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ABSTRACT

Training advanced machine learning models demands massive datasets, resulting
in prohibitive computational costs. To address this challenge, data pruning tech-
niques identify and remove redundant training samples while preserving model
performance. Yet, existing pruning techniques predominantly require a full initial
training pass to identify removable samples, negating any positive benefit in most
scenarios. To overcome this limitation, we introduce a novel importance score
extrapolation framework that requires training on only a small subset of data. We
present two initial approaches in this framework1—k-nearest neighbors and graph
neural networks—to accurately predict sample importance for the entire dataset
using patterns learned from this minimal subset. We demonstrate the effectiveness
of our approach for 2 state-of-the-art pruning methods (Dynamic Uncertainty and
TDDS), 4 different datasets (CIFAR-10, CIFAR-100, Places-365, and ImageNet),
and 3 training paradigms (supervised, unsupervised, and adversarial). Our results
indicate that score extrapolation is a promising direction to scale expensive score
calculation methods, such as pruning, data attribution, or other tasks.

1 INTRODUCTION

In recent years, the demand for large and comprehensive datasets has grown rapidly. This is particu-
larly evident in the development of advanced models, such as large language models (LLMs) (Minaee
et al., 2024), and other forms of foundation models (Kirillov et al., 2023; Götz et al., 2025b;a), which
require vast amounts of data to train.

In this context, dataset pruning has emerged as a valuable technique to optimize the training process
and improve the efficiency of model development. By scoring individual data points by their
importance and only selecting the most informative, dataset pruning aims to improve training
efficiency while maintaining model performance. This approach is particularly beneficial in scenarios
where the available dataset is vast, and the computational resources required for training the model
on the entire dataset are significant, such as autonomous driving (Schmidt et al., 2020; 2024).

Yet, the majority of existing pruning approaches fail to deliver positive efficiency gains in practice, as
they either require computationally expensive procedures (Griffin et al., 2024) or necessitate training
a model on the full dataset to derive importance scores (He et al., 2024; Zhang et al., 2024b), which
is inconsistent with the central motivation of data pruning.

To address the inherent problem of time inefficiency in data pruning approaches, we formulate the
research question: "Can importance scores for unseen samples be efficiently extrapolated from
a small subset of known scores?". To explore this question, we propose a framework for score
extrapolation, limiting expensive score computation to a small initial subset of the full training data.
We propose one training-free and one training-dependent extrapolation approach and demonstrate
that extrapolation can make data pruning truly efficient across multiple tasks and scoring functions.
Beyond immediate pruning applications, our findings suggest that importance score extrapolation
offers a scalable approach that may be applied to other techniques involving expensive per-sample
evaluations, including data attribution methods (Koh & Liang, 2017; Ilyas et al., 2022).

1https://anonymous.4open.science/r/extra-3138
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Our contribution can be summarized as follows:
• We examine the feasibility of the suggested score extrapolation paradigm and introduce a

framework to extrapolate expensive importance scores to unseen data samples, significantly
reducing computational effort.

• In the scope of this framework, we introduce two extrapolation techniques based on k-nearest-
neighbors (KNN) and graph neural networks (GNN).

• In an extensive empirical study, we showcase the effectiveness of our extrapolation-based
approaches for 2 state-of-the-art pruning methods, i.e., Dynamic Uncertainty (DU) (He et al.,
2024), Temporal Dual-Depth Scoring (TDDS) (Zhang et al., 2024b), 4 datasets (CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), Places-365 (Zhou et al., 2017), ImageNet (Deng et al.,
2009)), and 3 different training paradigms (supervised, unsupervised, adversarial).

2 RELATED WORK

Data Pruning. Data pruning, or coreset selection (Sorscher et al., 2022; He et al., 2024; Zhang et al.,
2024a; Sener & Savarese, 2018; Feldman & Zhang, 2020; Guo et al., 2022), aims to keep a small,
representative subset of training data that preserves model performance while reducing computational
costs. Several efficient strategies have emerged, which can be grouped into three categories (Tan
et al., 2023) and either estimate importance or difficulty scores, use geometric calculation, or employ
optimization. Importantly, approaches usually require full training on the dataset (Zhang et al., 2024a;
He et al., 2024; Toneva et al., 2019) to estimate importance scores or latent space representations.

Pruning Based on Importance. Methods from this category assign scores to samples based on their
utility for training, typically retaining the highest-ranked examples. Techniques include GradNd
(Paul et al., 2021) or TDDS (Zhang et al., 2024b), which utilize gradients, while others, like EL2N
(Paul et al., 2021), rely on prediction errors. Coleman et al. (2020) use entropy from proxy models
for ranking, and forgetting scores track incorrect classifications, indicating that frequently forgotten
samples are informative. DU (He et al., 2024) assesses uncertainty through the standard deviation
of predictions during training. Alternatively, importance can be measured by the impact of sample
removal. MoSo (Tan et al., 2023) calculates the change in empirical risk, while (Feldman & Zhang,
2020; Yang et al., 2023) use influence functions (Koh & Liang, 2017) to gauge the influence of a
sample on generalization performance. This category is usually the most effective but requires costly
training on the full dataset to estimate scores.

Pruning Based on Geometry. Other approaches leverage geometric or data distribution properties.
Herding (Welling & Bren, 2009; Chen et al., 2010) and Moderate (Xia et al., 2022) compute distances
in feature space. Others (Huang et al., 2024; Mirzasoleiman et al., 2020) combine gradients with
distances. Har-Peled et al. (2006) forms a coreset by approximating the maximum margin hyperplane.
Self-Supervised Pruning (SSP) (Sorscher et al., 2022) uses k-means clustering in self-supervised
model embeddings, ranking samples by cosine similarity to centroids. k-center methods (Sener &
Savarese, 2018; Griffin et al., 2024) minimize the maximum distance from samples to centers, while
coverage-based methods (Zheng et al., 2023) enhance sample diversity and reduce redundancy.

Pruning Based on Optimization. Borsos et al. (2020) used greedy forward selection to solve a
cardinality-constrained bilevel optimization problem for subset selection. GLISTER (Killamsetty
et al., 2021c) performs coreset selection via a greedy-Taylor approximation of a bilevel objective
while simultaneously updating model parameters. GradMatch (Killamsetty et al., 2021a) defines and
minimizes a gradient error using the Orthogonal Matching Pursuit algorithm.

Adverserial Robustness. Data pruning in adversarial training remains relatively underexplored.
Existing methods can be grouped into three broad categories. The first focuses on dynamically
selecting which samples to apply adversarial perturbations to during training (Hua et al., 2021; Chen
& Lee, 2024). The second includes coreset-based methods to reduce training data while preserving
robustness (Killamsetty et al., 2021b; Dolatabadi et al., 2023). The third relies on heuristic pruning
strategies to discard samples less useful for robust learning (Kaufmann et al., 2022; Li et al., 2023).

Orthogonal Works. Beyond data pruning, identifying important data subsets is a fundamental
problem in various machine learning paradigms, including continual learning (Wang et al., 2024),
data distillation (Wang et al., 2018; Holder & Shafique, 2021), and active learning (Kirsch & Gal,
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(II) Score Calculation 

Trained Neural Network 𝓕𝒔

Ground Truth Scores 𝑺𝒔

(I) Subset (III) Embedding (IV) Extrapolation Method (V) Pruning

KNN Extrapolation

GNN Extrapolation

𝓕𝒔

Selected Samples Importance Scores Embeddings Extrapolated Retained Samples

Figure 1: Extrapolation concept overview. (I) We start by randomly selecting a subset Ds of m
samples out of the full dataset D compromising n samples (where m << n). (II) We train a neural
network Fs on the selected subset and calculate ground truth importance scores SS with the selected
pruning method during the training run. (III) Using the trained model, we map the whole dataset D
to the embedding space of the network. (IV) Subsequently, we select an extrapolation method and
train it to extrapolate scores on Ds and the calculated ground truth scores Ss. (V) Finally, we use the
original and extrapolated scores to perform the pruning task, selecting the top-k samples exhibiting
the highest importance scores.

2022). While active learning focuses on selecting samples to label, data pruning addresses the
challenge of selecting which samples to retain for training.

Data pruning methods lead to effective data reduction. However, approaches usually require training
on the full dataset or complex optimization to estimate which samples to prune. Both can exceed
full model training time. Only a few works address efficiency. RS2 (Okanovic et al., 2024) proposes
repeated random sampling during training. Tang et al. (2023) selects data online based on gradient
evaluations, while other approaches rely on proxy models (Coleman et al., 2020). The prohibitively
expensive training on the full datasets is an unaddressed problem, which we address in this work
through score extrapolation.

3 SCORE EXTRAPOLATION

Existing methods (Zhang et al., 2024a; He et al., 2024; Paul et al., 2021) in the area of data pruning
require complete training on the full dataset or rely on costly optimizations (Killamsetty et al., 2021c),
which makes them prohibitively expensive. As we show in Section 4, methods relying on foundation
models and distance calculation are also time-inefficient.

To address the computational challenges of estimating data importance scores for large-scale data sets,
we propose a score extrapolation framework. Within this framework, we compute the importance
scores only on a minor subset of the large-scale dataset and extrapolate scores for the remaining data
points efficiently. The concept is shown in Figure 1 and comprises the following steps: At first, a
subset of the large-scale dataset is selected (I). Based on this subset, a model is trained to calculate
importance scores based on a chosen extrapolation method (II). To extrapolate the scores of the
remaining samples, we generate the embeddings of the dataset based on the trained model (III). With
the calculated scores of the subset and the embeddings, we use one of the proposed extrapolation
methods based on either KNN or a GNN (IV) to estimate scores for the remaining samples. In the
last step (V), we perform the regular pruning task with our extrapolated scores.

Subset Definition. Instead of calculating the importance score for each sample x in the dataset, which
requires a full training, we aim to select a representative training subset Ds ⊂ D of cardinality m from
the full dataset D, comprising n samples, where m << n. For the residual set Dr = D \ Ds, we will
extrapolate the scores later. An initial selection based on a coverage radius or density neighborhood
requires intensive training and might not be consistently effective. Thus, we propose a uniform iid
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sampling, which provides an unbiased estimate of the underlying data distribution and converges
to the true distribution with an increased number of samples (Robert & Casella, 2004). We further
examine the initial selection strategy in Appendix C.1.

Ds = {x1, x2, . . . , xm}, where xi
i.i.d.∼ Uniform(D), ∀i ∈ {1, . . . ,m}

Model Training and Score Calculation. For our method, we need to choose a pruning method to
calculate the associated importance scores S for data pruning. Note that the quality of extrapolated
scores will be inherently upper-bounded by the chosen method. We then train a model Fs on the
defined training subset Ds, using the same setup as the pruning method would normally use for the
full dataset. Through the training process, we obtain “ground truth” data importance scores Ss ∈ Rm

for the subset Ds.

Extrapolation through Interpolation. Based on the initial computed scores Ss, we apply an
extrapolation schema to generate the scores Sr ∈ Rn−m for the residual set Dr. In this work, we
present two approaches to extrapolate importance scores based on the embedding information of a
sample x, which we motivate through the influence function literature (Koh & Liang, 2017).

For a neural network F with embedding function ϕ : X → Rd that maps inputs x to embeddings
z = ϕ(x), we assume linearity locally around samples, e.g., reference point x0 (Szegedy et al., 2013):

ϕθ(x) ≈ ϕθ(x0) + Jϕ(x0) (x− x0), (1)

where Jϕ(x0) is the Jacobian of the embedding with respect to the input.

The influence function I(·, ·) of the last layer acting as a linear classifier on the embeddings parame-
terized by θ can be given by (Koh & Liang, 2017):

I(z, ztest) = − ytest y σ
(
− ytest θ

⊤ztest
)
σ
(
− y θ⊤z

) (
z⊤testH

−1
θ z

)
, (2)

where σ(·) is the sigmoid function, Hθ is the empirical Hessian at the optimum, z is the embedding
of a training point x, and ztest the embedding of an evaluation point (e.g., a sample that we want to
assess the importance of). Here, the importance is linearly dependent on the embedding ztest of the
sample xtest except for a smooth scalar multiplier:

s(z, ztest) := − ytest y σ
(
− ytest θ

⊤xtest
)
σ
(
− y θ⊤x

)
. (3)

If x1, x2 are close and linearization holds, then for a convex interpolation xλ = λx1 + (1− λ)x2,

ϕθ(xλ) ≈ λϕθ(x1) + (1− λ)ϕθ(x2), (4)
I(z, zλ) ≈ λI(z, z1) + (1− λ)I(z, z2), (5)

up to smooth variations in s(z, ztest). This result motivates why the influence of a sample may
interpolate smoothly in the embedding space for nearby points. This result is additionally supported
by our empirical findings in Appendix C.5.

Extrapolation with KNN. To extrapolate scores, we propose a simple KNN-based approach that
functions as a baseline for more complex methods. We start from the subset Ds and its associated
importance scores Ss. Next, we utilize the encoder of our trained model Fs : Rd → Rd′

to transform
d dimensional input samples x ∈ Rd into the d′-dimensional embedding space of the encoder. Then,
we compute the score for each data point x ∈ Dr as the average of the scores of its k nearest neighbors
in the embedding space. Finally, the extrapolated importance score Sknn for a sample x can be
expressed as:

Sknn(x) =

∑k
i=1 exp(−D(Fs(x),Fs(xπi(x))))Sπi(x)∑k

i=1 exp(−D(Fs(x),Fs(xπi(x))))
, (6)

where πi(x) represents the index of the i-th nearest neighbor of x, and D(·, ·) denotes a chosen
distance metric (i.e., Euclidean distance). This weighted average, based on the structure of the
embedding space, ensures that the extrapolated scores maintain the local structure of the dataset.

Extrapolation with GNN. While KNN-based extrapolation serves as a simple approach to extrapolate
information from the sampled subset Ds to the residual data Dr, it lacks the ability to model complex
interactions among data points. To address this limitation, we additionally propose a more powerful
extrapolation method based on GNNs that can capture higher-order relationships in the dataset

4
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through message passing. We construct an undirected graph G = (V, E), where each sample in D
represents a vertex in V , and edges E are formed between each sample and its k nearest neighbors
in the embedding space. The node embeddings are defined based on the sample embeddings of the
model Fs and are combined with the one-hot encoded class labels for supervised tasks.
In addition, we define edge weights based on the latent space distance to its neighbors encoded as
exp(−d(Fs(x),Fs(xπi(x)))). The adjacency matrix A is constructed based on these edges.

To learn the interactions between the data samples, we employ a simple GNN FG(A,V; θ) with
weights θ that consists of three layers of Graph Convolutional Networks (GCNs) as described by (Kipf
& Welling, 2017) and directly predicts the importance score of the sample nodes given our defined
node embeddings V and adjacency matrix A. To scale training in large graphs, we employ neighbor
sampling (Hamilton et al., 2017) to generate mini-batches of nodes and their local neighborhoods.

Importantly, GNNs are significantly less computationally expensive than the task model, which we
analyze in our experiments. The GNN outputs a vector of predicted scores Rn, i.e, a scalar score for
each node. Since we only have the reference score Ss(x) for samples in the training dataset Ds, we
compute the mean square loss only over these nodes as

L =
1

|Ds|
∑

xi∈Ds

(FG(A,V; θ)i − S(xi))
2
, (7)

where FG(A,V; θ)i is the prediction for index i. After training, we use the GNN to infer scores for
all samples in D \ Ds. The message passing in the GNN allows the model to leverage the structural
information of the entire dataset, potentially leading to more accurate extrapolation of the scores.

Based on the proposed extrapolation schemes, we assigned importance scores by extrapolating the
scores for Dr and retaining the directly computed ground truth values for Ds. Once scores are
computed for the full dataset, they can be used in the respective downstream tasks. In this work, we
specifically focus on data pruning. However, the general framework could also be applied to other
settings, such as data attribution (Koh & Liang, 2017; Ilyas et al., 2022). This strategy significantly
reduces the computational cost of scoring large datasets. Instead of training on the full dataset, scores
are computed only on a small subset, while the remaining samples are efficiently approximated
through extrapolation.

4 EVALUATION

In the following section, we evaluate our importance score extrapolation paradigm for different
pruning methods, tasks, and datasets. The primary objective of this paper is to evaluate the research
question "Can importance scores for unseen samples be efficiently extrapolated from a small subset
of known scores?" and to investigate the strengths and limitations of this approach. Our experiments
are designed to analyze the core properties of the method rather than to maximize performance
metrics. We have three main goals for score extrapolation: 1) reduce the computation time compared
to standard pruning, 2) maintain downstream task performance, and 3) show high correlation to the
original scores which are generated by training a model and estimating the scores on the full set D.

Table 1: Relative accuracy (%) to the original accuracy (100%), at the maximum pruning rate where
the original score still outperforms random pruning; improvements over Random pruning in percent
points (pp); inference time in minutes (± std. error) in gray, best score approximation in bold.

Dataset Prune
% Method Original GNN

20%
KNN
20%

GNN
10%

KNN
10% Random

ImageNet 50 DU
100%

1367 ± 19
99.68% (+0.56pp)

829 ± 15
99.43% (+0.31pp)

687 ± 16
98.68% (-0.44pp)

701 ± 12
99.04% (-0.08pp)

581 ± 10 99.12%
–

Places365 50 DU
100%

2416 ± 26
99.21% (+0.87pp)

1631 ± 18
98.71% (+0.37pp)

1330 ± 14
98.76% (+0.42pp)

1394 ± 15
98.86% (+0.52pp)

1075 ± 13 98.34%
–

Places365 95 TDDS
100%

1741 ± 22
98.12% (+3.08pp)

917 ± 17
96.96% (+1.92pp)

621 ± 13
97.02% (+1.98pp)

668 ± 11
96.19% (+1.15pp)

353 ± 8 95.04%
–

Synthetic
CIFAR-100 95 DU

100%
412 ± 9

97.48% (+3.15pp)
374 ± 6

96.79% (+2.46pp)
158 ± 5

96.05% (+1.72pp)
333 ± 6

96.34% (+1.01pp)
114 ± 5 94.33%

–

Synthetic
CIFAR-100 95 TDDS

100%
441 ± 10

98.13% (+5.22pp)
387 ± 6

97.64% (+4.73pp)
168 ± 6

95.49% (+2.58pp)
343 ± 7

95.27% (+2.36pp)
122 ± 5 92.91%

–
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(d) CIFAR-10

Figure 2: Downstream accuracy as a function of pruning rate for multiple datasets, averaged over
three seeds. GNN-based extrapolation generally yields the strongest results, with marginal differences
from standard scores at moderate pruning rates. For each dataset, importance scores are computed
on a 20% subset (40% for CIFAR-10), followed by extrapolation. Extrapolated pruning surpasses
Zcoreset, SSP, and Random when the original scores do.

Since the research question aims to address the practical problem of importance scores estimation,
which always requires a full training, we focus on efficiency. To examine these properties, we evaluate
the tasks of classic data pruning for supervised-, unsupervised-, and adversarial training.

Scores. In our experiments, we extrapolate two state-of-the-art pruning methods, DU (He et al.,
2024) and TDDS (Zhang et al., 2024b). Both methods require training on the full dataset for several
epochs to obtain reliable scores. They also store logits per sample at each epoch; DU retains only the
softmax logits for the correct class, whereas TDDS approximates gradients from full logit outputs,
making it more memory-intensive. Details on these scores are provided in Appendix B.

Supervised Data Pruning. We first evaluate score extrapolation on supervised data pruning. The
objective of this task is to minimize the amount of training data while maintaining model performance
as much as possible. Since we focus on large datasets, we use synthetic CIFAR-100 1M (Krizhevsky
et al., 2009; Wang et al., 2023b), Places 365 (Zhou et al., 2017), and ImageNet 1k (Deng et al., 2009).
We compare our extrapolated scores with the original pruning approaches, random pruning, and the
training-free approaches ZCoreSet (Griffin et al., 2024) and SSP (Sorscher et al., 2022), and examine
the different initial subset sizes Ds ranging from 10% to 20%. If not stated otherwise, we use 20% of
the full dataset for Ds in all experiments. More details are given in Appendix A. All experiments
were conducted with 3 different random initializations.

Table 1 illustrates the effect on relative accuracy and time efficiency of our extrapolation schemes
across different datasets and pruning approaches. The time measurement contains all steps, including
the training of the model for initial scores Ss, possible extrapolation approaches, and the training of
the final model on the pruned subset. The results show that extrapolated scores maintain the high
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Figure 3: Computation time versus final test accuracy for various pruning strategies, including training
without pruning. Our extrapolation methods, particularly KNN, consistently achieve optimal trade-
offs between efficiency and performance, demonstrating the Pareto-optimality of our extrapolation
approaches. Results use 20% scored subset for extrapolation.

quality of the original scores close to their maximum pruning rate. However, score extrapolation is
considerably faster, as it does not require a training on all data samples for the score estimation.
Notably, the 20% training subsets Ds demonstrate strong performance, and the smaller 10% subset
also shows decent results and generally outperforms random pruning. GNN-based extrapolation
generally performs better than using KNN. However, KNN extrapolation is Pareto optimal w.r.t.
time-accuracy trade-offs (see Time Optimality) and reduces computation efforts by up to 4.9x.

Pruning Performance. In Figure 2 we compare pruning strategies at different pruning rates. The
difference in final accuracy between ground truth scores to extrapolation methods is low for Places365
(Figure 2a) and ImageNet (Figure 2b). While TDDS maintains a higher accuracy for moderate pruning
rates, the difference to our extrapolation decreases for higher pruning rates. DU performs worse than
random pruning for pruning rates over 50%, making comparisons in this regime irrelevant.
For synthetic CIFAR-100 1M, the original DU and TDDS actually improve model accuracy compared
to standard training. We attribute this to the ability of the pruning methods to filter out noisy data.
Similarly, score extrapolation techniques demonstrate performance gains over standard training,
though the effect is less substantial than with direct pruning methods. Especially for this dataset, our
extrapolated scores strongly outperform the training-free approaches.
For the smaller CIFAR-10 (Figure 2d), the performance between ground truth scores and extrapolated
ones is identical for TDDS up to 20% pruning. Importantly, across all datasets, extrapolated scores
consistently outperform random and training-free pruning whenever the ground truth score does,
demonstrating the practical value of score extrapolation.

Time Optimality. We examine the computational behavior of the extrapolation approaches in more
detail. Therefore, we track in a Pareto plot all steps (from score calculation to the final training)
required to train on the pruned dataset. While the original scores demonstrate higher accuracy and
can be viewed as an upper bound for the extrapolation methods, they require a full training for
score estimation, eliminating any practical benefits in most cases. Figure 3 compares the model
performance, including the pruning, extrapolation, and training time. We see that our extrapolation
methods, especially the KNN extrapolation, are always Pareto optimal for Places365 and ImageNet,
and even faster than the training-free approaches ZCoreSet and SSP. Our extrapolated scores provide
a time advantage already for a single model training, while the standard pruning approaches only
obtain any real efficiency advantage if multiple models are trained with the pruned data.

Relationship between Score Correlation and Downstream Task Performance. To verify the
results presented in Table 1, we examine the correlation between the extrapolation and the original
scores. Table 2 reports Pearson (Benesty et al., 2009) and Spearman (Zar, 2005) correlation. As
expected, the correlation increases with the subset size. In the previous pruning results, we saw that
a 10% subset size is already sufficient for high performance. In addition, the GNN’s correlation is
always higher than the KNN’s, underlining the GNN’s greater ability to capture dataset properties.
Next, we investigated the actual relationship of these correlation scores to the downstream task
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Figure 4: Analysis of the dependency of correlation and accuracy of the extrapolation methods for
Places365 and synthetic CIFAR-100. The accuracy increases with the correlation of the specific task.

performance. In Figure 4, we compare correlation and accuracy. The correlation of the original
and extrapolated scores is perfectly aligned with the final accuracy, confirming the importance of
accurately extrapolating scores.

Table 2: Pearson and Spearman correlations for different
pruning methods across datasets. GNN consistently out-
performs KNN, and performance improves with larger
subset sizes.

Dataset Method Subset
Size (%)

Pearson ρ Spearman rs

GNN KNN GNN KNN

Imagenet DU 20 0.4193 0.3779 0.3503 0.3068
10 0.2850 0.2575 0.2178 0.1980

Places365
DU 20 0.4004 0.3081 0.3611 0.2524

10 0.2612 0.2215 0.2158 0.1791

TDDS 20 0.2632 0.2251 0.2646 0.2214
10 0.2372 0.1620 0.2297 0.1594

Synthetic
CIFAR

DU 20 0.4910 0.4538 0.7009 0.6562
10 0.3396 0.3243 0.5593 0.5471

TDDS 20 0.4236 0.3955 0.6713 0.6244
10 0.3849 0.3273 0.5722 0.5324

Unsupervised Data Pruning. Here, we
investigate the applicability of score extrap-
olation to unsupervised training settings
beyond the supervised training and pruning
scenarios explored in the previous experi-
ments. When dealing with large datasets,
the assumption that all data is labeled might
not be realistic. Thus, we modify the orig-
inal data pruning task to work with unla-
beled datasets. We use Turtle (Gadetsky
et al., 2024) for the unsupervised image
classification on CIFAR-10, and apply the
score calculation with DU and our extrap-
olations. Further details on this setting are
given in Appendix A.

For our newly created unsupervised data
pruning setup, we focus on analyzing the
correlation of our extrapolation approaches
to the original DU score. In Table 3, we observe that the correlations of the extrapolated scores are
as high as for the standard pruning approach and increase with the size of the subset, indicating the
flexibility of the extrapolation paradigm. Interestingly, KNN has a higher correlation than GNN. This
might be caused by the foundation model defined latent space that Turtle uses.

Table 3: Pearson and Spearman correlations for
unsupervised extrapolation for CIFAR10 with DU
based on the Turtle (Gadetsky et al., 2024).

Subset size Pearson ρ Spearman rs

GNN KNN GNN KNN

20% 0.4201 0.5481 0.5312 0.6630
10% 0.3692 0.5078 0.4519 0.6211

Adversarial training. In addition to the su-
pervised and unsupervised, we investigate ad-
versarial training as another setting for score
extrapolation. We perform adversarial training
in the ℓ∞-norm with a perturbation budget of
ϵ = 8/255 on the CIFAR-10 (Krizhevsky et al.,
2009) dataset. We use the same training hyper-
parameters as (Wang et al., 2023b). In each case,
we prune 25% of the data. Table 4 summarizes
the robustness for the different methods. Score extrapolation considerably improves upon random
pruning in terms of robustness and accuracy on clean data. Moreover, it performs only slightly worse
than using ground truth scores directly. The KNN extrapolation achieves 0.54 linear correlation with
the ground truth scores, which could be improved by more sophisticated extrapolation approaches.

In Table 5, we additionally provide results for KNN-based extrapolation for a larger dataset and
evaluate our approach for ℓ2-based adversarial training (ϵ = 128/255). We extrapolate scores from
the DU scores from a standard CIFAR-10 training run to 2 million synthetic CIFAR-10 images
from (Wang et al., 2023b) and prune 50% of the data. We do not compare to pruning with ground
truth scores, as performing a full adversarial training run with 2 million data samples was too
expensive. Score extrapolation outperforms random pruning in both settings, while introducing only
negligible computational overhead (< 6%) and using only 5% of the full dataset size as a subset for
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extrapolation. This result demonstrates the effectiveness of score extrapolation in adversarial training,
for a considerably smaller initial subset of the full dataset (i.e., m << n).

Table 4: Comparison of the utility of original and
extrapolated DU scores on the CIFAR-10 dataset
for ℓ∞-norm adversarial training (ϵ = 8/255).
25% of the samples are pruned for each method.
Random pruning is provided as a baseline.

Experiment Robust Clean

Random 47.95% 80.43%
Extrapolated-KNN 50.39% 80.86%
Ground Truth Scores 52.26% 81.95%

Table 5: Evaluation of extrapolated DU scores on
a 2 million sample synthetic CIFAR-10 dataset.
50% of the 2 million synthetic samples are
pruned for each method. We provide random
pruning as a baseline.

NORM EXPERIMENT ROBUST CLEAN

ℓ2
RANDOM 80.79% 94.20%
EXTRAPOLATED KNN 81.28% 94.22%

ℓ∞
RANDOM 63.13% 90.86%
EXTRAPOLATED 63.56% 90.50%

Ablations. In Appendix C.1, we investigate the influence of different initial subset selection schemes
and additionally report further results on pruning and correlation in Appendices C.3 and C.4.

Investigating Failures in Extrapolated Scores. To further understand the properties and limitations
of our newly introduced extrapolation paradigm, we performed an analysis of the distribution
properties focusing on extrapolated DU scores on the ImageNet in Appendix C.2. It can be seen that
the extrapolation method achieves a moderate correlation between ground truth and estimated scores,
but cannot capture the bimodal structure present in the original distribution. We further investigate this
behaviour by analyzing samples with high and low extrapolation error. This investigation suggests
that high rank differences in predicted importance scores correspond to atypical or out-of-distribution
samples—such as those with unusual backgrounds, multiple subjects, or low visual quality.

Limitations In this work, we examined the feasibility of score extrapolation to address the efficiency
problem of current data pruning methods. We demonstrated that score extrapolation can improve
efficiency for different pruning tasks, scores, and datasets, even with simple extrapolation methods.
However, the two initial extrapolation approaches in this work are unable to capture the full distribu-
tional complexity of the ground truth scores, and we leave addressing this challenge to future work.
Moreover, while our experiments are limited to comparatively small datasets (millions of samples),
we believe the potential of extrapolation is even higher for large datasets (billions of samples), where
subsets can be orders of magnitude smaller yet still sufficient to train an effective extrapolation model.

5 CONCLUSION

The majority of pruning approaches require full training on the dataset to estimate the scores for a
subset selection, removing any potential benefit they might provide in most practical applications.
In our work, we examined the research question "Can importance scores for unseen samples be
efficiently extrapolated from a small subset of known scores?", which addresses the time efficiency
problem of the current approaches. With this framework, we select a small subset to estimate the
initial scores, resolving the requirement of training on the full set. To mitigate this problem, we
propose a novel score extrapolation paradigm. Instead of training on the full set, we select a small
subset to estimate the initial scores for the chosen data pruning method and extrapolate these scores
to the remaining samples in the dataset using a computationally efficient extrapolation method. Our
experiments with KNN and GNN-based extrapolation approaches show that the extrapolated scores
show high correlation with the original scores and achieve a high downstream task performance across
two different pruning scores, three different tasks, and four different datasets. Our extrapolation
approach achieves speedups of up to 4.9×, offering a Pareto-optimal trade-off even compared to
training-free pruning methods.

Outlook. In future work, we aim to improve downstream task performance, which could
include improving extrapolation accuracy, for instance, by refining the GNN-based score esti-
mator, exploring further extrapolation methods, and investigating alternative subset selection
strategies. Moreover, we aim to extend our extrapolation approach to other data selection tasks
involving costly score computations, such as influence functions (Koh & Liang, 2017) and data at-
tribution (Ilyas et al., 2022), but also tasks beyond data selection, such as out-of-distribution detection.
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LLM Statement. We used LLMs for rephrasing and language checking within the manuscript.

Reproducibility Statement. We provided the source code of our experiments and report additionally
all parameters and experiment settings in Appendix A. We used multiple seeds to allow statistical
significance.

Ethics Statement. Our work addresses the field of data subset selection. Data subset selection is a
fundamental part of many machine learning applications. We acknowledge that data subset selection
can also be applied to train a model to cause harm. Yet, we propose a novel extrapolation paradigm
to resolve the inherent time efficiency problem, and we do not see any ethical concerns.
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A EXPERIMENT SETUP

A.1 DATASET

To evaluate the efficacy of our proposed score extrapolation framework, we conduct experiments on
four image classification datasets differing in scale, number of classes, and image resolutions: CIFAR-
10 (Krizhevsky et al., 2009) (50K samples, 10 classes, 32× 32), synthetic CIFAR-100 (Wang et al.,
2023b) (1M samples, 100 classes, 32× 32, generated with denioising diffusion models (Ho et al.,
2020)), Places-365 (Zhou et al., 2017) (1.80M samples, 365 classes, resized to 64× 64 to expedite
experiments), and Imagenet-1k (Deng et al., 2009) (1.28M samples, 1000 classes, downscaled
version of 64× 64). To evaluate model accuracy after pruning, we use the original test sets of each
dataset, with the exception of synthetic CIFAR-100, for which we employ the standard CIFAR-100
(Krizhevsky et al., 2009) test set. Additionally, we explore the unsupervised dataset pruning with
standard CIFAR-10, and adversarial training with synthetic CIFAR-10 (Wang et al., 2023b) (2M
samples).

Dataset License: All datasets used in our experiments are publicly available, and most of them are
widely used in the ML community. The standard CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009)
datasets are freely available for research and educational purposes without any licensing requirements.
ImageNet (Deng et al., 2009) is available for free to researchers for non-commercial use, but does not
outline a specific license. Both synthetic CIFAR-10 and synthetic CIFAR-100 (Wang et al., 2023b)2

are publicly available under the MIT license. Similarly, Places365 (Zhou et al., 2017) is released
under the MIT license. We performed experiments adhering to the licensing terms of the respective
datasets.

A.2 STATISTICAL SIGNIFICANCE

Since the computed scores depend on the training, which is stochastic by nature, the scores obtained
at the end are also stochastic. To ensure statistical robustness, for any dataset, we compute three
different sets of ground truth scores S ∈ Rn with three different random initializations. For each
set of scores, we compute the model accuracy at various pruning rates: 10, 20, 50, 80, 90 and 95
percentages. To compute subset scores Ss, we follow the same procedure. We randomly select
Ds ⊂ D of cardinality m, and compute the scores Ss with standard pruning algorithms. We do this
three times with three different seeds. For each set of Ss, we extrapolate using the KNN and GNN
approaches. In this way, we obtain six sets of extrapolated scores Sr, (three from KNN, and three
from GNN). Note that extrapolation with the GNN itself is stochastic in nature. For each set of scores,
we prune the data at various rates and train the model on the pruned dataset once. Thus, for each
pruning rate, we get three test accuracy values for both extrapolation methods. Figure 2, Figure 6 and
Figure 3 report this mean accuracy.

A.3 COMPUTATIONAL RESOURCES

All experiments are conducted using NVIDIA A100-PCIE GPUs, with 42.4 GB of VRAM. Compu-
tational time reported in Table 1, and Figure 3 are the total mean runtime (in minutes) required to
compute Ss, extrapolate, and subsequent model training on the pruned dataset. Time for ground truth
scores reflects the mean time required for full dataset scoring plus training on the pruned subset.

A.4 MODELS

Both DU, and TDDS require model training for numerous epochs to compute the scores. To validate
that score extrapolation works with different models Fs, we used ResNet-18 (He et al., 2016) for
Cifar-10, and Imagenet, and ResNet-50 for Synthetic CIFAR-100, and Places-365. For the adversarial
setting, we used Wide-ResNet-28-10 (Zagoruyko & Komodakis, 2016). During extrapolation, samples
are represented in the embedding space induced by these models.

For the unsupervised setting, we employ DINOv2 (Oquab et al., 2023) as a foundation model to obtain
fixed embeddings for all samples. Both extrapolation procedures (KNN-based and GNN-based)
are subsequently performed in the embedding space of this foundation model. This diversity of

2https://github.com/wzekai99/DM-Improves-AT/
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architectures and training paradigms demonstrates that our extrapolation approach is not restricted
to a specific model but can be applied broadly across a range of backbone networks and training
schemes.

A.5 EXPERIMENT HYPERPARAMETERS

We collected all hyperparameter settings in Tables 6 to 9. They are properly introduced with the
scored description in the following section.

B SCORES

We assess our extrapolation framework with two state-of-the-art dataset pruning methods: Dynamic
Uncertainty (DU) (He et al., 2024), and Temporal Dual-Depth Scoring (TDDS) (Zhang et al., 2024b).

B.1 DU SCORES

Given a model θk trained over K epochs, Uk(x) for a sample x at epoch k is computed as the standard
deviation of the predicted probabilities P(y|x, θk) over a sliding window of J epochs (He et al.,
2024):

Sk(x) =

√√√√ 1

J − 1

J−1∑
j=0

[
P(y|x, θk+j)− P̄

]2
,

where P̄ = 1
J

∑J−1
j=0 P(y|x, θk+j). The final dynamic uncertainty score S(x) for each sample is

computed by averaging over all sliding windows:

S(x) =
1

K − J

K−J−1∑
k=0

Sk(x),

For experiments, we set J = 10, and K = 50 for CIFAR-10, synthetic CIFAR-100 and PLACES-365,
while K = 90 is used for Imagenet. More details on the hyperparameters are provided in Table 6.

B.2 TDDS SCORES

TDDS (Zhang et al., 2024b) computes the importance score for a sample x by quantifying its
contribution to optimization dynamics. Specifically, TDDS calculates the epoch-wise change in loss,
∆ℓk(x), projected onto the model’s optimization trajectory. Formally, for a sliding window of size
K, the score is computed as:

S(x) =

K∑
k=J

β(1− β)K−k
k∑

j=k−J+1

(
|∆ℓj(x)| −

1

J

k∑
i=k−J+1

|∆ℓi(x)|

)2

,

where ∆ℓk(x) measures the KL-divergence of predictions between consecutive epochs:

∆ℓk(x) = fθk+1
(x)⊤ log

fθk+1
(x)

fθk(x)
,

and β is an exponential decay factor. In experiments, we set J = 10, and β = 0.9 for all datasets,
and K = 50 for CIFAR-10, synthetic CIFAR-100, and Places-365, whereas K = 90 for ImageNet.
Further details are provided in Table 7.
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B.3 UNSUPERVISED DU SCORES

To assess whether our score-extrapolation framework remains effective in the absence of ground-truth
labels, we employ TURTLE (Gadetsky et al., 2024). TURTLE assigns a pseudo-label to each sample
x ∈ D by optimizing a bilevel objective within the representation space induced by a foundation
model ϕ.

During TURTLE optimization, at each outer iteration k ∈ {1, . . . ,K}, we record the softmax
probability vector:

p(k)(x) = softmax
(
θ(k)ϕ(x)

)
∈ ∆C−1,

where θ(k) denotes the learnable linear transformation at iteration k, and C is the number of classes
specified a priori. After K outer iterations, we define the final pseudo-label for x as

ŷ(x) = arg max
c∈{1,...,C}

p(K)
c (x).

Analogous to the supervised setting, we perform post-hoc computation to obtain the uncertainty at
the pseudo-label ŷ(x) across a sliding window of length J over epochs and subsequently average
these values to compute the unsupervised-DU score for each sample.

Similar to the supervised setting, we use J = 10 for the experiments. Further hyperparameter details
are provided in Table 9, which follows settings in (Zhang et al., 2024b).

Table 6: Hyperparameters and experimental settings for all datasets to compute standard DU scores
S, as well as subset DU scores Ss. Subset sizes are reported as a percentage of the total dataset size.
To compute standard scores, training is done on the complete dataset

Hyperparameters CIFAR-10 Synthetic CIFAR-100 Places-365 ImageNet
Num epochs (K) 50 50 50 90
Batch size (B) 256 256 128 256
Model (F) ResNet-18 He et al. (2016) ResNet-50 ResNet-50 ResNet-18
Optimizer Adam Kingma & Ba (2015) Adam Adam Adam
Learning rate (η) 10−3 10−3 10−3 10−3

Weight decay (λ) 10−4 10−4 10−4 10−4

Scheduler None None None None
Window (J) 10 10 10 10
Subset size (m) 40%, 20% 30%, 20%, 10% 20%, 10% 20%, 10%

Table 7: Hyperparameters to compute standard and subset TDDS scores.

Hyperparameters CIFAR-10 Synthetic CIFAR-100 Places-365
Num epochs (K) 50 50 50
Batch size (B) 256 256 128
Model (F) ResNet-18 ResNet-50 ResNet-50
Optimizer SGD SGD SGD
Learning rate (η) 10−3 10−3 10−3

Weight decay (λ) 5× 10−4 5× 10−4 5× 10−4

Momentum 0.9 0.9 0.9
Nesterov Sutskever et al. (2013) True True True
Scheduler CosineAnnealing CosineAnnealing CosineAnnealing
Window (J) 10 10 10
Trajectory 10 10 10
Exponential decay (β) 0.9 0.9 0.9
Subset size (m) 40%, 20% 20%, 10% 20%, 10%

B.4 SCORES EXTRAPOLATION

For KNN-based extrapolation, we computed the k nearest neighbors using the Euclidean distance. To
assess how the choice of k affects extrapolation, we varied k across 10, 20, 50, 100 and evaluated the
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Table 8: Hyperparameters used for training models on pruned datasets. Both random pruning, and
score based pruning (standard as well as extrapolated scores) use the same configurations

Hyperparameters CIFAR-10 Synthetic CIFAR-100 Places-365 ImageNet
Num epochs (K) 50 50 50 90
Batch size (B) 256 256 128 256
Model (F) ResNet-18 ResNet-50 ResNet-50 ResNet-18
Optimizer Adam Adam Adam Adam
Learning rate (η) 10−3 10−3 10−3 10−3

Weight decay (λ) 10−4 10−4 10−4 10−4

Scheduler OneCycle OneCycle OneCycle OneCycle
Window (J) 10 10 10 10

Table 9: Hyperparameters to compute unsupervised DU scores (for full dataset, as well as subset)

Hyperparameters CIFAR-10
Num epochs (K) 400
Batch size (B) 10, 000
Inner steps (M ) 10
Representation (ϕ) DINOv2 Oquab et al. (2023)
Optimizer Adam
Regularization coeff. (γ) 10
Inner Learning rate (ηin) 10−3

Outer Learning rate (ηout) 10−3

Weight decay (λ) 10−3

Scheduler None
Window (J) 10
Subset size (m) 40%

correlation between the extrapolated and ground-truth scores (based on S) for samples in Dr. The
value of k, yielding the highest Pearson correlation, is reported in our main results (Table 2), while
the full ablation is presented in Table 10.

For GNN-based extrapolation, we similarly examined the effect of the neighborhood size k while
constructing the graph. We used different values of k (10, 20, and 50). The GNN comprises three
GCN (Kipf & Welling, 2017) layers (hidden dimensions 512 and 256) and an output layer producing
scalar importance scores. We use dropout regularization of 0.5 to avoid overfitting. To ensure
scalability on a large dataset, we use neighbor sampling (Hamilton et al., 2017), with mini-batches of
node size 128.

We randomly split m samples in Ds into 90% training set and 10% validation set. These nodes
already have the computed scores Ss. We train GNN for 25 epochs, and the checkpoint achieving the
highest Pearson correlation between predicted and reference scores (based on Ss) on the validation
set is selected for inference. Scores for all samples in Dr = D \ Ds are inferred using this model
checkpoint. We report the correlation between the inferred scores and scores with the standard
approach (S) for the samples in Dr.

Interestingly, we observe that GNNs usually achieved the best performance with smaller neighborhood
sizes (k = 10), suggesting that message passing enables effective propagation of information even
with sparse local connectivity. Detailed results are provided in Table 11, with the best-performing
configuration reported in Table 2.
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Table 10: Pearson and Spearman correlations for different k in KNN pruning methods across datasets.

Dataset Method Sample size (%) Pearson ρ Spearman rs

k=10 k=20 k=50 k=100 k=10 k=20 k=50 k=100

Imagenet DU 20 0.3764 0.3779 0.3698 0.3607 0.2911 0.3068 0.3057 0.2982
10 0.2507 0.2572 0.2575 0.2513 0.1773 0.1888 0.1980 0.1894

Places365
DU 20 0.2904 0.3054 0.3081 0.3004 0.2283 0.2446 0.2524 0.2487

10 0.2139 0.2196 0.2215 0.2184 0.1687 0.1722 0.1791 0.1715

TDDS 20 0.2169 0.2208 0.2251 0.2213 0.2128 0.2180 0.2214 0.2159
10 0.1497 0.1561 0.1620 0.1583 0.1438 0.1526 0.1594 0.1513

Synthetic DU
30 0.4964 0.5092 0.5118 0.5106 0.6675 0.6864 0.6962 0.6955
20 0.4447 0.4530 0.4538 0.4499 0.6355 0.6493 0.6562 0.6562
10 0.3123 0.3197 0.3243 0.3202 0.5286 0.5374 0.5471 0.5438

TDDS 20 0.3821 0.3886 0.3955 0.3910 0.6067 0.6122 0.6208 0.6197
10 0.3096 0.3178 0.3273 0.3147 0.5137 0.5261 0.5324 0.5311

CIFAR-10
DU 40 0.6149 0.6328 0.6371 0.6313 0.6225 0.6411 0.6477 0.6447

20 0.2721 0.2759 0.2765 0.2762 0.2603 0.2597 0.2558 0.2507

TDDS 40 0.3841 0.4126 0.4181 0.4158 0.5593 0.5898 0.6029 0.6040
20 0.2014 0.2128 0.2134 0.2038 0.2738 0.2806 0.2764 0.2611

Table 11: Pearson and Spearman correlations for different k in GNN based extrapolation

Dataset Method Sample size (%) Pearson ρ Spearman rs

k=10 k=20 k=50 k=10 k=20 k=50

Imagenet DU 20 0.4193 0.4139 0.4045 0.3503 0.3442 0.3388
10 0.2850 0.2734 0.2784 0.2178 0.2189 0.2159

Places365
DU 20 0.4004 0.3869 0.3798 0.3608 0.3443 0.3373

10 0.2612 0.2604 0.2577 0.2158 0.2140 0.2095

TDDS 20 0.2632 0.2615 0.2557 0.2646 0.2611 0.2559
10 0.2372 0.2275 0.2219 0.2297 0.2238 0.2184

Synthetic DU
30 0.5593 0.5606 0.5634 0.7300 0.7344 0.7281
20 0.4910 0.4886 0.4829 0.7009 0.6983 0.6942
10 0.3396 0.3320 0.3282 0.5593 0.5513 0.5472

TDDS 20 0.4236 0.4193 0.4155 0.6713 0.6711 0.6673
10 0.3849 0.3801 0.3763 0.5722 0.5715 0.5639

CIFAR-10
DU 40 0.6163 0.6318 0.6197 0.6533 0.6608 0.6582

20 0.4080 0.2853 0.2574 0.3915 0.3009 0.2619

TDDS 40 0.3891 0.3217 0.3007 0.5656 0.4213 0.4076
20 0.1763 0.1630 0.1571 0.2008 0.1120 0.1095

C ADDITIONAL EXPERIMENTS

C.1 INITAL SUBSET SELECTION

In our framework, we use random sampling to create an initial subset for training. While we assume
little prior knowledge about our dataset, Uniform/IID sampling provides an unbiased estimate of the
underlying data distribution and converges to the true distribution as the number of samples increases
(Robert & Casella, 2004). Similarly, classical results in statistical learning theory—such as PAC
bounds and uniform convergence—rely on the IID assumption to ensure that empirical estimates
generalize reliably to the true distribution (Shalev-Shwartz & Ben-David, 2014). To ensure that our
subset provides an unbiased estimate of the properties of the full dataset, IID selection is therefore
a natural choice. Informed subset selection strategies (e.g., coreset construction or uncertainty-
based sampling) may introduce distributional biases that underrepresent certain regions of the input
space. For example, samples that we would like to prune later on also need to be represented in the
subset, which may not be the case for informed algorithms (Settles, 2010). Nonetheless, introducing
geometric approaches like CoreSet (Sener & Savarese, 2018) or ZCoreSet (Griffin et al., 2024) adds
computation overhead.
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We provide additional results for further sampling algorithms in the Table 12. It can be seen that
random and stratified sampling provide the highest correlation. Zcoreset requires further computation
and knowledge about the data, being relatively expensive. Using Zcoreset with a foundation model
on Places365 with 95% pruning, our KNN approach takes 3538 seconds compared to ZCoreSet’s
137920 seconds.

Sampling Method Pearson Correlation Spearman Correlation
Random 0.4004 0.3611
Zcoreset 0.3852 0.3508
Stratified 0.4028 0.3619

Table 12: Correlation coefficients for different sampling methods.

Additionally, we investigate our embedding space assumption to examine the coverage and represen-
tativeness of the embedding space.

To examine distributional coverage, we computed Fréchet Inception Distance (FID) scores between
sampled subsets (20%) and the remaining training data across different sampling methods in Table 13.

Sampling Method CIFAR10 CIFAR100 Places365
Random 2.11 0.11 0.07
Stratified 2.11 0.11 0.07
Zcoreset 2.42 0.14 0.10

Table 13: Similarity of different sampling methods across datasets.

To put these scores into context: FID scores around 2 indicate strong distributional similarity for
CIFAR10 (Wang et al., 2023a). Similarly, the FID between high-quality synthetic CIFAR100 data
(Wang et al., 2023a) and the real dataset is 2.74. These results provide additional quantitative support
that our sampled subsets offer good coverage of the data distribution. They also suggest that biased
selection methods, such as Zcoreset, may yield poorer approximations.

C.2 VISUAL ANALYSIS

Figure 5 (a), we perform a deeper investigation regarding limitations of our extrapolation approach,
superficially focusing on extrapolated DU scores on the ImageNet dataset. While the extrapolation
method achieves a moderate correlation between ground truth and estimated scores, the extrapolated
scores fail to capture the bimodal structure present in the original distribution, instead forming a
narrower, unimodal distribution with a higher mean and lower variance. This oversmoothing likely
contributes to the observed extrapolation errors.

To further investigate these errors, we highlight samples with high and low rank differences (specif-
ically using one "dog" class, but other classes showed similar patterns). Qualitative examples in
subfigures (b) and (c) suggest that high rank differences often correspond to atypical or out-of-
distribution samples—such as those with unusual backgrounds, multiple subjects, or low visual
quality—whereas low rank difference samples tend to be prototypical, centered, and consistent in
appearance. This indicates that the extrapolation method struggles most with outliers and visually
ambiguous inputs. We hypothesize that more powerful extrapolation methods or using more seed
data to train the score extrapolation would improve score extrapolation in these cases.

C.3 RELATIONSHIP BETWEEN CORRELATION AND DOWNSTREAM TASK ACCURACY

We investigate whether higher Pearson (ρ) or Spearman rank (rs) correlations between extrapolated
and ground truth scores are indicative of improved pruning performance, particularly in regimes where
ground truth pruning outperforms random pruning. For the highest pruning rate at which ground truth
pruning yields superior accuracy to random pruning, we compare the downstream accuracies obtained
by retaining top-scoring samples according to various scoring methods (extrapolated, standard,
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(a) Correlation of Scores

(b) High rank difference examples

(c) Low rank difference examples

Figure 5: Score distribution (a) and qualitative analysis (b-c) of extrapolation errors for ImageNet
and DU. a) Extrapolated scores show a moderate correlation with ground truth but miss the bimodal
structure, resulting in a narrower, oversmoothed distribution. (b) and (c) show examples with high and
low rank discrepancies. High discrepancies often correspond to outliers with atypical backgrounds or
multiple objects, while low discrepancies align with prototypical class examples.

Table 14: Pearson (ρ) and Spearman (rs) correlations of scores correlation between extrapolated and
original scores, and post-pruning accuracy (A)

Dataset Prune % Method ρ(ρ,A) ρ(rs, A) rs(ρ,A) rs(rs, A)

Places365 50 DU 0.977 0.975 0.771 0.771
95 TDDS 0.914 0.914 1.000 1.000

ImageNet 50 DU 0.766 0.779 0.771 0.771

Synthetic CIFAR 95 DU 0.995 0.944 0.943 0.943
TDDS 0.901 0.940 1.000 1.000

and random). Note that random pruning corresponds to 0 correlation, while ground truth scores
correspond to perfect correlation (ρ = 1, rs = 1). Our findings indicate that increased correlation
between extrapolated and ground truth scores leads to downstream accuracies that closely match
those of ground truth-based pruning (see Figure 4). We further quantify the relationship between
correlation metrics and downstream accuracy (A) after pruning by computing the Pearson and
Spearman correlations between these variables. Results are summarized in Table 14.

C.4 PRUNING PERFORMANCE WITH SMALLER SUBSET SIZES

In Figure 2 we evaluated the pruning performance of Random Pruning, Standard pruning (DU, and
TDDS), and extrapolation-based pruning with initial score computation on a subset of size m = 20%
(20% for Places-365, 40% for CIFAR-10). Here we provide additional results examining the impact
of reducing the initial subset size, specifically considering m = 10% (20% for CIFAR-10). The
results are presented in Figure 6.

We observe that, consistent with the initial larger subset size (Figure 2), pruning with extrapolated
scores, even with a smaller initial subset size, outperforms the random baseline whenever the
respective standard scores do. However, as the initial subset size m decreases, the effectiveness of
extrapolated scores diminishes. They also have smaller Pearsons correlation and Spearman rank with
the standard score, as demonstrated in Tables 2, 10 and 11.
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Figure 6: Pruning performance of Standard approaches and their extrapolated counterparts, which
started with score computation on 10% subset (20% for CIFAR-10), and then extrapolated with KNN,
and GNN.

C.5 RATIONALE FOR SCORE EXTRAPOLATION

The core premise of score extrapolation is that semantically similar data points should possess similar
importance scores. Importance scores, whether derived from prediction uncertainty, gradient norms,
or other training dynamics, are fundamentally tied to how a model perceives and interacts with the
data. A model trained to separate classes learns a representation manifold where proximity in the
embedding space reflects semantic similarity.

It follows that samples located close to each other in this space will likely elicit similar responses
from the model, leading to correlated importance scores. For instance, a dense cluster of prototypical
images from the same class represents redundant information and should receive uniformly low
importance. Conversely, ambiguous samples or those near a class decision boundary are critical for
learning and should receive high importance. Our extrapolation methods are designed to leverage
this structure: KNN directly applies a local smoothness prior, while the GNN learns a more complex
function still grounded in the geometry and local class composition of the representation manifold.

Empirical Validation To empirically validate our hypothesis, we analyzed the relationship between
ground-truth DU scores and the local neighborhood structure in the embedding space of a ResNet-50
model trained on ImageNet-1k. For each sample, we computed the Pearson correlation between its
importance score and several metrics characterizing its 20 nearest neighbors. The results, summarized
in Table 15, confirm our intuition.

The analysis reveals a clear pattern: samples with low importance scores typically reside in dense,
class-homogeneous regions (negative correlation with same-label neighbor count). In contrast, high-
importance samples are characterized by proximity to different classes (positive correlation with
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Table 15: Pearson correlation between ground-truth DU scores and local neighborhood metrics in
the ImageNet-1k embedding space (k = 20). “Same-label” refers to neighbors sharing the target
sample’s class label.

Neighborhood Metric Correlation with Score
Number of same-label neighbors −0.2971
Number of different-label neighbors 0.2630
Mean distance to same-label neighbors −0.3128
Mean distance to different-label neighbors 0.2863
Min. distance to same-label neighbors −0.2303
Min. distance to a different-label neighbor 0.2572

different-label neighbor count and distance), identifying them as informative or "hard" examples near
decision boundaries.

These findings provide a strong empirical foundation for our extrapolation framework. They justify
the use of distance-based interpolation and, critically, motivate the inclusion of class labels as features
for the GNN model to capture these highly predictive local statistics.
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