.73 0.80
POMO-SL-Enc-l6 0.0797 0.0638 0.8980 73.60% 0.74 0.73 0.74 0.81
POMO-Enc-l6-w/c 0.0807 0.0645 0.8923 72.28% 0.72 0.73 0.72 0.80
POMO-Enc-l6-w/g 0.0806 0.0645 0.8927 72.42% 0.72 0.73 0.73 0.80
LEHD-Enc-l1 0.0421 0.0325 0.9716 61.82% 0.63 0.59 0.61 0.66
LEHD-Dec-l1 0.0075 0.0054 0.9991 67.20% 0.72 0.57 0.63 0.73
LEHD-Dec-l6 0.0468 0.0367 0.9648 77.00% 0.78 0.76 0.77 0.85
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Figure 11: A classifier is trained using only the raw path feature (namely distance) as input. The left
plot shows the label distribution, and the right plot presents the ROC results.
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Table 10: Results of probing task 3 and probing task 4.

Probing input Probing task 3 Probing task 4
RMSE MAE R2 score Accuracy Precision Recall F1 score AUC

20
no

de
em

be
dd

in
gs

w
/o

in
ts

.

AM-Init 0.0000 0.0000 1.0000 49.35% 0.49 0.52 0.51 0.50
AM-Enc-l1 0.0088 0.0070 0.9945 74.12% 0.74 0.74 0.74 0.81
AM-Enc-l3 0.0273 0.0219 0.9471 77.03% 0.76 0.79 0.77 0.84
LEHD-Enc-l1 0.0038 0.0030 0.9990 71.78% 0.72 0.72 0.72 0.79
LEHD-Dec-l1 0.0100 0.0078 0.9929 69.73% 0.71 0.66 0.69 0.75
LEHD-Dec-l6 0.0366 0.0288 0.9047 75.92% 0.75 0.78 0.76 0.84

w
/i

nt
s.

AM-Init 0.0000 0.0000 1.0000 62.82% 0.64 0.58 0.61 0.67
AM-Enc-l1 0.0269 0.0209 0.9488 81.4% 0.80 0.84 0.82 0.89
AM-Enc-l3 0.0955 0.0767 0.3533 83.30% 0.82 0.85 0.84 0.91
LEHD-Enc-l1 0.0112 0.0087 0.9910 76.10% 0.76 0.76 0.76 0.84
LEHD-Dec-l1 0.0159 0.0125 0.9820 71.75% 0.73 0.69 0.71 0.77
LEHD-Dec-l6 0.0632 0.0502 0.7169 77.78% 0.76 0.80 0.78 0.87

10
0

no
de

em
be

dd
in

gs

w
/o

in
ts

.

AM-Init 0.0000 0.0000 1.0000 49.83% 0.50 0.54 0.52 0.50
AM-Enc-l1 0.0137 0.0110 0.9878 77.95% 0.78 0.78 0.78 0.86
AM-Enc-l3 0.0237 0.0187 0.9635 78.08% 0.77 0.80 0.78 0.86
POMO-Enc-l1 0.0199 0.0157 0.9743 72.72% 0.74 0.70 0.72 0.81
POMO-Enc-l6 0.0445 0.0356 0.8710 70.12% 0.70 0.70 0.70 0.77
LEHD-Enc-l1 0.0052 0.0040 0.9950 65.75% 0.67 0.63 0.65 0.71
LEHD-Dec-l1 0.0069 0.0055 0.9913 66.22% 0.67 0.63 0.665 0.71
LEHD-Dec-l6 0.0178 0.0140 0.9426 77.18% 0.76 0.79 0.77 0.85

w
/i

nt
s.

AM-Init 0.0000 0.0000 1.0000 55.80% 0.56 0.51 0.54 0.58
AM-Enc-l1 0.0356 0.0278 0.9177 85.79% 0.84 0.89 0.86 0.92
AM-Enc-l3 0.0645 0.0510 0.7290 87.50% 0.85 0.91 0.88 0.93
POMO-Enc-l1 0.0272 0.0214 0.9517 78.72% 0.78 0.80 0.79 0.87
POMO-Enc-l6 0.1157 0.0951 0.1281 72.67% 0.72 0.74 0.73 0.80
LEHD-Enc-l1 0.0069 0.0053 0.9915 66.57% 0.66 0.68 0.67 0.72
LEHD-Dec-l1 0.0086 0.0068 0.9867 66.15% 0.67 0.64 0.65 0.71
LEHD-Dec-l6 0.0308 0.0243 0.8280 78.60% 0.77 0.81 0.79 0.86

embed all nodes through multiple encoder layers once, rely more heavily on the interaction terms
between the embeddings of the two nodes when perceiving Euclidean distances.

As shown in the results for "AM-Enc-l3-w/c" and "AM-Enc-l3-w/g," even with the extra information
provided by context embeddings or glimpse embeddings, AM and POMO do not improve the accuracy
of perceiving the Euclidean distance between the current node and other nodes. Rows of "POMO-
SL-Enc-l6" represents the embeddings of a POMO model trained using supervised learning (SL).
The results show that the SL-trained POMO achieves similar probing task results to the RL-trained
POMO. This observation aligns with the findings from the ablation study in [13], where SL-trained
and RL-trained POMO models exhibit comparable performance.

Results by model layer. As shown in Figure 2(a), the initial embeddings (obtained by linearly
projecting the coordinates into a high-dimensional space) of all three models exhibit weak Euclidean
distance perception. However, after passing through just one attention layer, all models achieve highly
accurate Euclidean distance perception. This ability slightly diminishes as model depth increases.

Despite this slight decline in Euclidean distance perception, NCO models learn additional capabilities
that enable better decision-making. For instance, the ability to avoid myopic node selection improves
with increased model depth, as illustrated in Figure 2(b). An exception is observed in the last two
layers of LEHD, where the ability to avoid myopic decisions slightly decreases, potentially indicating
that the model has learned more complex decision-making strategies. Future research could further
explore this phenomenon and what LEHD learns in its deeper layers. Overall, through these two
probing tasks, we demonstrate that when NCO models solve TSP problems, they can perceive
Euclidean distances (low-level features) in shallow layers and learn a decision space beyond the
Euclidean distance space (high-level features) in deeper layers. In this decision space, NCO models
can avoid making myopic decisions.

By comparing the results (including both node-scale instances and whether interaction terms are
used) of the same model across different layers, we find that the ability of the embeddings to perceive
Euclidean distances decreases as the number of attention layers increases in all three models. Notably,
after six attention layers, POMO shows a more significant decline in Euclidean distance perception
compared to AM, which has the same structure but only three attention layers. This suggests that

23



while deeper attention layers may enhance other decision-making capabilities (as discussed in the
Probing Task 2), the model’s ability to perceive distances diminishes.

In subsequent research based on AM/POMO models, some models introduce node distance informa-
tion to enhance performance: either by explicitly incorporating distance information to adjust the
model’s output [45], or by designing distance-aware attention mechanisms [46]. Through probing
experiments, we verify that these approaches introduce Euclidean distance to mitigate its perception
deficiency as the number of layers increases in NCO models. This provides important guidance for
future improvements to AM and POMO-based models.

C.1.2 Probing Task 3 and Probing Task 4

This section provides a detailed discussion of Section 3.2, specifically addressing the question: Do
NCO embeddings encode constraint information, as demonstrated with the CVRP?

Probing Task 3: Capacity constraint. Through Probing Task 3, using the capacity constraint in the
CVRP problem as an example, we demonstrate that probing can be applied to study the ability of
NCO models to represent low-level information related to constraints. From Table 10, we can see
that the embeddings of NCO models unquestionably contain the linear information of demand. This
is particularly evident in the initial embeddings, where the three-dimensional raw features (i.e., x
and y coordinates and demand) are directly projected into a high-dimensional space, allowing the
demand information to be fully extracted (R2 = 1). Even after the embeddings undergo attention
mechanisms and the high-dimensional features of nodes are fused, this information remains largely
extractable, with R2 values ranging from above 0.7 to nearly 1.

We observe that, while all three NCO models can capture the linear (additive) relationship between
node demands, this ability weakens with an increasing number of layers, similar to the perception of
Euclidean distances. This observation is particularly noteworthy in the Hadamard product probing
input, [hi ⊙ hj]. As discussed in Section B.1.3, we simulate attention calculations using this
Hadamard product input. Many NCO models, including AM and POMO, calculate a compatibility
score by attention calculations before applying the output Softmax. In this context, the R2 values
for the final output layer decrease significantly compared to the first layer, as shown in the "w/ ints."
rows in Table 10. In some results, R2 even drops to the 0.1 to 0.35 range, indicating that these NCO
models may no longer accurately capture whether the demand exceeds vehicle capacity and, as a
result, are unable to actively select a feasible next node. Instead, they rely passively on masking to
enforce final output modifications and constraints.

Probing Task 4: Same route. Here, we take the example of using probing to explore whether the
embeddings of the AM model can encode information about whether two nodes belong to the same
route in the optimal solution, providing a detailed analysis of how this conclusion is reached. The
same reasoning process applies to other NCO models, with detailed results available in Table 10.

Figure 12 presents the AUC results for Probing Task 4 using different input data for the probe. The
results in Figures (a) and (b) (with AUC values close to 0.5) rule out the possibility that the two
nodes can be linearly separated solely based on their Euclidean distance or their node coordinates.
Therefore, if the embeddings learned by NCO models can be linearly separated by the probe (i.e.,
AUC larger than 0.5, approaching 1), it indicates that the embeddings contain information about
whether two nodes should belong to the same route. As shown in Figures (c) and (d), when using AM
embeddings as the probing input, the AUC is significantly greater than 0.5, demonstrating that AM
can effectively encode information for determining whether two nodes should belong to the same
route when solving the CVRP. Other NCO models also exhibit this capability, with detailed results
provided in Table 10.

Discussion. In the capacity constraint probing tasks, we explored the decision rationales of two NCO
models in handling this constraint. The probing results show that NCO models can perceive linearly
additive demand information as well as more abstract decision-supporting information. While these
experiments reveal how NCO models handle capacity constraints, unlike the previous probing tasks
on TSP, these results do not show a strong correlation with the models’ final performance. For
instance, in Probing Task 4, AM achieved the best probing results, yet it is not the best-performing
model on the CVRP.

These two probing tasks raise interesting research questions regarding the design of NCO models for
handling constraints in the future. Should additional constraint-related information be incorporated
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Figure 12: AUC results for Probing Task 4. The inputs from (a) to (d) are: (a) the Euclidean distance
between two nodes, (b) the initial embedding obtained by directly projecting the raw features into a
high-dimensional space (AM-Init), (c) the embedding after the first attention layer (AM-Enc-l1), and
(d) the embedding after the final attention layer (AM-Enc-l3)

into NCO models, similar to how distance information is integrated in previous studies [45, 46]?
Are there other decision-related features in CVRP that exhibit a stronger correlation with model
performance and can help better understand the decision-making process of NCO models? Future
work can further explore these questions by designing and implementing additional probing tasks to
deepen our understanding of how NCO models handle constraints.

C.2 Robustness Check

C.2.1 Other Models

We conduct a preliminary experiment on DIFUSCO [18], a diffusion-based NCO model. After
training the model for 20 epochs, we apply probing to analyze its learned representations. Table 11
presents the node embedding results. As the number of GNN layers increases, the capacity to capture
Euclidean distances slightly decreases, whereas the ability to identify optimal edges improves. This
distinction between low-level and high-level feature encoding is consistent with the patterns observed
in transformer-based models discussed above. These results demonstrate that probing is also effective
for analyzing alternative architectures, such as diffusion-based models where the GNN serves as the
denoising network.

Table 11: Probing results on node embeddings of DIFUSCO. Here, h_init denotes the initial embed-
dings, and h_12 denotes the embeddings after 12 GNN layers.

Probing input Probing Task 1 Probing Task 2

h_init 0.9476 0.49
h_12 0.8710 0.73

C.2.2 Distance Perception in Non-Euclidean Space

To further validate the robustness of probing as a tool for analyzing NCO models and the probing
tasks we designed, we demonstrate Probing Task 1 for distance perception in non-Euclidean space.
Specifically, we selected MatNet [47], a state-of-the-art model designed for solving asymmetric TSP.

We use MatNet’s row embeddings and column embeddings for pairs of nodes as features, and the
distances between the corresponding nodes in the distance matrix as labels to construct the probing
dataset. For example, the row embeddings of node i and node j are used as features, with the
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corresponding label being the value in the distance matrix at the intersection of row i and column j,
denoted as dist(i, j). Similarly, the column embeddings of node i and node j are used as features,
with the label being dist(j, i).

1 2 3 4 5
Layer
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MatNet Probing Task 1 PerformanceAcross Different Layers

MatNet_Enc
MatNet_Enc_ints

Figure 13: Probing results of MatNet across different layers.

The results are shown in Figure 13. As the number of layers in MatNet increases, the ability of
its embeddings to perceive distances improves, with the R2 rising from less than 0.2 in the first
layer to approximately 0.5 in the final layer. Additionally, we conduct supplementary comparison
experiments. In the first experiment, serving as a baseline, the embeddings of node i and node j are
used as inputs, but the labels are replaced with random distance values unrelated to both nodes from
the distance matrix. The resulting probing R2 is -0.0232, indicating that the probe could not learn
any distance information from random labels based on the embeddings. In the second experiment, we
swap the labels between row and column embeddings, assigning the row embeddings of node i and j
with the label dist(j, i) and vice versa. The resulting probing R2 is 0.2532. Comparing these results,
we conclude the following: MatNet’s dual-attention structure effectively learns information from the
asymmetric distance matrix. Furthermore, regardless of whether the embeddings of two nodes are
correctly aligned, they can still partially represent distance information. However, the model’s ability
to capture correct distance information between two nodes is significantly stronger than its ability to
capture incorrect distance information, with R2 values of approximately 0.5 versus 0.2, respectively.

C.2.3 JSSP Precedence Constraint

In addition to the routing problem analyzed earlier, we also apply probing to test the precedence
constraints in the Job-shop Scheduling Problem. For JSSP, we evaluate a classic learning model
[48], which is based on a graph neural network. The datasets for this probing task are constructed as
follows: we extract embeddings for all nodes, pair two node embeddings that satisfy the precedence
constraint with a label of 1 ([hi,hj]-1), and pair two node embeddings that violate the constraint with
a label of 0 ([hm,hn]-0). As an ablation, we also construct an alternative dataset where pairs that
satisfy the precedence constraint are incorrectly labeled as 0: [hi,hj]-1, [hn,hm]-0.

The results show that for the correct dataset, the probing model achieves an AUC of 1, while for
the ablation dataset, the AUC is 0.5. This indicates that the NCO model effectively captures the
precedence constraint information between nodes in its embeddings. Here, we provide an initial
demonstration of how probing can explore the NCO model’s perception of constraints in the JSSP. In
the future, more sophisticated probing tasks can be designed to further analyze how the NCO model
perceives constraints and incorporates them into its decision-making process, thereby offering deeper
insights into the design of NCO models.

C.3 Probing NCO Model Performance

The two probing tasks discussed in the previous section not only validate that NCO models can
embed decision-related information at different levels but also provide preliminary evidence that
probing can be used to explore the performance of NCO models. For example, in Probing Task 2 with
20-node instances, the probing results show that AM (with an AUC of 0.83) slightly underperforms
compared to POMO and LEHD (both 0.86). In 100-node instances, the probing results rank from
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lowest to highest as AM (0.76), POMO (0.80), and LEHD (0.85). These probing results for both
20-node and 100-node instances are consistent with the final performance of these models in solving
TSP problems of the same sizes. Specifically, for 20 nodes, POMO and LEHD perform similarly
and slightly outperform AM, whereas for 100 nodes, LEHD outperforms POMO, which in turn
outperforms AM (see the greedy inference methods results in the Table 2 in [12] and Table 1 in [13]).

This section further explores how probing can be used to study the impact of NCO models’ repre-
sentational capabilities on their performance from multiple perspectives. Additionally, we introduce
CS-Probing to examine the differences between internal representations and inductive biases across
various NCO model architectures, providing direct evidence to explain generalization performance.
For more details, please refer to Section 4. Here, we only provide the results of probing tasks as an
indirect perspective to explore the generalization of NCO models.

Generalization to larger scale. One of the advantages of the LEHD model is its superior generaliza-
tion performance on large-scale problems compared to AM and POMO. To validate this, we create a
dataset with 200 node instances. Based on this dataset, we obtained embeddings from three NCO
models pretrained on 100-node problems when solving 200-node problems.

Table 12: Experimental results for the 200 node instances.

Probing input Probing task 1 (R2) Probing task 2 (AUC)

w
/o

in
ts

. AM-Enc-l3 0.1673 0.71
POMO-Enc-l6 0.1352 0.80
LEHD-Dec-l6 0.9563 0.86

w
/i

nt
s. AM-Enc-l3 0.9458 0.76

POMO-Enc-l6 0.9100 0.80
LEHD-Dec-l6 0.9588 0.86

From Table 12, we observe that the three NCO models pretrained on 100-node instances exhibit
varying performance on the two probing tasks for 200-node instances. Notably, for Probing Task 2,
which explores information more directly related to final decisions (distinguishing optimal edges from
myopic ones), the results are fully consistent with their performance on the optimization problem
outcomes, i.e., LEHD outperforms POMO, which in turn outperforms AM. Next, we conduct
additional experiments to explore how the unique structure of LEHD enhances its representational
capability, enabling it to better focus on nodes to be selected.

Further experiments on LEHD. LEHD’s recalculation of the embeddings of candidate nodes in
its decoder, through the attention mechanism with the current node embedding, may allow it to
more effectively capture the relationships between the current node and other nodes. Specifically,
as shown in the decoder of Figure 1(b), the embedding of the current node, hs, participates in the
attention calculations with the remaining nodes after passing through a linear projection, updating
their embeddings. In contrast to AM and POMO, which treat all node embeddings equally and
perform node embedding only once, LEHD’s decoder design allows for a more accurate perception
of the distances between the current node and the remaining nodes. To verify this, we conducted
additional experiments on LEHD, and the results are presented in Table 13.

Table 13: Experiments for LEHD. The first two rows show distance perception between non-current
nodes and others, while the third row shows the effect of removing attention from LEHD.

Probing input RMSE MAE R2 score

LEHD-Dec-l1-other 0.2091 0.1694 0.2620
LEHD-Dec-l6-other 0.2318 0.1898 0.0927
LEHD-Dec-w/o-att 0.2115 0.1719 0.2555
LEHD-Dec-l6 0.0590 0.0451 0.9421

First, we extract the embeddings of two remaining nodes (i.e., nodes to be selected) for probing
and find that the probe achieves an R2 of only 0.0927. This indicates that LEHD is indeed more
focused on the relationship between the current node and other nodes. Additionally, when we probe
the embedding from the linear projection below hs in the decoder (Figure 1(b), before the attention
calculation), its R2 dropped to 0.2555, significantly lower than the original 0.9421. This suggests
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that the attention mechanism in LEHD’s decoder is crucial for accurately capturing the Euclidean
distances between the current node and the remaining nodes (i.e., nodes to be selected).

This leads to an insight for future NCO model: recalculating node embeddings through the attention
mechanism in the decoder enables more accurate perception of Euclidean distances than relying
solely on context embeddings, as in the case of AM and POMO, to provide current information (more
details in Appendix C.1.1). To further validate this, we next examine probing from an entirely new
perspective.

D CS-Probing for NCO

D.1 LEHD Training

Figure 14 shows the CS-Probing results of the LEHD model at different training epochs. From
the results, we observe that in the early stages of training, LEHD does not predominantly capture
decision-related knowledge within a few specific dimensions. However, as training progresses, the
model increasingly tends to fixate on a small number of dimensions to encode this knowledge. This
tendency is evident from the larger absolute values of probing model coefficients associated with
certain dimensions, as well as the increased disparity between the coefficients of different dimensions.
Eventually, after sufficient training, LEHD exhibits the inductive bias shown in Figure 5 (e) and (f).
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Figure 14: CS-Probing results of LEHD at different training epochs.

D.2 Visualizing CS-Probing Outcomes for NCO Generalization

Figure 15 presents the CS-Probing analysis for the three NCO models, highlighting the key embedding
dimensions (top-5) identified during generalization. These three figures provide a visualization of
the data presented in Table 2. In each figure, the four sub-figures present the probing results of the
specific NCO model on Probing Task 1 (left two plots) and Probing Task 2 (right two plots), showing
both the probe coefficients and their statistical significance. For each task, the top plot shows the
result of the NCO model trained and tested on 20-node instances, while the bottom plot shows the
result of the same model (training on 20-node instances) generalized to 100-node test instances. In
each plot, the left section (in purple) represents the results for 128-dimensional embedding of the
current node, and the right section (in blue) represents the results for 128-dimensional embeddings
of the candidate nodes—together forming a 256-dimensional results. Below each dimension is its
significance level. Red vertical lines highlight the top-n dimensions by absolute coefficient magnitude
(n = 1 to 5), with their ranks labeled above the lines. Note: if two top-n dimensions are close, the
rank labels are slanted to avoid overlap.

D.3 Generalization of AM and POMO on Near Out-of-Distribution Data

In Section 4.3, we investigate the internal mechanisms underlying the generalization ability of the
three models by analyzing whether they consistently retain specific knowledge dimensions during
generalization. The results indicate that models with superior generalization performance tend to
consistently use a fixed set of dimensions to capture certain knowledge, reflecting the transferability of
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Figure 15: CS-Probing results for the two probing tasks across three models, including both in-
distribution and out-of-distribution generalization results. This corresponds to the visualization of the
data presented in Table 2. 29



learned representations. Conversely, when the knowledge encoded in specific embedding dimensions
becomes disorganized during generalization, the model’s performance deteriorates.

Table 14: Top 5 dimensions from CS-Probing results two TSP probing tasks on TSP-20 and TSP-21
across AM and POMO models.

Top_n 20 train / 20 test 20 train / 21 test
Dim. Coef. Sig. level Dim. Coef. Sig. level

Pr
ob

in
g

Ta
sk

1 A
M

1 54 (candidate node) 0.0917 *** 101 (current node) 0.0803 *
2 41 (candidate node) -0.0884 ** 90 (current node) 0.0752 **
3 101 (current node) -0.0848 * 54 (candidate node) 0.0729 **
4 95 (candidate node) -0.0767 *** 48 (candidate node) -0.0631 ***
5 124 (candidate node) -0.0712 ** 35 (candidate node) -0.0617 ***

PO
M

O

1 89 (current node) 0.0539 *** 89 (current node) 0.0615 ***
2 89 (candidate node) 0.0510 * 89 (candidate node) 0.0516 **
3 107 (current node) 0.0443 *** 107 (current node) 0.0389 **
4 70 (candidate node) 0.0322 ** 15 (candidate node) -0.0376 *
5 83 (candidate node) -0.0308 *** 74 (current node) 0.0352 ***

Pr
ob

in
g

Ta
sk

2 A
M

1 34 (current node) 0.8561 ** 61 (candidate node) -0.9994 ***
2 61 (candidate node) -0.8153 *** 125 (candidate node) -0.7887 ***
3 55 (candidate node) -0.6612 *** 109 (candidate node) 0.7307 ***
4 109 (candidate node) 0.6406 *** 55 (candidate node) -0.7019 ***
5 106 (candidate node) -0.6329 ** 124 (candidate node) -0.6858 ***

PO
M

O

1 53 (candidate node) 0.5004 *** 53 (candidate node) 0.4796 ***
2 89 (candidate node) 0.4088 *** 74 (candidate node) 0.3944 ***
3 62 (candidate node) 0.3238 *** 27 (candidate node) 0.3804 **
4 110 (candidate node) 0.3217 *** 89 (candidate node) 0.3182 **
5 7 (candidate node) 0.3081 *** 42 (candidate node) 0.3067 ***

To further validate this observed phenomenon and conduct a more in-depth exploration, we evaluate
the CS-Probing results of AM and POMO when generalizing to datasets with smaller distributional
differences—specifically, those on which they exhibit better generalization performance. We train
the models on 20-TSP and test them on both 20-TSP and a similar distribution, 21-TSP. Table 14
presents the CS-Probing results for AM and POMO on both datasets. The results indicate that both
models consistently use the same dimensions to capture knowledge across the two tasks.

Comparing these findings with Table 2, we observe that models capable of generalization—such
as LEHD when scaling up, or AM and POMO when generalizing to slightly different distribu-
tions—consistently demonstrate the aforementioned characteristic. This further reinforces our claim
that the ability to consistently use key dimensions during generalization is indicative of robust
performance.

D.4 Other Random Seeds

For the instance of random seed 2 (upper subplot of Figure 16), the current node is node 4. The
myopic choice based on Euclidean distance would be node 2, while the correct choice in the optimal
solution is node 13. In the two identified key dimensions, node 4 is indeed closer to node 13 than to
node 2.

For the instance of random seed 3 (lower subplot of Figure 16), the current node is node 8. The
myopic choice based on Euclidean distance would be node 1, while the correct choice in the optimal
solution is node 9. In the two identified key dimensions, node 8 is indeed closer to node 9 than to
node 1, even though the difference is small. This is consistent with the node distribution shown in the
left two plots, where nodes 9 and 1 are very close to each other, and their distances to node 8 differ
only slightly.

D.5 CS-Probing for Probing Task 3 and 4

The aforementioned CS-Probing analysis for the two TSP-related probing tasks can similarly be
applied to the two CVRP-related probing tasks. Here, we take the evaluation of generalization ability
as an example, using models trained on 20-node instances and testing them on both 20-node and
100-node datasets. Since POMO does not provide a model trained on 20-node instances, we only test
the other two NCO models. The experimental results are presented in Table 15.
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Figure 16: Solution results and key 2-d dimensions in node embedding.

Table 15: Top 5 dimensions from CS-Probing results two CVRP probing tasks across AM and LEHD
models. (POMO did not provide the pre-trained model on 20-CVRP)

Top_n 20 train / 20 test 20 train / 100 test
Dim. Coef. Sig. level Dim. Coef. Sig. level

Pr
ob

in
g

Ta
sk

3 A
M

1 61 (candidate node) 0.0729 *** 61 (current node) 0.1123 ***
2 61 (current node) 0.0691 *** 61 (candidate node) 0.0998 ***
3 45 (candidate node) -0.0631 *** 106 (current node) -0.0661 ***
4 45 (current node) -0.0624 *** 45 (candidate node) -0.0647 ***
5 67 (current node) -0.0464 *** 67 (current node) 0.0639 ***

L
E

H
D

1 30 (candidate node) -0.0325 *** 30 (current node) -0.0262 ***
2 30 (current node) -0.0322 *** 30 (candidate node) -0.0223 ***
3 118 (candidate node) -0.0221 *** 113 (current node) 0.0195 ***
4 118 (current node) -0.0202 *** 113 (candidate node) 0.0182 ***
5 5 (current node) 0.0202 *** 116 (current node) -0.0161 ***

Pr
ob

in
g

Ta
sk

4 A
M

1 45 (candidate node) -1.5845 *** 87 (candidate node) -2.2114 ***
2 38 (candidate node) 1.1667 *** 110 (current node) -1.9473 ***
3 80 (candidate node) -1.1331 *** 87 (current node) 1.9408 ***
4 59 (candidate node) -1.0980 *** 40 (candidate node) 1.8984 ***
5 21 (candidate node) -1.0775 *** 45 (candidate node) 1.8825 ***

L
E

H
D

1 1 (candidate node) -0.7821 *** 71 (candidate node) 1.4377 ***
2 8 (candidate node) 0.6919 *** 30 (candidate node) 1.1433 ***
3 75 (candidate node) 0.6908 *** 2 (candidate node) -1.0100 ***
4 76 (candidate node) 0.6904 *** 99 (candidate node) 1.0020 ***
5 102 (candidate node) 0.6737 *** 30 (current node) -0.9591 ***
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The results indicate that during generalization, NCO models can effectively capture linearly additive
demand information, demonstrating a strong ability to represent linearly additive knowledge. How-
ever, when it comes to more complex, abstract high-level information related to the global optimal
solution, the learned dimensions become disorganized. This suggests that while NCO models can
robustly encode simple additive information, their ability to maintain structured representations of
more complex knowledge requires further investigation.

In the future, designing more CVRP-related probing tasks and conducting CS-Probing experiments
can help gain a deeper understanding of the internal mechanisms of NCO models on CVRP, such as
how they perceive complex constraints.

E Limitations

One potential limitation of using probing to explore NCO models is the cost associated with collecting
probing datasets. The first challenge is the runtime cost. Regarding the data collection process in our
study, we summarize the time required to collect 10,000 instances in Table 16. As shown, although
NCO model training typically takes several days to a week, we find this data collection cost to be
reasonable.

Table 16: Computational cost of NCO training and optimization solver at different scales.

20-TSP 100-TSP

POMO Training 1–2 days 2–3 days
Exact Solver 1–2 hrs 2–3 days

Another limitation arises when probing requires the optimal solutions of instances to verify whether
the model captures specific knowledge, as commercial solvers are not freely available. Moreover,
even when commercial solvers are accessible, this requirement can still be challenging for large-scale
and complex combinatorial optimization problems. For instance, solving the CVRP with 100 nodes
using exact solvers like Gurobi is computationally infeasible. To address this challenge, we employ
validated heuristic-based solution methods, such as the HGS algorithm. These open-source methods
provide practical alternatives for researchers who may lack access to commercial solvers.

Lastly, we plan to release all datasets used in this study to facilitate future research. We believe
that as more studies propose new probing tasks and make their datasets publicly available, it will
contribute to advancing future research within the NCO community, promoting the transparency and
interpretability of black-box NCO models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The core claim of this paper is that introducing probing provides a more
transparent and interpretable approach to exploring NCO models. Our experimental results
and the insights gained from them demonstrate the significant value of probing, reinforcing
our claim.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Appendix E titled "Limitations", we discuss the potential challenges faced
by the probing method and provide alternative solutions to address these challenges.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This study is empirical in nature and does not contain theoretical research
components. The effectiveness of probing has been extensively validated in prior studies.
For more details, please refer to the related works on probing presented in Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendix B.3, we discuss the reproducibility of the codes and datasets. As
described therein, the codes provided in our link can directly generate the required datasets
and facilitate the experiments presented in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In Appendix B.3, we provide a link containing the codes for dataset generation
and probing experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 3.1 of the main text, we present our experimental setup and provide
references to the detailed descriptions in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation values, for example, in Table 1 presented in
Section 3.2. The results include the mean and deviation values obtained from 10 independent
probing training runs.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix B.4, we discuss the computational resources used for the ex-
periments and the dataset collection process. Additionally, in Appendix E, we provide an
overview of the estimated time required for the computationally intensive dataset collection
process in Table 16.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and ensured that
this study does not involve any violations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This study constitutes foundational research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This study does not involve data or models that pose a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and other contributions from other authors referenced in this paper
have been properly cited, and the corresponding URLs are provided in Appendix A.1.1.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the URL in Appendix B.3.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLMs for grammar correction and text polishing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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