
Leveraging 3D Reconstruction for
Mechanical Search on Cluttered Shelves

Seungyeon Kim∗,1 Young Hun Kim∗,1 Yonghyeon Lee2 Frank Chongwoo Park1

1Seoul National University, 2Korea Institute For Advanced Study
{ksy, yhun}@robotics.snu.ac.kr, ylee@kias.re.kr, fcp@snu.ac.kr

Abstract: Finding and grasping a target object on a cluttered shelf, especially
when the target is occluded by other unknown objects and initially invisible, re-
mains a significant challenge in robotic manipulation. While there have been
advances in finding the target object by rearranging surrounding objects using
specialized tools, developing algorithms that work with standard robot grippers
remains an unresolved issue. In this paper, we introduce a novel framework for
finding and grasping the target object using a standard gripper, employing pushing
and pick-and-place actions. To achieve this, we introduce two indicator functions:
(i) an existence function, determining the potential presence of the target, and (ii)
a graspability function, assessing the feasibility of grasping the identified target.
We then formulate a model-based optimal control problem. The core compo-
nent of our approach involves leveraging a 3D recognition model, enabling effi-
cient estimation of the proposed indicator functions and their associated dynamics
models. Our method succeeds in finding and grasping the target object using a
standard robot gripper in both simulations and real-world settings. In particular,
we demonstrate the adaptability and robustness of our method in the presence of
noise in real-world vision sensor data. The code for our framework is available at
https://github.com/seungyeon-k/Search-for-Grasp-public.

Keywords: Mechanical search, Object rearrangement, Prehensile and Non-
prehensile manipulation

1 Introduction

Finding and grasping a desired target object on a cluttered shelf – where the target is occluded by
unknown objects and initially not visible to a vision sensor – is a significant challenge in robotic
manipulation. This task is further complicated when the pose of the vision sensor is fixed. In such
scenarios, the robot must rearrange surrounding objects to identify the target’s pose and grasp it,
all while avoiding collisions with the shelf and nearby objects. The geometric characteristics of the
shelf, which allow visual observations solely from the front and limit the manipulator’s workspace,
add another layer of complexity.

Previous research on finding and grasping the target object, termed mechanical search, has focused
on (i) simple environments, such as flat tables or bins [1, 2, 3, 4, 5, 6, 7, 8], or (ii) complex shelf
environments but with the assumption that all object shapes and poses are known [9, 10, 11, 12,
13, 14, 15]. Recent studies have ventured into more realistic shelf scenarios where the surrounding
objects are unknown. However, these often depend on specialized, elongated tools to manipulate
the objects within the tight shelf spaces [16, 17, 18]. The challenge of finding and grasping the
target object using a standard robot gripper, devoid of specialized tools, remains unsolved. To our
knowledge, we are the first to offer a practical method for mechanical search on a cluttered shelf
using a standard robot gripper as shown in Figure 1.

*Equal contribution

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://github.com/seungyeon-k/Search-for-Grasp-public

Figure 1: A 3D recognition-based mechanical search and
grasping of the target object (red cylinder).

Using a standard gripper introduces
new practical challenges that were
not addressed by existing methods.
In a shelf space densely populated
with unknown objects, identifying
collision-free spaces and generat-
ing collision-free actions are crucial.
However, when using a standard grip-
per, as opposed to specialized elon-
gated tools, accounting for collisions
between the gripper, robot links, ob-
jects, and shelves becomes much
more challenging (e.g., imagine sce-
narios in which the robot is required to reach its arm deeper into the shelf). A distinguishing feature
of our approach, which serves as the solution to the aforementioned challenge and sets it apart from
existing methods, is the utilization of a 3D reconstruction model.

In this paper, we propose a novel optimal control framework for mechanical search with practical
algorithms that leverage 3D reconstruction models. First, we introduce two indicator functions
(denoting the target’s candidate pose by x ∈ SE(3)): (i) an existence function f(x) that indicates
if the target can be present at x and (ii) a graspability function g(x) that indicates if the target at x
is graspable. The objective then becomes to rearrange surrounding objects until only one existable
and graspable pose x∗ remains, i.e., there exists a unique x∗ ∈ SE(3) such that f(x∗) = 1 and
g(x∗) = 1, which leads to a straightforward definition of a cost function using f and g.

Second, we leverage a 3D object recognition model to effectively estimate the functions f, g and
their corresponding dynamics models; therefore we formulate a tractable model-based optimal con-
trol problem. Specifically, we employ a recent 3D recognition model rooted in superquadric prim-
itives [19]. Notably, the superquadric representation allows for rapid collision checks, depth image
rendering, and the utilization of pushing dynamics models [20], which leads to effective estimations
of f and g and their dynamics models. To mitigate accumulated estimation errors during optimal
control, we adopt the model predictive control with a short time horizon.

Through experiments in both simulations and real-world scenarios, we have validated the effective-
ness of our 3D reconstruction-based approach. Our method is able to find and grasp the target object
using a standard two-finger robot gripper, even in the presence of noise from vision sensor data in
real-world settings.

2 Related Works

Mechanical search. Earlier studies have focused on algorithmic approaches to finding the target
object by manipulating surrounding objects through pushing or pick-and-place actions [1, 2, 3]. De-
spite their contributions, these methods make many environmental assumptions and they are com-
putationally intensive and slow. Subsequent efforts have leveraged the POMDP model and solvers
like DESPOT [4] or POMCP [5]. More recent studies have employed deep learning-based modules,
such as object segmentation and recognition networks, to enhance search effectiveness [6, 7]. An-
other significant work uses a 3D shape recognition to predict occluded geometries from the vision
sensor, leveraging this information to enhance the search process [8]. Our work aligns with [8]
in leveraging the 3D recognition model to effectively solve the mechanical search problem. How-
ever, we employ an implicit object representation, offering various computational advantages for the
mechanical search problem.

Mechanical search on shelves. Given that shelves are commonly used to store objects in home en-
vironments or logistic warehouses, mechanical search on shelves has emerged as a critical research
area [16, 17, 18]. The inherent constraints of shelves introduce challenges, including potential col-
lisions with the shelf, constraints on object removal, and limited camera views. An extension of

2

the X-ray method [7] has been proposed to address these challenges [16]. Subsequent studies have
introduced novel tools to augment the capabilities of robotic actions, such as stacking [17, 18]. Our
approach is distinct because it incorporates the graspability of the target object during mechanical
searches. While previous studies often utilize specialized grippers, thereby eliminating the need to
consider the graspability of the target, our use of standard grippers necessitates a careful considera-
tion of potential collisions during the grasping of the target object. This requires 3D scene reasoning,
leading us to adopt a 3D recognition model, which is a departure from the 2D reasoning commonly
employed in prior works. More detailed reviews on related works can be found in Appendix A.

3 A General Framework for Mechanical Search and Grasping

In this section, we propose a general framework for mechanical search and provide two specific
algorithms: (i) search-and-grasp and (ii) search-for-grasp, using the model-based optimal control
formulation. The search-and-grasp method executes actions first to find the target and then executes
additional actions to rearrange the objects to make the target graspable, while the search-for-grasp
method integrates the search and grasp processes into a cohesive framework so that the target object’s
graspability is taken into account in the search phase.

Our focus lies specifically on scenarios where the target object is known – where its information
is given as the color and geometry – and is fully occluded by other unknown objects. We assume
that the robot can interact with objects either by pushing or pick-and-place actions to rearrange the
objects. When the robot performs the pick-and-place action, it is only allowed to place an object
in another empty space on the shelf (i.e., object stacking is not allowed). For the target object, we
assume that it is placed in a straight-up pose (i.e., not tilted) and not stacked on top of the other
surrounding objects. Also, when the robot rearranges the surrounding non-target objects, the target
object is assumed to remain stationary.

Figure 2: Illustration on the existence func-
tion f(x). Upper: Observation. Lower: Can-
didate poses and hypothetical rendering re-
sults.

We denote the target object’s pose by x ∈ SE(3);
since the target object is not tilted and stacked, it is
sufficient to represent the object pose as x ∈ SE(2).
Instead of dealing with the continuous pose space
SE(2), to simplify numerical computations, we re-
strict our attention to a finite subset X ⊂ SE(2). The
two core components in our framework are (i) an ex-
istence function f : X → {0, 1} and (ii) a graspa-
bility function g : X → {0, 1}. The existence func-
tion f(x) indicates whether the target object can be
present at the pose x or not. For example, given an
observation shown in Figure 2 (Upper), consider two
candidate target poses x ∈ X (i.e., the red cylinders
in Figure 2 Lower). For f(x) to be 1, the rendered
image must match the observation (there are other
conditions as well, details are in the next section),
otherwise, f(x) = 0. In practice, considering the
discretization resolution of X , f(x) is considered to
be 1 if the target object pose can exist near x. Natu-
rally, it captures the uncertainty of the target object’s
pose because

∑
x∈X f(x) represents the number of possible object poses; the greater

∑
x∈X f(x),

the more uncertain. We assume X is sufficiently densely discretized so that
∑

x∈X f(x) is lower
bounded by 1 (i.e., the target object must exist in at least one x ∈ X). The graspability function
g(x) indicates whether the target object at the pose x is graspable or not.

Denote the existence and graspability functions at a discrete timestep t by ft(x) and gt(x) and a
pushing or pick-and-place action by at. We assume that the dynamics models for ft(x) and gt(x)
are given and denoted by F and G such that ft+1(x) := F(ft, at)(x) and gt+1(x) := G(gt, at)(x).

3

Additionally, we assume that the uncertainty of the target object pose is not increasing in t, i.e.,∑
x∈X ft(x) ≥

∑
x∈X F(ft, at)(x), regardless of at. This non-increasing uncertainty assumption

comes from the prior assumption that the target object does not move when an action is applied
because it is impossible for an object suddenly can exist where it could not originally exist.

Given initial f0 and g0 and dynamics models F and G, we formulate a search-for-grasp method as a
model-based optimal control. Specifically, the goal is to find a sequence of actions a0, . . . , aT for a
fixed time T , so that fT (x∗) = 1 for only one x∗ ∈ X – if there are more than one, then we cannot
specify at which x the target object exists – and that is graspable, i.e., gT (x∗) = 1. For this purpose,
we formulate the following model-based optimal control problem:

min
a1,...,aT

∑
x∈X

fT (x) + αfT (x)(1− gT (x)), (1)

such that ft+1(x) = F(ft, at)(x) and gt+1(x) = G(gt, at)(x), and α is a hyperparameter. Mini-
mizing the first term in (1) makes ft have only one x∗ such that fT (x∗) = 1 – since the existence
function is lower bounded by 1 –, and minimizing the second term enforces gT (x∗) = 1. Without
the second term, even though the target object becomes visible, there is no guarantee that it will be
graspable.

In practice, we prefer to perform a minimum number of actions needed for the task, rather than for
a pre-determined fixed length T . We introduce a discount factor γ ∈ (0, 1] and propose a modified
version of the optimal control problem:

min
a1,...,aT

T−1∑
t=0

γt(Jt+1 − Jt) = γTJT +
1− γ

γ

T∑
t=1

γtJt − J0, (2)

where Jt :=
∑

x∈X ft(x) + ft(x)(1− gt(x)). As γ → 1, the new objective function converges to
the original one in (1) since J0 is constant. For γ < 1, Jt for t < T are now taken into account,
and thus minimizing (2) leads to accomplishing the task quickly. A γ that is too small can make the
problem difficult, so an appropriate level of γ needs to be found.

Additionally, we propose a computationally lighter version, a search-and-grasp method. In the cost
term Jt in (2), the computation cost of gt(x) is very high since it requires the planning of multiple
collision-free paths (as we explain in the next section in more details). The function gt(x) must be
calculated for all x such that ft(x) = 1, thus as

∑
x ft(x) is bigger, the computation cost increases.

In the search-and-grasp method, we first find the target by using the first term only Jt =
∑

x ft(x).
Then, after the target is found at x∗, we use the second term Jt = 1−gt(x

∗) to rearrange the objects
to make the target graspable. Since the target pose is already specified at the search phase, in the
second stage, we need to compute the graspability function gt only at one x∗, which significantly
reduces the total computation time.

4 3D Object Recognition-based Mechanical Search

In this section, as one practical way to implement our framework, we propose an object recognition-
based approach. We assume that a scene contains multiple unknown objects and a known target
object, and the RGB-D camera’s pose is fixed so can only capture one side of the scene (e.g., a shelf
containing objects from the front view). From the partial view information of the scene, our strategy
is to first recognize the shapes and poses of the objects and then to use the recognition results to
estimate the existence and graspability functions f and g and the dynamics models F and G.

4.1 Object Recognition via Superquadrics

In this paper, we employ the shape class called the superquadrics, a family of geometric shapes
which represent diverse shapes ranging from boxes, cylinders, and ellipsoids to other symmetric
complex shapes. The implicit function of a superquadric surface at the canonical pose (i.e., T =

4

I4×4 is the identity matrix) has the following form:(∣∣∣∣ xa1
∣∣∣∣ 2
e2

+

∣∣∣∣ ya2
∣∣∣∣ 2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣ 2
e1

− 1 = 0, (3)

where q = (a1, a2, a3, e1, e2) ∈ R5 is the shape parameter.

Figure 3: Examples of superquadrics.

Especially, a1, a2, a3 controls the sizes and
e1, e2 controls the geometric shapes (some ex-
amples are shown in Figure 3). Given a pose
of the object T ∈ SE(3), the implicit surface
equation is transformed accordingly. Recently,
given a partial observation of an object, a model
that predicts the 3d full shape of the object by
using the superquadric representation has been
proposed [19]; we use this model for 3D ob-
ject recognition. We note that to efficiently rep-
resent more complex 3D shapes, we can use
latent variable models, e.g., using the autoen-
coder framework [21, 22, 23, 24, 25, 26]. We
include details about the model architectures and the training details in Appendix B.1.

4.2 Existence and Graspability Function Estimates f̂ and ĝ

Given a partial visual observation o, let a set of estimated superquadric shape parameters and poses
be denoted by s = {(qi, T i)}. Further, we assume that an indicator variable c ∈ {0, 1} – indicates
whether the target object is visible (i.e., c = 1) or not (i.e., c = 0) in the observation o – is available.
If target is visible (i.e., c = 1), we assume that the target object’s pose can be estimated accurately.
Using these estimates s and c, we obtain the estimates for the existence and graspability functions
denoted by f̂(x; s, c) and ĝ(x; s).

The key idea is to locate the recognized superquadric objects in the simulation, as well as the target
object at a hypothetical pose x ∈ X . If c = 1, the existence function f̂ , since we know at which
x∗ the target object exist, is 1 only at x∗, i.e., f̂(x∗; s, c = 1) = 1 and 0 at other x ∈ X . If c = 0,
f̂(x; s, c = 0) is defined to be 1 if (i) depth rendering results with and without the target object at x
are identical and (ii) there is no collision between the recognized objects, the environment, and the
target object. Otherwise f̂(x; s) = 0. The graspability function ĝ(x; s) is defined to be 1 if we can
find a collision-free grasping trajectory of the robot gripper, where all possible collisions between
the robot arm, gripper, environment, and multiple objects should be taken into account. The depth
rendering, collision checking, and grasp planning can be performed efficiently using 3D recognition
results, and the details on the computation of the existence and graspability functions are given in
Appendix B.2 and B.3, respectively.

4.3 Approximate Dynamics Models F̂ and Ĝ

Then, we construct the approximate dynamics models for ft and gt by using (i) the dynamics of st
denoted by st+1 = S(st, at) – where we just transform the selected object for the pick-and-place
action and use pre-trained SE(2)-equivariant pushing dynamics model for pushing action [20] – and
(ii) the function estimates f̂ and ĝ. Since f̂ takes the classification label c as an input, we need
a dynamics model for ct, but it is hardly possible to know if the target will be visible or not in
the future given an action at. We take a conservative strategy and assume that the visibility of the
target object c̃t+1 does not change at t + 1, i.e., c̃t+1 = ct. Then, for given ft and gt at time t, the
approximate dynamics models are defined as follows:

F̂(ft, at)(x) := ft(x)f̂(x; st+1, c̃t+1); Ĝ(gt, at)(x) := ĝ(x; st+1), (4)

5

where st+1 = S(st, at) and c̃t+1 = ct. The existence function F̂(ft, at)(x) is 1 if both ft(x)

and f̂(x; st+1, ct+1) are 1, which guarantees the non-increasing uncertainty condition for F , i.e.,∑
x∈X ft(x) ≥

∑
x∈X F̂(ft, at)(x).

4.4 Sampling-based Model Predictive Control

Given an initial observation o0 and function estimates f0(x) = f̂(x; s0, c0), g0(x) = ĝ(x; s0),
by using the approximate dynamics models F̂ , Ĝ, we can solve the optimal control problem in (2).
Since both the function estimates and dynamics models have numerical errors, we perform the model
predictive control (MPC) where we iterate the following procedure for T times: for t = 0, . . . , T −1
(i) update initial estimates of ft, gt from a new observation ot, (ii) solve (2) with a short time horizon
M < T , and (iii) take only the first action at. Details for sampling-based model predictive control
can be found in Appendix B.4.

5 Experiments

In this section, we conduct a comparative analysis of the two proposed methods, the search-and-
grasp and search-for-grasp methods, and evaluate both methods to show robust performance to find
and grasp the occluded target object in both simulation and real-world environments.

Figure 4: The left column shows the simulation
and real environments, and in the right column,
objects used in each environment are visualized.
In particular, the target object is marked in red in
the simulation; the red-taped can is the target ob-
ject in the real experiment.

Environment. The simulation and real-world
experiments share the same robot, the same
camera, and the same shelf environment; the
simulation experiments are conducted by the
Pybullet simulator. We use the 7-dof Franka
Emika Panda robot with a parallel-jaw grip-
per and an Azure Kinect DK camera sensor
looking into the shelf at a fixed location (See
Figure 4). The raw input visual observation
from the camera is an RGB-D, which is then
converted to point cloud data. In the simula-
tion environment, we assume that the ground-
truth segmentation masks of objects are avail-
able; for real-world experiments, we adopt
color-based heuristic segmentation method. We
use cylinder-shaped and cube-shaped objects of
various sizes which are visualized in Figure 4.
More details on the environment are in Appendix C.1. Throughout the experiments, we restrict our
attention to a cylindrical target object. Considering the rotational symmetry of the target object and
the assumption that the target object stands upright, the target pose space X can be reduced to R2.
We note that if the target object is a box, the whole SE(2) space should be considered as the target
pose space; the experimental results when the target object is a box can be found in Appendix D.3.

Action space. The action space A is composed of either pushing or pick-and-place actions. A
pushing action is defined by (Tpush, d) ∈ SE(3)×R3, where Tpush ∈ SE(3) is an initial gripper pose
and d ∈ R3 is a displacement of the gripper with a fixed orientation. A pick-and-place action is
defined by (Tgrasp, Tplace) ∈ SE(3) × SE(3), which are gripper poses when it grasps and places the
object, respectively. If the gripper collides with other objects, it is judged to be invalid and is not
sampled. For details on the actions and the action sampling method, we refer to Appendix B.5.

Evaluation metrics. We report the find- and grasp-success rates separately. If a sequence of our
actions makes the target visible within 10-time steps, it is considered as a find-success. If it makes
the target not only visible but also graspable and we can find a collision-free path for taking out the
object within 10-time steps, it is considered a grasp success. Additionally, we measure the average
number of actions required to find or grasp the target.

6

Figure 5: An example trajectory of simulation manipulation. Each column shows the camera input
and action selection at each time step. In the simulation, surrounding objects are blue and the target
object is red.

The number of objects︷ ︸︸ ︷
2 4 6 8

METHOD Find Grasp Find Grasp Find Grasp Find Grasp

O-Search-and-Grasp Succ. 0.978 0.939 0.939 0.761 0.878 0.622 0.844 0.528
Steps 1.392 1.562 2.178 2.635 2.589 3.473 2.664 3.947

O-Search-for-Grasp Succ. 0.983 0.928 0.933 0.794 0.9 0.678 0.889 0.578
Steps 1.407 1.647 2.077 2.769 2.377 3.574 2.831 4.125

R-Search-and-Grasp Succ. 0.983 0.928 0.928 0.789 0.889 0.656 0.878 0.606
Steps 1.362 1.611 2.222 2.739 2.581 3.432 2.981 3.78

R-Search-for-Grasp Succ. 0.972 0.922 0.933 0.756 0.922 0.672 0.894 0.656
Steps 1.331 1.651 2.196 2.765 2.301 3.281 2.901 3.975

Table 1: Simulation manipulation results

5.1 Simulation Experiments Results

In this section, we evaluate our methods in the simulation experiments and empirically show that
they can find and grasp the fully-occluded target object. To evaluate our method, we have created
180 scenarios for each number of surrounding objects in {2, 4, 6, 8}, so a total of 720 scenarios; for
each scenario, a random selection (allowing duplicates) is made among the given objects in Figure 4.
More details on simulation experiment settings are provided in Appendix C.2. We note that there are
some scenarios where the target object is not graspable even with the maximum number of actions,
so the maximum average success rate is slightly lower than 1.

To evaluate our 3D reconstruction-based mechanical search method, and in particular to see how
much recognition error affects the task performance, we also test the cases where the ground-truth
poses and shape parameters of the surrounding objects (not the target object) are available, and
denote them as oracle. In these cases, the the recognition module is not used and the ground-truth
information of the surrounding objects are directly used for solving optimal control. We put the
letter ’O’ in front of the method name in the oracle experiments, and ’R’ in the experiments using
the 3D recognition (e.g., O-Search-and-Grasp and R-Search-for-Grasp).

Figure 5 shows an example of how our recognition-based search-for-grasp method acts on the simu-
lation experiment. The search-for-grasp method succeeds in finding the target object in four pushing
actions and then makes the target object graspable by performing an additional pick-and-place ac-
tion. The success rates and the average number of actions for finding and grasping the target are
shown in Table 1. First, the performance differences between oracle and recognition are not signifi-
cant, which means that the 3D recognition error does not significantly affect performance. Second,
search-for-grasp has no difference in performance from search-and-grasp when the number of sur-
rounding objects is small, but shows better performance when the number is large. This suggests
that considering graspability is of great help when finding the target. Further experimental results
with more diverse scenarios are provided in Appendix D.1 and D.2.

7

5.2 Real-world Experiments Results

Figure 6: Search-for-grasp real-world manipulation results

We adopt the R-Search-for-Grasp
method for finding and grasping the
desired target object in real-world en-
vironment. Figure 6 shows a real-
world manipulation result. The target
object is occluded by the two objects,
and the target object is found through
three pushing actions. The found tar-
get object is not graspable at t = 3, an
additional pushing action is applied
to make the target object graspable1.

Num. Find Grasp
3 5/5 5/5
4 5/5 4/5
5 4/5 2/5
6 3/5 2/5

Table 2: Search-for-grasp real-
world manipulation results.

Failure cases. Table 2 shows the manipulation success rates in
real-world experiments. We design 5 test scenarios for each num-
ber of objects, and used object configurations for each experi-
ment are in Appendix C.3. A few failure failure cases occur, es-
pecially when the number of the surrounding objects increases.
Most of the reasons for failure cases are (i) that there’s no solu-
tion of rearranging the objects in our designed action space (see
Appendix B.5) and (ii) that incorrect 3D recognition causes erro-
neous updates of existence and graspability maps; for example, if
the recognition model recognizes an object as inaccurately large, the existence map may be under-
estimated, i.e., it is decided that f(x) = 0, but the target object can exist at x ∈ SE(2).

5.3 Limitations and Future Directions

First, since our method considers single superquadric-shaped objects, it is not trivial to apply it
directly to more complex objects. One future direction to extend our method is to exploit the re-
searches that attempt to represent the complex objects as multiple superquadrics [27, 19, 28, 29].
Even if each object is represented with several superquadrics, we can compute the existence function
and the graspability function in the same manner. Second, our method highly depends on the 3D
recognition model, inaccurate recognition can cause several problems. There can be robot-object
collisions because we check the collision between the robot action and recognized objects (see Ap-
pendix B). Moreover, some inappropriate action decisions can be made due to erroneous existence
map estimation. To overcome the limitation, additional information such as RGB images should
be utilized to enhance the recognition performance [30, 31]. Lastly, since the graspability of the
object is checked using only a limited number of grasping trajectories (see Appendix B.3), there can
be cases where it is determined that the object cannot be grasped even if there is a grasping trajec-
tory. As a research direction to overcome this, the graspability can be checked with more diverse
trajectories quickly using a network-based planner [32].

6 Conclusion

We have introduced a novel mechanical search and grasping framework for cluttered shelves and
developed practical algorithms named search-and-grasp and search-for-grasp, utilizing a pre-trained
3D object recognition model. Our approach uses pushing and pick-and-place actions to rearrange
occluding objects, making the desired target object both visible and graspable. Unlike prior research
which often relies on specialized elongated tools, we employ a standard two-finger gripper with
robot actions including pushing and pick-and-place, and 6-DoF grasping. Our method achieves a
90-65% success rate in simulation experiments depending on the number of objects varying from 2
to 8, and it maintains comparable efficacy in real-world settings, even in the observation noise.

1The real-world manipulation videos can be found at this Youtube link.

8

https://www.youtube.com/watch?v=FoejNGHf1XM&t=2s

Acknowledgments

S. Kim, Y. H. Kim, and F. C. Park were supported in part by SRRC NRF grant RS-2023-00208052,
IITP-MSIT grant 2021-0-02068 (SNU AI Innovation Hub), IITP-MSIT grant 2022-0-00480 (Train-
ing and Inference Methods for Goal-Oriented AI Agents), KIAT grant P0020536 (HRD Program for
Industrial Innovation), ATC+ MOTIE Technology Innovation Program grant 20008547, SNU-AIIS,
SNU-IAMD, SNU BK21+ Program in Mechanical Engineering, and SNU Institute for Engineering
Research. Y. Lee was the beneficiary of an individual grant from CAINS supported by a KIAS Indi-
vidual Grant (AP092701) via the Center for AI and Natural Sciences at Korea Institute for Advanced
Study.

References
[1] L. L. Wong, L. P. Kaelbling, and T. Lozano-Pérez. Manipulation-based active search for oc-

cluded objects. In 2013 IEEE International Conference on Robotics and Automation, pages
2814–2819. IEEE, 2013.

[2] M. Gupta, T. Rühr, M. Beetz, and G. S. Sukhatme. Interactive environment exploration in
clutter. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5265–5272. IEEE, 2013.

[3] M. R. Dogar, M. C. Koval, A. Tallavajhula, and S. S. Srinivasa. Object search by manipulation.
Autonomous Robots, 36:153–167, 2014.

[4] J. K. Li, D. Hsu, and W. S. Lee. Act to see and see to act: Pomdp planning for objects search in
clutter. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5701–5707. IEEE, 2016.

[5] Y. Xiao, S. Katt, A. ten Pas, S. Chen, and C. Amato. Online planning for target object search
in clutter under partial observability. In 2019 International Conference on Robotics and Au-
tomation (ICRA), pages 8241–8247. IEEE, 2019.

[6] M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang, R. Martı́n-Martı́n, A. Garg,
S. Savarese, and K. Goldberg. Mechanical search: Multi-step retrieval of a target object oc-
cluded by clutter. In 2019 International Conference on Robotics and Automation (ICRA), pages
1614–1621. IEEE, 2019.

[7] M. Danielczuk, A. Angelova, V. Vanhoucke, and K. Goldberg. X-ray: Mechanical search for an
occluded object by minimizing support of learned occupancy distributions. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 9577–9584. IEEE,
2020.

[8] A. Price, L. Jin, and D. Berenson. Inferring occluded geometry improves performance when
retrieving an object from dense clutter. In Robotics Research: The 19th International Sympo-
sium ISRR, pages 376–392. Springer, 2022.

[9] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim. Efficient obstacle rearrangement for object
manipulation tasks in cluttered environments. In 2019 International Conference on Robotics
and Automation (ICRA), pages 183–189. IEEE, 2019.

[10] J. Lee, C. Nam, J. Park, and C. Kim. Tree search-based task and motion planning with pre-
hensile and non-prehensile manipulation for obstacle rearrangement in clutter. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 8516–8522. IEEE, 2021.

[11] E. R. Vieira, D. Nakhimovich, K. Gao, R. Wang, J. Yu, and K. E. Bekris. Persistent homology
for effective non-prehensile manipulation. In 2022 International Conference on Robotics and
Automation (ICRA), pages 1918–1924. IEEE, 2022.

9

[12] S. Park, Y. Chai, S. Park, J. Park, K. Lee, and S. Choi. Semi-autonomous teleoperation via
learning non-prehensile manipulation skills. In 2022 International Conference on Robotics
and Automation (ICRA), pages 9295–9301. IEEE, 2022.

[13] C. Nam, J. Lee, Y. Cho, J. Lee, D. H. Kim, and C. Kim. Planning for target retrieval using a
robotic manipulator in cluttered and occluded environments. arXiv preprint arXiv:1907.03956,
2019.

[14] C. Nam, J. Lee, S. H. Cheong, B. Y. Cho, and C. Kim. Fast and resilient manipulation plan-
ning for target retrieval in clutter. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 3777–3783. IEEE, 2020.

[15] C. Nam, S. H. Cheong, J. Lee, D. H. Kim, and C. Kim. Fast and resilient manipulation planning
for object retrieval in cluttered and confined environments. IEEE Transactions on Robotics, 37
(5):1539–1552, 2021.

[16] H. Huang, M. Dominguez-Kuhne, V. Satish, M. Danielczuk, K. Sanders, J. Ichnowski, A. Lee,
A. Angelova, V. Vanhoucke, and K. Goldberg. Mechanical search on shelves using lateral
access x-ray. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2045–2052. IEEE, 2021.

[17] H. Huang, M. Danielczuk, C. M. Kim, L. Fu, Z. Tam, J. Ichnowski, A. Angelova, B. Ichter, and
K. Goldberg. Mechanical search on shelves using a novel “bluction” tool. In 2022 International
Conference on Robotics and Automation (ICRA), pages 6158–6164. IEEE, 2022.

[18] H. Huang, L. Fu, M. Danielczuk, C. M. Kim, Z. Tam, J. Ichnowski, A. Angelova, B. Ichter, and
K. Goldberg. Mechanical search on shelves with efficient stacking and destacking of objects.
In Robotics Research, pages 205–221. Springer, 2023.

[19] S. Kim, T. Ahn, Y. Lee, J. Kim, M. Y. Wang, and F. C. Park. Dsqnet: A deformable model-
based supervised learning algorithm for grasping unknown occluded objects. IEEE Transac-
tions on Automation Science and Engineering, 2022.

[20] S. Kim, B. Lim, Y. Lee, and F. C. Park. Se (2)-equivariant pushing dynamics models for
tabletop object manipulations. In Conference on Robot Learning, pages 427–436. PMLR,
2023.

[21] Y. Lee, S. Kim, J. Choi, and F. Park. A statistical manifold framework for point cloud data. In
International Conference on Machine Learning, pages 12378–12402. PMLR, 2022.

[22] Y. Lee and F. C. Park. On explicit curvature regularization in deep generative models. arXiv
preprint arXiv:2309.10237, 2023.

[23] Y. Lee, H. Kwon, and F. Park. Neighborhood reconstructing autoencoders. Advances in Neural
Information Processing Systems, 34:536–546, 2021.

[24] Y. Lee, S. Yoon, M. Son, and F. C. Park. Regularized autoencoders for isometric representation
learning. In International Conference on Learning Representations, 2021.

[25] C. Jang, Y. Lee, Y.-K. Noh, and F. C. Park. Geometrically regularized autoencoders for non-
euclidean data. In The Eleventh International Conference on Learning Representations, 2022.

[26] Y. Lee. A geometric perspective on autoencoders. arXiv preprint arXiv:2309.08247, 2023.

[27] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics revisited: Learning 3d shape
parsing beyond cuboids. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10344–10353, 2019.

10

[28] W. Liu, Y. Wu, S. Ruan, and G. S. Chirikjian. Robust and accurate superquadric recovery: A
probabilistic approach. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2676–2685, 2022.

[29] W. Liu, Y. Wu, S. Ruan, and G. S. Chirikjian. Marching-primitives: Shape abstraction from
signed distance function. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8771–8780, 2023.

[30] C. Xie, Y. Xiang, A. Mousavian, and D. Fox. Unseen object instance segmentation for robotic
environments. IEEE Transactions on Robotics, 37(5):1343–1359, 2021.

[31] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

[32] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and D. Fox. Motion policy networks.
In Conference on Robot Learning, pages 967–977. PMLR, 2023.

[33] Y. Ye and J. K. Tsotsos. Sensor planning for 3d object search. Computer Vision and Image
Understanding, 73(2):145–168, 1999.

[34] K. Sjö, D. G. López, C. Paul, P. Jensfelt, and D. Kragic. Object search and localization for an
indoor mobile robot. Journal of Computing and Information Technology, 17(1):67–80, 2009.

[35] T. Kollar and N. Roy. Utilizing object-object and object-scene context when planning to find
things. In 2009 IEEE International Conference on Robotics and Automation, pages 2168–
2173. IEEE, 2009.

[36] J. Ma, T. H. Chung, and J. Burdick. A probabilistic framework for object search with 6-dof
pose estimation. The International Journal of Robotics Research, 30(10):1209–1228, 2011.

[37] A. Aydemir, K. Sjöö, J. Folkesson, A. Pronobis, and P. Jensfelt. Search in the real world:
Active visual object search based on spatial relations. In 2011 IEEE International Conference
on Robotics and Automation, pages 2818–2824. IEEE, 2011.

[38] M. Hanheide, C. Gretton, R. Dearden, N. Hawes, J. Wyatt, A. Pronobis, A. Aydemir,
M. Göbelbecker, and H. Zender. Exploiting probabilistic knowledge under uncertain sensing
for efficient robot behaviour. In IJCAI, pages 2442–2449, 2011.

[39] A. Aydemir, M. Göbelbecker, A. Pronobis, K. Sjöö, and P. Jensfelt. Plan-based object search
and exploration using semantic spatial knowledge in the real world. In ECMR, pages 13–18.
Citeseer, 2011.

[40] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping and planning
for visual navigation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2616–2625, 2017.

[41] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforcement learning. In 2017 IEEE interna-
tional conference on robotics and automation (ICRA), pages 3357–3364. IEEE, 2017.

[42] A. Mousavian, A. Toshev, M. Fišer, J. Košecká, A. Wahid, and J. Davidson. Visual representa-
tions for semantic target driven navigation. In 2019 International Conference on Robotics and
Automation (ICRA), pages 8846–8852. IEEE, 2019.

[43] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov. Object goal navigation using
goal-oriented semantic exploration. Advances in Neural Information Processing Systems, 33:
4247–4258, 2020.

[44] Y. Yang, H. Liang, and C. Choi. A deep learning approach to grasping the invisible. IEEE
Robotics and Automation Letters, 5(2):2232–2239, 2020.

11

[45] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen. Shape completion enabled
robotic grasping. In 2017 IEEE/RSJ international conference on intelligent robots and systems
(IROS), pages 2442–2447. IEEE, 2017.

[46] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. Pcn: Point completion network. In 2018
International Conference on 3D Vision (3DV), pages 728–737. IEEE, 2018.

[47] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3907–3916, 2018.

[48] S. Liu, S. Saito, W. Chen, and H. Li. Learning to infer implicit surfaces without 3d supervision.
Advances in Neural Information Processing Systems, 32, 2019.

[49] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4460–4470, 2019.

[50] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 165–174, 2019.

[51] M. Van der Merwe, Q. Lu, B. Sundaralingam, M. Matak, and T. Hermans. Learning continuous
3d reconstructions for geometrically aware grasping. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 11516–11522. IEEE, 2020.

[52] T. E. Boult and A. D. Gross. Recovery of superquadrics from depth information. In Proc.
Workshop on Spatial Reasoning and Multi-Sensor Fusion, pages 128–137, 1987.

[53] A. Makhal, F. Thomas, and A. P. Gracia. Grasping unknown objects in clutter by superquadric
representation. In 2018 Second IEEE International Conference on Robotic Computing (IRC),
pages 292–299. IEEE, 2018.

[54] G. Vezzani, U. Pattacini, and L. Natale. A grasping approach based on superquadric models. In
2017 IEEE International Conference on Robotics and Automation (ICRA), pages 1579–1586.
IEEE, 2017.

[55] G. Vezzani, U. Pattacini, G. Pasquale, and L. Natale. Improving superquadric modeling and
grasping with prior on object shapes. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6875–6882. IEEE, 2018.

[56] F. Solina and R. Bajcsy. Recovery of parametric models from range images: The case for
superquadrics with global deformations. IEEE transactions on pattern analysis and machine
intelligence, 12(2):131–147, 1990.

[57] Y. Lee, J. Baek, Y. M. Kim, and F. C. Park. Imat: The iterative medial axis transform. In
Computer Graphics Forum, volume 40, pages 162–181. Wiley Online Library, 2021.

[58] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph
cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

[59] H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[60] A. D. Gross and T. E. Boult. Error of fit measures for recovering parametric solids. In ICCV,
1988.

[61] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

12

[62] D. Paschalidou, L. V. Gool, and A. Geiger. Learning unsupervised hierarchical part decompo-
sition of 3d objects from a single rgb image. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1060–1070, 2020.

[63] T. Oblak, J. Šircelj, V. Štruc, P. Peer, F. Solina, and A. Jaklič. Learning to predict superquadric
parameters from depth images with explicit and implicit supervision. IEEE Access, 9:1087–
1102, 2020.

[64] M. Gadelha, R. Wang, and S. Maji. Shape reconstruction using differentiable projections and
deep priors. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 22–30, 2019.

13

Appendix

A Related Works

A.1 Mechanical Search on Shelves

Object search and mechanical search. The goal of object search (sometimes called as target object
retrieval) is to find a target object from unknown environments. Some works have focused on the
active perception problem of making decisions of the sequence of camera poses to find a target object
using a camera-mounted mobile robot [33, 34, 35, 36, 37, 38, 39]; recently, deep learning-based
methods have been proposed in terms of target-driven visual navigation [40, 41, 42, 43]. However,
in a more complex environment, such as a cluttered environment on a tabletop or an environment
where objects are placed on a shelf, it may be impossible to find a target object by controlling only
the position of the camera. To solve these issues, interactive perception-based methods – in which
the robot can change the environment to find the target object – have been proposed. Object search
using interactive perception is recently called mechanical search.

Mechanical search methods. The earlier works have attempted to solve the problem of searching
the target object via performing pushing or grasping actions to the surrounding objects in algorith-
mic manners [1, 2, 3]. Although these methods have made a significant contribution to the research
topic of mechanical search, many assumptions are made in the environment to make the problem
tractable, and they are generally computationally complex and therefore slow. To improve these
methods (e.g., relaxing the assumptions), several works have proposed a POMDP model and its
solver (e.g., DESPOT [4] or POMCP [5]) for mechanical search. A recent work provides a general-
ized formulation of mechanical search and solve this problem effectively using deep learning-based
perception module (e.g., object segmentation and recognition network) and grasping module (e.g.,
pre-trained Dex-Net) [6]. The follow-up paper proposes a novel perception module and a policy
that minimizes the support of learned occupancy distributions obtained from the perception, and
claims that the proposed method outperforms the previous methods [7]. Another work propose a
3D shape recognition-based approach that predicts the occluded geometries from the vision sensor
image and then utilize this information to efficiently find the target object [8]. Our work is also in
the spirit of [8] in utilizing the 3D shape recognition module to solve the mechanical search prob-
lem efficiently (e.g., reduce the number of total actions), but we use implicit representation for the
recognized objects to utilize them for efficient and effective action decision (see Appendix A.3).

Mechanical search on shelves. As the shelves are often used to store the objects in home envi-
ronments or logistic warehouses, mechanical search on shelves are being studied as an important
research topic [16, 17, 18]. Object manipulation on the shelves is more challenging because of the
several task constraints: the manipulator must not collide with the shelf, the objects cannot be re-
moved from the shelf, and only a nearly-lateral camera view is available. These constraints limit the
action space of the manipulator and the amount of visual information that can be obtained from the
vision sensor. An earlier work proposes an extension of the previous method named lateral access
X-ray [7] to solve laterally-accessible mechanical search [16]. The follow-up studies use novel tools
to extend the robot action space from just pushing to pushing-and-grasping [17] and stacking [18].

The main difference from these works is that the graspability of the target object is taken into con-
sideration when performing mechanical search. The existing studies use a custom long suction
gripper specialized for mechanical search, so the graspability of the target object does not need to
be considered separately. On the other hand, when using the standard robot gripper (e.g., parallel-
jaw gripper), we need to find a trajectory that does not collide with the other surrounding objects
and the shelf to grasp the target object. To find a non-collide trajectory, the 3D reasoning of the
current scene is inevitable for 6-DOF grasping, and accordingly, a 3D recognition model has been
adopted in our method. The existing works only perform 2D reasoning for the scene since they do
not have to consider the graspability, and the point that we perform mechanical search task adopting
3D recognition is also different from other works.

14

A.2 Object Rearrangement for Target Object Grasping

The object rearrangement generally refers to the problem of finding the feasible paths of the objects
that move the objects from their initial configuration to desired final configuration, and in fact, a lot
of various object rearrangement studies has been conducted; in this subsection, we only focus on the
object rearrangement researches for grasping the target object. An earlier work propose an algorithm
to remove the surrounding objects using prehensile manipulation to grasp the target object without
robot-object collisions [9]. Since the action space is limited only by prehensile manipulation, object
rearrangement algorithms using non-prehensile manipulation have also been conducted; for exam-
ple, these algorithms are based on tree-search [10], persistent homology [11], and semi-autonomous
tele-operation [12]. We note that unlike mechanical search, these papers assume that the information
about the target object (and sometimes information about the environment) is known. Other works
focus on more general cases where the target object is possibly occluded [13, 14, 15]. If the target
object is occluded, the proposed performs an algorithm to find the target similar to the mechanical
search. It is worthy to note that our problem is more challenging since the surrounding objects can
be removed in previous studies, but cannot in our case. Also, these studies first find the target object
and then grasp it when the target is occluded; we argue in this paper that finding a target object while
simultaneously considering whether it can be graspable is more efficient.

Grasping the invisible. It is valuable to note that our problem setting is the closest to the problem
considered in [44]. Their work also considers the problem of grasping the target object while consid-
ering the mechanical search problem. They named this problem grasping the invisible and introduce
a deep learning-based end-to-end method, more specifically, a critic function that maps the visual
observations to the expect rewards of robot pushing or grasping actions. This paper is the same in
that it addresses the same problem as ours, but the proposed methods so far are limited to a specific
environment and may require a lot of data for the model to generalize to other environments. We
develop a method that can be applied in various environments by using object recognition, which is
known to be well generalizable to unseen scenes [19, 20], rather than an end-to-end method.

A.3 Shape Recognition-based Robot Manipulation

Numerous approaches have been proposed for the recognition of complete 3D shapes based on
partial observations like depth images. Some of these methods employ explicit representations
such as occupancy grid [45], point cloud [46], or mesh [47]. However, due to the limited reso-
lution of these representations, they often result in imprecise shape predictions. To address this
issue, recent studies have explored the use of neural implicit functions to learn implicit 3D repre-
sentations for objects [48, 49, 50, 51]. In our research, we utilize superquadric functions, which
strike a balance between shape expressiveness, computational efficiency, and the number of pa-
rameters required [52]. Superquadric functions have found applications in robotic manipulation
tasks such as grasping [53, 54, 55]. Although we represent each object as a single superquadric
function in our paper, our approach can be easily extended to encompass general implicit repre-
sentations, particularly deformable superquadrics [56, 19] or a collection of superquadrics [27]. To
efficiently express more complex 3D shapes, we can use latent variable models, e.g., autoencoder
framework [21, 22, 23, 24, 25, 26], with sufficiently low-dimensional latent vectors.

15

B Implementation Details for Our Methods

B.1 Details for Object Shape Recognition

The object shape recognition is an algorithm that takes a partial observation from a (synthetic or real-
world) RGB-D camera as input and outputs the 3D shapes of the objects in the scene. Especially,
the input is a partial point cloud of the scene obtained from a depth camera P ⊂ R3 (the RGB image
is only used to check whether the target object is detected or not) and output is the superquadric
representations {qi, Ti}Ni=1, where qi is the shape parameter, Ti ∈ SE(3) is the pose, and N is the
number of the objects. To design a model that performs this task, we use the same method as in the
previous work [20]. We first segment a partially observed point cloud P into a set of object point
clouds {Pi}Ni=1 and then convert each segmented point cloud Pi to superquadric representation
(qi, Ti). The segmentation and superquadric recognition processes are based on neural network
models. Each model is trained from synthetic dataset obtained through simulation environment,
and the trained models are directly applied to both the simulation environment and the real-world
environment. The overall object shape recognition process is described in Figure 7.

Figure 7: Overall process for object shape recognition.

Point cloud processing. For a partially observed point cloud P obtained from simulation environ-
ment, to bridge the sim-to-real gap, a noise is added to each point of the point cloud x ∈ P using
the map x 7→ x + mv where v is uniformly sampled on S2 and m is sampled from a Gaussian
with zero-mean and standard deviation 0.001, as done in [57]. The all points corresponding to the
shelf in the point cloud are removed and up/downsampled so that the number of points is 2048, i.e.,
P = {xj ∈ R3}nj=1, where n = 2048. For a partially observed point cloud P obtained from real-
world environment, the shelf points are removed through the known shelf shape information and
pose; since there’s noise on shelf pose and observed point cloud, we additionally remove the points
corresponding to the floor of the shelf where the objects are placed through RANSAC plane fitting.
Then as in the case of the simulation environment, the point cloud is up/downsampled so that the
number of points is 2048.

Point cloud segmentation. After the point cloud P is processed, it is separated into several object
point clouds {Pi}ni=1 via a segmentation network. For the network architecture, we use the same ar-
chitecture used in [58]. To train the segmentation network, we first find a bipartite matching between
ground-truth and predicted segmentation labels using the Hungarian matching algorithm [59], and
then define the loss function as the segmentation loss between the matched labels. This loss function
is invariant to the point permutation of prediction, so the network can learn permutation-invariant
segmentation labels and can be trained faster and more accurately accordingly.

Superquadric recognition. Each segmented object point cloud Pi is then converted to the 3D full
shape represented by superquadric qi ∈ R5 and Ti ∈ SE(3) via a recognition network proposed
in [19, 20]. For the network architecture, we use the same architecture used in [20]; the input
representation is a point cloud with 4-dimensional points P ′

i = {xij ∈ R4}nj=1 – for each point xij ,
the first three components of xij is equal to xj and the last element of each point is 1 if xij ∈ Pi

and 0 otherwise for all j = 1, ..., n – and output representation is (qi, Ti). The input and output of
the superquadric recognition model are described in Figure 8. To train this recognition network, we
adopt the training loss function as the difference between ground-truth and predicted object shapes.
For the ground-truth shape, we use the point cloud uniformly sampled from the surface of the object

16

Pg
i = {xg

j ∈ R3}ng

j=1 where ng = 512. Then we use the distances from the ground-truth point cloud
to the predicted superquadric as the loss function. Especially, the distance form δ proposed in [60]
is used. The distance δ is defined as follows: for the superquadric surface equation S expressed as

S(x, y, z) =

(∣∣∣∣ xa1
∣∣∣∣ 2
e2

+

∣∣∣∣ ya2
∣∣∣∣ 2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣ 2
e1

, (5)

the distance δ between a point x ∈ R3 and a superquadric surface S(x)− 1 = 0 defined by

δ(x0, S) = ||x||
∣∣∣1− S− e1

2 (x)
∣∣∣ , (6)

where ∥ · ∥ denotes the Euclidean norm. Accordingly, the training loss function for the recognition
network is defined as:

L =
1

ng

ng∑
j=1

δ2(T−1xg
j , S). (7)

where S is defined by the predicted superquadric parameters q = {a1, a2, a3, e1, e2} and T is the
predicted object pose.

Figure 8: Input and output representation of the su-
perquadric recognition model.

We generate a training dataset to train
the above two networks, the segmen-
tation network and the superquadric
recognition network. To generate
data, we randomly generate N ob-
jects consisting of cubes and cylin-
ders with various shape parameters
(i.e., width, height, depth for the
cube, and radius, and height for the
cylinder); the number of objects N
varies from 2 to 8. The generated
objects are then placed in a random
position and orientation on the shelf.
After that, we construct a data tuple
consisting of 3 components: (i) par-
tially observed point cloud P from depth camera, (ii) segmentation label for each point on P , and
(iii) ground-truth point cloud (i.e., point cloud sampled from ground-truth shape) for each object Pg

i

for i = 1, ..., N . For each number of objects N , we collect data until the numbers of the data tuples
become 5000/100 for training/validation set, respectively. As a result, the total numbers of the data
tuples are 35000/700 for training/validation set, respectively. The validation set is used to select the
best model for the segmentation network and the superquadric recognition network.

B.2 Details for Existence Function Estimate f̂

In this section, we describe how to calculate the existence function estimate f̂ . The function
f̂(x; s, c) is defined by the recognized superquadric parameters s = {(qi, Ti)} and the visibility
of the target object c ∈ {0, 1}. The function’s input is a hypothetical pose x ∈ X ⊂ SE(3) and
output is an indicator whether the target object can be present at the pose x (i.e., f̂(x; s, c) = 1) or
not (i.e., f̂(x; s, c) = 0). The calculation of f̂ is trivial if c = 1 since the existence function f̂ – we
know at which x∗ the target object exist – is 1 only at x∗, i.e., f̂(x∗; s, c = 1) = 1 and 0 at other
x ∈ X . So we consider only the case where c = 0, i.e., the target object is not visible. If c = 0,
f̂(x; s, c) is defined to be 1 if (i) depth rendering results with and without the target object at x ∈ X
are identical and (ii) there is no collision between the recognized objects, the environment, and the
target object. Otherwise f̂(x; s) = 0. We describe how to compute the above two conditions by
taking advantage of the superquadric as an implicit function.

Depth rendering condition. We check the depth rendering condition, i.e., calculate the function
f̂d : X → {0, 1} where f̂d(x) = 1 if the depth rendering results with and without the target object at

17

Figure 9: Overview of depth image rendering process from recognized superquadric functions.

x ∈ X are identical and f̂d(x) = 0 otherwise. To calculate this, a depth rendering function that takes
the 3D object shapes s as input and outputs the corresponding depth image D ∈ RH×W is required;
the intrinsic and extrinsic parameters of the camera used for depth rendering are known. In this
paper, depth image can be rendered quickly using the superquadric implicit function. The overview
of the depth rendering process from recognized superquadric functions is described in Figure 9.

We first obtain the camera rays from the camera’s intrinsic parameters, extrinsic parameters, and the
resolution of the camera as described in [61], and we denote each ray’s equation corresponding to
the (k, l)-th pixel of the depth image as rkl : [tn, tf] → R3 where k = 1, ...,H , l = 1, ...,W , and
tn and tf are the near and far bounds to measure distance; in this paper, we set this values as 0 and
1.5, respectively. Each ray is a straight line rkl(t) = o + tdkl where o ∈ R3 is the position of the
camera pose and dkl ∈ S2 is a direction vector of the ray. The camera rays are shown in Figure 9.

After recognizing the objects, we obtain N superquadric parameters and their poses s =
{(qi, Ti)}Ni=1. We recall that the superquadric equation with the superquadric parameters qi is ex-
pressed by

S(x, y, z; qi) =

(∣∣∣∣ xa1
∣∣∣∣ 2
e2

+

∣∣∣∣ ya2
∣∣∣∣ 2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣ 2
e1

, (8)

where qi = (a1, a2, a3, e1, e2). Then, we convert the parameters from recognition to implicit func-
tions Si(x) = Se1(T−1

i x; qi) = 1 for i = 1, ..., N . Using the obtained implicit functions, we
calculate the signed distance-like superquadric function F as:

F (x) = min
i

Si(x) (9)

Using this superquadric function, we can approximately calculate the occupancy function V (x)
where V (x) = 1 if the point x is occupied and V (x) = 0 otherwise. The occupancy can be
calculated using the equation

V (x) = σ(p(1− F (x))), (10)

where σ is the sigmoid function and p is a scaling factor that adjusts the sharpness of V – we set
p = 1000 – as proposed in [62, 63]. Then the visibility function Akl(t) – which indicates whether a
point is visible in the rendered camera image – on a ray point rkl(t) can be obtained as

Akl(t) = exp(−τ

∫ t

tn

V (rkl(t
′))dt′), (11)

with large enough τ – we set τ = 100 – as proposed in [64]. Finally, the depth value Dkl on the
(k, l)-th pixel of the rendered depth image D is calculated as

Dkl = tn +

∫ tf

tn

Akl(t)dt, (12)

where k = 1, ...,H and l = 1, ...,W . The integrals above can be calculated numerically after
uniformly dividing t ∈ [tn, tf].

The integration is required for all (k, l) pairs to obtain a perfect depth image D, but it is not necessary
to calculate for all (k, l) pairs to check the depth rendering condition. Instead, we additionally

18

propose an algorithm that (i) finds pixels around the recognized object (i.e., Si’s) and the target
object and (ii) calculates the depth value only for those pixels.

We additionally propose a modified method to calculate the depth rendering condition efficiently.
The key idea is that since our region of interest is the objects on the shelf, the above calculation will
also be done only near the objects. The modified algorithm is based on the fact that an arbitrary
superquadric (q, T) can be contained in an ellipsoid E; in detail, for q = (a1, a2, a3, e1, e2), the
ellipsoid equation E is given by

E(x, y, z) =
x2

3a21
+

y2

3a22
+

z2

3a23
, (13)

and the superquadric (q, T) is contained in the ellipsoid E(T−1x) ≤ 1.

Using this fact, the modified method (i) reduces the number of camera rays rkl required for cal-
culation, and (ii) efficiently samples the ray points rkl(t) required for calculation in each ray rkl.
For the first one, for each ray’s equation rkl(t) = o + tdkl, we calculate whether rkl(t) meets the
ellipsoids E(T−1x) ≤ 1. If rkl(t) does not meet any ellipsoid of the object, the depth value Dkl is
set to tf , and otherwise, Dkl is calculated following (12). Therefore, we only need to consider the
rays that meet at least one of the object ellipsoids. For the second one, instead of uniformly dividing
[tn, tf] for numerical integration of (11) and (12), we use more efficient method for dividing; we
obtain the intersection points between the ray and the ellipsoid, and then uniformly divide the chord
corresponding to the intersections. Since all of the above calculations exist in closed-form, they
have little effect on the amount of calculation.

Using the above depth rendering module, we finally obtain the function f̂d : X → {0, 1} to check
the depth rendering condition; especially, f̂d(x) = 1 if the MSE (Mean Squared Error) between the
rendered depth images with and without the target object at x ∈ X is lower than the threshold – we
set this threshold as 0.001 – and f̂d(x) = 0 otherwise.

Collision condition. We check the collision condition, i.e., calculate the function f̂c : X → {0, 1}
where f̂c(x) = 1 if there is no collision between the recognized objects, the environment, and the
target object at x ∈ X and f̂c(x) = 0 otherwise. This function also can be quickly evaluated using
the superquadric implicit function.

Figure 10: Illustration on the collision condition
fc(x). Candidate poses and collision checking re-
sults.

We first obtain the target object point cloud
sampled from the surface of the target object
Po = {xo

j ∈ R3}no
j=1, where no = 512. Sim-

ilar to the case of depth rendering condition,
we also get the superquadric implicit functions
Si for i = 1, ..., N from the recognized ob-
jects. We note that a point x ∈ R3 is inside
the i’th object Si when the value Si(x) is less
than 1 and otherwise outside. We utilize this
fact to check whether the target object collides
with the recognized objects or not. The func-
tion f̂c : X → {0, 1} is defined as:

f̂c(x) = 1(min
i,j

Si(x
o
j) > 1) (14)

where i = 1, ..., N is the object index, j = 1, ..., no is the point index of the target object point
cloud, and 1(·) is the indicator function. The calculation of the collision condition is described in
Figure 10.

Existence function estimate. Using the above functions to check the conditions, f̂d and f̂c, we
define the existence function estimate f̂ : X → {0, 1} as follows,

f̂(x) = f̂d(x)f̂c(x).

In the other words, the existence function is 1 at a pose x ∈ X if both the depth rendering condition
and the collision condition holds and 0 otherwise.

19

Figure 11: The examples of the candidate grasp poses for various object shapes (Left) and the robot
trajectory for a selected grasp pose (right).

Computational cost. The calculation time takes 0.013 seconds in average where WH = 18, 564,
np = 7, N = 4, and no = 512 with GeForce RTX 3090 and Gen Intel(R) Core(TM) i9-11900K
@ 3.50GHz. We design the existence function is calculated in batch-wise with respect to the target
pose x to accelerate the computation time for MPC.

B.3 Details for Graspability Function Estimate ĝ

In this section, we describe how to calculate the graspability function estimate ĝ. The function
ĝ(x; s) is defined by the recognized superquadric parameters s = {(qi, Ti)}. The function’s input
is a hypothetical pose x ∈ X ⊂ SE(3) and output is an indicator whether a collision-free grasping
trajectory of the robot gripper – all possible collisions between the robot arm, the robot gripper, the
shelf, and the surrounding objects should be taken into account – can be find at the pose x (i.e.,
ĝ(x; s) = 1) or not (i.e., ĝ(x; s) = 0). We then describe how to compute the graspability function
by also taking the advantage of the superquadrics as an implicit function similar to the calculation
of the existence function.

Figure 12: Illustration on the grasp trajectory
collision detection. Candidate grasp trajectories
and collision checking results.

Candidate grasping trajectories. To check the
graspability, i.e., to check whether a collision-
free grasping trajectory exists, we generate can-
didate grasping trajectories to grasp the target ob-
ject. To achieve this, we first generate candidate
grasp poses for the target object using a simple
rule-based method as introduced in [20]. In this
paper, we generate side grasp poses according to
the shape and size of the superquadric. The pairs
of the antipodal points of the target objects are
sampled since we use two-finger gripper, and the
grasp poses with a distance of bigger than 7.5cm between antipodal points are rejected since the
maximum gripper width of the Franka gripper is 8cm. To stably grasp the target object on the shelf,
we tilted the grasp poses about 20◦ relative to the ground. Accordingly, we generate Ngr grasp
poses {T gr

k }Ngr

k=1 where Ngr is between 10 and 30; the examples of the grasp poses for various ob-
ject shapes are shown in the left of Figure 11. Then, we additionally have to plan the trajectory of
the robot arm for each grasp pose. For a grasp pose T gr

k ∈ SE(3), we design a robot trajectory
where the gripper approaches about 30cm along the z-direction of the gripper frame as shown in the
right of Figure 11. Finally, we get Ngr candidate grasping trajectories for the target object.

Grasp trajectory collision detection. After generating grasping trajectories, we should check
whether the robot arm following the trajectory collides with the surrounding objects or the shelf.
We first obtain the afterimage mesh of the gripper and Franka’s links 7 and 6 when the robot fol-

20

lows the trajectory of the grasp pose T gr
k and obtain the point cloud Pgr

k = {xgr
kj ∈ R3}ngr

j=1 sam-
pled from the afterimage mesh, where ngr = 2048. We get the superquadric implicit functions
Si(x) = Se1(T−1

i x; qi) = 1 for i = 1, ..., N from the recognized surrounding objects. We addi-
tionally represent the shelf as the superquadric implicit functions; a shelf can be represented by five
boxes so five implicit functions SN+1(x), ..., SN+5(x) are additionally considered. We recall from
the collision condition of existence function that a point x ∈ R3 is inside the i’th object Si when the
value Si(x) is less than 1 and otherwise outside. The collision function ĝc : X → {0, 1} is defined
as:

ĝc(x) = 1(max
k

min
i,j

Si(x
gr
kj) > 1) (15)

= 1− 1(max
k

min
i,j

Si(x
gr
kj) <= 1) (16)

where i = 1, ..., N +5 is the object index, j = 1, ..., ngr is the point index of the target object point
cloud, i = 1, ..., Ngr is the grasp pose index, and 1(·) is the indicator function. The calculation of
the collision of the grasp trajectories is described in Figure 12. In practice, the modified collision
detection function ĝc,m : X → {0, 1} we used is:

ĝc,m(x) = 1−min
k

∑
i

1(min
j

Si(x
gr
kj) <= 1) (17)

Graspability function. We define the graspability function estimate ĝ : X → {0, 1} as the same
with ĝc, i.e.,

ĝ(x) = ĝc(x). (18)

The modified graspability function estimate is the same with ĝc,m, i.e.,

ĝ(x) = ĝc,m(x). (19)

Computational cost. The calculation time takes 0.0128 seconds in average, where N + 5 = 6,
ngr = 2048, and Ngr = 32 with GeForce RTX 3090 and Gen Intel(R) Core(TM) i9-11900K @
3.50GHz.

B.4 Details for Sampling-based Model Predictive Control

To solve the iterative optimization in MPC (where we set T = 10), we use M = 3 and take a
sampling-based approach. The actions space A, whose elements are either pushing or pick-and-
place actions, is defined based on the object recognition results and as a discrete set that can be
efficiently searched through sampling (details are included in Appendix B.5). We stop the MPC
iteration if the target is visible and graspable, so the total number of actions can be less than T .
The objective function is slightly modified so that, in Jt =

∑
x∈X ft(x) + ft(x)(1 − gt(x)), the

graspability function gt(x) – which originally could take 0 or 1 – now can take 1, 0,−1,−2,−3, . . .
where g(x) = −n + 1 indicates that generated grasping trajectories for the target at x collides
with at least n objects. This modified objective function provides more dense signals, making the
optimization problem easier to solve, while not changing the optimal solution.

B.5 Details for Action Sampling on Manipulation

In this section, we describe how actions are sampled when performing mechanical search and pro-
vide more rigorous information about actions, including pick-and-place action and pushing action.
The details of the pushing action and the pick-and-place action including sampling processes and
scene prediction are described in Figure 13.

21

Figure 13: Sampling process and predicted scene after applying the action for pushing and pick-
and-place actions.

Figure 14: Visual description
of the pushing action.

Pushing action. A pushing action is defined by (Tpush, d) ∈
SE(3) × R3, where Tpush ∈ SE(3) is an initial gripper pose and
d ∈ R3 is a displacement of the gripper. To sample the initial
gripper pose Tpush, an index ir from the recognized object indices
i = 1, ..., N is selected and then a direction (left or right) for push-
ing the selected object ir is selected. Then Tpush is defined from
the pose and the shape parameters of the selected object (qir , Tir)
and the direction to push; (i) the gripper is tilted about 30 degrees
along the y-axis of the gripper frame and (ii) the distance between
the selected object and the gripper (i.e., Chamfer distance between
point clouds sampled from the meshes) is set to 1cm. The push-
ing action is described in Figure 14. If the gripper at the pose Tpush
collide with the surrounding objects, the action is rejected; for colli-
sion checking, we use the method used in Section B.2. The displacement of the gripper d is sampled
from a discrete set {5, 10, 15}cm. For each sampled action, we predict the next state st+1 using a
pre-trained pushing dynamics model named SQPD-Net [20].

Pick-and-place action. A pick-and-place action is defined by (Tgrasp, Tplace) ∈ SE(3) × SE(3),
which are gripper poses when it grasps and places the object, respectively. To sample the grasp pose
Tgrasp, an index ig from the recognized object indices i = 1, ..., N is selected and a grasp pose is
selected from the candidate grasp poses of the selected object (qig , Tig); we generate the grasp poses
using the same strategy we used in Section B.3. Then a gripper pose to place Tplace is selected from
the poses in which the grasped object does not overlap (i.e., do not collide with) other surrounding
objects and the shelf; we use the collision checking method used in Section B.2. We check the
collision of the trajectory when grasping and placing and the action is rejected if there is a collision;
we use the same method we used in Section B.3 when checking collision. For each sampled action,
we predict the next state st+1 by just applying the transformation T−1

graspTplace to the selected object.

Action sampler. We first check which objects can be pushed or grasped (for pick-and-place action);
whether an object can be pushed or grasped is noted in the action description section above. Let
Ip = {ip1, . . . , ipNp} and Ig = {ig1, . . . , igNg} be the set of indices of the graspable and pushable
objects, respectively. Then, we randomly choose 30 indices (allowing duplicates) from the multi-set
G + P := {ig1, . . . , igNg

, ip1, . . . , ipNp
}. For each chosen index, we select one action (pushing

action if index is in Ip and pick-and-place action if index is in Ig) through the method described
above. The action sequences for MPC are sampled in the similar manner.

22

C Experimental Details

C.1 Additional Details for Environment

As we note in Section 4, the simulation and real-world experiments share the same environment
including the robot arm, the RGB-D camera, and the shelf. For this reason, we first build an en-
vironment in the real-world and import this environment into simulation. The intrinsic parameters
of the camera and the shapes of the robot and shelf are accessible in advance; in order to match
the two environments equally, the relative poses of the shelf and the camera to the robot base (i.e.,
relative SE(3)) are required. The shelf pose relative to the robot is obtained by measuring with a
ruler, and the camera pose relative to the robot is obtained from the calibration using the shape of
the robot arm. More specifically, the camera pose is obtained through ICP (Iterative Closest Point)
algorithm between the point cloud of the robot observed by the camera and the point cloud of the
robot obtained from the known shape of the robot.

C.2 Additional Details for Simulation Experiments

Object configuration. We have created 180 scenarios for each number of surrounding objects in
{2, 4, 6, 8}, so a total of 720 scenarios; for each scenario, a random selection (allowing duplicates)
is made among the given objects.

Initial scene setting. We first randomly drop the selected objects on the shelf. Then, we place the
(red) target object on the shelf where it is not visible from the current camera image. If there is no
place to place the target object, or the target object is not graspable because of the collision of the
gripper with the shelf, the scenario is discarded.

Target detection. In the simulation environment, a ground-truth segmentation mask can be used
from the synthetic camera. If a part of the target object is observed for more than 100 pixels on the
camera image (c.f. the resolution of the camera is 1280 × 720), it is considered to have succeeded
in finding the target object in that scenario.

C.3 Additional Details for Real-world Experiments

Object configuration. We have created 5 scenarios for each number of surrounding objects in
{3, 4, 5, 6}, so a total of 20 scenarios; for each scenario, a pre-defined object set is used according
to the number of surrounding objects as shown in Figure 15.

Figure 15: Pre-defined object set used for real-world experiments.

Initial scene setting. We put the given surrounding objects and the target object so that the target
object (red cylinder) is not visible in the initial camera view.

Target detection. In the 3D recognition process, we segment the observed point cloud. We first
calculate the average RGB value of the points in each segmented point cloud. Then, we calcu-
late the MSE between these average RGB values and the RGB of the target object (in this case,
[0.7282, 0.1558, 0.2099]), and if there is exactly one segmented point cloud with MSE smaller than
0.1, the target object is said to be found.

23

D Additional Experimental Results

D.1 3-Object Toy Experiment

Figure 16: Comparison of search-and-grasp and search-for-
grasp methods to find the target object (yellow cylinder).
This figure is a conceptual figure, not the result of imple-
menting the methods.

In this experiment, we compare
the performance of the two pro-
posed methods, search-and-grasp
and search-for-grasp, and espe-
cially highlight the advantages of
the search-for-grasp method. Let
consider a situation where a yellow
cylindrical target object is fully
occluded by two larger boxes as
described in the left of Figure 16.
The search-and-grasp method may
successfully find the target object
by rearranging the two boxes, but
it does not guarantee the target object’s graspability. As illustrated in the middle of Figure 16,
the identified object may not have a collision-free robot trajectory for grasping in some cases.
Consequently, additional actions would be necessary to manipulate the environment and make the
target object graspable. On the other hand, in the case of the search-for-grasp method, the target
object’s graspability is taken into account in the searching phase, so the two boxes are rearranged
in a way that the target object becomes not only visible but also graspable as shown in the right of
Figure 16. In summary, when the target object is occluded by multiple objects, the search-for-grasp
method can be efficient in terms of the number of actions. To verify this, we design an additional
simulation experiment named 3-object toy experiment as described below.

Object configuration. We have created 200 scenarios in the pybullet simulation environment with
two large cylindrical objects and one small cylindrical target object. The radius and height of the
target cylinder is fixed, and those of two large cylinders are randomly selected big enough to occlude
the target.

Initial scene setting. The position of the camera center and the positions of three cylindrical objects
are on a straight line in the x-y plane so that the target object is occluded by the other two objects on
the shelf. The position of the target object is fixed, while the (x, y) coordinates of the other objects’
positions are randomly selected on the straight line.

Target detection. Target detection method is the same with Appendix C.2.

Figure 17: Example trajectories of simulation manipulation for R-search-and-grasp (Left) and R-
search-for-grasp (Right). Each column shows the camera input and action selection at each time
step. In the simulation, surrounding objects are blue and the target object is red.

Figure 17 shows the mechanical search results by search-and-grasp and search-for-grasp. In this
subsection, we only use recognition-based (i.e., R-search-and-grasp and R-search-for-grasp). The
search-and-grasp method succeeds in finding the target object in two pick-and-place actions as de-

24

sired, but when target object is found, it cannot be grasped due to collision with surrounding objects.
So, this method makes the target object graspable by performing two additional actions as shown in
the left of Figure 17. In the case of the search-for-grasp method, it also succeeds finding the target
object in two pick-and-place actions, and at this time, the target object becomes graspable at the
same time as shown in the right of Figure 17. This difference of the number of actions is due to the
difference in whether the graspability of the found object is taken into account when searching for
the object. Although the search-for-grasp method is slightly more computationally expensive than
the search-and-grasp method, the search-for-grasp method can be efficient in terms of number of
actions in these situations.

METHOD Succ. Find Grasp
R-Search-and-Grasp 0.985 2.065 2.919
R-Search-for-Grasp 0.995 2.255 2.497

Table 3: Manipulation results for 3-object toy ex-
periment.

In order to quantitatively verify this fact, we
measure (i) the average grasp-success rate and
the average number of actions to (ii) find and
(iii) grasp the target object for the two methods,
and the results are shown in Table 3. We note
that the minimum number of actions required
to find and grasp is 2. The average number of
actions to find is lower for search-and-grasp than for search-for-grasp since the search-and-grasp
method only focuses on finding the target object. On the other hand, the average number of actions
to grasp is lower for search-for-grasp than for search-and-grasp. Unlike the search-and-grasp meth-
ods, the search-for-grasp simultaneously search for a target object while increasing the probability
of grasping the found target object. As a result, this fact has the effect of reducing the average num-
ber of actions. In conclusion, we verify that the search-for-grasp method can be more efficient than
the search-and-grasp method in terms of the number of actions when the target object is occluded
by multiple objects.

D.2 Mechanical Search via Only Pushing or Only Pick-and-place

This experiment evaluates the performance of two cases where only one action type (e.g., pick-and-
place or pushing) is allowed, demonstrating that both motions are essential for mechanical search
tasks on shelves. We only use recognition-based method in this experiment.

Object configuration. We have created 75 scenarios for each number of surrounding objects in
{4, 8}, so a total of 150 scenarios; for each scenario, a random selection (allowing duplicates) is
made among the given objects.

Action sampler. Instead of action sampler described in B.5, if only push is allowed, the action is
sampled only in Ip. If only pick-and-place is allowed, the action is sampled only in Ig .

Initial scene setting Initial scene setting is the same with Appendix C.2.

Target detection. Target detection method is the same with Appendix C.2.

Figure 18 shows the mechanical search results by our methods using only pick-and-place and only
pushing. In the first example, using only pushing succeeds in finding and grasping the target object
in one action as desired, but using only pick-and-place fails since there is no valid pick-and-place
action. In the second example, using only pick-and-place succeeds in finding and grasping in one
action, and using only pushing succeeds in finding the target object but there is no pushing action to
move the blue cylinder to be removed since it becomes close to the wall of shelf. As such, there are
cases where using only pick-and-place and only pushing show different trajectories.

To quantitatively investigate the roles of the pushing and pick-and-place, and the results are shown
in Table 4. First, allowing only one type of action degrades the performance significantly as shown
in the table. Specifically, using only pick-and-place highly degrades the performance of finding the
target object compared to the case where both actions are used, and on the other hand, using only
pushing highly degrades the performance of grasping the target object, even though the success rate
in finding is higher than using only pick-and-place.

25

Figure 18: Example trajectories of simulation manipulation using only pick-and-place and only
pushing. Each column shows the camera input and action selection at each time step. In the sim-
ulation, surrounding objects are blue and the target object is red. (Left) A scenario where only
pick-and-place fails but only pushing succeeds. (Right) A scenario where only pick-and-place suc-
ceeds but only pushing fails.

The number of objects︷ ︸︸ ︷
4 8

METHOD ALLOWED ACTION Find Grasp Find Grasp

R-Search-and-Grasp

Both Succ. 0.973 0.787 0.893 0.613
Steps 2.164 2.559 3.269 3.957

Pick-and-Place Succ. 0.76 0.627 0.627 0.48
Steps 1.404 1.596 2.255 3.361

Push Succ. 0.907 0.573 0.813 0.507
Steps 2.559 3.628 3.098 4.763

R-Search-for-Grasp

Both Succ. 0.96 0.813 0.92 0.6
Steps 2.139 2.77 3.101 3.889

Pick-and-Place Succ. 0.76 0.627 0.693 0.467
Steps 1.386 1.617 2.327 3.543

Push Succ. 0.92 0.613 0.773 0.56
Steps 2.609 3.826 3.034 4.5

Table 4: Simulation manipulation results for the one-type action experiments.

This result is because pick-and-place and pushing have different strengths and weaknesses. The
pick-and-place is efficient in terms of the average number of actions because it can move the objects
farther away, but the actions which can be performed are limited due to the fewer objects the robot
can grasp in a cluttered scene. The pushing is better than pick-and-place for finding target objects
because the robot can manipulate more objects than pick-and-place, but because the robot can’t
move the objects that far, it requires a higher number of actions because the can’t move the objects
that far. In summary, both pick-and-place and pushing are required to find the target and grasp the
target object.

D.3 Mechanical Search with Box Target Object

This experiment evaluates the performance of our methods for mechanical search tasks with a box
target object. In this case, the target pose space should be X = SE(2), i.e. position (x, y) of the
target box on the shelf and its z-axis angle θ as orientation. We only use recognition-based method
in this experiment.

Object configuration. We have created 40 scenarios for each number of surrounding objects in
{4, 8}, so a total of 100 scenarios; for each scenario, a random selection (allowing duplicates) is
made among the given objects. The target object is replaced with a box shape instead of a cylinder.

Other settings are following the section C.2.

Figure 19 shows the mechanical search results by search-for-grasp on the task of the box target
object. The search-and-grasp method succeeds in finding the target object in three pick-and-place

26

Figure 19: An example trajectory of simulation manipulation for R-search-for-grasp for the box-
shaped target object. Each column shows the camera input and action selection at each time step. In
the simulation, surrounding objects are blue and the target object is red.

The number of objects︷ ︸︸ ︷
4 8

METHOD Find Grasp Find Grasp

R-Search-and-Grasp Succ. 0.925 0.775 0.825 0.525
Steps 1.568 3.323 2.394 4.81

R-Search-for-Grasp Succ. 0.95 0.7 0.85 0.6
Steps 1.652 3.286 2.412 5.167

Table 5: Simulation manipulation results for the box target object

actions and succeeds in grasping the target object in additional one pick-and-place action. Table 5
shows the performance of our methods with the box target object. Compared to the cylinder target
object case, the grasp success rate is lower when the number of objects is 4. This is because the
approach direction of the grasping trajectory is limited to one in the case of the box as shown in
the Figure 11; we note that the cylinder can be grasped in any direction due to rotational symmetry.
However, when the number of objects are large (i.e., the number of objects is 8), the box target object
case shows similar performance to the cylinder target object case. This is because the advantage of
having various grasping approach directions of cylinders is lost in highly cluttered environment. In
summary, we conclude that our algorithm also works on the target pose space of SE(2) on the box
target object experiment.

27

	Introduction
	Related Works
	A General Framework for Mechanical Search and Grasping
	3D Object Recognition-based Mechanical Search
	Object Recognition via Superquadrics
	Existence and Graspability Function Estimates fhatonly and ghatonly
	Approximate Dynamics Models Fhatonly and Ghatonly
	Sampling-based Model Predictive Control

	Experiments
	Simulation Experiments Results
	Real-world Experiments Results
	Limitations and Future Directions

	Conclusion
	Related Works
	Mechanical Search on Shelves
	Object Rearrangement for Target Object Grasping
	Shape Recognition-based Robot Manipulation

	Implementation Details for Our Methods
	Details for Object Shape Recognition
	Details for Existence Function Estimate fhat
	Details for Graspability Function Estimate ghat
	Details for Sampling-based Model Predictive Control
	Details for Action Sampling on Manipulation

	Experimental Details
	Additional Details for Environment
	Additional Details for Simulation Experiments
	Additional Details for Real-world Experiments

	Additional Experimental Results
	3-Object Toy Experiment
	Mechanical Search via Only Pushing or Only Pick-and-place
	Mechanical Search with Box Target Object

