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ABSTRACT

Visual language tracking (VLT) has emerged as a cutting-edge research area,
harnessing linguistic data to enhance algorithms with multi-modal inputs and
broadening the scope of traditional single object tracking (SOT) to encompass
video understanding applications. Despite this, most VLT benchmarks still depend
on succinct, human-annotated text descriptions for each video. These descriptions
often fall short in capturing the nuances of video content dynamics and lack stylistic
variety in language, constrained by their uniform level of detail and a fixed annota-
tion frequency. As a result, algorithms tend to default to a “memorize the answer”
strategy, diverging from the core objective of achieving a deeper understanding of
video content. Fortunately, the emergence of large language models (LLMs) has
enabled the generation of diverse text. This work utilizes LLMs to generate varied
semantic annotations (in terms of text lengths and granularities) for representative
SOT benchmarks, thereby establishing a novel multi-modal benchmark. Specifi-
cally, we (1) propose a new visual language tracking benchmark with diverse texts,
named DTVLT, based on five prominent VLT and SOT benchmarks, including
three sub-tasks: short-term tracking, long-term tracking, and global instance track-
ing. (2) We offer four granularity texts in our benchmark, considering the extent
and density of semantic information. This is achieved through DTLLM-VLT, a
method for generating high-quality, diverse text by leveraging the extensive knowl-
edge base of LLMs to produce descriptions rich in world knowledge. We expect
this multi-granular generation strategy to foster a favorable environment for VLT
and video understanding research. (3) We conduct comprehensive experimental
analyses on DTVLT, evaluating the impact of diverse text on tracking performance
and hope the identified performance bottlenecks of existing algorithms can support
further research in VLT and video understanding.

1 INTRODUCTION

Single object tracking (SOT) is a pivotal task in computer vision, designed to follow a single moving
object throughout a video sequence. Researchers have observed that the effectiveness of most trackers
often diminishes when tracking objects in lengthy videos with intricate content. Moreover, relying
solely on visual cues significantly hinders the flexibility of these trackers.

Consequently, there has been a pronounced trend in recent studies to integrate semantic annotations
into SOT, leading to the development of the visual language tracking (VLT) task. This new task
is advantageous as it extends the potential applications of SOT, including advancements in video
understanding. Utilizing natural language in place of bounding boxes (BBox) provides a more
user-friendly and intuitive alternative. This method facilitates more precise representations of objects,
encompassing both their spatial positioning and intricate semantic attributes, thereby enhancing the
efficacy of the tracking process.

When defining the VLT task, researchers integrate text annotations from two primary perspectives:
(1) Short text annotations. Representative VLT benchmarks such as OTB99 Lang (Li et al. (2017)),
TNL2K (Wang et al. (2021)), and LaSOT (Fan et al. (2019; 2021)) primarily employ short text. This
straightforward approach is clear and easy to understand, aiding in the learning and comprehension by
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Figure 1: Comparison of DTVLT and other VLT benchmarks. (a-c) Examples of video content and
semantic descriptions on OTB99 Lang (Li et al. (2017)), LaSOT (Fan et al. (2019)), and MGIT
(Hu et al. (2023a)). The green bounding box (BBox) indicates ground truth, while the red dashed
BBox indicates other objects that satisfy the semantic description. (a) and (b) are sequences with
simple narrative content. And their semantic annotations mainly describe the first frame, which
may misguide the algorithm bacause of misleading text and multiple qualified target. In the VLT
task, if the error caused by incorrect text accumulates for the tracker, it will have an irreversible
impact on the tracking results. (c) in MGIT has such complex text that they are not conducive to
algorithmic learning. (d) An example of the multi-granular generation strategy used by DTVLT. We
provide more diverse concise and detailed descriptions for each hundred frames of the object to be
tracked, covering five representative datasets across three mainstream tracking tasks. The term “#
xx” represents the frame ID. Compared to existing benchmarks, the generated text provides more
prosperous and flexible information to portray long videos.

VLT trackers. However, these methods are susceptible to vague semantic descriptions and potential
ambiguities. For instance, as depicted in Fig. 1 (a) and (b), the description captures only the object’s
initial state. As the object moves, the positional constraint in the semantic information can become
misleading, making the semantic descriptions restrictive over time. (2) Long text annotation.
MGIT (Hu et al. (2023a)) adopts a multi-granular semantic annotation strategy aimed at providing
more precise semantic descriptions. This method stands out from other benchmarks with two key
features: extended text lengths and periodic updates, transitioning from simple to dense and detailed
descriptions. Nonetheless, this approach encounters challenges such as the time-consuming nature of
text annotation and the necessity for algorithms capable of robust text processing and multi-modal
alignment. As shown in Fig. 1 (c), the text in MGIT can be excessively lengthy and complex.

Clearly, while the intent of these studies is to extend the SOT task into a multi-modal one to improve
tracking performance, the singular granularity used in most research not only impedes algorithms from
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achieving the desired results but also complicates VLT research. Therefore, a superior approach to
constructing a VLT benchmark would be to move beyond offering a mere natural language description
for short videos. Instead, it would involve devising a systematic method to supply multi-granular
texts that support trackers in understanding various video contents.

Offering a variety of environmental texts—including short, long, sparse, and dense formats—and
evaluating algorithm performance across these descriptions allows us to effectively identify the
strengths and weaknesses of methods under various semantic granularities. This insight can guide the
improvement of multi-modal algorithms. What excites us is the potential of large language models
(LLMs) to aid in reaching this objective. By integrating the LLM seamlessly into the process of text
generation, we can create a diverse multi-modal environment that is favorable for VLT research.

Our work is motivated by the aforementioned considerations and aims to construct a new VLT
benchmark named DTVLT. This benchmark leverages the DTLLM-VLT (Li et al. (2024a)) method,
which employs LLM to generate a wide variety of texts for tracking datasets. Specifically, we
integrate text length and generation density to create four distinct levels of granularity. With this
framework, we have selected a range of VLT trackers for experimental analysis to assess how diverse
texts affect algorithmic performance. The experimental results not only illustrate that this diversified
setting can support detailed evaluation and analysis of algorithmic capabilities but also indicate
the potential for future improvements in the multi-modal learning capabilities of trackers by using
generated data.

Contributions. (1) We propose a new VLT benchmark named DTVLT based on five prominent VLT
and SOT benchmarks including three tracking tasks: short-term tracking, long-term tracking, and
global instance tracking. (2) We offer four granularity combinations for our benchmark, considering
the extent and density of semantic information using DTLLM-VLT, which leverages LLM to generate
diverse high-quality language descriptions. We expect this multi-granular generation strategy can
provide a favorable environment for VLT and video understanding research. (3) We conduct compre-
hensive experimental analyses, evaluating the impact of diverse text on tracking performance and
hope the explored performance bottlenecks of existing algorithms can support further VLT research.

2 RELATED WORK

Single Object Tracking Benchmark. The SOT task involves initializing and tracking a specific
object within a video sequence. It starts by identifying the object through its bounding box (BBox)
in the first frame and then continues to track and locate the object in subsequent frames. Since
2013, several benchmarks, such as OTB (Wu et al. (2013; 2015)) and VOT (Kristan et al. (2016);
Bibliographie Goecke et al. (2013); Kristan et al. (2015; 2018; 2019)), have been developed to
provide standardized datasets and scientific evaluation mechanisms for SOT research. However,
with the progress in deep learning techniques, these short-term and small-scale benchmarks have
faced difficulties in sufficiently supporting data-driven trackers. This has led researchers to create
larger-scale datasets like GOT-10k (Huang et al. (2021)) and TrackingNet (Muller et al. (2018)).
Some work has also focused on SOT in drone scenarios, such as BioDrone (Zhao et al. (2023b)), a
vision benchmark for SOT based on bionic drones and WebUAV-3M (Zhang et al. (2022)). More
recently, researchers introduced the global instance tracking task along with a new benchmark
called VideoCube (Hu et al. (2023b)), allowing the tracking of arbitrary moving objects in various
types of videos. To scientifically assess tracker performance under different challenging conditions,
researchers have also introduced SOTVerse (Hu et al. (2024)), a user-defined space for the SOT task.

Visual Language Tracking Benchmark. Over the past few decades, visual benchmarks have seen
considerable development, yet benchmarks that incorporate semantic information, known as VLT
benchmarks, have only recently become prominent. OTB99 Lang (Li et al. (2017)) is notable for
being the first VLT benchmark, augmenting the sequences from the OTB100 (Wu et al. (2015))
benchmark with natural language descriptions. However, the limited scale of the dataset has hindered
the broader acceptance of the VLT task. Following this, the introduction of LaSOT (Fan et al. (2019;
2021)), a multi-modal benchmark for long-term tracking, represented a major advancement. In the
same year, researchers launched the TNL2K (Wang et al. (2021)) benchmark, which aimed to improve
the flexibility and precision of object tracking through text descriptions. Recently, researchers have
proposed a novel multi-modal benchmark called MGIT (Hu et al. (2023a)), which introduces a
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Table 1: Comparison of current datasets for object tracking. DTVLT is the first comprehensive
VLT benchmark using LLM to provide multi-granularity diverse semantic information, covering
five mainstream tracking datasets across three tracking tasks. “STT”, “LTT” and “GIT” refer to
Short-term Tracking, Long-term Tracking and Global Instance Tracking.

Dataset
Video

number
Min

frame
Mean
frame

Max
frame

Total
frames

Tracking
task

Text Annotation
Granularity Sentence Number Word Number Tool

OTB99 Lang 99 71 590 3,872 59K STT 1 99 358 Human
GOT-10k 10,000 29 149 1,418 1.5M STT 0 0 0 -
LaSOT 1,400 1,000 2,506 11,397 3.52M LTT 1 1,400 9,842 Human
TNL2K 2,000 21 622 18,488 1.24M STT 1 2,000 10,098 Human
MGIT 150 4,008 14,920 29,834 2.03M GIT 3 1,753 77,652 Human
DTVLT (Ours) 13,134 21 611 29,834 8.17M STT & LTT & GIT 4 240.8K 5.2M LLM

1“K” stands for “thousand” and “M” stands for “million”.

multi-granular annotation approach (Li et al. (2024b)). VastTrack (Peng et al. (2024)) facilitates the
development of more general visual tracking via encompassing abundant classes and videos.

Algorithms for Visual Language Tracking. VLT is a burgeoning multi-modal task that seeks
to enhance tracking by utilizing both linguistic descriptions and initial template. Most current
VLT trackers (Guo et al. (2022); Wang et al. (2023); Zhao et al. (2023a); Li et al. (2022); Feng
et al. (2019); Wang et al. (2018); Feng et al. (2020); Zhang et al. (2024; 2023)) operate on the
principle of similarity-matching, using language descriptions and template patches to pinpoint the
most analogous object within the search frame. Among these, SNLT (Feng et al. (2021)) stands
out with its adaptable language-based region proposal network, which boosts tracking precision by
using a dynamic aggregation mechanism. On the other hand, MMTrack (Zheng et al. (2023)) offers a
streamlined and potent approach to tracking, viewing the VLT task as a series of token generation.
Certain VLT trackers have started to incorporate temporal data to build a more dynamic reference.
For example, GTI (Yang et al. (2021)) and AdaSwitcher (Wang et al. (2021)) recognize objects by
combining tracking and localization results at each time step. JointNLT (Zhou et al. (2023)) also
moves in this direction by incorporating temporal information as queries during the prediction phase.
UVLTrack (Ma et al. (2024)) design a modality unified feature extractor and propose a multi-modal
contrastive loss. QueryNLT (Shao et al. (2024)) ensures spatio-temporal consistency by leveraging
historical visual information to improve tracking performance.

Most benchmarks for VLT offer a single natural language description per video, with text annotations
that are either overly simplistic or excessively complex. These inconsistencies impede the evaluation
of algorithms and the understanding of video content for VLT trackers. Additionally, all these
studies provide semantic information through manually annotated data, which is a lengthy and
resource-intensive process. Fig. 1 suggests that a more scientific approach is also necessary for
delivering high-quality semantic information. These limitations have led us to propose DTVLT,
the first comprehensive VLT benchmark using LLM to provide multi-granularity diverse semantic
information, with the aim of creating a more flexible and comprehensive environment for VLT and
video understanding research.

3 CONSTRUCTION OF DTVLT

3.1 DATA COLLECTION

We have chosen five notable datasets—OTB99 Lang (Li et al. (2017)), GOT-10k (Huang et al.
(2021)), LaSOT (Fan et al. (2019)), TNL2k (Wang et al. (2021)), and MGIT (Hu et al. (2023a))—to
build DTVLT. (For further details, please refer Appendix A.2.) GOT-10k stands as a traditional
SOT benchmark. OTB99 Lang and LaSOT are enhancements of traditional SOT benchmarks,
incorporating additional language annotations. TNL2k is a benchmark created specifically for the
VLT task. It is worth noting that OTB99 Lang, GOT-10k, and TNL2k are considered representative
datasets for short-term tracking, primarily offering a text for the first frame of each sequence. LaSOT,
on the other hand, represents long-term tracking. Its textual annotations focus solely on describing
the appearance of the target object, without including information about relative positions. MGIT
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Prompt: Short/long description of <region>?

LLM

Osprey

Concise description: 
A bear in the water.
-----------------------------------------

Detailed description: 
A brown bear is seen in 
the middle of the 
image, walking 
through a river. The 
bear is in the water, 
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looking for fish.

Framework of DTLLM-VLT
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Figure 2: The pipeline of text generation for DTVLT based on DTLLM-VLT, which can provide
dense concise/detailed text generation based on given video frames and BBox of object.

introduces a new, large-scale benchmark for global instance tracking. The text annotations for each
sequence employ a multi-granular annotation strategy.

3.2 GENERATION TOOL

Traditional datasets for VLT are dependent on manual annotations. This process is costly, operates at
a single annotation granularity, and is not suitable for annotating large volumes of data. To overcome
these challenges, we have developed DTLLM-VLT (Li et al. (2024a)), a method capable of producing
extensive and diverse text generation based on LLM. The pipeline of text generation for DTVLT
is illustrated in Fig. 2. By taking video frames and the BBox of objects as inputs, DTLLM-VLT
generates concise and detailed descriptions for the relevant objects. This methodology enables us to
generate large-scale, diverse granularities text at low costs. The detailed workflow and ablation study
has been outlined in Appendix A.3.1 and A.3.2.

Table 2: Summary of sentence number (word number) of four granularity generated language
description in DTVLT. We using LLM and provide far more diverse semantic information based on
representative environments to form our DTVLT benchmark. “Dense” indicates that provides text
for every 100 frames, “initial” indicates that only the first frame of text is provided, and “concise”
and “detailed” indicate the richness of information, respectively. We illustrate the diversity of text by
analyzing the sentence number of texts at different granularities and the number of words.

Sentence Number (Word Number) of four granularity language description in DTVLT

DTVLT

Data Source Dense Concise Dense Detailed Initial Concise Initial Detailed
OTB99 Lang 0.6K (3.2K) 0.6K (21.9K) 0.1K (0.5K) 0.1K (3.6K)
GOT-10k1 43.0K (253.6K) 43.0K (1.8M) 9.5K (49.3K) 9.5K (346.5K)
LaSOT 35.2K (182.6K) 35.2K (1.2M) 1.4K (7.1K) 1.4K (47.4K)
TNL2K 12.4K (71.6K) 12.4K (476.0K) 2.0K (10.7K) 2.0K (73.0K)
MGIT2 16.1K (83.2K) 16.1K (553.7K) 0.1K (0.6K) 0.1K (4.5K)

1 As the ground truth of the GOT-10k test set is not open-sourced, we only generated text
for training and validation sets. And its frame rate is 10 fps, so we generate texts every 33
frames.

2 As the ground truth of the MGIT test set is not open-sourced, we only generated text for
training and validation sets.

3 “K” stands for “thousand” and “M” stands for “million”.
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A person walking on 
the sidewalk.1

A woman is standing on the sidewalk, near the center of the scene. She is wearing a black shirt and appears to be looking at his cell phone. She is positioned in 
front of a black car.1

A person walking on the 
sidewalk.1 100

A woman crossing the street.
200

Woman walking on the sidewalk.
300

A woman is standing on the sidewalk, seemingly waiting to cross the street. She is dressed in a black shirt and pants, and is looking towards the camera.

200
A woman is standing on the sidewalk, dressed in a black jacket and jeans. She appears to be looking at her cell phone, possibly 
checking a message or browsing the internet.

300

A woman is standing on the sidewalk, near the center of the scene. She is wearing a black 
shirt and appears to be looking at his cell phone. She is positioned in front of a black car.

1

A person is seen crossing the street, walking from the left side of the road to the right. The individual 
is in motion, walking through a crosswalk. The person's image is a bit blurry, suggesting.

100

Initial concise
first frame

Initial detailed

first frame

Dense concise
every 100 frame

Dense detailed
every 100 frame

C

D

A

B

A person crossing the street.

#1 #50 #100 #150 #200 #250 #300 #350

Figure 3: Examples of the text generation in DTVLT. We provide four different natural language
descriptions for each video. Diverse multi-granularity text can support fine-grained evaluation of
trackers, providing guidance for the development of tracking.

3.3 GENERATION STRATEGY

The volume and linguistic annotations of the VLT datasets determine the tracking performance.
Table 1 shows that the current tracking dataset for VLT is equipped with just 5,252 (99 + 1,400 +
2,000 + 1,753) official textual descriptions. This limited data is considered inadequate for algorithms
to learn effectively. These official annotations are only sufficient to describe the short-term changes of
the object. The lack of textual descriptions impedes the trackers’ ability to acquire a comprehensive
understanding of visual contents, leading to a substantial decline in performance when generalizing
to new videos. Furthermore, inaccurate textual descriptions can obstruct object tracking, turning
natural language annotations into a hindrance rather than a support.

In this work, we design a multi-granular generation strategy to provide scientific natural language
information. To enhance the accuracy and generality, we generate texts for five datasets to construct
DTVLT, as shown in Table 2, establishing a robust foundation for VLT. This generation strategy can
be expanded to more VLT and SOT datasets.

Initial and dense text descriptions. Inspired by the text annotations approach in OTB99 Lang
(Li et al. (2017)) and TNL2K (Wang et al. (2021)), we generate text for the first frame of each
video. Additionally, recognizing that 4 seconds is the threshold between human instant memory and
short-term memory (Radvansky (2021); Strous et al. (1995); Atkinson & Shiffrin (1968)), we prepare
for the most challenging scenario where the algorithm may not have an efficient memory mechanism.
Therefore, at a frame rate of 25 FPS, equating to every 100 frames in 4 seconds, we provide the
algorithm with generated text. We believe that this frequency of updates optimally maintains the
algorithm’s memory state and improves tracking capabilities.

Concise and detailed text descriptions. For the algorithm, if the BBox already adequately captures
the temporal and spatial dynamics of the object, the texts should concentrate on delivering key
semantic elements such as the object’s category and location. When the BBox does not provide
enough information for the tracker’s efficient learning, more comprehensive texts are required to
make up for the absent temporal and spatial connections. As a result, we generate two types of
textual descriptions: concise and detailed. As depicted in Fig. 2, the concise text conveys essential
information about the object, like its category (bear) and position (in the water), whereas the detailed
text encompasses further spatio-temporal specifics such as color, relative position, and activities.

3.4 GENERATION ANALYSIS

We provide four granularities of natural language descriptions for each video, which are the initial
concise description, initial detailed description, dense concise description, and dense detailed de-
scription. This is depicted in Fig. 3. For more examples of different tracking tasks in DTVLT, please
refer to Appendix A.3.5. Our goal is to use diverse textual information to enhance the learning and
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evaluation environment for the algorithm, as well as to offer direction for algorithmic development
and model optimization.

We generate text descriptions for the DTVLT using the DTLLM-VLT (Li et al. (2024a)), which
includes 26.2K initial descriptions (divided equally between 13.1K concise and 13.1K detailed texts)
and 214.6K dense descriptions (also equally divided into 107.3K concise and 107.3K detailed texts).
The quantity of our dense texts is 45.9 times larger than the official annotations. Additional infor-
mation on the number of semantic descriptions is available in Table 1. These semantic descriptions
consist of 5.2M words, featuring 17.6K non-repetitive words. Text descriptions for each frame only
takes 2 seconds, and the entire method can be directly run on an RTX-3090 GPU. The vocabulary is
rich, allowing for a comprehensive description of changes in the object during the tracking process. In
summary, compared to previous tracking datasets, the DTVLT we constructed is a multi-task-oriented,
multi-granular, large-scale dataset that utilizes LLM for automatic text annotation. Word cloud have
been illustrated in Fig. 4. More detailed analysis has been outlined in Appendix A.3.3 and A.3.4.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND EVALUATION METHODS

Figure 4: The word cloud
of semantic descriptions.

As shown in Fig. 3, we follow generation granularities to design various
mechanisms. We select several VLT trackers, MMTrack (Zheng et al.
(2023)), JointNLT (Zhou et al. (2023)) and UVLTrack (Ma et al. (2024))
as baseline models and evaluate them on DTVLT (as shown in Table 3
and Fig. 5). The experimental section including both iid (independent
and identically distributed) and ood (out of distribution) settings, such as
LaSOT and GOT-10k being evaluated under iid and ood settings, respec-
tively. It can verify the model’s generalization ability. With the diverse
environment, we can analyze the strengths and weaknesses of various
trackers from the experimental results, offering insights into the devel-
opment of VLT trackers. Compared with other algorithms, MMTrack is
designed to be flexible with text length, avoiding the truncation of lengthy
text segments. Moreover, it treats the VLT task as a token generation pro-
cess, facilitating more effective learning of visual-linguistic data. While
JointNLT and UVLTrack sets 50 as a maximum limit and truncates the
excess information. (See Appendix B.3 for more details.)

To fairly compare the tracking performance on five datasets, we use
two evaluation mechanisms. (A) We directly use the officially provided
weights to test with the official annotations and on the DTVLT. (B) We
retrain these models for 50 epochs on the basis of the official weights

using DTVLT and test under the corresponding settings to evaluate Area Under the Curve (AUC),
and tracking precision (P). For more details on the evaluation metrics, please refer to Appendix B.1.

When retraining the tracker, we selected LaSOT (Fan et al. (2019)), OTB99 Lang (Li et al. (2017)),
TNL2K (Wang et al. (2021)), and RefCOCOg Mao et al. (2016b) as the training data, with a ratio of
1:1:1:1. The template image and search image sizes are 128x128 and 256x256, respectively. We used
AdamW (Mao et al. (2016a)) as the optimizer and continued training for 50 epochs on the basis of the
official weights, randomly sampling 30,000 image pairs per epoch. All trackers are trained on a server
with four A5000 GPUs and tested on an RTX-3090 GPU. For dense text, the text is dynamically
updated every hundred frames, and for initial text, only the first frame provides text information.

4.2 TESTING DIRECTLY ON DTVLT (MECHANISM A)

We directly use the models provided by the official for testing. From Table 3, we can draw the
following conclusions: (1) Most trackers perform poorly when faced with the diverse text in DTVLT,
such as JointNLT (Zhou et al. (2023)) and UVLTrack (Ma et al. (2024)), with this phenomenon being
particularly prominent in JointNLT. When faced with texts not seen in the training data, JointNLT
experiences a significant performance drop across various datasets. The lack of diverse VLT datasets
makes it difficult for researchers to comprehensively evaluate algorithm performance when designing
and testing algorithms, leading to a phenomenon similar to “memorizing the answer” observed
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Table 3: Comparison with testing directly on DTVLT. The best two results are highlighted in red and
blue, respectively.

MMTrack
OTB99 Lang MGIT (Activity) LaSOT TNL2K GOT-10k

AUC P AUC P AUC P AUC P AUC P

Official 69.0 89.5 73.5 54.3 69.9 75.7 58.6 59.3 - -
Initial Concise 70.6 91.1 73.9 54.9 69.0 74.7 56.6 56.9 82.9 79.5
Initial Detailed 68.0 88.4 72.7 53.4 68.7 74.4 55.9 55.4 82.7 79.0
Dense Concise 70.2 90.8 74.2 55.0 69.1 74.8 56.5 56.7 82.8 79.3
Dense Detailed 68.6 89.4 72.9 53.5 69.0 74.7 56.1 55.6 82.8 79.2

JointNLT
OTB99 Lang MGIT (Activity) LaSOT TNL2K GOT-10k

AUC P AUC P AUC P AUC P AUC P

Official 65.1 85.3 58.7 41.3 60.4 63.6 57.0 58.2 - -
Initial Concise 59.6 80.5 53.3 35.1 58.4 60.0 50.3 49.3 70.7 55.4
Initial Detailed 55.1 74.2 56.3 36.4 52.4 51.7 49.4 47.2 69.5 55.4
Dense Concise 58.8 77.9 48.6 31.1 58.2 59.4 50.3 49.3 70.1 55.1
Dense Detailed 55.1 74.4 48.9 28.8 55.6 54.9 50.0 48.4 69.2 54.6

UVLTrack
OTB99 Lang MGIT (Activity) LaSOT TNL2K GOT-10k

AUC P AUC P AUC P AUC P AUC P

Official 68.7 89.0 64.0 52.2 67.7 73.7 62.1 65.6 - -
Initial Concise 68.5 89.0 51.7 47.8 66.9 72.1 60.7 63.5 82.0 75.7
Initial Detailed 65.7 86.0 60.6 46.3 65.8 71.0 59.8 62.5 80.6 73.8
Dense Concise 67.9 88.1 60.8 47.1 67.1 72.4 60.8 63.6 82.1 75.8
Dense Detailed 66.1 86.2 60.7 46.0 64.1 71.2 59.8 62.4 80.7 73.7

with JointNLT and UVLTrack. (2) The approach of sequence generation is more conducive to
learning unified visual-language features. It can be observed that MMTrack (Zheng et al. (2023))
has achieved further performance improvements on some datasets by incorporating the diverse texts
from DTVLT, showing a stronger adaptability to text. (3) We think that the current algorithm’s
handling of long texts and the alignment of multiple modalities needs refinement, as it does not
make the most of temporal and spatial relationships. Such temporal and spatial data are essential
for enhancing tracking capabilities. In instances where the BBox’s temporal-spatial details are
insufficient to reliably pinpoint the object, detailed textual information is required to supply extra
high-level semantic insights necessary for object tracking.

Through direct testing and comparison of tracking performance under different texts, it has been
observed that the variation in texts has a significant impact on tracking performance. DTVLT
compensates for the shortcomings of existing VLT datasets that cannot provide a flexible and
comprehensive assessment.

4.3 RETRAINING AND TESTING ON DTVLT (MECHANISM B)

As previously discussed, when the dataset text information becomes denser and more accurate, it
can make up for the deficiencies in the BBox annotations. The algorithm can acquire supplementary
knowledge through these textual updates, which may lead to an enhancement in its performance.
Consequently, we have retrained and evaluated models using a range of differently generated textual
inputs. As shown in Fig. 5, we plot the performance differences between the model after retraining
and direct testing, where the red line represents the mean of these differences. For the absolute
performance values of the model, please refer to the detailed data in the Appendix B.2.2. By
comparing with other trackers, MMTrack (Zheng et al. (2023)) and UVLTrack (Ma et al. (2024)) have
seen further improvements in performance, but the performance of JointNLT (Zhou et al. (2023))
has continued to decline instead. While our hope is that the inclusion of additional modalities will
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enhance the tracking performance, the current VLT trackers struggle to effectively integrate various
types of information, leading to an underutilization of the multi-modal data. This outcome—where
contemporary VLT trackers perform more poorly than those relying solely on visual cues—is also
documented in other studies, highlighting the significant room for improvement in multi-modal
tracking.

Figure 5: Comparison with retraining for 50 epochs and testing on DTVLT. We plot the performance
differences between the model after retraining and direct testing, where the red line represents the
mean of these differences.
By comparing results under mechanisms A and B, it is evident that in this flexible and comprehensive
setting, trackers that are thoughtfully crafted (that is, those equipped with the capacity for extended
input processing and the ability to align multi-modal data) can achieve superior results through
diverse descriptions, rather than relying solely on brief descriptions. The experiments conducted
highlight two pivotal insights: (1) Richer semantic data can enhance tracking capabilities compared
to a simple sentence, which also substantiates the precision and relevance of the proposed multi-scale
semantic generation strategy. (2) Providing only a basic description to VLT trackers is not practical.
As a result, initiating the tracking procedure with longer and detailed sentences, or regularly updating
the semantic data throughout the sequence, has proven to be more efficacious in precisely locating
targets amidst intricate scenes.

4.4 SUMMARY

Among the three algorithms, MMTrack (Zheng et al. (2023)) demonstrated the best performance,
showing some content worth further research and exploration in Mechanism A and Mechanism B. For
instance, on the MGIT (Hu et al. (2023a)) dataset, dense concise text achieved optimal performance
under direct testing conditions, which is somewhat different from the motivation proposed by the
MGIT dataset. We believe that the current algorithms lack in long text processing and multi-modal
alignment capabilities, so when facing long videos and high-difficulty sequences like MGIT, they
cannot make good use of the official long text annotations. Additionally, on the OTB99 Lang (Li
et al. (2017)) dataset, using initial concise text for direct testing yielded the best performance. The
early datasets represented by OTB99 Lang have provided sufficient information for tracking in
the BBox, and in this case, the text only needs to provide the most basic information to assist in
enhancing tracking performance. This trend was further reflected after retraining and testing. We
believe that MMTrack’s good performance lies in its modeling approach to the VLT task, learning
visual-linguistic features through sequence generation, which can enhance the generalization of the
tracker.

JointNLT (Zhou et al. (2023)), as a representative of the recent SOTA algorithms, has shown sur-
prisingly disappointing results. Both in direct testing and after retraining and testing, JointNLT’s
performance has declined significantly, which also confirms our analysis of the current VLT bench-
mark. That is, the existing text is not sufficient to support tracking like JointNLT to learn strong

9
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visual-linguistic tracking capabilities. They still adopt a strategy of “memorizing the answer” to
complete the VLT task. UVLTrack’s (Ma et al. (2024)) performance falls between the two, but it also
exhibits phenomena similar to JointNLT.

In summary, the emergence of DTVLT can provide a high-quality flexible experimental environment
for research, and help the algorithms quickly identify bottleneck issues under various evaluation
mechanisms, thereby accelerating the development of VLT algorithms.

4.5 VISUALIZATION AND BAD CASE ANALYSIS

Figure 6: Visualization of tracking results on dense concise text
annotations retrained algorithm. (A-B) In the LaSOT dataset, VLT
trackers tend to identify and follow similar objects. (C) VLT track-
ers struggle to adjust to the intricacies of complex scenes, as ob-
served in the MGIT dataset.

We delve deeper into the limi-
tations of the VLT algorithms
through the bad cases shown
in Fig. 6. The first two cases
are sourced from LaSOT (Fan
et al. (2019)), while the final
case is taken from MGIT (Hu
et al. (2023a)). MGIT and La-
SOT face similar challenges in
VLT task, such as interference
between the object and the back-
ground, as well as significant
variations in the object’s appear-
ance from the initial frame to
subsequent frames. These chal-
lenges not only increase the dif-
ficulty of tracking but also affect
the overall performance of ex-
isting trackers. In this context,
the introduction of a diverse text
generation method has become
a more viable solution. By pro-
viding multi-granularity text, it
enables trackers to better han-
dle changes in the object’s ap-
pearance and interference from
complex backgrounds. To fur-
ther enhance performance, cur-
rent trackers require a more sophisticated and intelligent semantic information processing module.
This module should be able to precisely extract relevant details indicated by semantic tags, helping
the tracker locate and follow the object more accurately in complex scenarios. However, the current
design of trackers has not yet been specifically optimized to meet this requirement, lacking mecha-
nisms to fully utilize semantic information, which leaves room for improvement in handling complex
scenarios. For more bad cases, please refer to Appendix B.4.

5 CONCLUSIONS

Summary. Object tracking forms the foundation for advanced tasks such as video understanding,
and VLT may offer a promising approach to enhancing tracking capabilities. Unlike existing VLT
benchmarks that primarily feature ambiguous descriptions, we (1) introduce a new VLT benchmark
named DTVLT based on five benchmarks, and (2) develop a multi-granular text generation
strategy to create diverse semantic information. DTVLT is the first comprehensive VLT benchmark
using LLM to provide multi-granularity diverse semantic information. In conclusion, we hope this
work aids researchers in advancing their studies in VLT and video understanding.

Limitations. Future work can address some current limitations. First, DTVLT can be expanded with
additional SOT and VLT benchmarks, creating a more complex and challenging environment for
tracking algorithms. Additionally, a more comprehensive evaluation system can be designed to better
assess VLT and video understanding capabilities.
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A DATASET INFORMATION

A.1 BASIC INFORMATION

In this work, we propose a new visual language tracking benchmark with diverse texts, named
DTVLT, based on five prominent VLT and SOT benchmarks, including three sub-tasks: short-term
tracking, long-term tracking, and global instance tracking, aiming to support further research in VLT
and video understanding.

Currently, the vast majority of VLT benchmarks are annotated with a single granularity in natural
language, and there is an issue of only describing the changes in the target of the first frame,
which hinders the algorithm’s understanding of the video content. The algorithms tend to adopt
a ‘memorizing the answer’ approach to accomplish the task of object tracking. This phenomenon
highlights the constraints imposed by single granularity text descriptions on the comprehension of
long videos. Consequently, our research endeavors to incorporate diverse semantic cues, with the
goal of equipping algorithms to more effectively navigate the intricate narrative dynamics inherent to
target tracking and the understanding of video contents.

A.2 DATA SELECTION

We have selected five representative benchmarks, covering short-term tracking (OTB99 Lang (Li
et al. (2017)), GOT-10k (Huang et al. (2021)) and TNL2K (Wang et al. (2021))), long-term tracking
(LaSOT (Fan et al. (2019))), and global instance tracking (MGIT (Hu et al. (2023a))) tasks. The
number of videos in each dataset and the number of texts officially annotated are shown in Table A1.

Table A1: Summary of selected datasets.

Dataset
Number of Videos

Official Annotations
Train Evaluation

OTB99 Lang (Li et al. (2017)) 51 48 99
GOT-10k (Huang et al. (2021)) 9,335 360 0

LaSOT (Fan et al. (2019)) 1,120 280 1,400
TNL2K (Wang et al. (2021)) 1,300 700 2,000

MGIT (Hu et al. (2023a)) 105 45 1,753

A.3 DIVERSE TEXT GENERATION

A.3.1 GENERATION PIPELINE

The pipeline of text generation in DTVLT with DTLLM-VLT (Li et al. (2024a)) is depicted in Fig. A1.
An input video frame accompanied by the respective object BBox is processed by SAM (Kirillov et al.
(2023)), which employs an image encoder, a prompt encoder, and a mask decoder to extract the masks
of the object in question. These masks, along with the video frame, are then fed into Osprey (Yuan
et al. (2023)). Within Osprey, the images and masks undergo encoding, are merged with pre-defined
prompts, and subsequently, the system leverages a LLM (Chiang et al. (2023); Touvron et al. (2023))
to produce succinct and comprehensive descriptions for the objects. This methodology allows for
the generation of large-scale, diverse granularities textual data for SOT and VLT datasets at minimal
expense.

A.3.2 REASON FOR SELECTING LLM AND ABLATION STUDY

We will introduce the reason for selecting LLM and corresponding ablation study.

Purpose of using LLM for DTVLT: Existing benchmarks provide video-level text that struggles
to effectively capture the dynamic changes in video content, which also hinders the development
of efficient video-language trackers. Therefore, providing more diverse semantic descriptions that
align with the dynamic characteristics of videos for existing VLT benchmarks can offer a rich data
environment for further algorithm optimization and holds significant research value. To achieve this
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<image>\n This provides an image. 
Prompt: Short/long description of <region>?
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Osprey

Concise description: 
A bear in the water. 
-----------------------------------------

Detailed description: 
A brown bear is seen in 
the middle of the
image, walking
through a river. The
bear is in the water,
and it appears to be 
looking for fish.
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Visual
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Figure A1: The pipeline of text generation for DTVLT based on DTLLM-VLT (Li et al. (2024a)),
which can provide dense categories on MGIToncise/detailed text generation based on given video
frames and BBox of object.

Table A2: Ablation Study of SAM (Kirillov et al. (2023)) and LLM Backbone with Text Similarity
Comparison on OTB99 Lang (Li et al. (2017)). For SAM, we replaced the SAM-B with SAM-H
and SAM-L, and for Osprey (Yuan et al. (2023)), we replaced the Osprey with Osprey-chat and
Controlcap (Zhao et al. (2024)). We report BLEU (Papineni et al. (2002)), GLEU (Mutton et al.
(2007)), METEOR (Banerjee & Lavie (2005)), Recall, Precision and F1 score (Goutte & Gaussier
(2005)). We compared the similarity between the texts generated after replacing the backbone and
the DTVLT texts, so the scores of ours (combining SAM-B with Osprey) are all 1.00.

Text Similarity Comparison on OTB99 Lang

SAM Backbone LLM Backbone Text Granularity BLEU GLEU METEOR Recall Precision F1

SAM-H
Osprey

Dense Concise 0.76 0.79 0.84 0.87 0.87 0.87
Dense Detailed 0.56 0.57 0.68 0.72 0.71 0.71

SAM-L
Dense Concise 0.68 0.72 0.79 0.85 0.87 0.86
Dense Detailed 0.56 0.58 0.67 0.74 0.73 0.72

SAM-B
Osprey-Chat

Dense Concise 0.25 0.34 0.48 0.59 0.60 0.60
Dense Detailed 0.17 0.23 0.41 0.48 0.51 0.49

ControlCap1 Dense Concise 0.09 0.14 0.28 0.30 0.37 0.34
1 ControlCap cannot generate detailed text, we only analyze its concise text.

goal, we need to using LLM and construct a pipeline to understand the dynamic changes in the video
process, especially to effectively perceive fine-grained target variations.

Reason for choosing SAM and Osprey: Currently, the BBox in tracking benchmarks only provides
relatively coarse information. Thus, we first obtain masks through SAM (Kirillov et al. (2023)) and
acquire pixel-level information of the object, laying a solid foundation for fine-grained perception. On
this basis, Osprey’s (Yuan et al. (2023)) goal is to achieve pixel-level understanding, which coincides
with our needs for dynamic changes in the tracking process. In addition to inputting complete images
for perceiving foreground and background information, it also provides a fine-grained encoder for
masks, which will enhance the understanding of dynamic environments. Moreover, Osprey’s training
data is regenerated through GPT Achiam et al. (2023) and is currently the only model that can provide
detailed text descriptions for tracking objects in region-level caption field. The entire method is
plug-and-play, and each module can be replaced at any time.

Details of ablation study: We conduct a detailed ablation analysis of SAM (Kirillov et al. (2023))
and Osprey (Yuan et al. (2023)). We employed two types of metrics to compare the results of
the ablation study, including Precision and AUC for tracking, and Recall, Precision, F1 (Goutte &
Gaussier (2005)), BLEU Papineni et al. (2002), GLEU Mutton et al. (2007) and METEOR Banerjee
& Lavie (2005) for text similarity comparison, to evaluate the choice of the backbone from multiple
perspectives. For SAM, we replaced the SAM-B with SAM-H and SAM-L, and for Osprey, we
replaced the Osprey with Osprey-chat and Controlcap (Zhao et al. (2024)). Since ControlCap
cannot generate detailed text, we only analyzed its concise text. When comparing text similarity, we
compared the similarity between the texts generated after replacing the backbone and the DTVLT
texts.
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Table A3: Ablation Study of SAM (Kirillov et al. (2023)) and LLM Backbone with Visual Language
Tracking Performance on OTB99 Lang (Li et al. (2017)). For SAM, we replaced the SAM-B with
SAM-H and SAM-L, and for Osprey (Yuan et al. (2023)), we replaced the Osprey with Osprey-chat
and Controlcap (Zhao et al. (2024)). We test directly on DTVLT (Mechanism A) and report AUC and
Precision score.

Visual Language Tracking Performance on OTB99 Lang

SAM Backbone LLM Backbone Text Granularity Precision AUC

SAM-B (Ours) Osprey (Ours)
Official 89.5 69.0

Dense Concise 90.8 70.2
Dense Detailed 89.4 68.6

SAM-H
Osprey

Dense Concise 90.5 69.9
Dense Detailed 90.6 69.6

SAM-L
Dense Concise 90.0 69.7
Dense Detailed 90.4 69.4

SAM-B
Osprey-Chat

Dense Concise 88.8 68.5
Dense Detailed 89.0 68.2

ControlCap1 Dense Concise 90.7 69.9
1 ControlCap cannot generate detailed text, we only analyze its concise

text.

Conclusion of ablation study: We present the results of the ablation study. From Table A2, it can
be observed that replacing SAM (Kirillov et al. (2023)) does not significantly affect text generation;
the text similarity metrics are all very high. Considering both the time cost and performance, we
have chosen SAM-B. However, after replacing the LLM backbone, there is a noticeable decrease
in the metrics. This is because different LLMs have different training data and strategies, and the
descriptions for the same object may vary in style. Our goal is to use diverse texts for tracking tasks,
so we further conducted ablation analysis for tracking experiments based on the generated texts. In
Table A3, we conducted tracking experiments on the OTB99 Lang (Li et al. (2017)) dataset for dense
texts. The backbone model we used achieved the best performance on OTB99 Lang, which further
verifies the importance and rationality of the texts generated by DTVLT. And it can be seen that
our proposed framework still enhances tracking performance with most dense texts after replacing
different modules.

A.3.3 GENERATION ANALYSIS

(a) The word cloud of initial concise texts (b) The word cloud of initial detailed texts

(c) The word cloud of dense concise texts (d) The word cloud of dense detailed texts

Figure A2: word cloud of four granularities on DTVLT.
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We calculated the visual-textual similarity between the official annotations and the text generated
by DTVLT with respect to the tracking targets. Specifically, we cropped the target from the video
frames according to the BBox, and then calculated the similarity between the text and the target using
CLIP (Radford et al. (2021)). The visual-textual similarity between the official text annotations and
the target is 0.187. In the DTVLT, the visual-textual similarity for the concise text and detailed text
generated with respect to the target are 0.185 and 0.195, respectively. We think the visual-textual
similarity of the text generated in DTVLT is comparable to that of the manually annotated text. The
word cloud of various texts is shown in Fig. A2. Our generated texts are more diverse than official
annotations.

A.3.4 GENERATION FILE

We propose a multi-granular generation strategy to generate the semantic description, and use txt
format to save the natural language annotation for each video sequence. Here we illustrate an example
to show the txt file structure for video sequence bear-17 with dense detailed texts in the LaSOT
benchmark, as shown in Listing 1 and Fig. A3. Due to the limited space, we only illustrate some
representative information, with additional information of a similar structure represented by ellipses.
Please download and check the dataset for more detailed annotation about each video sequence.

Figure A3: Example of texts generation for DTVLT.

1. For each sequence, we save the following information in the txt file:

(a) frame id: The frame id of the sequence. Note that in the txt file, we use 0 to represent
the first frame.

(b) description: The natural language description generated by DTLLM-VLT.

A.3.5 MORE EXAMPLE IN DTVLT

DTVLT encompasses three tracking tasks designed to assess the capabilities of tracking systems
under varying conditions and durations. The three tasks are:

Short-term Tracking (STT). This task focuses on tracking objects over short sequences where the
object remains visible throughout. It tests a tracker’s ability to handle rapid movements, occlusions,
and changing environments over brief periods.

Long-term Tracking (LTT). LTT challenges trackers to maintain the identity of objects over extended
sequences, where the object might disappear and reappear. It evaluates the endurance of trackers in
maintaining tracking consistency over long durations and their ability to re-identify the object after
loss of track.

Global Instance Tracking (GIT). This involves tracking an object across different scenes and
conditions, possibly even when the object changes its appearance significantly. GIT tests a tracker’s
ability to generalize the object’s identity across various scenarios and to handle large-scale variations
in appearance.

The DTVLT framework provides a multi-granular textual description for these tasks, enabling a
detailed evaluation of each tracker’s performance on specific challenges posed by different tracking
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Listing 1 The txt file about the dense detailed information of video sequence bear-17 in LaSOT (Fan
et al. (2019))

{
"0": "A bear is seen in the right part of the image, walking

through the water. It appears to be looking for fish to
eat.",

"100": "A bear is seen in the right part of the image, wading
through the river with its front paws in the water. It
appears to be looking for fish to eat.",

"200": "A bear is seen in the right part of the image, with
its back towards the camera. It appears to be wading
through a river, with its head submerged in the water. The
bear seems to be enjoying its time in the water.",

"300": "...",
"...": "...",
"2300": "...",
"2400": "..."

}

environments. Such a setup not only pinpoints the strengths and weaknesses of each tracking
algorithm but also offers insights that can drive innovations in tracker design. Examples of each
tracking task in DTVLT are illustrated in Fig. A7 (STT), Fig. A5 (LTT) and Fig. A6 (GIT).

Figure A4: Example for Short-term Tracking (STT) in DTVLT.

Figure A5: Example for Long-term Tracking (LTT) in DTVLT.
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Figure A6: Example for Global Instance Tracking (GIT) in DTVLT.

B EXPERIMENT INFORMATION

B.1 EVALUATION METRICS

Precision P typically refers to the proportion of frames where the distance between the tracker’s
predicted bounding box and the ground-truth bounding box is less than or equal to a given threshold
θd. The specific definition is as follows:

P(E) =
1

|E|

|E|∑
l=1

1

|L|
|{t : dt ≤ θd}| (1)

Here, |E| represents the total number of sequences in the dataset, |L| represents the number of frames
in sequence l, dt is the distance between the predicted position pt and the ground-truth position gt in
frame t, and θd is a preset threshold.

AUC is the area under the cumulative distribution function (CDF) of Precision P calculated at different
θd values. It provides a comprehensive measure to evaluate the performance of the tracker at various
distance thresholds. The value of AUC ranges between 0 and 1, with higher values indicating better
tracker performance. The definition of AUC is as follows:

AUC =

∫ dmax

0

P(θd) dθd (2)

Here, dmax is the maximum possible distance value, and P(θd) is the precision at a specific threshold
θd. The calculation of AUC is typically done by plotting the Precision-Recall Curve at a range of θd
values, then approximating the integral using numerical integration methods (such as the trapezoidal
rule).

In practice, AUC is obtained by plotting the Precision-Recall Curve, where Precision P is the point
on the curve, and Recall is the proportion of frames correctly predicted by the tracker to the total
number of frames. The AUC is the area under this curve.

B.2 EVALUATION MECHANISM

B.2.1 MECHANISM A

To evaluate the performance of existing algorithms on DTVLT, we implement Mechanism A. Utilizing
the official weight files provided (URLs as shown in Table A4), we keep all parameters unchanged.
During the evaluation process, we replace the official texts with texts from DTVLT to test the
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performance of various VLT algorithms under the initialization conditions of Natural Language (NL)
and Bounding Box (BBox).

B.2.2 MECHANISM B

Furthermore, we retrain three algorithms and then retest them on DTVLT, establishing Mechanism B.
Specifically, we continue training for an additional 50 epochs based on the official weights, using
datasets such as OTB99 Lang (Li et al. (2017)), LaSOT (Fan et al. (2019)), TNL2K (Wang et al.
(2021)), and RefCOCOg (Mao et al. (2016b)). During the training process, we replace the official
texts with different texts. After the training was completed, we reassess the performance of the
algorithms under the corresponding text settings.

Figure A7: Comparison with retraining for 50 epochs and testing on DTVLT.

B.3 BASELINE INFORMATION

Detailed information about the baselines are illustrated in Table A4, we use the parameters provided
by the original authors.

Table A4: Table: The model architectures and URLs of open-sourced algorithms used in this work.

Tracker Architecture Initializa URL
JointNLT (Zhou et al. (2023)) Transformer NL & BBox https://github.com/lizhou-cs/JointNLT

MMTrack (Zheng et al. (2023)) Transformer NL & BBox https://github.com/Azong-HQU/MMTrack
UVLTrack (Zheng et al. (2023)) Transformer NL & BBox https://github.com/OpenSpaceAI/UVLTrack

JointNLT (Zhou et al. (2023)) operates as a combined visual grounding and tracking framework,
utilizing natural language specifications for tracking. This framework integrates the tasks of tracking
and grounding, allowing it to handle various references within these processes. Moreover, it introduces
a semantics-guided temporal modeling module, which offers temporal cues derived from historical
predictions to the joint model, thereby enhancing its ability to adapt to changes in the appearance of
the object.
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MMTrack (Zheng et al. (2023)) redefines vision-language tracking by conceptualizing it as a token
generation task. It develops an innovative pipeline that taps into the capabilities of VL multi-modal
learning from a holistic modeling standpoint. The method is both simple and adaptable, combining
language and bounding boxes into multi-cue token inputs. It simplifies the process by discarding
unnecessary sub-task learning and optimization goals, using cross-entropy solely as its single training
objective.

UVLTrack (Ma et al. (2024)) presents a groundbreaking unified tracker for both visual and vision-
language tracking, which is adept at managing three distinct types of target references (BBOX, NL,
NL+BBOX) simultaneously. It has engineered a modality-unified feature extractor that facilitates the
concurrent learning of visual and language features and implements a multi-modal contrastive loss to
integrate these modal features into a cohesive semantic framework. It introduces a modality-adaptive
box head that effectively extracts scenario-specific features from various modal references and
precisely localizes the target through a contrastive approach, thereby boosting its robust performance
in all reference scenarios.

B.4 MORE BAD CASES

In order to demonstrate how different algorithms perform in diverse environments, We specifically
selected several cases where they performed poorly as shown in Fig. A8, A9 and A10. These
examples show that only in a diverse environment can we observe the strengths and weaknesses of
algorithms in finer detail. Therefore, providing such an environment is crucial as it enables us to
more accurately assess and compare the performance of various algorithms.

Figure A8: Bad Case for UVLTrack in DTVLT.
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Figure A9: Bad Case for MMTrack in DTVLT.

Figure A10: Bad Case for JointNLT in DTVLT.
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