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Abstract

Conventional NLP generation models are001
trained offline with a given dataset for a particu-002
lar task, which is referred to as isolated learning.003
Research on sequence-to-sequence language004
generation aims to study continual learning005
model to constantly learning from sequentially006
encountered tasks. However, continual learning007
studies often suffer from catastrophic forget-008
ting, a persistent challenge for lifelong learning.009
In this paper, we present a novel NLP trans-010
former model which attempts to mitigate catas-011
trophic forgetting in online continual learning012
from a new perspective, i.e., attention calibra-013
tion. We model the attention in the transformer014
as a calibrated unit in a general formulation,015
where the attention calibration could give bene-016
fits to balance the stability and plasticity of con-017
tinual learning algorithms through influencing018
both their forward inference path and backward019
optimization path. Our experiments, paraphrase020
generation, show that this work outperforms021
SOTA models by a considerable margin and022
remedy the forgetting greatly.023

1 Introduction024

Sequence-to-sequence (Seq2Seq) generation has025

been widely applied in artificial learning (AI) sys-026

tem to deal with various challenging tasks, e.g.,027

paraphrase, dialogue system (Bordes et al., 2016),028

machine translation, etc. In addition, powerful rep-029

resentation learning (e.g., Transformer) have been030

used in Seq2Seq models, which have taken the031

state-of-the-art of generation models to a new level.032

Generally, Nature language generation (NLG) mod-033

els leverage an encoder to create a vector represen-034

tation for source inputs, and then pass this repre-035

sentation into a decoder so as to output a target036

sequence word by word. For example, Bart (Lewis037

et al., 2019) is such a transformer-based NLG archi-038

tecture that is equipped with BERT (Devlin et al.,039

2018) as its encoder and with GPT as the decoder.040

Despite the remarkable ability on sequence gen- 041

eration, the conventional paradigm aims to learn 042

a Seq2Seq model on the whole available dataset, 043

which limits its ability in accumulating knowledge 044

in continual learning scenario. When switching to 045

a new task from some previously learned ones, the 046

fine-tuned model on the new task sometimes faces 047

a significant performance drop on previous learned 048

data, where such a phenomenon is also referred 049

to as catastrophic forgetting (Parisi et al., 2019; 050

Mai et al., 2021; Yin et al., 2021). In contrast, hu- 051

mans and animals exhibit remarkable ability to deal 052

with new tasks by effectively adapting their ac- 053

quired knowledge without forgetting the previously 054

learned skills. If one desires to build a human-like 055

NLG model, continual learning ability is a neces- 056

sary skill for achieving this goal. 057

The existing replay-based continual learning 058

approaches have taken into account of differ- 059

ent perspectives of the model training process 060

to remedy the catastrophic forgetting dilemma, 061

such as regularizing the parameter change dur- 062

ing training (Chaudhry et al., 2018; Parisi et al., 063

2019), selective memory storage or replay (Aljundi 064

et al., 2019), Bayesian and variational Bayesian 065

training (Kirkpatrick et al., 2017; Nguyen et al., 066

2018), and task-specific parameterization of the 067

model (Pham et al., 2021; Singh et al., 2020). In 068

this paper,we tackle the problem from a novel angle 069

that is distinct to all the aforementioned attempts, 070

i.e., seeking a better balance between stability and 071

plasticity with neuron calibration. Specifically, we 072

refer to neuron calibration as a process of math- 073

ematically adjusting the transformation functions 074

in various layers of transformer-based architecture. 075

Our proposed neuron calibration approach aims 076

to regularize the parameter update against catas- 077

trophic forgetting via posing a trainable soft mask 078

on the attention and feature maps, which then in- 079

fluences both the model inference process and the 080

model training process through the forward infer- 081
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ence path and the backward optimization path.082

The contributions of our work are three-fold:083

(i) we introduce a general and light-weight feature084

calibration approach to tackle task-incremental con-085

tinual learning problems where the models are for-086

mulated as feed-forward transformer-based func-087

tion approximations; (ii) we formulate a novel088

task-incremental learning paradigm to train the089

calibrated model with an interleaved optimization090

scheme to mitigate the forgetting issue; (iii) we091

show through extensive empirical experiments that092

the proposed method could outperform the recent093

continual learning algorithms on Seq2Seq language094

generation applications.095

2 Related Work096

Continual Learning. Existing continual learning097

methods can be classified into three categories. The098

regularization approaches (Li and Hoiem, 2017;099

Zenke et al., 2017; Schwarz et al., 2018) impose100

a regularization constraint to the objective func-101

tion to mitigate the catastrophic forgetting. The re-102

hearsal approaches (Rolnick et al., 2019; Aljundi103

et al., 2019; Buzzega et al., 2020) allocate a small104

memory buffer to store and replay the exemplar105

from the previous task to consolidate the historical106

knowledge. The architectural approaches (Rusu107

et al., 2016; Serra et al., 2018; Singh et al., 2020;108

von Oswald et al., 2020) avoid catastrophic forget-109

ting through approximating the training of the task-110

specific network and allowing the expansion of the111

parameters during continual learning. Nonetheless,112

all these methods are confined to supervised clas-113

sification problem, which limits their application114

in real-life problems. Lifelong GAN (Zhai et al.,115

2019) tackles the generation problem of contin-116

ual learning and learn task-specific representation117

on shared parameters; however, their method is118

restricted to image generation tasks and not appli-119

cable to NLP benchmark datasets.120

Continual Language Generation. Few work has121

been done in continual learning for Seq2seq lan-122

guage generation. The most relevant work is123

from Mi et al. (2020), which propose a contin-124

ual learning framework that builds a human-like125

dialogue system in an incremental learning man-126

ner. Specifically, this method combines the mem-127

ory replay with the regularization technique to ad-128

dress the catastrophic forgetting, and empirically129

achieves a promising result on the MultiWoZ-2.0130

dataset. Nonetheless, their system is specifically131

designed for the dialogue task and lacks generaliza- 132

tion to Seq2Seq tasks. Our method differs from Mi 133

et al. (2020) in terms of the following three points: 134

(i) our method is built upon a neuron calibration 135

approach, where such contribution is orthogonal 136

to that from all the previous works; (ii) our pro- 137

posed method does not engage any task-specific 138

part; (iii) we do not store the historical exemplar 139

from the episodic memories during training. In ad- 140

dition, our proposed method could be adapted to 141

various seq2seq language generation applications, 142

such as summarization, translation, paraphrases, 143

dialog response generation. 144

3 Method 145

3.1 Preliminary 146

We introduce the setting of online continual learn- 147

ing. Formally, we denote the sequence of train- 148

ing tasks in continual learning as {T1, · · · , TT }. 149

The tasks come and go in an online fashion, and 150

the training data for each task is available only 151

at that time slot. When the new task arrives, the 152

previous task’s data is deleted and cannot be used 153

any more. For the t-th task, we denote its training 154

dataset as Dt. The objective of the task is to learn 155

a transformer-based generation model. Our work 156

tackles the natural language generation (NLG)- 157

based continual learning problems and thus the 158

model is typically modeled as a feed-forward trans- 159

former with L-blocks (i.e, {li}Li=1), with its corre- 160

sponding parameters denoted as {θi}Li=1. 161

3.2 Transformer Calibration 162

We introduce a general calibration mechanism to 163

tackle the continue learning problems on Seq2Seq 164

generation, where the models are parameterized by 165

the transformer-based NLG models. By applying 166

neuron calibration, we aim to adapt the transforma- 167

tion function in the deep transformer layers. We 168

hope that our proposed learning paradigm with neu- 169

ron calibration could effectively avoid catastrophic 170

change on the model parameters while accomplish- 171

ing a stable consolidation of knowledge from differ- 172

ent tasks. Figure 1 provides an illustrative example 173

of our neuron calibration process. 174

Formally, we introduce two types of general cal- 175

ibration modules to be applied on the transformer- 176

based NLG models: (i) attention calibration module 177

(ACM) and (ii) feature calibration module (FCM). 178

The attention calibration module learns to scale 179

the attentions of the transformer function whereas 180
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Figure 1: Overview of our proposed transformer calibration for continual learning framework. This method consists
of two types of calibration modules: attention calibration module (ACM) and feature calibration module (FCM),
which are sequentially applied to the layers in the multi-head attention model (as shown in the figure) to calibrate
the attention signals and feature maps, respectively.

the feature calibration module learns to scale the181

feature maps output from the transformer block.182

When calibrating the i-th layer of the transformer183

block, we useAi to denote its scaled attention func-184

tion after applying attention calibration (ACM).185

Meanwhile, we use hi and h̃i to denote the out-186

put feature maps before and after applying feature187

calibration (FCM), respectively.188

We first introduce the formulation for ACM. To189

calibrate the attention, we first define a learnable190

matrix Φi ∈ RN×N , which presents the importance191

of each pair of words, where N is number of words192

in the sentence. The original scale dot-product at-193

tention is modified as follows:194

Atten = Softmax
(
QiK

⊤
i ⊙

(
Φi√
d

))
Vi (1)195

where ⊙ is the element-wise product. As Φi is196

learned across the sequential tasks, the task-aware197

attention can serve as a task representation instead198

of traditional task embedding. The overall cali-199

brated attention can be decoupled into two parts:200

theQK⊤ term presents the content-based attention,201

and Φi/
√
d term acts as the soft mask for attention202

calibration. This united design offers more task203

adaptation by suppressing the unrelated attention204

values and highlighting the important ones. With205

the ACM, the calibrator module plays a crucial role206

during the model training process: at the forward207

inference path, it scales the value of the attention208

in the transformer block to make prediction; at the209

backward optimization path, it serves as a priori-210

tized weight to regularize the update on important211

parameters. 212

By applying attention calibration on transformer 213

blocks, the attention function at the i-th layer 214

Atten(Qi,Ki, Vi,Φi) is parameterized by Φi and 215

produces the output as follows, 216

hi = FAi(hi−1), s.t. Ai = Atten(Qi,Ki, Vi,Φi)
(2) 217

The output hi of the attention function is then pro- 218

cessed by a feature calibration module (FCM) to 219

generate the calibrated feature map for that layer. 220

We use Ωλi(·) to denote the feature transformation 221

function at the i-th layer, parameterized by λi. With 222

FCM, the calibration parameters also interact with 223

the feature map hi with a multiplicative operation. 224

Specifically, the calibrated feature is computed as: 225

Ωλi(hi) = tile(λi)⊙ hi, λi ∈ Rd, hi ∈ RN×d

(3) 226

given the dimension of feature map d. 227

In the end, the output from (2) and (3) get added 228

up in an element-wise manner by a residual con- 229

nection. This is followed by normalization and acti- 230

vation operations to produce a final output for that 231

layer. In summary, the overall calibration process 232

for the i-th layer could be formulated as follows, 233

h̃i = σ (LN (Ωλi (FAi (hi−1))⊕FAi (hi−1))) ,
(4) 234

where LN (·) denotes the layer normalization, ⊕ 235

denotes an element-wise addition operator, and σ(·) 236

is an activation function. Then h̃i is sent as input 237

to the i + 1-th layer in the feed-forward network. 238
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All the aforementioned calibrator parameters are239

initialized with a value of 1 at the start of training.240

We illustrate an example case of applying the cali-241

bration on a transformer-based model in Figure 1.242

3.3 Learning Calibration Parameters243

We propose an interleaved learning paradigm to244

train the calibrated transformer model. In the train-245

ing procedure, we aim to exploit the training of the246

calibrator parameters to mitigate the catastrophic247

forgetting on the continual learning. Since the ‘for-248

getting’ in the training is often attributed to dra-249

matic changes in parameter values, we design the250

learning objective for the calibrator learning as to251

regularize the parameter change after accessing the252

new knowledge not to be biased too much from the253

model values learned from previous ones.254

To formulate the objective function for the cali-255

brated model training, we inherit the elastic weight256

consolidation (EWC) approach proposed in (Kirk-257

patrick et al., 2017) . Specifically, EWC approxi-258

mates the true posterior distribution for the contin-259

ual learning parameters by a Gaussian distribution260

given by the mean from the previous tasks and261

a diagonal precision from the Fisher information262

matrix. In this work, we formulate a weight cali-263

bration process to prevent the catastrophic change264

on model parameters. Then we train the calibrator265

parameters with the following loss function,266

Lc = vec
(
θ − θt

)⊤
Λtvec

(
θ − θt

)︸ ︷︷ ︸
term (a)

+βLt(Ψ, λ, θ)︸ ︷︷ ︸
term (b)

(5)267

where β is a trade-off parameter, and the operator268

vec (·) stacks the tensor into a vector.269

The matrix Λt in term (a) are the Fisher infor-270

mation matrix, which is obtained from the data271

training loss for previous observed tasks, while272

the Lt(Ψ, λ, θ) in term (b) is the loss for the cur-273

rent task. The two terms perform the consolidation274

process to retain the essential parameters towards275

past knowledge when the base model parameters276

are trained to absorb new tasks. To consolidate the277

knowledge on the calibrated model, the Fisher in-278

formation matrix is computed upon the gradients279

on calibrated parameters.280

3.4 Optimization281

We formulate the optimization process to train the282

calibrated model under an iterative optimization283

schema, with the parameters from the base model284

Algorithm 1: Transformer Calibration for
Continual Learning Algorithm (TCCL)
Input: Base model θ, calibrator (Φ, λ)

learning rate α, trade-off parameter
β, training data {Dtr1 , ...,DtrT }, test
data {Dte1 , ...,DteT }

Output: Base model Fθ, calibrator F(Φ,λ).
function train_and_eval

Randomly initialize θ, Ψ and λ.
for t← 1 to T do

for b← 1 to nbatch do
Observe a batch of data
Bt = {xi, yi}bsi=1 from Dtrt .

Φ′ ← Φ− α∇ΦLc(Bt; θ,Φ, λ)
λ′ ← λ− α∇ψLc(Bt; θ,Φ, λ)
θ′ ← θ − α∇θLc(Bt; θ,Φ′, λ′)
Compute Λt according to∇θLc

for te← 1 to t do
Evaluate testing accuracy for the
current model on Dte1,...,t:
ŷ1,...,t ← F(Dte1,...,t; θt,Φt, λt)

and those from the calibration module being op- 285

timized by the loss function (5). During the inter- 286

leaved optimization process, we first fix θt and take 287

gradient steps with regard to {Ψ, λ} as follows: 288

Ψt+1 ← Ψt − α▽Ψ Lc ((Ψ, λ), θt,Dt) (6) 289

λt+1 ← λt − α▽λ Lc ((Ψ, λ), θt,Dt) , (7) 290

Then, we go on to optimize the base model param- 291

eter when the inference takes place with the up- 292

dated base model, 293

θt+1 ← θt − α▽θ Lc (θ, (ψt+1, λt+1),Dt) (8) 294

where α is the learning rate. By employing the cal- 295

ibrated parameterization of the transformer-based 296

network, and optimizing it with the iterative learn- 297

ing scheme, our method could achieve the trade- 298

off between new data adaptation and past knowl- 299

edge consolidation. We present the details in Algo- 300

rithm 1. 301

4 Experimental Result 302

We evaluate the proposed algorithm on seq2seq 303

generation tasks. We apply the algorithms on two 304

datasets for seq2seq generation tasks in the contin- 305

ual learning. We also conduct the ablation study 306

with respect to attention calibration and feature cali- 307

bration to evaluate the robustness and effectiveness 308

of the proposed calibration techniques. 309
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4.1 Application: Paraphrase Generation310

Dataset. For paraphrase generation, we train the311

model over three existing paraphrase datasets,312

Quora, Twitter and Wiki-data, in a sequential man-313

ner, where the model observes the three sequential314

tasks (i.e., datasets) one by one. Statistics of the315

data are provided in Table 1.316

train valid test
Quora 111,947 8,000 37,316
Twitter 85,970 1,000 3,000
Wiki_data 78,392 8,154 9,324
total 276,309 17,154 49,640

Table 1: Statistics of Dataset on Paraphrase Generation

Experimental Setting. We exploit the SOTA gener-317

ation model, BART, as the generation model back-318

bone in the continual learning framework. We com-319

pare our approach with the following baselines:320

• Finetune: for each new task, the model is ini-321

tialized with the parameters learned from pre-322

vious observed tasks, and then fine-tuned with323

data of the current new task.324

• Full: the model is trained with all the available325

instances from three datasets together.326

• EWC: the EWC (Kirkpatrick et al., 2017) is327

introduced in the objective function to train328

the model over the sequential tasks.329

For evaluation metrics, we use Bleu4, RougeL330

and Meteor for the Seq2Seq generation tasks. To331

measure the forgetting rates of different methods,332

we basically exploit the model learned on t-th task333

to evaluate its performance on previous tasks, i.e.,334

1, · · · , t− 1 task. We tune the learning rate α from335

{10−3, 10−2, ..., 100} for both model parameter336

and calibrator parameter, and trade-off parameter337

β from {0.1, 0.5, 1, 5, 10}. Meanwhile, the batch338

size is set to be {128, 256, 512} on all datasets. All339

training and evaluation experiments are performed340

using Tesla V100S GPUs. The whole learning pro-341

cess takes around 0.5 GPU day.342

4.1.1 Accuracy Measurement343

Table 2 shows the accuracy results in the continual344

learning setting, where the model is evaluated after345

the model has been trained on sequential tasks one346

after another. In the table, the first three models347

are independent baselines trained on either one of348

three datasets. As expected, model trained on new 349

dataset may suffer the significant performance drop 350

on previous instances, due to the data distribution 351

gap between old and new datasets. For example, 352

twitter includes the short casual text while Wiki 353

contains formal academic text. 354

For the fine-tune, the model is trained in a Quora- 355

Tweeter-Wiki (QTW) order, in which the model is 356

initialized with the model parameters learned on 357

the previous task and then fine tuned over the fol- 358

lowing task. We observe that finetune results on 359

Quora and Wiki are comparable with those when 360

building the model from scratch. In addition, EWC 361

can achieve a better performance than Finetune and 362

independent training over any evaluation metrics 363

on Quora and most metrics on Twitter and Wiki, 364

showing the effectiveness of EWC in continual 365

learning. Nonetheless, our calibration model con- 366

sistently achieves the best performance across all 367

sequential tasks. Especially in Quora, our method 368

even outperforms the full training method, demon- 369

strating that the calibration model yields a promis- 370

ing domain adaptation in continual learning. 371

4.1.2 Forgetting Measurement 372

Table 3 shows the results when the current mod- 373

els are evaluated on testing data from the previous 374

tasks. The purpose of this experimental setting is 375

to measure the forgetting rate of the models in the 376

sequential training. In the order of QTW, the results 377

are evaluated on Quora after the model is trained 378

on Twitter, as well as on Quora and Twitter af- 379

ter the model is trained on Wiki. Our method is 380

compared with independent baseline, finetune and 381

EWC. Table 3 shows that our method obtains a less 382

performance drop than Finetune and EWC, with 383

a low forgetting rate. Moreover, after the model 384

is trained on Wiki, the performance on Quora is 385

even improved from the one after trained on Twit- 386

ter. Moreover, this work outperforms EWC on all 387

the evaluation domains with a noticeable margin, 388

which demonstrates that our calibration module is 389

effective to boost the performance for continual 390

learning via properly regularizing the parameter 391

update against catastrophic forgetting. Overall, the 392

empirical result shows that the calibration mecha- 393

nism can mitigate the forgetting issue in continual 394

learning. 395

4.1.3 Ablation Study 396

We conduct the ablation study where several simpli- 397

fied versions of the calibration framework are eval- 398
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Quora Test Twitter Test Wiki Test
Models bleu4∗ rougeL meteor bleu4∗ rougeL meteor bleu4∗ rougeL meteor
Quora-trained 30.11 55.85 57.17 2.12 6.13 5.49 4.51 11.21 12.13
Twitter-trained 3.18 11.46 9.01 35.47 57.49 54.57 4.60 9.76 7.50
Wiki_data-trained 22.38 43.44 46.23 9.32 17.93 21.03 42.12 73.86 73.10
Finetune 30.11 55.85 57.17 35.79 56.32 54.93 42.12 73.86 73.10
EWC 30.25 56.16 57.98 33.52 54.41 54.21 42.15 73.53 73.59
Ours 35.44 61.37 61.45 36.81 58.46 56.42 44.47 74.49 73.66
Full 33.99 59.56 61.67 38.56 58.76 56.01 46.86 76.59 75.91

Table 2: Results of model evaluations on QTW setting
(bleu4∗ denotes a more strict scoring version for the baseline evaluation)

Train: Twitter→ Test: Quora
Models bleu4∗ rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune 15.80 46.59 47.31
EWC 15.63 41.53 46.03
Ours 15.93 46.65 45.81

Train: Wiki_data→ Test: Quora
Models bleu4∗ rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune 19.07 51.76 55.95
EWC 19.63 49.35 53.02
Ours 21.39 53.62 56.44

Train: Wiki_data→ Test: Twitter
Models bleu4∗ rougeL meteor
Twitter-based 35.79 56.32 54.93
Finetune 14.09 37.97 45.89
EWC 14.84 38.65 46.33
Ours 16.62 40.25 48.44

Table 3: Results of all the methods when testing new
models on previous domains (from 2nd row to the last).

uated in order to understand the effects of different399

components. Specifically, we evaluate the model400

variants without attention calibration module (i.e.,401

w/o ACM), or feature calibration module (i.e., w/o402

FCM), or EWC regularization term (i.e., w/o R),403

and present the comparison result in Table 4. From404

the table, we can observe that (1) equipped with405

ACM or FCM, the performance is apparently bet-406

ter than the original backbone since dropping the407

calibration module (“w/o ACM" and “w/o FCM")408

would degrade the performance; (2) EWC regu-409

larization is also effective, indicated by the better410

result than the one without EWC regularization411

term (“w/o R"). Overall, the results demonstrate412

that calibrating on latent feature and attention value413

is a promising direction.414

Next we aim to investigate the effect of the at-415

Quora Test Wiki Test
Models bleu4∗ meteor bleu4∗ meteor
Finetune 30.11 57.17 42.12 73.10
w/o FCM 33.32 59.32 43.33 73.10
w/o ACM 32.25 58.91 42.15 72.59
w/o R 33.77 59.57 43.51 72.93
Ours 35.44 61.45 44.47 73.66

Table 4: Ablation studies on the proposed calibration
components and regularizion terms.

tention calibration that is performed on three dif- 416

ferent attentions in the transformer model. Specif- 417

ically, we equipped the calibration component on 418

either one of the self-attention of encoder, the self- 419

attention of decoder and the encoder-decoder (ED) 420

attention. The comparison results in Table 5 indi- 421

cate that (1) the self-attention calibration on en- 422

coder is more effective to boost the performance; 423

(2) the calibration on encoder-decoder attention 424

yields much better results than other two self- 425

attentions. Overall, the results demonstrate that the 426

attention calibration plays an important roles for 427

boosting the performance of the transformer-based 428

generation model. 429

Quora Test
Model Variants bleu4∗ rougeL meteor
Self-Attention (E) 33.31 59.94 59.56
Self-Attention (D) 32.65 58.76 58.34
ED-Attention (D) 34.81 60.55 60.33
Ours (All) 35.44 61.37 61.45

Table 5: Ablation studies of the calibration different
attention blocks in language model.

4.1.4 Case Study 430

In Table 6, we perform the case studies on para- 431

phrase generation tasks. All examples are results 432

generated by the final model, e.g., the model trained 433

on Wiki is used to generate samples on Quora, Twit- 434
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SOURCE BART Ours TARGET

What is the best home workout
to reduce waist fat?

How can I reduce my
waist fat through a diet?

What is best home remedy for
reducing belly fats?

What is best home remedy for
reducing belly fats?

What’s it like to be
in a relationship with
a married man?

What is it like for
a married man to be
in a relationship?

What’s it like to be
in a relationship with
a married man?

What’s it like to be
in a relationship with
a married man?

which provides a conventional
sonic underscore to the
onscreen action

which provides a sonic
underscore to the onscreen
action

which provides a conventional
sonic underscoring to the
onscreen action

which provides a conventional
underscore to the onscreen
action

Example gymnasium scene’s
first encounter with Angela

Example gymnasium scene,
Angela ’s first encounter
with Angela

For example, the gymnasium
scene, Pfaster ’s first encounter
with Angela

One example is the gymnasium
scene, Lester ’s first encounter
with Angela.

Table 6: Examples of the generated paraphrases by BART and Ours on QTW data setting.

ter, Wiki. Among the four examples, the first two435

is from Quora, and the others from Wiki_data. We436

compare our generated sentence with ones from437

BART backbone. From the table, we observe that438

our method has a better generation on all four cases.439

In those generation samples, the colored parts are440

key words. Yet, BART model either fails to gen-441

erate those key words or creates the examples of442

false causality. In contrast, our method is able to443

generate key words in all cases with correct word444

relations.445

4.2 Application: Dialog Response Generation446

Dataset. The proposed model is evaluated on the di-447

alog response generation task using the MultiWoZ-448

2.0 dataset (Budzianowski et al., 2018), which449

contains 6 domains (Attraction, Hotel, Restaurant,450

Booking, Taxi and Train) and 7 DA intents (“In-451

form, Request, Select, Recommend, Book, Offer-452

Booked, No-Offer"). We follow the setting (Mi453

et al., 2020) to generate the train/validation/test454

splits of MultiWoz. The details of the dataset is455

present in Table 7.456

Domain and Intents of MultiWoZ-2.0 Data
Domains #. Total Intents #. Total
Attraction 8,823 Inform 28,700

Hotel 10,918 Request 7,621
Restaurant 10,997 Select 865
Booking 8,154 Book 4,525

Taxi 3,535 Recommend 3,678
Train 13,326 Offer-Booked 2,099

No-Offer 1,703

Table 7: Statistics on the Dialog Response dataset

Experimental Setting. To evaluate the method457

performance, we exploit the slot error rate (SER)458

and BLEU4 score as the evaluation metrics. The459

lower value of SER indicates a better performance. 460

To estimate the forgetting rate, the above met- 461

rics are reported in two continual learning set- 462

tings (Kemker et al., 2018): Ωall = 1
T

∑T
i=1Ωall,i 463

and Ωfirst = 1
T

∑T
i=1Ωfirst,i, where T is total 464

number of tasks in the sequential order. Ωall,i is the 465

test performance on all the tasks evaluated by the 466

model learned with the i-th task, while Ωfirst,i is 467

the test result on the first task after the i-th task has 468

been learned. 469

Our work exploits the well-known seq2seq gen- 470

eration model, conditional variational encoder 471

(CVAE) as the backbone model, and the proposed 472

model is compared with the following baselines: 473

• Finetune: the model trained from previous ob- 474

served tasks is used to be fine-tuned with data 475

of the current new task. 476

• Full: this model is trained with the data from 477

current tasks and all historical tasks together. 478

• ARPER (Mi et al., 2020): the model intro- 479

duces memory replay and adaptive regular- 480

ization together to mitigate the catastrophic 481

forgetting issue. 482

• ER: the model with the chosen exemplars that 483

best approximate the mean DA vector (Rebuffi 484

et al., 2017). 485

For CVAE, we equipped the feature calibration 486

module on the backbone, due to no attention on 487

the CVAE. In the following experiment, we follow 488

the setting (Mi et al., 2020) and utilize the selected 489

exemplars to compute the Fisher information as in 490

the function (5). 491

4.2.1 Comparison Result 492

We conduct comparison experiments with baselines 493

with various number of exemplars. The first one 494
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is that all methods do not use any exemplars. The495

reason for this comparison is that our proposed496

method is memory-free, i.e., no memory buffer re-497

quired to store and replay the exemplar for data498

rehearsal. In such setting, ARPER reduces to the499

general regularization technique. Table 8 shows500

that without any exemplars, our method achieves a501

better performance than ARPER in both Ωall and502

Ωfirst, with a noticeable margin. We observe that503

the ARPER severely relies on the exemplars. With-504

out the exemplars, the ARPER suffer a significant505

performance drop in terms of the accuracy, even506

poorer than Finetune.507

With the increased number of exemplars, our508

method can obtain a better performance since the509

fisher matrix in our objective can cumulative the510

informative data throughout the training process.511

In addition, ER and APRE are memory-based tech-512

niques and are obviously beneficial from the ex-513

emplars. Nonetheless, our method can consistently514

outperform APRER and ER in both settings of 250515

exemplars and 500 exemplars. That indicates that516

the our memory-free calibration technique can ef-517

fectively exploit the exemplar knowledge without518

the need of data storage for the exemplars.519

4.2.2 Dynamic Results in Continual Learning520

Figure 2 shows the comparison results along the six521

continually observed domains of dialog response.522

We compare the performance of the calibrated523

model with the original CVAE backbone. With524

more tasks continually learned, our method gradu-525

ally performs better performance than the original526

backbone. On the first task (dashed lines), the cali-527

brated model outperforms the original one on both528

metrics. These results illustrate the advantage of529

our calibration components throughout the entire530

continual learning process.531
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Figure 2: BLEU-4 and SER on all observed domains
(solid) and on the first domain (dashed) over the six
continually observed domains using 250 exemplars.

Zero exemplars in total
Ωall Ωfirst

Models SER BLEU4 SER BLEU4
Finetune 64.46 0.361 107.27 0.253
ER 67.23 0.360 105.33 0.181
ARPER 63.54 0.360 102.87 0.192
Ours 56.90 0.395 68.60 0.258
ALL 4.26 0.599 3.60 0.616

250 exemplars in total
Ωall Ωfirst

Models SER BLEU4 SER BLEU4
Finetune 64.46 0.361 107.27 0.253
ER 16.89 0.535 9.89 0.532
ARPER 5.22 0.590 2.99 0.624
Ours 4.41 0.603 2.33 0.635
ALL 4.26 0.599 3.60 0.616

500 exemplars in total
Ωall Ωfirst

Models SER BLEU4 SER BLEU4
Finetune 64.46 0.361 107.27 0.253
ER 12.25 0.555 4.53 0.568
ARPER 5.12 0.598 2.81 0.627
Ours 4.33 0.606 2.21 0.638
ALL 4.26 0.599 3.60 0.616

Table 8: Average Results of all the methods when
learning six domains using 0/250/500 exemplars.
(BLEU4 follows the setting in (Mi et al., 2020))

5 Conclusions 532

We propose an efficient seq2seq generation model 533

with the calibration on the transformer, where a 534

fixed architecture network after calibration can dy- 535

namically adjust the function with respect to each 536

individual task. To optimize our method, we fur- 537

ther propose a reproductive learning equipped with 538

an iterative optimization objective that trade-off 539

between plasticity and stability. Moreover, our cal- 540

ibration module is very light-weight without in- 541

troducing any task-specific parameters. Extensive 542

empirical experiments show that our approach out- 543

performs the baselines and achieves a promising 544

result. The model trained with out approach shows 545

no catastrophic forgetting. We also show that the 546

calibration module and interleaved optimization 547

play a vital role to boost the performance. Finally, 548

extending our work to develop a more general NLP 549

generation model is a promising future research 550

direction to consider. 551
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