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Abstract

Large language models have seen widespread001
adoption in math problem-solving. However,002
when it comes to geometry problems, which003
often require visual aids for human under-004
standing, even the most advanced multi-modal005
models currently struggle to effectively uti-006
lize image information. High-quality data is007
crucial for enhancing the geometric capabili-008
ties of multi-modal models, yet existing open-009
source datasets and related efforts are either010
too challenging for direct model learning or011
suffer from misalignment between text and im-012
ages. To overcome this issue, we introduce a013
novel pipeline that leverages GPT-4 and GPT-014
4V to generate relatively basic geometry prob-015
lems with aligned text and images, facilitating016
model learning. We have produced a dataset of017
4.9K geometry problems and combined it with018
19K open-source data to form our GeoGPT4V019
dataset. Experimental results demonstrate that020
the GeoGPT4V dataset significantly improves021
the geometry performance of various models022
on the MathVista and MathVision benchmarks.023
The code is available at https://anonymous.024
4open.science/r/GeoGPT4V-08B2.025

1 Introduction026

With large language models (LLMs) demonstrating027

formidable performance, their application in solv-028

ing mathematical problems has become an increas-029

ingly popular trend (Toshniwal et al., 2024; Wang030

et al., 2023b; Gou et al., 2023; Wang et al., 2023a).031

Prior research has indicated that humans encounter032

a significant reduction in accuracy when resolving033

geometric problems devoid of visual aids (Chen034

et al., 2021). Thus, the integration of visual infor-035

mation from images is imperative for accurately036

solving of such mathematical problems, necessi-037

tating the visual perception capabilities of multi-038

modal large language models (MLLMs). However,039

even the best batch of MLLMs available now (such040

as GPT-4V (OpenAI, 2023b), Gemini (Anil et al.,041

2023)) still lag significantly behind human perfor- 042

mance (Wang et al., 2024). Therefore, researchers 043

are eagerly exploring methods to enhance the geo- 044

metric capabilities of MLLMs. 045

To enhance the geometric capabilities of 046

MLLMs, an important step is to construct corre- 047

sponding high-quality data (Gao et al., 2023; Zhou 048

et al., 2023b; Chen et al., 2022). Nevertheless, cur- 049

rent data often suffer from two main issues. On the 050

one hand, most open-source datasets are quite chal- 051

lenging, making it difficult for models to directly 052

learn geometric capabilities from them (Bengio 053

et al., 2009; Xu et al., 2020). For instance, the Uni- 054

GEO (Chen et al., 2022) dataset consists of prob- 055

lems extracted from high school textbooks, but the 056

models have not been exposed to the correspond- 057

ing foundational knowledge. On the other hand, 058

current data augmentation techniques (Gao et al., 059

2023), using ChatGPT-3.5 to adjust numerical val- 060

ues in the text, fail to harmonize these changes with 061

the corresponding values in images. Consequently, 062

mismatches between the altered text and images 063

can bewilder the model and impede its learning 064

process (Hessel et al., 2021; Yao et al., 2022). 065

In this paper, we address the aforementioned 066

issues by introducing a straightforward and effi- 067

cient pipeline for generating geometric problem 068

data. Our objectives are two-fold: (1) to create 069

geometric problems that facilitate the model’s ac- 070

quisition of basic geometric concepts, and (2) to 071

ensure that the image and the text of the generated 072

geometric problems are well-aligned. In detail, we 073

first employ GPT-4V to create a collection of sim- 074

plified geometric problems based on open-source 075

datasets. Subsequently, we harness the capabilities 076

of GPT-4 (OpenAI, 2023a) to generate K individ- 077

ual pieces of Wolfram1 code for each geometric 078

problem previously crafted. The code is then exe- 079

1The Wolfram is a computational language designed to
handle various computing and data analysis tasks, possessing
a formidable capability for geometric visualization.
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cuted to produce K distinct geometric images. Fi-080

nally, GPT-4V is employed to score these images,081

allowing us to select the best one that optimally082

aligns with the associated textual descriptions.083

Through the above pipeline, we generate a084

dataset comprising 4.9K geometric problems char-085

acterized by simplicity and image-text matching.086

We then mix our generated problems with 19K087

problems from open-source datasets to formulate a088

dataset with uniform difficulty, named GeoGPT4V.089

We have conducted comprehensive experiments090

on the geometry problem subset of MathVista (Lu091

et al., 2024b) and MathVision (Wang et al., 2024)092

datasets, two commonly used datasets for multi-093

modal math. Our experimental results show that094

models of various sizes and types can achieve sig-095

nificant improvements in geometric capabilities096

after training with our dataset (achieving 58.2%097

and 33.8% relative improvement for LLaVA-1.5-098

7B (Liu et al., 2023b) and ShareGPT4V-7B (Chen099

et al., 2023a), respectively, on Geometry problem100

solving (GPS) minitest split of MathVista), which101

validates the effectiveness of our approach.102

In conclusion, the contributions of this paper are103

summarized as follows:104

• We first introduce a novel pipeline capable of105

automatically generating simple geometric data106

with aligned image-text pairs.107

• We have open-sourced the 4.9K dataset generated108

by our pipeline, along with the checkpoints of109

models trained on GeoGPT4V, to facilitate the110

community’s growth and development.111

• Extensive experiments have consistently shown112

that GeoGPT4V effectively enhances the multi-113

modal geometric capabilities of models of vari-114

ous types and sizes.115

2 Related Work116

In this section, we delve into related studies from117

two perspectives: multi-modal large language mod-118

els and mathematical problem solving.119

Multi-modal Large Language Models. With120

the rapid advancement of LLMs, the research com-121

munity has started to develop multi-modal exten-122

sions of these models, known as MLLMs (Bai123

et al., 2023; OpenAI, 2023b; Liu et al., 2023c).124

These MLLMs integrate visual information with125

linguistic data, enhancing their capabilities sig-126

nificantly (Lu et al., 2024a; Li et al., 2023; Ye127

et al., 2023; Dai et al., 2023). Closed-source128

model, such as GPT-4V (OpenAI, 2023b), Gem-129

ini (Anil et al., 2023), and Qwen-VL-Max (Bai 130

et al., 2023), have demonstrated remarkable pro- 131

ficiency in image comprehension and cognitive 132

tasks. For open-source models, LLaVA (Liu et al., 133

2023c,b, 2024) utilizes linear projection to bridge 134

the visual encoder and the language model, achiev- 135

ing commendable performance in multi-modal 136

tasks. Building upon the LLaVA architecture, 137

ShareGPT4V (Chen et al., 2023a) employs high- 138

quality instructional data to further enhance model 139

capabilities. Moreover, InternVL-Chat (Chen et al., 140

2023b) upscales its visual encoder to 6 billion pa- 141

rameters. InternLM-XComposer2 (Dong et al., 142

2024) excels in free-form text-image composition 143

and understanding. Although these MLLMs have 144

shown powerful visual capabilities, MLLMs still 145

confront challenges when it comes to mathemati- 146

cal problem-solving, as highlighted by recent stud- 147

ies (Wang et al., 2024; Lu et al., 2024b; Yue et al., 148

2023). 149

Mathematical Problem Solving. The remark- 150

able reasoning capabilities of LLMs have spurred 151

researchers to harness them for solving mathemati- 152

cal problems (Zhou et al., 2023a; Shao et al., 2024; 153

Lightman et al., 2023; Zhao et al., 2023). In the 154

realm of pure text-based mathematical tasks, Wiz- 155

ardMath (Luo et al., 2023) enhances model perfor- 156

mance by refining instructions through a process of 157

downward and upward instruction evolution. Meta- 158

Math (Yu et al., 2023) approaches the challenge by 159

bootstrapping mathematical questions and rewrit- 160

ing them from various perspectives to improve un- 161

derstanding and problem-solving. However, as pre- 162

vious studies have found, humans’ accuracy signif- 163

icantly decreases when solving geometry problems 164

without images (Chen et al., 2021). Therefore, ge- 165

ometry problems necessitate the visual perception 166

abilities of multi-modal models to fully compre- 167

hend and solve them. UniGeo (Chen et al., 2022) 168

addresses this by compiling geometry problems 169

from high school textbooks and introducing a uni- 170

fied multitask geometric transformer framework to 171

tackle calculation and proving problems simulta- 172

neously in the form of sequence generation. G- 173

LLaVA (Gao et al., 2023) leverages ChatGPT-3.5 174

to create geometric question-answer pairs and to 175

rewrite the textual content within questions. Nev- 176

ertheless, this approach of textual rewriting alone 177

may result in discrepancies between images and 178

text, leading the model to produce incorrect or un- 179

realistic outputs (Liu et al., 2023a). This highlights 180
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QA Example from Geometry3K

Q:The height of a 
triangle is 5 
centimeters more 
than its base. The area 
of the triangle is 52 
square centimeters. 
Find the base.

A:8

Easier QA Example

Q:Given an 
equilateral triangle
where the base is 8 
cm and the height 
is 13 cm, how do 
you calculate its 
area?

A:(8 * 13) / 2 = 52
square centimeters.

K Wolfram Code

baseLength = 8; 
heightLength = 13; 
v1 = {0, 0};
v2 = {baseLength, 0};
v3 = {baseLength/2, heightLength};
triangle = Graphics[{Line[{v1, v2, v3, 
v1}]}];
……

Easier QA with the Best Image

Q:Given an 
equilateral triangle 
where the base is 8 
cm and the height 
is 13 cm, how do 
you calculate its 
area?

A:(8 * 13) / 2 = 52
square centimeters.

Q:Given an 
equilateral triangle 
where the base is 8 
cm and the height is 
13 cm, how do you 
calculate its area?

A:(8 * 13) / 2 = 52
square centimeters.

Easier QA with K Images

: QA Generator
: Code Generator
: Code Executor
: Image Scorer

GPT-4 Wolfram

Figure 1: Pipeline of our geometric data generation. During the first step, we employ GPT-4V to generate
simplified geometric question-answer pairs based on open-source datasets. We highlight the simplified parts
compared to the original questions. During the second step, we employ GPT-4 to generate K Wolfram code for
each question-answer pair. During the third step, we execute K code to obtain K images. During the fourth step,
we employ GPT-4V to score the degree of alignment between the generated images and the questions. We choose
the image with the highest score. Finally, we can obtain simplified and image-text matching geometric problems.

the ongoing challenge of aligning textual and visual181

information in multi-modal mathematical problem-182

solving.183

3 Method184

In this section, we will elaborate on the pipeline185

we have constructed. An overview of our pipeline186

is depicted in Figure 1. Specifically, our process187

includes: (1) generating new question-answer pairs188

(Section §3.1), (2) producing corresponding geo-189

metric images (Section §3.2), and (3) scoring and190

filtering based on the image-text matching degree191

(Section §3.3).192

Formally, we define the original data from the193

open-source datasets can be represented as D =194

{Q,A, I}, where Q represents the question, A rep-195

resents the answer, and I represents the image.196

3.1 Question-Answer Pairs Generation197

Due to the prevalence of more challenging geomet-198

ric problems in open-source datasets, to facilitate199

our model’s learning of basic geometric concepts,200

we initially simplify these difficult problems to gen-201

erate easier pairs of geometric questions.202

In detail, we utilize GPT-4V (OpenAI, 2023b)203

to generate question-answer (QA) pairs from the204

dataset D = {Q,A, I}. We instruct GPT-4V to205

craft simplified problems that are derived from the 206

original geometric QA pairs to acquire QA pairs 207

containing fundamental geometric concepts. In de- 208

tail, we prompt GPT-4V to consider these three 209

perspectives: (1) generating lead-up problems, (2) 210

generating sub-problems, and (3) incorporating the 211

conclusions from the answer into the conditions of 212

the question, which can reduce the complexity of 213

the question. To prevent GPT-4V from generating 214

the same simplified questions, we also ask GPT-4V 215

to generate questions that are as diverse as pos- 216

sible. Additionally, for efficiency, the instruction 217

also asks GPT-4V to generate textual descriptions 218

of images aimed at supporting the subsequent phase 219

of image generation. The detailed prompt can be 220

found in Appendix C.1. 221

In practice, we generate N (N = 3) new data 222

points based on a single original data point to im- 223

prove efficiency and reduce API costs. After this 224

phase, the data we obtain can be formally repre- 225

sented as D̃1 = {Q̃, Ã, D̃es} where D̃es repre- 226

sents the image description. 227

3.2 Geometric Images Generation 228

It is important to highlight that the newly generated 229

QA pairs may not correspond directly to the origi- 230

nal images, which could hurt the model’s learning 231
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process. To ensure congruity between the textual232

content and the visual aspects, it is essential to pro-233

duce new images that align with the generated QA234

pairs. To address this issue, we employ Wolfram, a235

powerful software tool capable of executing code236

to generate geometric image.237

In detail, we utilize GPT-4 (OpenAI, 2023a) to238

generate Wolfram code based on the dataset D̃1.239

Firstly, we feed the questions, answers, and image240

descriptions as prompts to GPT-4 to generate Wol-241

fram code. During the generation process, we in-242

struct GPT-4 to explicitly name all variables within243

the code, with the aim of facilitating a clearer un-244

derstanding and assisting GPT-4 in recognizing the245

relationships between code elements and the given246

questions. The detailed prompt can be found in247

Appendix C.2. Finally, we execute the Wolfram248

code, resulting in the generation of new images.249

In practice, it is noticed that employing GPT-4250

to generate code is unstable. Thus, we generate K251

(K = 3) distinct code from the same data to in-252

crease the probability of obtaining the correct code.253

Consequently, we can obtain K distinct images254

corresponding to K code. It can be represented as255

D̃2 = {Q̃, Ã, Ĩ(1), Ĩ(2), . . . , Ĩ(K)}, where Ĩ(i) rep-256

resents the i-th image generated for each question.257

3.3 Scoring and Filtering258

After generating K images using Wolfram for each259

question, we need to select the most suitable one260

to be used as the final image in our dataset.261

Concretely, we employ GPT-4V to assign a score262

ranging from 0 to 1 that reflects the degree of cor-263

respondence between an image generated for the264

question and the question itself; a higher score sig-265

nifies a stronger alignment. To augment the scoring266

proficiency of GPT-4V, drawing inspiration from267

the Chain-of-Thought (Wei et al., 2022) , we in-268

struct GPT-4V to articulate the rationale underlying269

its evaluation before determining the ultimate score.270

The detailed prompt can be found in Appendix C.3.271

Finally, for each question associated with K dis-272

tinct generated images, we obtain K corresponding273

scores. For each question, we retain the image with274

the highest score as Ĩ . Note that, if this score is less275

than 0.9, we consider that the image for this ques-276

tion has not been well-generated, and we discard277

the question. Consequently, we compile a dataset278

D̃ = {Q̃, Ã, Ĩ} that consists of questions that are279

simpler and exhibit a stronger alignment between280

the images and the associated text.281

4 Data Analysis 282

Datasets Samples
Open-source Datasets
ChartQA 7398
UniGEO-Calculation 3499
Geometry3K 2101
GeoQA+ 6026

Generated Datasets
UniGEO-Proving_Enhanced 1810
Geometry3K_Enhanced 1909
GeoQA_Enhanced 1212

Table 1: The datasets used in the GeoGPT4V dataset.
Column “Samples” is the number of image-text pairs
in each dataset. It is worth noting that we only use the
training sets of open-source datasets.

In this section, we will present a comprehen- 283

sive statistical analysis (Section §4.1) and evalua- 284

tion (Section §4.2 §4.3) of the datasets generated 285

through our pipeline. 286

4.1 Datasets 287

In this study, to minimize costs, we selected the 288

first 1,500 samples from the training sets of the 289

UniGEO-Proving (Chen et al., 2022), Geome- 290

try3K (Lu et al., 2021), and GeoQA (Chen et al., 291

2021) to create UniGEO-Proving_Enhanced, Ge- 292

ometry3K_Enhanced, and GeoQA_Enhanced for 293

validating the effectiveness of our method. Sub- 294

sequently, we combine the generated geometric 295

problems with those from open-source datasets, 296

including ChartQA (Masry et al., 2022), UniGEO- 297

Calculation (Chen et al., 2022), the original Geom- 298

etry3K (Lu et al., 2021), and GeoQA+ (Cao and 299

Xiao, 2022), to form a new dataset with uniform 300

difficulty levels, dubbed GeoGPT4V. A detailed 301

breakdown of the datasets is provided in Table 1. 302

4.2 Difficulty Evaluation 303

As mentioned in Section §3, our pipeline will take 304

original data D as input and output generated data 305

D̃. We aim to generate easier data than the original 306

one to facilitate model learning of basic geometric 307

knowledge. This section demonstrates the efficacy 308

of our pipeline by comparing the difficulty levels 309

of D and D̃. 310

We initiate this by forming a data pair P1 = 311

{D, D̃} and utilize GPT-4V to assess the relative 312

difficulty of the data points. To mitigate the bias 313

that GPT-4V may have due to the presentation or- 314
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der, we also consider the pair P2 = {D̃,D}, ob-315

tained by swapping the order of the data points. If316

GPT-4V produces different outputs based on P1317

and P2, we conclude that the difficulty of D and318

D̃ is equal. A detailed prompt can be found in319

Appendix C.4.320

In practice, we randomly sample 500 pairs of321

generated and corresponding original data points.322

The outcome, presented in Figure 2a, reveals that323

over 80% of the questions in the generated dataset324

are of equal or lesser difficulty compared to the325

original questions. This indicates that our pipeline326

is successful in generating data that is simpler than327

the original dataset.328

4.3 Image-text Matching Evaluation329

As mentioned in the previous section, the align-330

ment between text and images is a critical aspect of331

geometric problem data. To illustrate that the gen-332

erated images are better suited for the simplified333

problems than the original images, we replace the334

generated images with the original image for each335

question, resulting in new data D̃′ = {Q̃, Ã, I}.336

Consequently, in this section, we will compare the337

level of image-text matching in our generated data338

D̃ with D̃′ and the QA data produced by prior339

methods – G-LLaVA (Gao et al., 2023). Similar340

to the score function in Section §3.3, we employ341

GPT4-V to score the degree of alignment between342

the images and the questions.343

In detail, we randomly select 500 data points for344

each dataset and show the average scores of the345

three datasets in Figure 2b. The results indicate346

that our generated data, D̃, exhibits a significantly347

higher degree of image-text matching than D̃′, as348

well as the dataset enhanced by G-LlaVA (0.9636349

for D̃, 0.7276 for D̃′, and 0.6754 for G-LlaVA).350

Moreover, it is observed that G-LlaVA’s image-text351

matching score is the lowest, which confirms our352

hypothesis that simply scaling the size of numbers353

within problems is an inappropriate approach.354

5 Experiment355

In this section, we conduct experiments to answer356

the following research questions (RQ):357

• RQ1: Can GeoGPT4V dataset improve geomet-358

ric capabilities of different models?359

• RQ2: Are the generated images better than the360

original images for model learning?361

41%

44%

15%

Easier Harder

Equal

Difficulty Comparison

(a)

0.6754
0.7276

0.9636

0

0.2

0.4

0.6

0.8

1

G-LLaVA Original Images Generated Images

Average Image-Text Matching Score

(b)

Figure 2: The data analysis results. This chart illus-
trates the simplicity and image-text matching attributes
of our dataset. Figure (a) is a comparison chart of the
difficulty between the generated and original data. In
this figure, “Easier” represents that the generated data
is easier than the original data; “Harder” represents
that the generated data is harder than the original data;
“Equal” represents that the generated and original data
have the same difficulty level. Figure (b) shows the
average image-text matching scores for the three data
types. “Generated Images” represents our generated
data. “Original Images” represents the data obtained
by replacing generated images in generated data with
original images.

• RQ3: Is it necessary to score and filter the gener- 362

ated images? 363

• RQ4: Is the improvement solely due to the origi- 364

nal dataset? 365

5.1 Experimental Setup 366

Benchmarks. We utilize two widely used bench- 367

marks, which encompass numerous multi-model 368

geometric problems, to evaluate the effectiveness 369

of our proposed GeoGPT4V dataset. The detailed 370

information of these benchmarks is as follows: 371

• MathVista (Lu et al., 2024b) is a mathematical 372

reasoning benchmark in visual contexts. It in- 373

cludes diverse visual contexts, such as natural 374

images, geometry diagrams, charts, etc. Math- 375

Vista includes multiple-choice questions as well 376

as open-ended questions. The MathVista test 377

set comprises 5141 examples without ground 378

truth answers and provides 1000 examples with 379

ground truth answers known as MathVista test- 380

mini. 381

• MathVision (Wang et al., 2024) is a more chal- 382

lenging multi-modal mathematical benchmark 383

than MathVista. It categorizes all mathematical 384

problems into five difficulty levels and 16 dis- 385

tinct tasks. MathVision also consists of multiple- 386

choice questions and open-ended questions. The 387
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Model Size MathVista MathVision
GPS GEO AVG AnaG CombG DescG GrphT Angle Area Len SolG TransG AVG

LLaVA-1.5 7B 20.67∗ 20.92∗ 20.80∗ 7.1 7.1 7.7 10 15.6 10.2 9.8 5.3 4.8 8.62
LLaVA-1.5 13B 24.04∗ 23.85∗ 23.95∗ 14.3 9.1 13.5 5.6 10.4 12.6 14.7 11.5 10.7 11.38

LLaVA-1.5-G 7B 32.69 32.22 32.46 9.52 16.88 9.62 21.11 19.08 11.06 17.15 9.43 15.48 14.37
LLaVA-1.5-G 13B 36.54 37.24 36.89 15.48 14.29 12.50 18.89 19.65 13.60 18.49 9.02 11.31 15.14

ShareGPT4V 7B 21.63∗ 20.50∗ 21.07∗ 3.6 10.1 11.5 14.4 16.2 11.8 12.3 9.8 11.3 11.22
ShareGPT4V 13B 27.4∗ 27.62∗ 27.51∗ 15.5 10.7 11.5 8.9 11.6 13 17.4 10.3 12.5 12.38

ShareGPT4V-G 7B 32.69 31.80 32.25 11.90 12.99 9.62 16.67 17.34 13.60 17.59 10.25 11.31 13.47
ShareGPT4V-G 13B 43.27 42.26 42.77 22.62 9.74 13.46 11.11 19.08 15.80 13.81 9.02 13.69 14.26

InternVL† 40B 61.1 61.1 61.10 16.67∗ 12.99∗ 15.38∗ 13.33∗ 4.62∗ 5.60∗ 6.46∗ 9.84∗ 10.71∗ 10.62∗

InternVL-G† 40B 64.42 63.60 64.01 16.67 18.18 13.46 16.67 23.12 18.40 18.93 11.89 23.21 17.84

Closed-source Models

Qwen-VL-Plus - 38.5 39.3 38.90 17.9 12.7 15.4 8.9 11.6 6.4 10.0 14.3 11.31 12.06
Qwen-VL-Max - - - - 19.1 16.9 16.4 12.2 13.3 14.2 19.8 11.5 17.3 15.61
Gemini-1.0-Pro - 40.4 41.0 40.70 10.7 20.1 20.2 21.1 19.1 19.0 20.0 14.3 20.8 18.37
Gemini-1.0-Ultra - 56.2 55.6 55.90 - - - - - - - - - -
GPT-4V - 50.5 51.0 50.75 32.1 21.1 22.1 14.4 22.0 22.2 20.9 23.8 25.6 22.69

Table 2: Overall results of different models on the MathVista and MathVision. We present the detailed scores
for all the tasks related to geometry such as “GPS” and “AnaG”, as well as the average score over these tasks in two
benchmarks denoted as “AVG”. Due to limited space, we utilize abbreviations for these geometry-related tasks and
illustrate the detailed task name in the Appendix A. For the model trained with GeoGPT4V, score increases are
marked in red compared to the original model. ∗ indicates our re-implemented test results missed in benchmarks or
origin papers. InternVL†represents the abbreviation for InternVL-Chat-V1.2-Plus. The suffix “-G” to the model
name indicates a model trained on the GeoGPT4V. For better comparison, we also demonstrate results for five
representative closed-source MLLM models.

MathVision test set comprises 3040 examples388

with ground truth answers.389

Evaluation Method. We strictly follow the eval-390

uation method proposed in MathVista (Lu et al.,391

2024b) and MathVision (Wang et al., 2024). Firstly,392

we utilize ChatGPT-3.5 to extract the ultimate re-393

sponse from model outputs in MathVista, while394

employing regular expressions with MathVision395

for the same purpose. Consequently, we report the396

accuracy of the answers as the score for perfor-397

mance evaluation.398

Baseline Models. We train the following main-399

stream open-source models using our proposed Ge-400

oGPT4V dataset, with model sizes including 7B,401

13B, and 40B.402

• LLaVA-1.5 (Liu et al., 2023c,b) utilizes linear403

layers to connect the vision encoder and the large404

language model (LLM). In the pre-training stage,405

LLaVA-1.5 keeps the vision encoder and the406

LLM frozen, and only trains linear layers. In the407

fine-tuning stage, it freezes the vision encoder408

and trains the linear layers and the LLM.409

• ShareGPT4V (Chen et al., 2023a) has an archi- 410

tecture similar to LLaVA’s. However, in the pre- 411

training stage of ShareGPT4V, both the vision 412

encoder and the language model remain unfrozen. 413

The training data is high-quality, detailed descrip- 414

tion data generated by GPT-4V. 415

• InternVL-Chat-V1.2-Plus (Chen et al., 2023b) 416

utilizes the InternViT (Chen et al., 2023b) as its 417

visual encoder, which has 6 billion parameters. 418

What’s more, it scales LLM to 34B and utilizes a 419

fine-tuning dataset with 12 million samples. 420

Implementation Details. For data generation, 421

we employ “gpt-4-vision-preview” and “gpt-4- 422

1106-preview” API provided by OpenAI for GPT- 423

4V and GPT-4. For model training, all the models 424

are trained on NVIDIA A100 GPUs with PyTorch 425

version 2.0.1. To ensure the fair comparison, we 426

keep the training parameters consistent with those 427

specified by the model’s original authors and train 428

the models for one epoch. Detail training parame- 429

ters are demonstrated in Appendix B. 430

6



Model
MathVista MathVision

GPS GEO AVG AnaG CombG DescG GrphT Angle Area Len SolG TransG AVG

LLaVA-1.5-7B 20.67∗ 20.92∗ 20.80∗ 7.1 7.1 7.7 10 15.6 10.2 9.8 5.3 4.8 8.62

- Image Generation 30.77 30.96 30.87 8.33 14.94 8.65 15.56 17.34 12.20 14.48 7.79 19.05 13.15
- Image Scoring 33.65 31.80 32.73 9.52 15.48 9.62 20.00 17.34 12.20 15.59 6.56 15.48 13.54

GeoGPT4V 32.69 32.22 32.46 9.52 16.88 9.62 21.11 19.08 11.06 17.15 9.43 15.48 14.37

Table 3: Ablation for image generation and image scoring. “- Image Generation” denotes the exclusion of
newly generated geometric images. “- Image Scoring” signifies the random selection of generated images, rather
than utilizing GPT4V to score and choose them. For comparison, we also represent the results from the official
LLaVA-1.5-7B model in the first line and GeoGPT4V in the last line. Bold results indicate the best results for all
models. ∗ indicates our re-implemented test results missed in benchmarks or origin papers.

5.2 Main Results (RQ1)431

We evaluate the performance of various open-432

source models on MathVista testmini (short as433

MathVista) and MathVision test (short as MathVi-434

sion) benchmarks after training on the GeoGPT4V435

dataset to demonstrate our proposed method’s ef-436

fectiveness. For convince, we append the suffix437

“-G” to the model name to indicate a model trained438

on the GeoGPT4V dataset, such as “LLaVA-1.5-439

G”. Since our method focuses on geometric data,440

we present detailed scores for all the tasks related to441

geometry and the average score over these tasks in442

Table 2. The complete set of scores can be found in443

Appendix D.1 and D.2. In Appendix D.3, we com-444

pare the geometric capabilities of our best model,445

InternVL-Chat-V1.2-Plus-GeoGPT4V, with other446

open-source and closed-source models.447

The experimental results from Table 2 indicate448

that our dataset can effectively improve different449

models’ geometric capabilities. First of all, our pro-450

posed GeoGPT4V has exhibited an improvement in451

the average scores across all geometry-related tasks452

on both MathVista and MathVision benchmarks, in-453

dicating that GeoGPT4V can enhance the model’s454

general geometry performance. Moreover, our pro-455

posed GeoGPT4V has brought improvements to456

most geometry-related tasks in both benchmarks457

in all scales and types of models. Furthermore,458

our GeoGPT4V significantly bridges the gap in459

geometric capabilities between open-source and460

closed-source models, except InternVL-Chat-V1.2-461

Plus, which has already employed a substantial462

amount of customized fine-tuning datasets.463

5.3 In-depth Analysis464

To comprehensively analyze the effectiveness of465

GeoGPT4V, we design a series of analyzing ex-466

periments from various perspectives. Firstly, we467

design ablation experiments from the standpoint 468

of the efficacy of generating new geometric im- 469

ages and selecting generated images with GPT4V 470

scores. Subsequently, we conduct experiments to 471

demonstrate the substantial performance improve- 472

ment brought by GeoGPT4V stemming from the 473

generated data rather than the utilization of open- 474

source data. Due to resource and space limitations, 475

we leverage LLaVA-1.5-7B for analytical experi- 476

ments and conduct evaluations on both MathVista 477

and MathVision. 478

5.3.1 Effect of Generating New Images (RQ2) 479

We validate the effectiveness of the newly gener- 480

ated geometric images by replacing the images gen- 481

erated in GeoGPT4V with their original counter- 482

parts and training the model on them. In detail, we 483

firstly substitute the newly generated images from 484

GeoGPT4V with the original images while retain- 485

ing the simplified questions generated, formulating 486

a new dataset denoted as D̃′. Subsequently, we 487

train the LLaVA-1.5-7B model on D̃′ and compare 488

its geometric capabilities with the model trained on 489

GeoGPT4V. 490

Based on results demonstrated in Table 3, we 491

have following observations: Firstly, the model 492

trained on D̃′ exhibits inferior performance com- 493

pared to the model trained on GeoGPT4V, indicat- 494

ing the effectiveness of the newly generated images. 495

Secondly, the model trained on D̃′ demonstrates 496

stronger performance than the model trained with- 497

out the use of D̃′, thereby validating the efficacy of 498

the easier QA pairs generated by our pipeline. 499

5.3.2 Is Scoring Necessary? (RQ3) 500

As mentioned in Section §3.3, K images are scored, 501

and the one with the highest score is selected from 502

this set. To demonstrate the necessity of scoring, 503

we formulate a new dataset D̃′′ by directly mod- 504
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Name Base Replace Mix

Datasets

ChartQA ChartQA ChartQA
UniGeo-Calculation UniGeo-Calculation UniGeo-Calculation
Geometry3K Geometry3K_Replace Geometry3K_Mix
GeoQA+ GeoQA+_Replace GeoQA+_Mix
UniGeo-Proving UniGeo-Proving_Replace UniGeo-Proving_Mix

Table 4: Dataset settings for experiments comparing open-source data and generated data. The suffix “Replace”
indicates that we replace the corresponding original data with generated data. The suffix “Mix” indicates that we
mix the original data with generated data.

Datasets
MathVista MathVision

GPS GEO AVG AnaG CombG DescG GrphT Angle Area Len SolG TransG AVG

Base 29.33 28.03 28.68 10.71 15.91 8.65 12.22 16.67 11.80 13.59 8.20 16.07 12.65
Replace 33.17 32.64 32.91 7.14 14.94 6.73 20.00 20.81 10.80 15.14 10.25 14.29 13.34
Mix 33.52 34.31 33.92 11.90 15.58 10.58 14.44 17.34 12.40 14.48 9.43 16.07 13.58

Table 5: Comparison of the effects with and without using the generated datasets. Bold results indicate the
best results for all models.

ifying the selection method to randomly choose505

from the K images while keeping all other aspects506

unchanged. Consequently, we analyze the perfor-507

mance of the LLaVA-1.5-7B trained on D̃′′.508

According to results demonstrated in Table 3, we509

can find that the model trained on D̃′′ exhibits in-510

ferior performance compared to the model trained511

on GeoGPT4V. The results indicate that the quality512

of the images obtained via ranking surpasses those513

chosen randomly.514

5.3.3 Are the Open-source Datasets Enough?515

(RQ4)516

To demonstrate performance improvements517

brought by GeoGPT4V are not solely reliant on518

open-source data, we compare the performance519

of models trained using various combinations of520

open-source and our generated data. In detail,521

as illustrated in Table 4, we construct three tiers522

of datasets. Firstly, we combine all open-source523

datasets to create the “Base” dataset. Subsequently,524

we replace the original data from the “Base”525

dataset with the data generated by our pipeline,526

resulting in the “Replace” dataset. Lastly, we mix527

the generated data with all the data from the “Base”528

dataset to form the “Mix” dataset. It is notable that529

GeoQA is a subset of GeoQA+. Thus we only use530

GeoQA+ in these three dataset settings, rather than531

using both GeoQA+ and GeoQA.532

We finetune LLaVA-1.5-7B separately on these533

three datasets and evaluate their performance in534

Table 5, with observations as follows: Although535

the “Base” dataset, constructed using open-source536

data, provides moderate geometric capabilities, our 537

“Replace” and “Mix” datasets exhibit even greater 538

enhancements in geometric performance. This not 539

only demonstrates the effectiveness of the data gen- 540

erated by our pipeline but also indicates that the im- 541

provements afforded by GeoGPT4V are not solely 542

derived from open-source data. 543

6 Conclusion 544

In this study, we propose a novel pipeline to en- 545

hance the geometric capabilities of MLLMs. We 546

have proposed data generation methods for multi- 547

modal geometric tasks involving problem simpli- 548

fication and the generation of images that match 549

newly generated text. Specifically, we use GPT4V 550

and GPT4 to generate sub-problems or lead-up 551

problems for given geometric tasks, along with 552

the corresponding Wolfram code that can be ex- 553

ecuted to generate geometric images. Based on 554

the pipeline, we have generated 4.9K simplified 555

and image-text matching geometric problems. We 556

mix our generated data with 19K open-source 557

data to formulate a dataset with uniform diffi- 558

culty, named GeoGPT4V. After training on the Ge- 559

oGPT4V dataset, various models have improved ge- 560

ometric scores on both MathVista and MathVision 561

benchmarks. The extensive experimental results 562

demonstrate the effectiveness of the GeoGPT4V 563

dataset. We have open-sourced the GeoGPT4V 564

dataset and the checkpoints of models trained on 565

the GeoGPT4V dataset, with the aim of fostering 566

the community’s growth. 567
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Limitations568

This paper focuses on the generation of geometric569

images. We employ GPT-4 to generate Wolfram570

code, which can be executed to generate images.571

However, this approach is unstable and may result572

in poor image quality. That’s why we use GPT-4V573

to score the images, which leads to more API calls574

and increased costs.575

What’s more, this paper only considers simpli-576

fying open-source geometric problems. However,577

generating more complex problems is also worth578

considering, as it will generate more complex geo-579

metric images and help models improve complex580

reasoning capabilities. Our future work will ex-581

plore the more accurate generation of complex ge-582

ometric images.583

Finally, multi-modal mathematics is not limited584

to geometric problems. It also includes tasks such585

as chart question answering and function question586

answering. Generating richer charts and function587

images is also part of our future exploration work.588

References589

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-590
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan591
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-592
lican, David Silver, Slav Petrov, Melvin Johnson,593
Ioannis Antonoglou, Julian Schrittwieser, Amelia594
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli-595
crap, Angeliki Lazaridou, Orhan Firat, James Molloy,596
Michael Isard, Paul Ronald Barham, Tom Henni-597
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,598
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens599
Meyer, Eliza Rutherford, Erica Moreira, Kareem600
Ayoub, Megha Goel, George Tucker, Enrique Pi-601
queras, Maxim Krikun, Iain Barr, Nikolay Savinov,602
Ivo Danihelka, Becca Roelofs, Anaïs White, Anders603
Andreassen, Tamara von Glehn, Lakshman Yagati,604
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,605
Jakub Sygnowski, and et al. 2023. Gemini: A fam-606
ily of highly capable multimodal models. CoRR,607
abs/2312.11805.608

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,609
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,610
and Jingren Zhou. 2023. Qwen-vl: A versatile611
vision-language model for understanding, localiza-612
tion, text reading, and beyond. arXiv preprint613
arXiv:2308.12966.614

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,615
and Jason Weston. 2009. Curriculum learning.616
In Proceedings of the 26th Annual International617
Conference on Machine Learning, ICML 2009,618
Montreal, Quebec, Canada, June 14-18, 2009,619
volume 382 of ACM International Conference620
Proceeding Series, pages 41–48. ACM.621

Jie Cao and Jing Xiao. 2022. An augmented benchmark 622
dataset for geometric question answering through 623
dual parallel text encoding. In Proceedings of 624
the 29th International Conference on Computational 625
Linguistics, COLING 2022, Gyeongju, Republic of 626
Korea, October 12-17, 2022, pages 1511–1520. In- 627
ternational Committee on Computational Linguistics. 628

Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin, 629
Chongyu Chen, and Xiaodan Liang. 2022. Unigeo: 630
Unifying geometry logical reasoning via reformulat- 631
ing mathematical expression. In Proceedings of the 632
2022 Conference on Empirical Methods in Natural 633
Language Processing, EMNLP 2022, Abu Dhabi, 634
United Arab Emirates, December 7-11, 2022, pages 635
3313–3323. Association for Computational Linguis- 636
tics. 637

Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan 638
Liang, Lingbo Liu, Eric P. Xing, and Liang Lin. 639
2021. Geoqa: A geometric question answering 640
benchmark towards multimodal numerical reasoning. 641
In Findings of the Association for Computational 642
Linguistics: ACL/IJCNLP 2021, Online Event, 643
August 1-6, 2021, volume ACL/IJCNLP 2021 of 644
Findings of ACL, pages 513–523. Association for 645
Computational Linguistics. 646

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Con- 647
ghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin. 648
2023a. Sharegpt4v: Improving large multi-modal 649
models with better captions. CoRR, abs/2311.12793. 650

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo 651
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, 652
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, 653
Yu Qiao, and Jifeng Dai. 2023b. Internvl: Scaling 654
up vision foundation models and aligning for generic 655
visual-linguistic tasks. CoRR, abs/2312.14238. 656

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 657
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 658
Boyang Li, Pascale Fung, and Steven C. H. Hoi. 659
2023. Instructblip: Towards general-purpose vision- 660
language models with instruction tuning. In 661
Advances in Neural Information Processing Systems 662
36: Annual Conference on Neural Information 663
Processing Systems 2023, NeurIPS 2023, New 664
Orleans, LA, USA, December 10 - 16, 2023. 665

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, 666
Bin Wang, Linke Ouyang, Xilin Wei, Songyang 667
Zhang, Haodong Duan, Maosong Cao, Wenwei 668
Zhang, Yining Li, Hang Yan, Yang Gao, Xinyue 669
Zhang, Wei Li, Jingwen Li, Kai Chen, Conghui 670
He, Xingcheng Zhang, Yu Qiao, Dahua Lin, and 671
Jiaqi Wang. 2024. Internlm-xcomposer2: Master- 672
ing free-form text-image composition and compre- 673
hension in vision-language large model. CoRR, 674
abs/2401.16420. 675

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wan- 676
jun Zhong, Yufei Wang, Lanqing Hong, Jianhua Han, 677
Hang Xu, Zhenguo Li, and Lingpeng Kong. 2023. G- 678
llava: Solving geometric problem with multi-modal 679
large language model. CoRR, abs/2312.11370. 680

9

https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.1145/1553374.1553380
https://aclanthology.org/2022.coling-1.130
https://aclanthology.org/2022.coling-1.130
https://aclanthology.org/2022.coling-1.130
https://aclanthology.org/2022.coling-1.130
https://aclanthology.org/2022.coling-1.130
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.218
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.218
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.218
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.218
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.218
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.46
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.46
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.46
https://doi.org/10.48550/ARXIV.2311.12793
https://doi.org/10.48550/ARXIV.2311.12793
https://doi.org/10.48550/ARXIV.2311.12793
https://doi.org/10.48550/ARXIV.2312.14238
https://doi.org/10.48550/ARXIV.2312.14238
https://doi.org/10.48550/ARXIV.2312.14238
https://doi.org/10.48550/ARXIV.2312.14238
https://doi.org/10.48550/ARXIV.2312.14238
http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2401.16420
https://doi.org/10.48550/ARXIV.2401.16420
https://doi.org/10.48550/ARXIV.2401.16420
https://doi.org/10.48550/ARXIV.2401.16420
https://doi.org/10.48550/ARXIV.2401.16420
https://doi.org/10.48550/ARXIV.2312.11370
https://doi.org/10.48550/ARXIV.2312.11370
https://doi.org/10.48550/ARXIV.2312.11370
https://doi.org/10.48550/ARXIV.2312.11370
https://doi.org/10.48550/ARXIV.2312.11370


Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,681
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu682
Chen. 2023. Tora: A tool-integrated reasoning683
agent for mathematical problem solving. CoRR,684
abs/2309.17452.685

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le686
Bras, and Yejin Choi. 2021. Clipscore: A reference-687
free evaluation metric for image captioning. In688
Proceedings of the 2021 Conference on Empirical689
Methods in Natural Language Processing, EMNLP690
2021, Virtual Event / Punta Cana, Dominican691
Republic, 7-11 November, 2021, pages 7514–7528.692
Association for Computational Linguistics.693

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo694
Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and695
Xiang Bai. 2023. Monkey: Image resolution and696
text label are important things for large multi-modal697
models. CoRR, abs/2311.06607.698

Hunter Lightman, Vineet Kosaraju, Yura Burda, Har-699
rison Edwards, Bowen Baker, Teddy Lee, Jan700
Leike, John Schulman, Ilya Sutskever, and Karl701
Cobbe. 2023. Let’s verify step by step. CoRR,702
abs/2305.20050.703

Fuxiao Liu, Tianrui Guan, Zongxia Li, Lichang Chen,704
Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou.705
2023a. Hallusionbench: You see what you think?706
or you think what you see? an image-context707
reasoning benchmark challenging for gpt-4v(ision),708
llava-1.5, and other multi-modality models. CoRR,709
abs/2310.14566.710

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae711
Lee. 2023b. Improved baselines with visual instruc-712
tion tuning. CoRR, abs/2310.03744.713

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan714
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-715
next: Improved reasoning, ocr, and world knowledge.716

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae717
Lee. 2023c. Visual instruction tuning. In718
Advances in Neural Information Processing Systems719
36: Annual Conference on Neural Information720
Processing Systems 2023, NeurIPS 2023, New721
Orleans, LA, USA, December 10 - 16, 2023.722

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai723
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-724
oshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng,725
Hanwei Xu, Zhenda Xie, and Chong Ruan. 2024a.726
Deepseek-vl: Towards real-world vision-language727
understanding. CoRR, abs/2403.05525.728

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu,729
Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,730
Kai-Wei Chang, Michel Galley, and Jianfeng731
Gao. 2024b. Mathvista: Evaluating mathemati-732
cal reasoning of foundation models in visual con-733
texts. In International Conference on Learning734
Representations (ICLR).735

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan 736
Huang, Xiaodan Liang, and Song-Chun Zhu. 2021. 737
Inter-gps: Interpretable geometry problem solv- 738
ing with formal language and symbolic reason- 739
ing. In Proceedings of the 59th Annual Meeting of 740
the Association for Computational Linguistics and 741
the 11th International Joint Conference on Natural 742
Language Processing, ACL/IJCNLP 2021, (Volume 743
1: Long Papers), Virtual Event, August 1-6, 2021, 744
pages 6774–6786. Association for Computational 745
Linguistics. 746

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 747
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei 748
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz- 749
ardmath: Empowering mathematical reasoning for 750
large language models via reinforced evol-instruct. 751
CoRR, abs/2308.09583. 752

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq R. 753
Joty, and Enamul Hoque. 2022. Chartqa: A bench- 754
mark for question answering about charts with visual 755
and logical reasoning. In Findings of the Association 756
for Computational Linguistics: ACL 2022, Dublin, 757
Ireland, May 22-27, 2022, pages 2263–2279. Asso- 758
ciation for Computational Linguistics. 759

OpenAI. 2023a. GPT-4 technical report. CoRR, 760
abs/2303.08774. 761

OpenAI. 2023b. Gpt-4v(ision) system card. In 762
technical report. 763

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 764
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu, 765
and Daya Guo. 2024. Deepseekmath: Pushing the 766
limits of mathematical reasoning in open language 767
models. CoRR, abs/2402.03300. 768

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi- 769
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024. 770
Openmathinstruct-1: A 1.8 million math instruction 771
tuning dataset. CoRR, abs/2402.10176. 772

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie 773
Zhan, and Hongsheng Li. 2024. Measuring mul- 774
timodal mathematical reasoning with math-vision 775
dataset. CoRR, abs/2402.14804. 776

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun 777
Luo, Weikang Shi, Renrui Zhang, Linqi Song, 778
Mingjie Zhan, and Hongsheng Li. 2023a. Mathcoder: 779
Seamless code integration in llms for enhanced math- 780
ematical reasoning. CoRR, abs/2310.03731. 781

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai 782
Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang Sui. 783
2023b. Math-shepherd: Verify and reinforce llms 784
step-by-step without human annotations. CoRR, 785
abs/2312.08935. 786

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 787
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 788
and Denny Zhou. 2022. Chain-of-thought prompt- 789
ing elicits reasoning in large language models. In 790
Advances in Neural Information Processing Systems 791

10

https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.595
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.595
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.595
https://doi.org/10.48550/ARXIV.2311.06607
https://doi.org/10.48550/ARXIV.2311.06607
https://doi.org/10.48550/ARXIV.2311.06607
https://doi.org/10.48550/ARXIV.2311.06607
https://doi.org/10.48550/ARXIV.2311.06607
https://doi.org/10.48550/ARXIV.2305.20050
https://doi.org/10.48550/ARXIV.2310.14566
https://doi.org/10.48550/ARXIV.2310.14566
https://doi.org/10.48550/ARXIV.2310.14566
https://doi.org/10.48550/ARXIV.2310.14566
https://doi.org/10.48550/ARXIV.2310.14566
https://doi.org/10.48550/ARXIV.2310.14566
https://doi.org/10.48550/ARXIV.2310.14566
https://doi.org/10.48550/ARXIV.2310.03744
https://doi.org/10.48550/ARXIV.2310.03744
https://doi.org/10.48550/ARXIV.2310.03744
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
http://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2403.05525
https://doi.org/10.48550/ARXIV.2403.05525
https://doi.org/10.48550/ARXIV.2403.05525
https://doi.org/10.18653/V1/2021.ACL-LONG.528
https://doi.org/10.18653/V1/2021.ACL-LONG.528
https://doi.org/10.18653/V1/2021.ACL-LONG.528
https://doi.org/10.18653/V1/2021.ACL-LONG.528
https://doi.org/10.18653/V1/2021.ACL-LONG.528
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.177
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.177
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.177
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.177
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.177
https://doi.org/10.48550/ARXIV.2303.08774
https://api.semanticscholar.org/CorpusID:263218031
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.10176
https://doi.org/10.48550/ARXIV.2402.10176
https://doi.org/10.48550/ARXIV.2402.10176
https://doi.org/10.48550/ARXIV.2402.14804
https://doi.org/10.48550/ARXIV.2402.14804
https://doi.org/10.48550/ARXIV.2402.14804
https://doi.org/10.48550/ARXIV.2402.14804
https://doi.org/10.48550/ARXIV.2402.14804
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2310.03731
https://doi.org/10.48550/ARXIV.2312.08935
https://doi.org/10.48550/ARXIV.2312.08935
https://doi.org/10.48550/ARXIV.2312.08935
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html


35: Annual Conference on Neural Information792
Processing Systems 2022, NeurIPS 2022, New793
Orleans, LA, USA, November 28 - December 9,794
2022.795

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan796
Wang, Hongtao Xie, and Yongdong Zhang. 2020.797
Curriculum learning for natural language understand-798
ing. In Proceedings of the 58th Annual Meeting of799
the Association for Computational Linguistics, ACL800
2020, Online, July 5-10, 2020, pages 6095–6104. As-801
sociation for Computational Linguistics.802

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu,803
Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo804
Li, Xin Jiang, and Chunjing Xu. 2022. FILIP:805
fine-grained interactive language-image pre-training.806
In The Tenth International Conference on Learning807
Representations, ICLR 2022, Virtual Event, April808
25-29, 2022. OpenReview.net.809

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen810
Hu, Haowei Liu, Qi Qian, Ji Zhang, Fei Huang, and811
Jingren Zhou. 2023. mplug-owl2: Revolutionizing812
multi-modal large language model with modality col-813
laboration. CoRR, abs/2311.04257.814

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,815
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo816
Li, Adrian Weller, and Weiyang Liu. 2023. Meta-817
math: Bootstrap your own mathematical questions818
for large language models. CoRR, abs/2309.12284.819

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,820
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu821
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao822
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan823
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang,824
Huan Sun, Yu Su, and Wenhu Chen. 2023. MMMU:825
A massive multi-discipline multimodal understand-826
ing and reasoning benchmark for expert AGI. CoRR,827
abs/2311.16502.828

James Xu Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian829
He, and Michael Qizhe Xie. 2023. Automatic model830
selection with large language models for reasoning.831
In Findings of the Association for Computational832
Linguistics: EMNLP 2023, Singapore, December833
6-10, 2023, pages 758–783. Association for Com-834
putational Linguistics.835

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun836
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,837
Mingjie Zhan, and Hongsheng Li. 2023a. Solving838
challenging math word problems using GPT-4 code839
interpreter with code-based self-verification. CoRR,840
abs/2308.07921.841

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan842
Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia843
Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh,844
Mike Lewis, Luke Zettlemoyer, and Omer Levy.845
2023b. LIMA: less is more for alignment. In846
Advances in Neural Information Processing Systems847
36: Annual Conference on Neural Information848

Processing Systems 2023, NeurIPS 2023, New 849
Orleans, LA, USA, December 10 - 16, 2023. 850

A Detailed Task Information 851

Table 6 shows the correspondence between abbre- 852

viations and detailed task names. 853

B Training Parameters 854

We keep the same parameters as those specified by 855

the model’s original authors. Detail parameters are 856

shown in Table 7. 857

C Prompts 858

C.1 Prompt for Question-Answer Pairs 859

Generation 860

Table 8 shows the prompt for question-answer pairs 861

generation. We prompt GPT-4V to generate simpli- 862

fied geometric problems based on the open-source 863

datasets. 864

C.2 Prompt for Wolfram Code Generation 865

Table 9 shows the prompt for Wolfram code gener- 866

ation. We prompt GPT-4 to generate the Wolfram 867

code based on the information from the question, 868

the answer, and the image description. 869

C.3 Prompt for Scoring 870

Table 10 shows the prompt for scoring. We prompt 871

GPT-4V to score the degree of alignment between 872

the images and the questions. 873

C.4 Prompt for Difficulty Comparison 874

Table 11 shows the prompt for difficulty compar- 875

ison. We employ GPT-4V to determine which of 876

the two problems is more difficult. 877

D Detailed Evaluation Results 878

D.1 MathVista Results 879

We show full MathVista testmini results in Table 12. 880

Although our method focuses on geometric prob- 881

lems, the GeoGPT4V dataset can still improve the 882

overall scores of various models, except InternVL- 883

Chat-V1.2-Plus, which has already employed a cus- 884

tomized fine-tuning dataset with 12 million sam- 885

ples. 886

D.2 MathVision Results 887

We show full MathVision test results in Table 13. 888

We can find that the GeoGPT4V dataset can im- 889

prove the scores of most tasks on MathVision for 890
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various models. The results demonstrate the effec-891

tiveness of the GeoGPT4V dataset.892

D.3 Comparison with Other Models.893

We compare the performance of our best model,894

InternVL-Chat-V1.2-Plus-GeoGPT4V, with other895

open-source and closed-source models regarding896

geometric capabilities. Detailed results are in Ta-897

ble 14.898

For MathVista, our best model achieves the best899

geometric scores among all models. For MathVi-900

sion, our best model achieves the highest scores for901

average score and most geometric scores among902

open-source models. The experimental results903

demonstrate the effectiveness of the GeoGPT4V904

dataset.905

Abbreviation Task
MathVista

FQA Figure Question Answering
GPS Geometry Problem Solving
MWP Math Word Problem
TQA Textbook question answering
VQA Visual Question Answering
ALG Algebraic Reasoning
ARI Arithmetic Reasoning
GEO Geometry Reasoning
LOG Logical Reasoning
NUM Numeric Commonsense
SCI Scientific Reasoning
STA Statistical Reasoning

MathVision

Alg Algebra
AnaG Analytic Geometry
Ari Arithmetic
CombG Combinatorial Geometry
Comb Combinatorics
Cnt Counting
DescG Descriptive Geometry
GrphT Graph Theory
Log Logic
Angle Metric Geometry - Angle
Area Metric Geometry - Area
Len Metric Geometry - Length
SolG Solid Geometry
Stat Statistics
Topo Topology
TransG Transformation Geometry

Table 6: Correspondence between abbreviations and
detailed task names in MathVista and MathVision
benchmarks.
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Parameters LLaVA-1.5 ShareGPT4V InternVL-Chat-V1.2-Plus

Train Epochs 1 1 1
Global Batch Size 128 128 128
Learning Rate 2e−5 2e−5 1e−5

Learning Rate Schedule cosine decay cosine decay cosine decay
Weight Decay 0 0 0.05
Warmup Ratio 0.03 0.03 0.03
Optimizer AdamW AdamW AdamW
Tune Visual Encoder False False False
Tune MLP True True True
Tune LLM True True True

Table 7: Training parameters of different models. To make a fair comparison, we keep the training parameters
consistent with those specified by the model’s original authors and train the models for one epoch.

Please act as a question generator.
Give you a question and its answer, along with a corresponding image for the question; please generate new questions
and provide new answers in English. The new questions and new answers must meet the following conditions:
1. The new questions are slightly easier than the original ones but shouldn’t be too simple.
2. Do not merely rephrase the question; you must reduce its difficulty level.
3. The new question must include a detailed description of the information in the image, which must be detailed enough
to allow others to redraw the image based on the description.
5. The questions should be as diverse as possible.
6. The new answers must be correct.
Some useful tips:
1. You can incorporate information from the original answer into the question.
3. You can generate lead-up problems for the original problem.
5. You can generate sub-problems for the original problem.
4. Imagine that others cannot see the image corresponding to the new question; you must describe it using words.
5. For each question, consider it as a standalone item. Others can only view one question at a time, so avoid using
phrases like "similar to the previous question" or references such as "New_Image 1".
Come up with three diverse questions and answers.
Input format:
Question: <question example>
Answer: <answer example>
You must follow this output format:
New_Question: <new question example>
New_Answer: <new answer example>
Image_Description: <new image description example>

Table 8: Prompt for Question-Answer Pairs Generation. We prompt GPT-4V to generate simplified questions.
We also prompt GPT-4V to generate questions that are as diverse as possible to prevent GPT-4V from generating the
same questions.
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You are a teacher creating an exam, and you need to draw images for the questions on the exam.
Give you a question, an answer, and an image description, and generate the image corresponding to the question using
Mathematica code. Your code must meet the following conditions:
1. Only use the "Export" command at the end of the code to save the generated image to "/temp/image.png".
2. The image should be clear and correspond to the question, with particular attention to shape and angle.
3. You only need to generate the image; there is no need to solve the problem.
4. All variables in the code should be named for easy understanding; avoid using terms such as “C” directly.
Some useful tips:
1. Focus on the image description.
2. You can use the information from the question and answer to help you generate code.
Come up with one code.
Input format:
Question: <question example>
Answer: <answer example>
Image description: <image description example>
You must follow this output format:
Code: <code example>

Table 9: Prompt for Mathematica Code Generation. When prompting GPT-4, we integrate both image descrip-
tions and question-answer data to refine code generation. Additionally, we prompt GPT-4 to ensure variable naming
within the code for clarity, aiming to enhance GPT-4’s grasp of the code’s relationship to the query at hand.

Please act as a scorer.
Give you a description, along with an image. Please evaluate the degree of match between the image and the description
and give a score. The evaluation process must meet the following conditions:
1. The score is a decimal between 0 and 1.
2. The score reflects the degree of image-description match.
3. If the image and the image description do not match, the score should be low.
4. The score should be lower if the image is not clear enough or difficult to understand.
5. The image should be rated low if it contains only text and numbers, with no geometric shapes or chart forms.
6. The image must have clear shapes and labels.
Some useful tips:
1. Don’t always give high scores.
2. Only give high scores when the image and the description match very well.
3. You can use two decimal places to represent your score.
Come up with one score.
Input format:
Image description: <image description example>
You must follow this output format:
Reason: <your reason example>
Score: <score example>

Table 10: Prompt for Scoring. We employ GPT-4V to score the degree of alignment between the generated images
and the questions. Specifically, the score is a decimal that ranges from 0 to 1. We also prompt GPT-4V to give a
reason first and then give a final score, hoping this can enhance the accuracy of scoring.
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Please act as a difficulty level evaluator.
Give two geometric data, each consisting of a question, an answer, and an image.
Please compare these two questions to determine which one is more difficult.
If the first one is more difficult, output “1”; if the second one is more difficult, output “2”.
Some useful tips:
1. You should consider the complexity and difficulty of the questions and images.
2. Don’t automatically assume that multiple-choice questions are easier.
3. A shorter answer does not mean it’s easier.
Input format:
Question_1: <the first question>
Answer_1: <the first answer>
Question_2: <the second question>
Answer_2: <the second answer>
The first image corresponds to the first question, and the second image corresponds to the second question.
You can only output the number “1” or “2”.

Table 11: Prompt for Difficulty Comparison. We prompt GPT-4V to determine which of the two questions is
more difficult. We instruct GPT-4V not to simplistically assume that multiple-choice questions or shorter answers
imply an easier question.

Model Size All FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA

LLaVA-1.5 7B 25.1∗ 23.79∗ 20.67∗ 12.90∗ 39.24∗ 32.40∗ 24.20∗ 22.10∗ 20.92∗ 16.22∗ 18.75∗ 36.89∗ 22.26∗

LLaVA-1.5 13B 27.3∗ 22.68∗ 24.04∗ 16.67∗ 42.41∗ 35.75∗ 27.40∗ 24.93∗ 23.85∗ 18.92∗ 25.00∗ 39.34∗ 22.59∗

LLaVA-1.5-G 7B 30.7 28.25 32.69 18.28 42.41 34.64 32.38 25.78 32.22 32.43 23.61 42.62 26.58
LLaVA-1.5-G 13B 32.2 28.25 36.54 19.89 41.14 37.99 35.23 28.05 37.24 27.03 26.39 42.62 27.57

ShareGPT4V 7B 27.3∗ 21.93∗ 21.63∗ 19.35∗ 43.04∗ 36.31∗ 24.91∗ 27.20∗ 20.50∗ 18.92∗ 22.92∗ 40.16∗ 21.93∗

ShareGPT4V 13B 30.4∗ 23.97∗ 27.40∗ 25.81∗ 43.67∗ 36.87∗ 28.83∗ 31.16∗ 27.62∗ 10.81∗ 26.39∗ 41.80∗ 26.91∗

ShareGPT4V-G 7B 30.4 26.77 32.69 20.97 40.51 34.08 31.67 26.91 31.80 21.62 20.83 40.98 25.52
ShareGPT4V-G 13B 34.1 27.51 43.27 23.12 43.04 36.87 39.86 29.18 42.26 27.03 24.31 44.26 27.57

InternVL† 40B 59.9 51.7 61.1 79.6 52.5 57.0 54.5 63.2 61.1 16.2 48.6 55.7 60.8
InternVL-G† 40B 56.2 46.10 64.42 75.27 51.90 45.81 57.30 54.96 63.60 18.92 39.58 53.28 55.81

Table 12: Overall results of different models on the MathVista. For the model trained with GeoGPT4V, score
increases are marked in red compared to the original model. ∗ indicates our re-implemented test results missed in
benchmarks or origin papers. InternVL†represents the abbreviation for InternVL-Chat-V1.2-Plus. The suffix “-G”
to the model name indicates a model trained on the GeoGPT4V. We present the detailed score for all the tasks
such as “FQA” and “GPS”, as well as the overall (All) score for the benchmark. Due to limited space, we utilize
abbreviations for the tasks and illustrate the detailed task name in the Appendix A.

Model Size All Alg AnaG Ari CombG Comb Cnt DescG GrphT Log Angle Area Len SolG Stat Topo TransG

LLaVA-1.5 7B 8.52 7.0 7.1 10.7 7.1 4.8 10.5 7.7 10.0 9.2 15.6 10.2 9.8 5.3 8.6 4.4 4.8
LLaVA-1.5 13B 11.12 7.0 14.3 14.3 9.1 6.6 6.0 13.5 5.6 13.5 10.4 12.6 14.7 11.5 13.8 13.0 10.7

LLaVA-1.5-G 7B 12.89 8.41 9.52 9.29 16.88 6.55 10.45 9.62 21.11 12.61 19.08 11.06 17.15 9.43 13.79 13.04 15.48
LLaVA-1.5-G 13B 13.98 9.28 15.48 16.43 14.29 10.71 10.45 12.50 18.89 11.76 19.65 13.6 18.49 10.25 13.79 17.39 13.10

ShareGPT4V 7B 10.53 5.5 3.6 12.9 10.1 4.8 7.5 11.5 14.4 10.9 16.2 11.8 12.3 9.8 15.5 17.4 11.3
ShareGPT4V 13B 11.88 7.5 15.5 16.4 10.7 8.9 9.0 11.5 8.9 7.6 11.6 13.0 17.4 10.3 8.6 8.7 12.5

ShareGPT4V-G 7B 12.80 7.83 11.9 15.00 12.99 5.95 7.46 9.62 16.67 15.97 17.34 13.60 17.59 10.25 15.52 8.70 11.31
ShareGPT4V-G 13B 12.63 8.41 22.62 15.00 9.74 6.55 8.96 13.46 11.11 15.13 19.08 15.80 13.81 9.02 6.90 13.04 13.69

InternVL† 40B 9.18∗ 8.41∗ 16.67∗ 8.57∗ 12.99∗ 9.52∗ 10.45∗ 15.38∗ 13.33∗ 11.76∗ 4.62∗ 5.60∗ 6.46∗ 9.84∗ 12.07∗ 21.74∗ 10.71∗

InternVL-G† 40B 16.12 9.57 16.67 15.00 18.18 10.71 10.45 13.46 16.67 16.81 23.12 18.4 18.93 11.89 6.90 13.04 23.21

Table 13: Overall results of different models on the MathVision. For the model trained with GeoGPT4V, score
increases are marked in red compared to the original model. ∗ indicates our re-implemented test results missed in
benchmarks or origin papers. InternVL†represents the abbreviation for InternVL-Chat-V1.2-Plus. The suffix “-G”
to the model name indicates a model trained on the GeoGPT4V. We present the detailed score for all the tasks
such as “Alg” and “AnaG”, as well as the overall (All) score for the benchmark. Due to limited space, we utilize
abbreviations for the tasks and illustrate the detailed task name in the Appendix A.
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Model Size
MathVista MathVision

GPS GEO AVG AnaG CombG DescG GrphT Angle Area Len SolG TransG AVG

InternVL-G† 40B 64.42 63.6 64.01 16.67 18.18 13.46 16.67 23.12 18.40 18.93 11.89 23.21 17.84

Open-source Models

LLaVA-1.5 13B 24.04∗ 23.85∗ 23.95∗ 14.3 9.1 13.5 5.6 10.4 12.6 14.7 11.5 10.7 11.38
ShareGPT4V 13B 27.4∗ 27.62∗ 27.51∗ 15.5 10.7 11.5 8.9 11.6 13 17.4 10.3 12.5 12.38
G-LLaVA‡ 13B 56.25∗ 51.88∗ 54.07∗ 9.52∗ 7.79∗ 8.65∗ 7.78∗ 8.67∗ 12.20∗ 10.02∗ 7.38∗ 8.93∗ 8.99∗

InternLM-VL† 7B 63.0 62.3 62.65 15.5 15.3 14.4 22.2 19.7 15.6 15.0 11.9 15.5 16.12
InternVL† 40B 61.1 61.1 61.1 16.67∗ 12.99∗ 15.38∗ 13.33∗ 4.62∗ 5.60∗ 6.46∗ 9.84∗ 10.71∗ 10.62∗

Closed-source Models

Qwen-VL-Plus - 38.5 39.3 38.90 17.9 12.7 15.4 8.9 11.6 6.4 10.0 14.3 11.31 12.06
Qwen-VL-Max - - - - 19.1 16.9 16.4 12.2 13.3 14.2 19.8 11.5 17.3 15.61
Gemini-1.0-Pro - 40.4 41.0 40.70 10.7 20.1 20.2 21.1 19.1 19.0 20.0 14.3 20.8 18.37
Gemini-1.0-Ultra - 56.2 55.6 55.90 - - - - - - - - - -
GPT-4V - 50.5 51.0 50.75 32.1 21.1 22.1 14.4 22.0 22.2 20.9 23.8 25.6 22.69

Table 14: Overall results of our best model and other open-source and closed-source models on the MathVista
and MathVision. We present the detailed score for all the tasks related to geometry such as “GPS” and “AnaG”,
as well as the average score over these tasks in two benchmarks denoted as “AVG”. Due to limited space, we
utilize abbreviations for these geometry-related tasks and illustrate the detailed task name in the Appendix A. Bold
results indicate the best results for all models, and the red results indicate the best results among the open-source
models. ‡indicates our re-implemented model without an official checkpoint. ∗ indicates our re-implemented test
results missed in benchmarks or origin papers. InternVL†represents the abbreviation for InternVL-Chat-V1.2-Plus.
InternLM-VL†represents the abbreviation for InternLM-XComposer2-VL. The suffix “-G” to the model name
indicates a model trained on the GeoGPT4V.
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