BrowserArena: Evaluating LLM Agents on
Real-World Web Navigation Tasks

Sagnik Anupam*, Davis Brown', Shuo Li', Eric Wong', Hamed Hassani', Osbert Bastani'
!University of Pennsylvania

Abstract

LLM web agents now browse and take actions on the open web, yet current agent
evaluations are constrained to sandboxed environments or artificial tasks. We
introduce BrowserArena, a live open-web agent evaluation platform that collects
user-submitted tasks, runs Arena-style head-to-head comparisons, and uses step-
level human feedback to surface failure modes. Collecting and analyzing step-level
annotations on the agent traces, we identify three consistent failure modes: captcha
resolution, pop-up banner removal, and direct navigation to URLs. By constructing
targeted datasets to further study these tasks, we discover variations in how different
language models navigate these failure modes. We find, for example, that o4-mini
deploys a wider variety of strategies to circumvent captcha resolution than other
models and DeepSeek-R1 consistently misleads users about pop-up banner closure.
Our findings surface both the diversity and brittleness of current web agents. More
broadly, our benchmarking methodology provides an approach to evaluating and
understanding web agent failure modes at scale.

1 Introduction

Recently, with the advent of web agents such as Manus and OpenAlI’s Operator [21], there has been
significant interest in the ability of large language models (LLMs) to interact and complete tasks on
diverse websites. As a result, several benchmarks have been developed to evaluate the performance
of various LLMs and agent frameworks on web browsing tasks [26]]. Some of these benchmarks
focus on agent interaction with self-hosted websites, with success on tasks being measured using
custom execution-based evaluation procedures [[14]. However, “closed” benchmarks have limited
task diversity [27] because they are restricted to only a few websites, so current benchmarks cannot
serve as good tests of real-world web agents.

Limitations of current open-web evaluations: Recently, researchers have built systems that allow
agents to browse the open web [7} 22], given the significant success of open-ended environments for
agent evaluation in other domains such as software engineering [22] and general computer use [[1} [24]].
However, such approaches still suffer from four major drawbacks. First, in such benchmarks, tasks are
described using highly specific instructions to the agent, which is unlikely to mirror how real-world
users describe and perform tasks on the open web. Second, significant engineering effort is often
required to incorporate new tasks into these systems because they often require ground-truth success
criterion for measuring task performance [7]]. This need for ground-truth success criteria limits the
types of tasks that can be evaluated within these approaches. Third, since these success criteria
are often evaluated using programs, they also serve as an entry barrier preventing non-technical
users from contributing new tasks to these benchmarks. Due to this entry barrier, most benchmarks
developed on top of such open-web environments are static, ground-truth-based benchmarks with
detailed task descriptions. Finally, existing ground-truth based benchmarks can be accessed by a
diverse range of LLMs with different levels of tool access and reasoning frameworks as long as the

*Correspondence to: Sagnik Anupam <sanupam [at] seas.upenn.edu>.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

final system produces the correct ground truth result. While this flexibility is helpful for comparing
across a wide range of systems, it obscures the differences in performance due to the usage of different
language models.

Our approach: A live evaluation platform using user-submitted tasks and pairwise comparison
between agents. We introduce BrowserArena, a live evaluation platform for evaluating LLM
performance on user-submitted open-ended web agent tasks which builds off the Chatbot Arena
[9] framework. In BrowserArena, users are requested to enter a task description, which is then
submitted to two randomly-selected LLMs that utilize the BrowserUse library [20] to interact with
and navigate different websites. BrowserArena uses a similar evaluation approach to other platforms
for open-ended tasks, such as Chatbot Arena [8] and Copilot Arena [9]: pairwise comparisons
between different agents to develop models for human preferences. This approach allows for the
evaluation of tasks with ambiguous specifications and allows users to rank agent outputs according
to criteria that may be difficult to evaluate in a ground-truth-based benchmark (such as whether the
intermediate steps taken by the agent were reasonable).

Can VLMs model human preferences on agent performance? After collecting the user-submitted
votes, we ask a new set of users to evaluate a subset of the original user-submitted tasks to measure
the variance in user preference while evaluating the same agents on the same task. We observe that
there is broad agreement with the original user-submitted preferences while taking a majority vote
among the new users’ submissions. However, despite previous work demonstrating multimodal-
LLM-as-a-judge capabilities on evaluating pair comparisons on other image-based datasets [6]], our
experiments show that there is still a significant gap between human preferences and the preferences
exhibited by vision-language models (VLMs).

Identification of agent failure modes through user-submitted step-level feedback: To overcome
VLMs’ limited capabilities for evaluating agents, we present an alternative methodology using human
step-level feedback for identifying "failure modes" [4} [15], which are recurring situations across
different tasks where users report that LLM agent behavior did not meet their expectations. Our
approach is as follows: in our study, after a user submits a task on our evaluation platform, we
ask the same user to annotate the steps produced in both agents’ output traces to understand where
the agent may have fallen short of user expectations. Intermediate steps in agent traces contain
LLM-generated stepwise goals as well as descriptions of the actions taken during that step. We
ask users to either mark the step’s actions as correct with respect to its goal or mark it as incorrect
and explain why it is contrary to their expectations of a successful step. This approach helps us
collect more granular insights into agent behavior when compared to the simple voting mechanism
present in prior work [9]]. By analyzing user-submitted annotations, we identify three failure modes
occurring within our system (captcha resolution, pop-up banner removal, and direct navigation to
URLs). We then construct targeted datasets of tasks which reproduce these failure modes with a
high frequency, and present our conclusions on the differences in language model behavior on these
failure modes. We currently plan to open-source the BrowserArena platform codebase for collecting
preference data to help identify new agent failure modes. We have open-sourced our codebase at
https://github.com/sagnikanupam/browserarena.

Our key contributions are as follows:

1. We present an evaluation platform, BrowserArena, for pairwise comparison between models
for user-submitted web-browsing tasks (Section [3).

2. We collect user preference data on 109 user-submitted tasks, using which we construct a
language model leaderboard and demonstrate a gap in existing VLMs’ ability to model
human preferences (Section).

3. Given VLM preference labeling unreliability, we describe a new methodology for evaluating
language model performance in web browsing by collecting step-level user annotations on
agent traces and analyzing them to identify common failure modes, which are then studied
separately (Section[5). We find, for example, that DeepSeek-R1 consistently misrepresents
its ability to close pop-up banners, despite being unable to even identify such banners (due
to its lack of multimodal capabilities).

https://github.com/sagnikanupam/browserarena

2 Related Work

Question Answering Benchmarks: Several popular web agent benchmarks formulate their tasks as
text or multimodal inputs to question-answering systems since they can be evaluated using reference
ground truth strings. AssistantBench [27] presents a dataset of user-submitted domain-specific
text-only QA tasks which only accept strings, numbers, and dictionaries as ground truth. WebQA [3]]
comprises of multi-image and complex single-image questions presented to the model alongside a set
of positive sources and distractor sources. GAIA [16] presents a QA benchmark with more difficult
tasks, several of which either require web browsing, code execution, and diverse filetype reading
capabilities. BrowseComp [23]] comprises of even harder QA tasks which take humans several hours
of browsing to solve since the correct answers to the questions satisfy several constraints that are
difficult to evaluate. While these benchmarks can evaluate agents’ ability to search the web for
information that may be very difficult to find or reason about data discovered via web search, they do
not accurately represent how most human users would use these models for web navigation tasks on
an everyday basis and does not measure several abilities valued by humans while navigating the web,
such as navigating and taking actions on dynamic websites.

Self-Hosted and Simulated Benchmarks: Mind2Web [10] uses real-world webpage snapshots
that include raw HTML code, DOM snapshots, and the network traffic for replaying an interaction,
but formulates the web navigation task as an action selection or element selection task, restricting
their measure of success to successfully replicating human-generated trajectories. Other approaches
have formulated the web navigation problem as Partially-Observable Markov Decision Processes
(POMDPs) with various reward mechanisms. For example, WebShop [25] introduced a simulated
environment for executing search tasks defined in natural language on a shopping website containing
products listed on Amazon, with agents only allowed to take click and search actions with ground
truth rewards based on product attributes. WebArena [29] introduced a benchmark for executing
natural language tasks on four self-hosted clones of popular websites with a larger action set, using
both ground-truth answers and LLM-guided fuzzy matching for evaluating agent success. WebArena
has been extended for evaluating agents on visually-grounded tasks in VisualWebArena [14], on
tasks involving learning from long-context video understanding in VideoWebArena [[12]], and on
complex tasks requiring mathematical reasoning and memory in WebChoreArena [19] using similar
evaluation procedures. However, these benchmarks assign rewards based on the final output produced
by the trajectory, making it difficult to assess if the intermediate steps taken by the agent would
be considered reasonable by humans (as they assign equal rewards to two agents even if they take
different approaches to reaching the same terminal state). They also do not provide methods for
evaluating partial progress on tasks that are grounded in human preferences, instead relying on fuzzy
matching to reward models whose outputs resemble the ground truth at the end of their trajectory.

Open Web Benchmarks: Certain popular benchmarks have adapted their evaluation methodology
for evaluating web agents that can browse on the open web. WebVoyager [[11] introduces a benchmark
comprising tasks from 15 websites, omitting websites requiring CAPTCHA or login, developing
tasks by sampling and rewriting tasks from Mind2Web [[10] and prompting LLMs to generate new
tasks. However, they then have to annotate tasks with sets of possible answers, with only 22.3%
of tasks having “golden” answers that they expect not to change in the short term. MMInA [28]
converts tasks from the WebQA dataset [5] into multimodal multi-hop problems, annotating them with
instructions, examples of other QA tasks, and a “universe” of websites the model is allowed to visit
while solving the tasks. While single-hop tasks are evaluated using ground-truth and fuzzy-matching
based evaluations, multi-hop tasks are evaluated by marking tasks as completed only if each hop was
completed correctly (by either visiting the correct link or by collecting the desired information). Thus,
despite evaluating on dynamic, changing websites, the benchmark is restricted to evaluating tasks with
respect to either ground-truth information or human-defined trajectories, making it difficult to scale
the benchmark construction methodology to new tasks and websites (especially given the benchmark’s
dependence on dynamic web content not breaking the ground-truth human trajectories). SearchArena
[[L8]] is an extension of ChatbotArena’s user-preference guided leaderboard system that allows for
users to evaluate tasks on two randomly selected LLMs augmented with search capabilities. However,
their framework is restricted to web search tasks for retrieving and summarizing information, and is
unable to evaluate web agent behavior on browser-based tasks involving taking actions on websites.
Additionally, SearchArena does not provide agent traces describing the sequence of websites visited
and actions taken on each website, making it difficult to compare partial progress on each task and
analyze step-level feedback.

hg Model A Agent Output Model B Agent Output hﬂ
Agent Trace: <Step 1, . . .> Agent Trace: <Step 1, . . .> ModelA® |[Model B
User submits task to
BrowserArena Rendered GIF: Rendered GIF:
Google Google User votes on better response
— —— and annotates agent traces

with feedback

BrowserArena returns two agent outputs

Figure 1: An overview of the study procedure showing how users interact with BrowserArena. We
include examples of user submitted tasks in Appendix[@

3 BrowserArena Evaluation Platform

We develop the BrowserArena website by equipping ChatBot Arena’s open-source codebase [9] with
the capabilty of submitting a task to BrowserUse [20] and visualizing the results. On visiting the
website, users are presented with a text box in which to enter a description of the task (examples of
user-submitted tasks are in Appendix [M)). Once the user submits their task, two LLMs are chosen at
random with uniform probability for creating the BrowserUse agents. These models are then used to
construct BrowserUse agents, which utilize independent Playwright [[17] instances for automating a
Chromium browser. The LLM is permitted to choose an action from the set of actions pre-defined
by the BrowserUse controller (for a full list, see Table[I]in Appendix [C). The BrowserUse agents
accept the task, previous steps, current URL, open tabs, and a list of HTML elements with associated
numeric indices, where the indices of interactive elements are distinguished from the other elements.
If the model has multimodal capabilities (all our tested models except DeepSeek-R1), it also receives
a screenshot of the current browser with an overlay labelling the rendered HTML elements with their
indices. The LLMs then output a JSON object describing the current state of the task, containing
four properties: a self-evaluation of whether the previous goal was completed, a memory property
describing what has been done so far, a goal property describing the next immediate objective, and a
sequence of actions to take.

The user-submitted task prompt is then submitted to the two BrowserUse agents, each using one
of the sampled LLMs as the model backend. Once both models finish, we present the user with
the agent outputs of the models, as well as a GIF rendering each step that the agent took on the
Playwright Chromium browser instance. Once these agent outputs are rendered on the website, users
are provided with an option to vote on which response is better.

4 Experimental Evaluation

For collecting tasks on BrowserArena, we first design a user study (details described in Section
[.T) asking users to submit tasks, vote for the agent that best completed the task, and annotate the
generated agent traces. Then, using user votes, we construct a leaderboard of models . We present
our results in Section[4.2] Then, we run a study to measure human evaluator agreement on a subset of
the user-submitted tasks (detailed in Section[4.3), and demonstrate a significant gap between VLM
preferences and human preferences based on agent outputs in Section

4.1 User Study Design

For our experimental study, we solicit tasks and feedback on agent performance via a survey on
Prolific. We recruit users on Prolific from United Kingdom, United States, Australia, Canada, and
New Zealand with response approval rates between 90-100%. We approved a total of 213 valid
responses, ultimately keeping 109 responses from 98 users due to system outages, logging issues,
and invalid responses. We collected responses in 3 batches, with the average of the batch median
completion times being 35:10 minutes, and payments being made at an average hourly rate of $8.01/hr.

We provide further details about the each batch’s compensation and median completion times in
Appendix

We ask Prolific users to submit tasks that involve clicking and interacting with different websites
(which we call “interactive tasks”) and to explicitly avoid submitting tasks which either can be
answered by analyzing Google search result links and descriptions or can be answered by a language-
model chatbot without searching for an answer. We also caution users not to enter tasks where
the answer is easily provided within the Google search results without clicking on a website or is
an open-ended question that a chatbot can answer without clicking on any website (which we call
“search tasks”). We provide some examples to help users differentiate between the two, which we
have listed in Appendix [A]

Since the goal of each step is LLM-defined, we ask users to use the agent traces and the generated
GIFs to identify steps that were executed correctly with respect to their goals, and describe where
“incorrect” steps fell short. With the help of user feedback, we analyze the agent traces and construct
a mapping between each step generated by the agent and whether it was perceived to be successfully
executed. This information is then used to identify the failure modes explored in our case study in
Section[5] Finally, users are asked to vote between the two LLM models. Unlike the original ChatBot
Arena website, we only accept “Left”, “Right”, and “Tie” votes and ignore “Both models are bad”
votes, since we are interested in measuring partial progress if both agents fail.

We then utilize the user votes to construct a model leaderboard of voter preferences. We evaluate
the performance of five models on the BrowserArena platform: DeepSeek R1, Anthropic Claude
3.7 Sonnet:Thinking, Meta Llama-4-Maverick, OpenAl 04-mini, and Google Gemini 2.5-Pro-
Preview-03-25 using the OpenRouter API platform. In our subsequent discussions, we will refer
to each of these models by the bolded portion of their names. We note that while the BrowserUse
platform supports submitting image screenshots of the webpage alongside search results and web
page structure in API calls to the model, R1, being a language model without multimodal capabilities
does not utilize the image screenshot provided.

4.2 Ranking Results

By estimating the Bradley-Terry coefficients of each model [2] based on the user votes, we compute
the ranks of different models using the ranking methodology described in Chatbot Arena [9]. We
provide a more detailed summary of leaderboard construction in Appendix [B} We present our leader-
board from 109 valid battles alongside our win fraction heatmap, average win rate bar, confidence
interval calculations, and a heatmap of the battlecounts in Figure[2] Based on the user-submitted
tasks, the LLM agent with the highest ELO rating is based on R1, which surprisingly is the only
model evaluated that does not have multimodal capabilities.

4.3 Human Evaluator Agreement

We evaluate how consistently humans judge head-to-head browser-agent runs on 25 randomly selected
task submissions, and find modest-to-strong agreement. For each task, annotators are shown the
same agent trace and GIF comparison used for the original task submissions, and are asked to select
between Agent 1, Agent 2, and Tie. 165 new human annotations are collected from Prolific; we
use two screening questions and participants take on-average 57 seconds to provide a selection on
a task. We compare these human aggregates to the label from the original task submission with
inter-annotator agreement, which measures how often different human evaluators make the same
choice when comparing two agent trajectories, with higher agreement indicating clearer differences
in performance between the agents. We find that the majority vote of the new human annotators has
modest agreement with the baseline labels (63.2% of questions) and modest inter-annotator agreement
(57.6%). Lower agreement is largely explained by the lack of consistency between labelers when
voting ‘tie’; the majority vote agreement goes up to 100% agreement when ‘tie’ votes are removed
and we force a majority selection between Agent 1 and 2. Similarly, the inter-annotator agreement
goes up to 83% when ties are filtered. These results suggest that differences between human agent
judgements reflect differing decision thresholds more than differing rank orderings of agents.

Model B

[s, .
Ry e O"v;,. » (N iy 2

R

R1

Llama-4

0.6

0.5 o4-mini

0.3 Claude 3.7

0.2

0.1 Gemini 2.5
0

Average Win Rate
o
S
Model A

& o7
6’77 ’77//,/ 6"(7 /,7/2
Model
(a) Average Win Rate across models (b) Battle Count Heatmap
1200 Model B
1168 [G
& 9, M,
Ry %iq 01,7% % 5 S " 5
1117
1100
R1
2
= 1000 Llama-4 0.6
o 969
<
900 0z T o4-mini 0.5
3
=
840
Claude 3.7 0.4
800
Gemini 2.5
700 R, ¢ @) G
VA O
‘ 6/776“7 7"77,;,/, /60053 Dy,
> g
Model o 0.2
(c) Bootstrapped ELO Rating (d) Pairwise Win Fraction Heatmap

Figure 2: We compute the average win rate, battle counts, bootstrapped ELO ratings, and pairwise win
fractions from 109 user-submitted tasks and evaluations on Prolific. For the ELO-based leaderboard,
we simply sort the models from highest to lowest bootstrapped ELO rating in Figure Ekc).

4.4 VLM-as-a-Judge

For VLM evaluation, we use the same 25 randomly selected task submissions we use for measuring
human evaluator agreement. The original human task labels are compared to two vision-language
model judges (GPT-40, o4-mini) that are prompted with the same input (the agent trace and GIFs)
and asked to choose between select between Agent 1, Agent 2, and Tie. As shown in Figure [3]
GPT-40 has relatively high agreement with the human annotation baseline (68%), 04-mini only
58%. Interestingly, we find that the GIFs showing the agent computer seem to be hurt GPT-40
agreement: in input ablations, trace-only evaluation improves GPT-40’s agreement with the baseline
annotations by 10 percentage points (79% vs. 68% with GIFs and traces), while GIF-only input
collapses performance to 48% agreement despite an increased self-reported confidence. These results
indicate that multimodality can hurt judge reliability in this setting. In summary, we find a sizable
gap in labeler agreement between VLMs and humans.

Pairwise Agreement Matrix

1.0
Baseline . 0.58 0.68 I

Other Humans

Agreement Rate

O4-mini

GPT-40

0.0

4
%,
00
%,
%
%,
“y
[
“p
%

Figure 3: Pairwise agreements between the baseline labels, the new annotators, and two vision-
languages models (GPT-40 and 04-mini; we take the majority @5).

5 Prominent Agent Failure Modes

We use the agent traces and human feedback collected in our benchmark to surface and study three
prominent failure modes in current agents. After collecting the step-level feedback as a part of our
initial Prolific user study, we cluster and summarize the step-level annotations as described in Section
[5.1] Using these clusters, we identify three failure modes where agents fail to complete tasks which
we investigate in greater detail: Captcha Solving (Section[5.2), Pop-Up Banner Closure (Section[5.3)),
and Direct Navigation (Section [5.4).

To study variations in model behavior on occurrence of each of these failure modes, we use the
following general pipeline. We first construct a new larger dataset of tasks which reproduce the
failure mode scenario with a high probability when an agent attempts to complete the task. Then,
once we execute these tasks for each language model, we use o4-mini as a judge to evaluate the
traces generated by the agent and determine if the specific failure mode occurred while the agent was
executing the task. We then report aggregate statistics on how often each language model ran into
specific scenarios while executing the tasks.

5.1 Discovering Common Failure Modes

We use our step-level human labels on the BrowserArena agent tasks to automatically find ‘failure
modes’ [15} 4], consistent mistakes an agent makes while performing the user-submitted tasks. Three
of our discovered failure modes are explored in detail in Sections [5.2}{5.4] To automatically find
these common failure modes, we use two methods (dataset featurization [3]] and an API-only method,
Docent [15]]) that first cluster the step-level labels in an embedding feature space, and then use
auxiliary LLMs to summarize these clusters; these cluster summaries, which pick out consistent
agent behavior across tasks, are the failure modes. The methods find very similar failure modes; we
give the full set of discovered failure modes found via dataset featurization in Table [2Jand Docent in
Figure[d{a). Our cluster and summarization hyperparameters are described in Appendix [I|

We then select the following three failure modes for a more detailed investigation from the list of
failure modes we have constructed:

1. Captcha Solving: On encountering a captcha puzzle, agents can get stuck while attempting
to solve the puzzle since the individual components of the puzzle may not be clickable
elements in the webpage’s DOM. We thus seek to study the different strategies used by
different language models to evaluate if specific models prefer different captcha-avoidance
methods to others.

2. Pop-Up Banner Closure: On encountering a pop-up banner obscuring a part of the website,
agents can be preventing from making progress on the remainder of the task due to being
unable to close the pop-up-banner. We thus study how often a language model identifies
that a pop-up banner is blocking its access to the website and successfully closes the banner
and moves ahead with its task.

3. Direct Navigation: Sometimes, agents choose to directly navigate to a website URL (hereby
referred to as the starting website) that they believe is integral for solving the task as
opposed to conducting a Google Search to collect relevant links first. This can lead to delays
in completing the task if navigating the starting website is more complex for the agent
compared to the websites which may have been selected had the model conducted a Google
search first.

5.2 Captcha Solving

Dataset Construction: We first identify www.expedia.com as a website that is reliably blocked by
a captcha on our system when an agent attempts to visit it while solving a user-submitted task. We
then construct a dataset of 220 tasks which require interacting with or visiting the Expedia website.
20 of these tasks are constructed from human written task templates, and 200 of them are generated
by GPT 4.1 using a task generation prompt (for template and prompt details, see Appendix [D).

Scenarios: We first construct a set of captcha circumvention strategies by manually examining LLM
agent traces produced by different models on some of the 20 template-based tasks. We additionally
have an LLM (04-mini) also analyze all of these traces and identify if any other strategies have
been used for captcha navigation in these traces. We add the new strategies detected by LLM to our
existing set of strategies. Finally, we use o4-mini to identify if any strategy from our strategy set was
used in the agent traces of each of the 220 tasks that each LLM attempted to solve. For the detailed
prompt used for o4-mini to judge all the agent traces and the description of each strategy provided in
the prompt, see Appendix [F}

Results: We present our results measuring the percentage of times each particular strategy was
deployed by a model in Table[3]in Appendix [J] We observe that most language models show a clear
preference for the “Direct Link”, “Google Search”, and “New Tab” strategies. However, Claude 3.7
prefers the Switch Websites method much more than other LLMs, while both it and Gemini-2.5-Pro
use the “New Tab” tactic less than other LLMs (and in fact prefer the “Switch Websites” method to
it). On the other hand, o4-mini uses all the listed strategies at least once, and uses some strategies
not used at all by other language models, such as the “Text-only Rendering”, “Public Proxy”, and
“Internet Archive”. It also uses tactics such as “Cache”, “Mobile”, and “Internal Navigation” and
“Country Domain” at much higher rates than other LLMs, suggesting that it is better at getting around
captcha challenges in the event of their presence disrupting the search than other language models as
it is able to try a wider range of strategies.

5.3 Pop-up Banner Closure

Dataset Construction: We first identify www.bbc. com as a website that reliably generates a privacy
policy banner when an agent attempts to visit it while solving a user-submitted task. We construct a
dataset of 80 tasks which require interacting with or visiting the BBC website by prompting GPT 4.1
using a task generation prompt (for template and prompt details, see Appendix [E)).

Scenarios: We consider three scenarios that the LLM agent may find itself in: either it did not detect
a pop-up banner while evaluating the task, it did discover a pop-up banner and successfully closed it,
and it marked the task as being completed (independent of whether it managed to progress past the
pop-up banner). We then use o4-mini to identify if any of these scenarios occurred in the agent traces
of each of the 80 tasks that each LLM attempted to solve. For the detailed prompt used for 04-mini to
judge all the agent traces and the description of each strategy provided in the prompt, see Appendix
[Gl For complete results of how frequently each scenario occurs for specific LLMs, please refer to
Table din Appendix

Results: Notably, R1 seems to have never realized that a part of the website is blocked by a privacy
policy pop-up in all the times it attempts to complete the BBC agent tasks, indicating that multi-modal
reasoning ability is required for detecting the privacy policy pop-up. However, R1 marks the task as
completed at the highest rate of all the LLMs, suggesting that without multimodal capabilities, it is

www.expedia.com
www.bbc.com

unable to reason that its task remains incomplete without closing the cookie banner. On the other hand,
04-mini and Llama-4 manage to close pop-up banners at a higher rate than the remaining multimodal
LLMs, although only o4-mini marks a similar percentage of tasks as completed as compared to the
percentage of tasks for which the LLM judge determines that it closed the pop-up banner.

5.4 Direct Navigation

Dataset Construction: We focus on a knowledge-intensive question answering task to investigate
whether agents opt to directly answer, directly navigate to relevant websites, such as Wikipedia, or
instead invoke the Google Search API. To this end, we sample 100 questions from the TriviaQA
dataset [[13]], which comprises naturally occurring questions posed by trivia enthusiasts.

Scenarios: We consider two distinct scenarios that the language model (LLM) agents may encounter:
(1) the agent recognizes the question and directly answers or navigates to the corresponding Wikipedia
page; or (2) the agent lacks sufficient knowledge and first queries the web using Google Search.
For each question, we collect the agent’s execution trajectory and manually annotate the scenario
it conforms to. A summary of the distribution of scenarios across models is provided in Table[5]in

Appendix [[]

Results: We observe that the most frequent behavior involves invoking the Google Search API
to retrieve relevant information using extracted keywords. In some instances—more commonly
observed with Llama-4—the agent navigates to Google.com and inputs search queries manually,
rather than using the API. In contrast, direct answering or navigation to Wikipedia pages is relatively
rare. These findings suggest that, in general, agents tend to follow the instruction and leverage Google
as the primary information source when responding to knowledge-intensive queries.

6 Conclusions

In this paper, we have presented a web agent evaluation platform, BrowserArena, for pairwise
comparison between various language models on user-submitted web browsing tasks. After collecting
user preference data on 109 user-submitted tasks, we first construct a language model leaderboard to
demonstrate user preferences between various models. Then, we demonstrate a gap between VLM
agreement and human evaluator agreement on user preferences.

This gap motivates our development of a new methodology for evaluating language model per-
formance by collecting step-level user annotations on agent traces and analyzing them to identify
common failure modes. We then provide methods to construct three targeted datasets to further study
these failure modes, and report our results on differences in model behavior when encountering these
failure modes.

7 Limitations

Our approach for standardizing language model agents involves equipping models with BrowserUse
[20], which provides all models with a standard format in which to output their goals and the action
to be taken in each step. However, equipping models with different or more powerful capabilities
may help improve agent capabilities in solving tasks, which makes our results and evaluation method
dependent on the browser agent system connected to the LLM.

Additionally, another drawback is that the failure modes we discover may be system specific. We
believe that it is still useful to identify failure modes and construct targeted datasets to analyze model
behavior under similar circumstances. However, the specific tasks that trigger the failure mode may
be different depending on the system configuration - for example, it may be possible to reduce the
likelihood of encountering captchas on a particular website by using rotating proxies.

References

[1] Bonatti, R., Zhao, D., Bonacci, F., Dupont, D., Abdali, S., Li, Y., Lu, Y., Wagle, J., Koishida, K.,
Bucker, A., et al. (2024). Windows agent arena: Evaluating multi-modal os agents at scale. arXiv
preprint arXiv:2409.08264.

[2] Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324-345.

[3] Bravansky, M., Kubon, V., Hariharan, S., and Kirk, R. (2025). Dataset featurization: Un-
covering natural language features through unsupervised data reconstruction. arXiv preprint
arXiv:2502.17541.

[4] Brown, D., Balehannina, P., Jin, H., Havaldar, S., Hassani, H., and Wong, E. (2025). Adaptively
profiling models with task elicitation. In The 2025 Conference on Empirical Methods in Natural
Language Processing.

[5] Chang, Y., Narang, M., Suzuki, H., Cao, G., Gao, J., and Bisk, Y. (2022). Webqa: Multihop
and multimodal qa. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16495-16504.

[6] Chen, D., Chen, R., Zhang, S., Wang, Y., Liu, Y., Zhou, H., Zhang, Q., Wan, Y., Zhou, P., and
Sun, L. (2024). Mllm-as-a-judge: Assessing multimodal 1lm-as-a-judge with vision-language
benchmark. In Forty-first International Conference on Machine Learning.

[7] Chezelles, D., Le Sellier, T., Gasse, M., Lacoste, A., Drouin, A., Caccia, M., Boisvert, L.,
Thakkar, M., Marty, T., Assouel, R., et al. (2024). The browsergym ecosystem for web agent
research. arXiv preprint arXiv:2412.05467.

[8] Chi, W., Chen, V., Angelopoulos, A. N., Chiang, W.-L., Mittal, A., Jain, N., Zhang, T., Stoica, I.,
Donahue, C., and Talwalkar, A. (2025). Copilot arena: A platform for code llm evaluation in the
wild. arXiv preprint arXiv:2502.09328.

[9] Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N., Li, T., Li, D., Zhu, B., Zhang, H.,
Jordan, M., Gonzalez, J. E., et al. (2024). Chatbot arena: An open platform for evaluating llms by
human preference. In Forty-first International Conference on Machine Learning.

[10] Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang, B., Sun, H., and Su, Y. (2023).
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114.

[11] He, H., Yao, W., Ma, K., Yu, W,, Dai, Y., Zhang, H., Lan, Z., and Yu, D. (2024). Webvoyager:
Building an end-to-end web agent with large multimodal models. arXiv preprint arXiv:2401.13919.

[12] Jang, L., Li, Y., Zhao, D., Ding, C., Lin, J., Liang, P. P., Bonatti, R., and Koishida, K. (2024).
Videowebarena: Evaluating long context multimodal agents with video understanding web tasks.
arXiv preprint arXiv:2410.19100.

[13] Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L. (2017). TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Barzilay, R. and Kan, M.-Y., edi-
tors, Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1601-1611, Vancouver, Canada. Association for Computational
Linguistics.

[14] Koh, J. Y., Lo, R., Jang, L., Duvvur, V., Lim, M. C., Huang, P.-Y., Neubig, G., Zhou, S.,
Salakhutdinov, R., and Fried, D. (2024). Visualwebarena: Evaluating multimodal agents on
realistic visual web tasks. arXiv preprint arXiv:2401.13649.

[15] Meng, K., Huang, V., Steinhardt, J., and Schwettmann, S. (2025). Introducing docent. https:
//transluce.org/introducing-docent,

[16] Mialon, G., Fourrier, C., Wolf, T., LeCun, Y., and Scialom, T. (2023). Gaia: a benchmark for
general ai assistants. In The Twelfth International Conference on Learning Representations.

10

https://transluce.org/introducing-docent
https://transluce.org/introducing-docent

[17] Microsoft (2025). Playwright.

[18] Miroyan, M., Wu, T.-H., King, L., Li, T., Pan, J., Hu, X., Chiang, W.-L., Angelopoulos, A. N.,
Darrell, T., Norouzi, N., and Gonzalez, J. E. (2025). Search arena: Analyzing search-augmented
1lms.

[19] Miyai, A., Zhao, Z., Egashira, K., Sato, A., Sunada, T., Onohara, S., Yamanishi, H., Toyooka,
M., Nishina, K., Maeda, R., et al. (2025). Webchorearena: Evaluating web browsing agents on
realistic tedious web tasks. arXiv preprint arXiv:2506.01952.

[20] Miller, M. and Zunié, G. (2024). Browser use: Enable ai to control your browser.
[21] OpenAl (2025). Introducing operator. Research preview announcement.

[22] Wang, X., Li, B., Song, Y., Xu, F. F,, Tang, X., Zhuge, M., Pan, J., Song, Y., Li, B., Singh, J.,
et al. (2024). Openhands: An open platform for ai software developers as generalist agents. In
The Thirteenth International Conference on Learning Representations.

[23] Wei, J., Sun, Z., Papay, S., McKinney, S., Han, J., Fulford, 1., Chung, H. W., Passos, A. T,
Fedus, W., and Glaese, A. (2025). Browsecomp: A simple yet challenging benchmark for browsing
agents. arXiv preprint arXiv:2504.12516.

[24] Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R., Hua, T. J., Cheng, Z., Shin, D., Lei, F.,
et al. (2024). Osworld: Benchmarking multimodal agents for open-ended tasks in real computer
environments. Advances in Neural Information Processing Systems, 37:52040-52094.

[25] Yao, S., Chen, H., Yang, J., and Narasimhan, K. (2022). Webshop: Towards scalable real-world
web interaction with grounded language agents. Advances in Neural Information Processing
Systems, 35:20744-20757.

[26] Yehudai, A., Eden, L., Li, A., Uziel, G., Zhao, Y., Bar-Haim, R., Cohan, A., and Shmueli-
Scheuer, M. (2025). Survey on evaluation of llm-based agents. arXiv preprint arXiv:2503.16416.

[27] Yoran, O., Amouyal, S. J., Malaviya, C., Bogin, B., Press, O., and Berant, J. (2024). As-
sistantbench: Can web agents solve realistic and time-consuming tasks? arXiv preprint
arXiv:2407.15711.

[28] Zhang, Z., Tian, S., Chen, L., and Liu, Z. (2024). Mmina: Benchmarking multihop multimodal
internet agents. arXiv preprint arXiv:2404.09992.

[29] Zhou, S., Xu, E. F,, Zhu, H., Zhou, X., Lo, R., Sridhar, A., Cheng, X., Ou, T., Bisk, Y., Fried, D.,
Alon, U., and Neubig, G. (2023). Webarena: A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854.

11

A Example Tasks Presented to Users

Examples of Valid Interactive Tasks:

1. What are today’s top 20 headlines from CNN?

2. Compare the bus prices for one-way tickets from Boston to New York next Saturday on
different ticket purchasing websites.

3. Create a list of the top-ranked chess players on chess.com from Belgium.
Examples of Invalid Search Tasks (Alongside Why They are Invalid)

1. How do I increase my concentration while working? (This is invalid because it can be
answered using a chatbot and does not require clicking on a specific website.)

2. What is the weather today? (Google will output this answer in a box displayed at the top of
search results, again does not require clicking on a specific website.)

3. Who are the members of the Beatles? (Google provides a lot of links with the text containing
the answer to this question under those links, so you do not need to click on a website to
answer this question.)

B Ranking Methodology

We use a similar approach to other pairwise-comparison evaluation procedures for ranking models.
Here, we present an overview of the procedure in the binary preference case for M models. As
defined in [8, 9], in a sequential setting, at time ¢ € N, we first formally define our comparative data
set A = {(m,m’) : m <m’ and m,m’ € [M]}. Then, for a pair of models A; = (i,7) € A, we
model the human preference H; € {0, 1}, where Hy is 1 if 7 is preferred over j and 0 if j is preferred
over i. We then define the score function to be the vector of Bradley-Terry coefficients 3 € RM [2].
Under the Bradley-Terry model, the probability of model 7 beating model j i.e. P(H; = 1) is given
as shown:

P(H, = 1 e 1
(H =1)= B LB (D
The rank of a model m is then calculated as follows:

rank(8)m =14 Y 1{Buw > B} ©)

m’€[M]

The BT coefficients are then estimated via maximum likelihood estimation, with 95% confidence
intervals being calculated by bootstrapping for 100 rounds. After determining the confidence interval,
the rank of each model is estimated by computing the number of models whose lower bound is
less than its upper bound [8]]. This model can then be extended to cases when H; is not binary by
estimating the BT score from a nonparametric extension of the Bradley-Terry model [9].

12

C BrowserUse Permitted Actions

Action Name

Action Description

Complete Task

Search Google

Go to URL

Go Back

Wait

Wait for element to be visible
Click element by Index
Click element by Selector
Click element by XPath
Click element with Text
Input Text

Save as PDF

Switch Tab

Open URL in New Tab
Close Tab

Extract Page Content
Save as HTML

Scroll Down

Scroll Up

Send Special Keys
Scroll to Text

Get Dropdown Options

Select Dropdown Option by Text

Drag and Drop

Mark task as completed with success=True if successfully completed and success=False if at last step.
Search the query in Google on the current tab.

Visit the specified URL in the current tab.

Go back in history to the previous website visited.

Wait for « seconds where x = 3 by default

Wait for an element specified by the CSS Selector to become visible within the specified timeout.
Click the HTML element specified by its numeric index

Click the HTML element specified by its CSS Selector.

Click the HTML element specified by its XPath path expression.

Click the HTML element containing the provided text.

Input the provided text into the specified input interactive element.

Save the current page as a PDF file.

Switch to a different browser tab.

Open the specified URL in a new tab.

Close the specified browser tab.

Extract page content using an LLM prompted with the specified goal.

Save the raw HTML content of current page as an HTML file.

Scroll down by a specified pixel amount, by default scroll down one page.

Scroll up by a specified pixel amount, by default scroll up one page.

Send special key commands (Esc, Backspace, keyboard shortcuts) to the current page.
Scroll until the specified text is visible on the current page.

Get all options from a dropdown element.

Select dropdown option using the specified text

Drag and drop elements, or between coordinates of the page.

Table 1: BrowserUse actions available to LLMs, as specified in [20].

D Prompt Used for LLM-Generated Captcha Solving Tasks

Note: While we prompt the language model to generate a 1000 tasks in most of our prompts, we
usually get between 80-100 tasks in a single response. For generating our final list tasks, we prompt
the model repeatedly and remove any duplicate tasks generated.

Model Used: GPT 4.1
System Prompt: You are a helpful task-generating agent.
User Prompt: In JSON format, generate a list of 1000 tasks for a web agent that involve navigating
to the Expedia website and searching for information. Here are some examples of the desired tasks:
1. “Find a list of activities on Expedia to do in Chicago on December 3.”
2. “Find the cheapest hotel in Houston on Expedia from August 8-12.”

3. “Find the cheapest round-trip flights between Houston and Los Angeles on Expedia from
November 10-15.”

Make sure to randomize the cities, dates, and types of tasks. Do not generate any tasks that require
the agent to take any action on the website except for searching and retrieving information. Make
sure the tasks include the phrase “on Expedia” so that the agent searches for the Expedia website.

E Prompt Used for LLM-Generated Pop-Up Banner Tasks

Model Used: GPT 4.1
System Prompt: You are a helpful task-generating agent.

User Prompt: In JSON format, generate a list of 1000 tasks for a web agent that involve navigating
to the bbc.com website and searching for information. Here are some examples of the desired tasks:

1. “Find the top 10 headlines of the day on bbc.com.”
2. “What is the top story today in the Culture section on bbc.com.”

3. “List all the headlines from three days ago in the innovation section on bbc.com.”

13

Make sure to randomize the number of days and the sections of the bbc.com website in the task. You
must only choose sections from the following list: News, Sport, Business, Innovation, Culture, Arts,
Travel, Earth, Audio, Video. Do not generate any tasks that require the agent to take any action on
the website except for searching and retrieving information. Make sure the tasks include the phrase
“on bbc.com” so that the agent searches for the bbc.com website.

F Prompt Used for Evaluating Captcha Analysis Agent Traces

Model Used: o4-mini

System Prompt: You are an LLM judge evaluating the output of an agent attempting to traverse
different websites to solve a task. The task involves navigating Expedia, a travel website which
often uses captchas to block robots from traversing the website. Your goal is to identify the captcha
avoidance strategies used by the agent. The list of captcha avoidance strategies are as follows:

1. “cache’ - attempts to use Google’s cache to retrieve an unblocked version of the website.

2. "mobile’ - attempts to use the mobile version of the website to retrieve an unblocked version
of the website.

3. “direct_link" - attempts to open the website by navigating directly to a link that may have
the correct website instead of searching for it on Google.

4. " google_search - attempts to conduct a Google search to identify alternative links to the
same website (without using any cache terms - if the Google search has cache terms, then
the " cache’ strategy was used).

5. “randomized_interaction” - attempts to wait random amounts of time before completing an
interaction to circumvent bot detection algorithms.

6. reloads” - reloads the website in an attempt to remove the captcha.

7. “new_tab" - attempts to open the website in a new tab to avoid any session cookies being
associated with its search.

8. 'switch_websites" - switches to a non-Expedia website to solve the task instead of trying to
navigate to Expedia.

9. ’internal_navigation’ - attempts to go to the home webpage of Expedia, and navigate to the
correct webpage from the home webpage.

10. “country_domain’ - attempts to use a different country domain of Expedia to retrieve an
unblocked version of the website.

11. "text-only rendering’ - attempts to perform a text-only render or retrieve the plaintext version
of the website by using a proxy such as Textise.

12. "public proxy " - attempts to use a public proxy such as AllOrigins to avoid bot protection
mechanisms.

13. “internet_archive’ - attempts to use the Internet Archive’s Wayback Machine to retrieve an
unblocked version of the website.

14. " google_travel_integration" - attempts to use the Google Travel integration to solve the task.
This strategy is only applicable if the term “Google Flight Integration” or “Google Travel
Integration” is mentioned in the agent’s output.

You should output a JSON string in the format " strategy_name " : “bool™ which has all the keys as
strategy_names and the values as “true” or “false” depending on whether the strategy was detected in
the agent output. For example, if only the “reloads” and “new_tab" strategies were detected in the
output, your output should be:

[NEN

"cache": false,
"mobile": false,
"direct_link": false,

14

"google_search": false,
"randomized_interaction": false,
"reloads": true,

"new_tab": true,
"switch_websites": false,
"internal_navigation" false,
"country_domain": false,
"text-only rendering": false,
"public_proxy": false,
"internet_archive": false,
"google_travel_integration": false

ENENEN

Make sure that all the keys are present in the output, even if their value is false. Only output the
JSON string, do not include any other text, and make sure that the only keys in the JSON string are
the ones listed above. Do not include any additional keys or values in the output.

User Prompt: {Agent Trace}

G Prompt Used for Evaluating Pop-Up Banner Agent Traces

Model Used: o4-mini

System Prompt: You are an LLM judge evaluating the output of an agent attempting to traverse
different websites to solve a task. The task involves navigating to a website with a cookie banner,
privacy pop-up, or pop-up ad and completing the assigned task. You are provided with the task and
the agent’s output, and your goal is to identify if the agent was successful in closing the cookie banner
or pop-up ad and progressing with the task.

You should output a JSON string in the format {"banner_detected": “bool", "banner_closed": “bool",
"task_successfully_completed": “bool" } where the "banner_detected" key indicates whether the
agent found a cookie banner, privacy pop-up, or pop-up ad at any point while trying to complete the
task, and the "banner_closed" key indicates whether the agent successfully closed it. If no cookie
banner or pop-up ad was detected, both values should be false. The "task_successfully_completed"
key should be set to True if the agent states it successfully completed the task at the end of the trace.

Make sure that all the keys are present in the output, even if their value is false. Only output the
JSON string, do not include any other text, and make sure that the only keys in the JSON string are
the ones listed above. Do not include any additional keys or values in the output.

User Prompt: {Agent Trace}

H Prolific User Study Compensation

We collect tasks from users in 3 batches: the 6 participants in the first batch of the pilot study were
paid $1.50 per response based on a projected median response time of 11:00 minutes for an hourly
cost of $8.17/hr. The second and third batches were paid at an hourly rate of $8.01/hr, with the 28
responses in the second batch paid at a rate of $5.40 per response based on the calculated median
response time of 40:28 minutes, while the 179 responses in the third batch were paid at a rate of
$4.69 per response based on the calculated median response time of 35:09 minutes.

I Failure mode discovery details

I.1 Dataset Featurization

We apply Dataset Featurization [3]] to surface common failure modes from our step-level agent
task labels, following the unsupervised, two-stage pipeline of (i) feature proposal via contrastive
data—reconstruction prompts and (ii) forward selection under a reconstruction—perplexity objective.
Concretely, for each target goal string x, we draw C'=5 contrastive strings {r.}>_; from the corpus

15

and prompt GPT-4o to propose =4 short (<20 words) binary predicates that are true of x while
(ideally) not holding for the {r.}. This contrastive step forces candidates to be discriminative rather
than generic. Pooling across V=218 goal-feedback examples yields 872 initial feature hypotheses.
We embed each candidate (and associated step text) with text-embedding-3-small, standardize
embeddings, and perform K-means with target granularities chosen to achieve interpretable coverage
yielding 15, 10, 5 clusters across sweeps. From each cluster we retain one representative phrasing.
We then assign binary truth values by asking GPT-4o (temperature = 0) to evaluate every (goal string,
clustered feature) pair, producing a N x K’ binary matrix (labels “Y/N”).

The final failure modes are selected from these clusters by testing how well they allow a language
model model (Llama-3-8B) to reconstruct the step-by-step labels. Namely, we treat active features
for a text as a newline-delimited context and compute mean per-text perplexity

N
PPL(D | ¢) = %Z PPL(z™ | ctx(¢(z™))),

n=1
then greedily append the feature F' that most reduces perplexity, i.e.,
F = argrr}TiIn PPL(D | P U {F’}),

stopping when no candidate yields a further drop (or a feature budget is reached). Following DF, we
use a static reconstruction prompt and cache log-probabilities for texts where a feature evaluates to
FALSE to avoid redundant computation. The resulting cluster summaries instantiate the final failure
modes.

1.2 Docent

We also use an API-only method, Docent [[15], to help confirm the consistency of our clusters
and summaries across featurization methods. We pass the human-step level labels of each
agent goal, along with the prompt: Based on the step-by-step feedback metadata on
each agent step, find the failure modes where the agent fails to complete
research tasks. Be granular, e.g. not just "failure" but "failure due to
the agent not properly handling x in case y.". The failure modes are displayed in
Figure f[(a); we find significant overlap between our dataset featurization failure modes and the
Docent failure modes. To featurize the dataset, Docent uses Claude Sonnet 4 to produce natural
language summaries of our human step-level labels, two of these (for the cookie and captcha failure
modes) are presented in Figure @(b) and (c).

16

Model Output Parsing Failures: Technical failures where the agent cannot parse or process its own generated

output, preventing execution of research steps due to JSON parsing errors, malformed responses, or inability to

Website Access Blocking: Failures caused by anti-bot security measures including CAPTCHAs, Cloudflare verification,

human verification checks, throttling errors, and other website protection mechanisms that prevent the agent from

Navigation and Ul Interaction Errors: Failures in basic web navigation including inability to click elements, scroll

properly, handle dropdowns, navigate between pages, or interact with specific Ul components needed to complete

Cookie Consent and Page Loading Issues: Failures related to handling cookie consent popups, page loading

problems, missing page elements, and other initial webpage access issues that prevent the agent from reaching the

Search Execution and Query Formulation Problems: Failures in executing search queries, formulating proper search

terms, triggering search results, or handling search interface interactions across various platforms.

Data Extraction and Content Processing Failures: Failures in extracting specific information from successfully

accessed webpages, including inability to parse tables, extract headlines, process lists, or gather required data

Task Scope and Planning Errors: Failures due to inadequate task planning including checking only one website when

multiple were required, incomplete goal specification, incorrect task scoping, or failure to execute planned research

Information Filtering and Verification Problems: Failures in applying proper filters (date ranges, categories, criteria),

verifying data accuracy, distinguishing relevant from irrelevant results, or extracting information that meets specific

Date Selection and Form Input Errors: Specific failures related to inputting dates, selecting time ranges, handling

calendar interfaces, filling out travel or booking forms, and managing temporal data requirements.

Final Synthesis and Completion Issues: Failures in the final stages of research tasks including inability to synthesize

> 85 hits
interpret structured data.
> 29 hits
accessing research sources.
> 85 hits
research tasks.
> 32 hits
actual content.
> 90 hits
> 102 hits
points from loaded content.
> 81 hits
steps entirely.
> 110 hits
requirements.
> 12 hits
> 72 hits
successful intermediate steps.
> 7hits Residuals

collected data, provide summaries, format final outputs, or complete the overall research objective despite

(a) Docent summarization of our human step-level labels

Cookie Consent and Page Loading Issues: Failures related to
handling cookie consent popups, page loading problems,
missing page elements, and other initial webpage access
issues that prevent the agent from reaching the actual content.

v 32 hits

Agent Run e8c5f964 1

The agent failed to complete the research task of retrieving the top 10
headlines from Anchorage Daily News due to a parsing error at step 3. After
successfully searching for and accessing the official website (steps 1-2
marked as "Correct"), the agent attempted to accept cookies to access full
content but encountered "Failed to parse model output" errors on 3
consecutive attempts, causing the run to terminate before retrieving the
requested headlines.

Agent Run ffd13ecd 1

Failure due to the agent not being able to successfully visit Tripadvisor's
page about Cape Cod attractions during the research phase. The agent's
third goal was to "Visit Tripadvisor's page about Cape Cod attractions to
begin gathering information for my list" but this step received "Step failed"
feedback, preventing the agent from gathering necessary travel website
content to complete the research task of creating a top 10 list.

Agent Run a9d9f686 2

Initial failure when handling cookie consent during the research task - the
agent was initially incorrect at step 8 while repeatedly attempting to handle
cookie consent to access page content

Failure due to validation response error when handling cookie consent
during the research task - the agent initially failed at step 5 with a validation
response error while trying to handle cookie consent to access page content
for gathering AMD graphics card price information

Website Access Blocking: Failures caused by anti-bot security
measures including CAPTCHAs, Cloudflare verification, human
verification checks, throttling errors, and other website
protection mechanisms that prevent the agent from accessing
research sources.

~ 29 hits

Agent Run 320c76f4 1

Failure due to the agent repeatedly failing to properly handle Google
CAPTCHA verification challenges when attempting to search for TypeRacer
website, with 5 consecutive incorrect attempts at CAPTCHA solving
preventing successful navigation to the research target.

Agent Run f9801f92 1

Failure due to the agent not properly handling API throttling errors when
attempting to access Amazon's official Best Sellers list. The agent
encountered a "Throttling error" at step 6 when trying to "Resolve throttling
error and retrieve official Best Sellers in Fiction", and despite attempting
remediation through page refresh and content re-extraction in steps 7-8,
the throttling error persisted, preventing successful completion of the
research task to find current best-selling fiction books with their prices and
ratings.

Agent Run 273a8143 1

Failure due to the agent not effectively handling anti-bot measures during
final content extraction attempts. The emergency scroll and extract strategy
resulted in incomplete and scrambled product information, with extraction
ultimately failing due to CAPTCHA challenges and content blocks preventing
access to the trending home décor listings.

(b) Example individual datapoint captioning (in blue),
from the Claude Sonnet 4, for the failure mode dealing
with cookies.

(c) Example individual datapoint captioning (in blue),
from the Claude Sonnet 4, for the failure mode dealing
with cookies.

Figure 4: Failure mode identification with Docent [13].

17

Table 2: Agent failure modes found form the human step-level labels via dataset featurization [3]],
under different granularity k. Bolded rows correspond to the failure modes we explore in detail via
generated tasks in Section [5]

k Failure mode Count Share (% of total 220)
k=5
Complex tasks with multiple steps 185 84.9
Navigation to specific website sections 116 53.2
Straightforward task sequences 65 29.8
Repeated parsing errors 54 24.8
Task completion execution errors 22 10.1
Cookie consent handling failures 12 5.5
k=10
Specific list extraction tasks 148 67.9
Direct URL navigation attempts I 35.3
Goal completion without failures 68 31.2
Repeated parsing errors 63 28.9
Concise task structure 58 26.6
High frequency unsuccessful attempts 57 26.1
Technical errors (non-navigation) 44 20.2
Product category focus 37 17.0
Cookie consent success 20 9.2
Inadequate human feedback 8 3.7
k=15
Navigation to specific sections 157 72.0
Repeated task completion attempts 109 50.0
Parsing failure feedback 99 45.4
Concise task structure 79 36.2
Detailed extraction from tables 74 33.9
Goal completion without errors 67 30.7
Multiple information location attempts 65 29.8
Repeated parsing errors 51 23.4
Technical errors (non-navigation) 49 22.5
URL error references 44 20.2
Task completion execution errors 37 17.0
Travel-related task focus 36 16.5
Cookie consent success 21 9.6
CAPTCHA/verification failures 15 6.9
Inadequate human feedback 8 3.7

J Captcha Solving Strategy Preferences

18

Captcha-Solving Strategy ~ Gemini 2.5 04-mini R1 Llama-4 Claude-3.7

Cache 0.00 45.45 1.82 0.00 0.00
Mobile 0.00 58.64 591 0.00 0.00
Direct Link 25.45 97.73 81.82 69.55 60.91
Google Search 42.73 100.00 94.55 61.36 77.27
Randomized Interaction 0.00 045 2591 3.18 0.00
Reloads 9.09 3.64 27.73 12.27 1.82
New Tab 4.55 60.45 52.27 69.55 12.27
Switch Websites 15.45 5.00 31.82 22.73 60.00
Internal Navigation 0.91 40.00 22.73 0.00 0.45
Country Domain 0.45 29.09 0.91 0.00 0.00
Text-only Rendering 0.00 7.27 0.00 0.00 0.00
Public Proxy 0.00 1.36 0.00 0.00 0.00
Internet Archive 0.00 3.64 0.00 0.00 0.00
Google Travel Integration 0.00 0.45 1.36 0.00 0.91

Table 3: Percentage of times a particular captcha avoidance strategy was deployed by a model while
solving tasks in the Expedia task dataset

K Pop-Up Banner Closure Scenarios

Pop-Up Banner Scenarios ~ Gemini 2.5 o04-mini R1 Llama-4 Claude-3.7

Banner Detected 53.75 91.25 0.00 98.75 100.00
Banner Closed 4.65 17.81 0.00 17.72 7.5
Marked as Completed 7.5 23.75 53.75 3.75 2.5

Table 4: Percentage of times a particular pop-up banner scenario was observed in an agent’s trace
while executing tasks from the BBC task dataset. We note that the percentage in the Banner Closed
row is determined with respect to the number of tasks where the agent determines that there is a
banner as per the LLM judge. The other two rows (Banner Detected and Marked as Completed) are
computed with respect to the total number of tasks in the BBC dataset.

L Direct Navigation Actions Taken

Google API Google Site Wiki Direct Answer Failed

Claude-3.7 97 3 0 0 0
R1 98 2 0 0 0
Gemini 2.5 50 0 0 0 50
Llama-4 74 26 0 0 0
04-mini 76 2 1 9 12

Table 5: Count of times agents taking different actions when asked questions from TriviaQA dataset.

M Examples of User-Submitted Tasks

Task Prompt 1: Find me the last available train from Cardiff Central to Barry Docks station today
on trainline.

Task Prompt 2: Compare flight prices from washington DC to Paris france to flights from washington
DC to Kyoto Japan

19

	Introduction
	Related Work
	BrowserArena Evaluation Platform
	Experimental Evaluation
	User Study Design
	Ranking Results
	Human Evaluator Agreement
	VLM-as-a-Judge

	Prominent Agent Failure Modes
	Discovering Common Failure Modes
	Captcha Solving
	Pop-up Banner Closure
	Direct Navigation

	Conclusions
	Limitations
	Example Tasks Presented to Users
	Ranking Methodology
	BrowserUse Permitted Actions
	Prompt Used for LLM-Generated Captcha Solving Tasks
	Prompt Used for LLM-Generated Pop-Up Banner Tasks
	Prompt Used for Evaluating Captcha Analysis Agent Traces
	Prompt Used for Evaluating Pop-Up Banner Agent Traces
	Prolific User Study Compensation
	Failure mode discovery details
	Dataset Featurization
	Docent

	Captcha Solving Strategy Preferences
	Pop-Up Banner Closure Scenarios
	Direct Navigation Actions Taken
	Examples of User-Submitted Tasks

