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ABSTRACT

Federated Class-Incremental Learning (FCIL) refers to a scenario where a dy-
namically changing number of clients collaboratively learn an ever-increasing
number of incoming tasks. FCIL is known to suffer from local forgetting due to
class imbalance at each client and global forgetting due to class imbalance across
clients. We develop a mathematical framework for FCIL that formulates local
and global forgetting. Then, we propose an approach called Hybrid Rehearsal
(HR), which utilizes latent exemplars and data-free techniques to address local and
global forgetting, respectively. HR employs a customized autoencoder designed
for both data classification and the generation of synthetic data. To determine
the embeddings of new tasks for all clients in the latent space of the encoder, the
server uses the Lennard-Jones Potential formulations. Meanwhile, at the clients,
the decoder decodes the stored low-dimensional latent space exemplars back to the
high-dimensional input space, used to address local forgetting. To overcome global
forgetting, the decoder generates synthetic data. Furthermore, our mathematical
framework proves that our proposed approach HR can, in principle, tackle the
two local and global forgetting challenges. In practice, extensive experiments
demonstrate that while preserving privacy, our proposed approach outperforms
the state-of-the-art baselines on multiple FCIL benchmarks with low compute and
memory footprints.

1 INTRODUCTION

Figure 1: Local and global forgetting occur due to class imbal-
ance at both the local (client-level) and global (system-wide)
scales. Whereas local forgetting refers to the combination of
sub-optimal losses for the previous tasks and intra-client task
confusion, global forgetting involves inter-client task confusion.

Federated Learning (FL) is a dis-
tributed machine learning solution
that enables clients to collabora-
tively optimize models without
compromising their data privacy
(Konečnỳ et al., 2016). By ex-
changing model weights or gradi-
ents rather than centrally aggregat-
ing data, FL enhances data privacy
while benefiting from the diversity
of data to boost model robustness
(McMahan et al., 2017). However,
as the field of FL advances, new
challenges arise, particularly in scenarios where the number of classes to be learned increases over
time (Yoon et al., 2021). This scenario, known as Federated Class-Incremental Learning (FCIL),
presents two issues because of the dynamic nature of incoming classes and the inherent class imbal-
ance at both local (client-level) and global (system-wide) scales (Dong et al., 2022):

One of the two issues in FCIL is local forgetting (Dong et al., 2022), which occurs due to class
imbalance within each client’s dataset. This class imbalance arises because in FCIL, at a given time,
clients possess data for only a subset of the classes, leading to biased learning and forgetting of
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previously learned classes. Concurrently, global forgetting (Dong et al., 2022), the second issue,
arises because of class imbalance across different clients.

Furthermore, any proposed approach for FCIL not only needs to address the two aforementioned
issues but also account for the hardware limitations (memory) often faced by clients. Specifically, it
must cope with the incoming flow of tasks. These requirements set FCIL apart from the traditional
federated learning scenario, underscoring the demand for tailored approaches (Babakniya et al., 2023;
2024).

The current approaches for FCIL fall into two categories: data-based, also known as exemplar-based
(Dong et al., 2022) and data-free (Babakniya et al., 2023; 2024). Data-based approaches involve
storing several exemplars for each class in the memory so that when the clients train their models on
a new set of classes, they can use previous samples and form a mini-batch that statistically represents
all the previous classes to mitigate forgetting. However, this approach may be impractical in FCIL
due to memory constraints and presents privacy concerns. To remedy that, data-free approaches have
recently gained popularity (Zhang et al., 2022; Gao et al., 2022; Shi & Ye, 2023; Zhang et al., 2023).
These approaches usually rely on a generative model to produce synthetic data. However, data-free
approaches may not be as performant as the data-based ones (Dong et al., 2022).

To harness the advantages of both data-based and data-free approaches, we present Hybrid Replay
(HR), a unified approach with low memory overhead and high performance. Our contributions in this
work are as follows:

• We develop a mathematical framework for FCIL to prove that our proposed approach HR
can, in principle, tackle the two local and global forgetting challenges.

• HR unifies two approaches : (i) HR incorporates our efficient version of exemplar replay
based on our customized autoencoder. Our efficient exemplar replay inflicts an order of
magnitude less memory overhead than vanilla exemplar-based approaches. (ii) HR includes
our version of an autoencoder-based data-free approach with almost no memory overhead.
Our data-based and data-free approaches are distinct from those in the literature, as we
utilize a new strategy and a novel autoencoder to implement these approaches.

• The backbone of HR, as mentioned above, is our customized autoencoder that is used for
both data classification and the generation of synthetic data. To determine the embeddings
of new tasks for all clients in the latent space of the encoder, the server uses the Lennard-
Jones Potential formulations (Jones, 1924). Meanwhile, at the clients, to overcome local
forgetting, the decoder decodes the stored low-dimensional latent space exemplars back
to the high-dimensional input space, used to address local forgetting. To overcome global
forgetting, the decoder generates synthetic data in a data-free manner.

• Extensive experiments demonstrate that while preserving privacy, our proposed approach
outperforms the state-of-the-art baselines on multiple FCIL benchmarks with low compute
and memory footprints.

2 RELATED WORK

Federated Learning (FL) can collaboratively train robust models by utilizing the diverse local data
of many clients while promising an enhanced level of privacy (Yurochkin et al., 2019; Wang et al.,
2020; Li et al., 2021; Yang et al., 2021). In FL, the server aggregates and averages the weights of
the local models of different clients (McMahan et al., 2017). Follow-up works focus on mitigating
the drift problem of weights at different clients (Shoham et al., 2019; Li et al., 2020), or aim to
minimize the communication overhead (Chen et al., 2019; Zhang et al., 2020b;c). Fast convergence
(Karimireddy et al., 2020) and personalization (Fallah et al., 2020; Lange et al., 2020) have also been
studied. Unsupervised FL has shown promising results (Peng et al., 2019; Zhang et al., 2020d; Dong
et al., 2021; Liu et al., 2021a; Chu et al., 2022; Liu et al., 2022). However, current FL approaches
cannot work in scenarios where the number of classes grows constantly. This is because the clients
have memory limitations and cannot accumulate all the previous classes (Hamer et al., 2020; Lyu &
Chen, 2021).

Class-Incremental Learning (CIL) is a scenario where the model has to visit a stream of classes
(Zhang et al., 2020a), learn them incrementally (Ahn et al., 2021), and discriminate them all without
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Table 1: Comparison of our approach with other hybrid approaches Remind (Hayes et al., 2020),
Remind+ (Wang et al., 2021), and i-CTRL (Tong et al., 2022).

Classification Approach Quantization Learning
Scenario

Latent Space Rep-
resentation

Architectural Simplicity

HR Classification occurs
within the latent space of
the encoder, leveraging
Euclidean distance.

Incorporating quan-
tization within our
architecture would be
straightforward, further
improving performance.

Offline
learning.

Uses a structured la-
tent space via the
Lennard-Jones Po-
tential formulations.

Our work showcases
clean and minimalistic
designs, as depicted in
Fig. 2.

Remind Classification occurs after
the decoding process, em-
ploying a cross-entropy
loss function as depicted
in Fig. 2 of Remind.

Applies quantization to
the latent exemplars to en-
hance compression.

Online
learning.

Uses an unstructured
latent space for its
CNNs.

Fig. 2 of Remind shows
an ad hoc and unnecessar-
ily complex architecture,
complicating implementa-
tion and scalability.

Remind+ Classification occurs af-
ter decoding with a cross-
entropy loss function.

Incorporates quantization
for feature compression.

Online
learning.

Relies on an unstruc-
tured latent space for
its autoencoder.

Figs. 2 and 3 of Remind+
demonstrate ad hoc and
overly complex designs,
hindering scalability.

i-CTRL Classification within
the latent space of the
encoder, leveraging
Euclidean distance.

Incorporating quan-
tization within their
architecture would be
straightforward, further
improving performance.

Offline
learning.

Uses a structured la-
tent space via Linear
Discriminative Rep-
resentation.

Has a clean and minimal-
istic design, as depicted in
Fig. 1 of i-CTRL.

forgetting earlier classes (Kim & Choi, 2021). Regularization is one of the earliest attempts to
mitigate catastrophic forgetting (Kirkpatrick et al., 2017). Knowledge distillation (Li & Hoiem, 2017)
has been shown effective in retaining the knowledge of previous classes (Shmelkov et al., 2017).
Generative models have been adopted to produce synthetic data to be interleaved with the new classes
to mitigate biased learning and forgetting (Shin et al., 2017; Wu et al., 2018). It has been frequently
noted that class imbalance is the most important obstacle in CIL (Douillard et al., 2020; Liu et al.,
2020; Rebuffi et al., 2017; Wu et al., 2019). Bias-correction (Liu et al., 2021b; Yan et al., 2021) and
knowledge distillation (Hu et al., 2021; Simon et al., 2021) have been shown effective in overcoming
class imbalance. Hybrid replay approaches integrate model-based replay (generative modeling) and
exemplar-based replay. In HR, instead of storing raw exemplars, latent space features are stored,
which require orders of magnitude less memory (Hayes et al., 2020; Van de Ven et al., 2020; Wang
et al., 2021; Tong et al., 2022; Zhou et al., 2022). Table 1 compares our proposed work HR and other
hybrid baselines such as Remind (Hayes et al., 2020), Remind+ (Wang et al., 2021), and i-CTRL
(Tong et al., 2022).

Federated Class-Incremental Learning (FCIL) is a scenario where multiple distributed clients
collaboratively and incrementally learn new classes over time without sharing their data, facing
both challenges of local and global forgetting due to imbalanced (non-IID) data distributions (Yoon
et al., 2021; Dong et al., 2022). FCIL approaches fall into two categories of (i) exemplar-based
approaches and (ii) data-free approaches. (i) As an exemplar of exemplar-based, Global-Local
Forgetting Compensation (GLFC) model integrates class-aware gradient compensation and class-
semantic relation distillation to mitigate local forgetting, while a proxy server and a prototype
gradient-based communication mechanism tackle global forgetting (Dong et al., 2022).

(ii) Data-free approaches. Relation-guided Representation Learning for Data-Free Class-Incremental
Learning (R-DFCIL) employs relational knowledge distillation to maintain compatibility between
new and previous class representations (Gao et al., 2022). The Federated Fine-Tuning with Generators
(FedFTG) employs knowledge distillation and hard sample mining to optimize the global model and
address data heterogeneity across clients (Zhang et al., 2022). TARGET (federated class-continual
learning via exemplar-free distillation) uses a pre-trained global model for knowledge transfer and a
generator to simulate data distribution, without needing additional datasets or storing private data
(Zhang et al., 2023). In (Babakniya et al., 2023), a server-trained generative model synthesizes past
data samples from discriminators and then trains generators that are given to clients, enabling clients
to locally mitigate catastrophic forgetting without compromising privacy.

The Local-Global Anti-forgetting (LGA) model uses category-balanced, gradient-adaptive com-
pensation loss and semantic distillation to balance learning among local clients, while a proxy
server manages global forgetting through self-supervised prototype augmentation (Dong et al., 2023).
FedSpace adapts to asynchronous and varied task sequences of clients using prototype-based learning,
representation loss, fractal pre-training, and a modified aggregation policy (Shenaj et al., 2023). Shi
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& Ye (2023) introduces a prototype reminiscence mechanism that dynamically reshapes old class
feature distributions by integrating previous prototypes with new class features, in tandem with an
augmented asymmetric knowledge aggregation. An improved version of (Babakniya et al., 2023) has
been proposed by Babakniya et al. (2024).

3 FCIL PROBLEM FORMULATION

In traditional machine learning settings (supervised learning), models are trained using a fixed dataset,
where the class distribution is known in advance and the training data are accessible during the
model’s training phase. The objective is typically to minimize a loss function that measures the
discrepancy between the predicted labels and the true labels:

Iθ =

∫
X×Y

ℓ(fθ(x), y)p(x, y) dx dy, (1)

where X and Y represent the space of inputs and labels, respectively, fθ denotes the model parame-
terized by θ, ℓ is the loss function, and p(x, y) is the joint distribution of inputs and labels. When Y ,
the label set, has N classes, the loss function in Eq. 1 can be specifically written as:

Iθ =
1

N − 1

N∑
i=1

N∑
j=i+1

uij , with uij =

∫
X×{i,j}

ℓ(fθ(x), y)p(x, y) dx dy. (2)

Eq. 2 reflects the need to evaluate the model’s performance across all possible pairs of class labels,
ensuring that each pair is considered in the loss calculation.

When we introduce the concept of tasks in CIL, kth task Tk encompasses a specific subset of classes
from Y . The model must adapt its parameters to minimize the loss across successive tasks while
maintaining robust performance on previous tasks. Each task Tk involves learning a designated set
of classes Yk ⊂ Y . Assuming all tasks contain the same number of classes, denoted by N , the
cumulative loss function across tasks can be modeled as:

Iθ =

K∑
k=1

K∑
l=1

1

N2

N∑
ik=1

N∑
jl=1

uik,jl , with uik,jl =

∫
X×{ik,jl}

ℓ(fθ(x), y)p(x, y) dx dy. (3)

Here, K represents the total number of tasks, and N is the uniform number of classes per task.

For a new task Tk+1 that includes N classes, the cumulative loss function after incorporating this
task can be recursively updated from the previous tasks as follows:

I
(k+1)
θ = I

(k)
θ +

1

N2

 N∑
i=1

N∑
j=1

uik+1,jk+1
+2

k∑
l=1

N∑
i=1

N∑
j=1

uil,jk+1

 , (4)

where I
(k)
θ represents the cumulative loss function up to task k. The term

∑N
i=1

∑N
j=1 uik+1,jk+1

accounts for the interactions within the new task Tk+1, and the term
∑k

l=1

∑N
i=1

∑N
j=1 uil,jk+1

,
multiplied by 2, captures the bidirectional interactions between all classes of the new task and each
class of the previously learned tasks. The normalization factor 1

N2 ensures uniform weighting of
class interactions across all tasks.

In FCIL, the model evolution takes advantage of collaborative contributions from different clients,
each maintaining its local dataset. As new tasks and their associated classes arrive at different clients,
each client updates its model to accommodate new knowledge while ensuring coherence with the
collective knowledge maintained across the federated network.

The recursive update formula for the global loss function, as formulated in Eq. 5, encapsulates this
dynamic. Here, I(k+1)

θ represents the global loss after incorporating task (k + 1). This is computed
by aggregating updates from each client pair (m,n), accounting for both their individual and mutual
contributions:

I
(k+1)
θ =

M∑
m=1

M∑
n=1

(
I
(k),m,n
θ +∆I

(k+1),m,n
θ

)
, (5)
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where

∆I
(k+1),m,n
θ =

1

N2

( N∑
i=1

N∑
j=1

um,n
ik+1,jk+1

+ 2

k∑
l=1

N∑
i=1

N∑
j=1

um,n
il,jk+1

)
. (6)

Eqs. 5 and 6 outline the critical balance required in FCIL: the preservation of knowledge gained
in the past, represented by I

(k),m,n
θ . This preservation is crucial for maintaining system stability

(stability-plasticity dilemma) and is typically achieved through mechanisms such as regularization,
knowledge distillation, and replay.

Meanwhile, in Eq. 6 there are two loss terms, the first loss term has to do with learning the new
task and encompasses all the interactions between classes in the new task, and the second loss term,
which is very important, accounts for the loss terms between the new task and all the previous tasks.
Failing to minimize the second loss would result in intra-client task confusion, where the model fails
to differentiate between tasks within the same client. There is also another task confusion implicit
in Eq. 5 that we call inter-client task confusion addressing the loss term between different tasks at
different clients. Failure to minimize inter-client task confusion will render the model incapable of
distinguishing between different classes of different clients. Thus, overall, there are four challenges
that need to be considered: (i) preserving prior knowledge, (ii) effectively integrating new tasks, (iii)
mitigating intra-client task confusion, and (iv) resolving inter-client task confusion. In the literature
(i) and (iii) together are called local forgetting while (iv) is called global forgetting (Dong et al., 2022).
In the next section, we will present our proposed approach and discuss how our proposed approach
tackles these challenges.

4 PROPOSED APPROACH: HYBRID REPLAY

Figure 2: Our HR approach, except for Task 1, con-
sists of two key phases for handling tasks in FCIL.
For Task 1, the autoencoder is trained, and the com-
pact latent representations M1 are stored. For sub-
sequent tasks h, in the Model Update Phase, com-
pact representations from previous tasks M1:h−1

are decoded, interleaved with the new task’s data
Dh, and used to update the model. In the Memory
Update Phase, with the updated model, compact
representations for both the old tasks and the new
task are computed and stored M1:h.

Our proposed approach (shown in Fig. 2), Hy-
brid Replay (HR), is based on a specialized
autoencoder that serves two primary functions:
data classification and synthetic data generation.
This customized autoencoder comprises an en-
coder and a decoder operating as follows. The
encoder f(x) : Rn → Rm maps the input data
x ∈ Rn to a low-dimensional latent representa-
tion z ∈ Rm. The decoder g(z) : Rm → Rn

then reconstructs the input data from this latent
representation.

While traditional Variational Autoencoders
(VAE) (Kingma & Welling, 2013) focus primar-
ily on generalization and generating new im-
ages, HR adapts the VAE framework to balance
modeling data distributions with enhanced class-
specific clustering in the latent space. Accord-
ingly, the modified loss function incorporates
the standard VAE loss terms with an additional
loss term designed to cluster samples around
their class centroids:

L(x, x̂, z) = ELBO(x, x̂, z) + λLz(z,p)

= −Eq(z|x)[log p(x|z)] + KL(q(z|x)||p(z)) + λ

K∑
i=1

N∑
j=1

||zij − pij ||2 (7)

where ELBO represents the Evidence Lower Bound, KL denotes the Kullback-Leibler divergence,
|| · ||2 indicates the L2 norm, pij represents the centroid embedding for the i-th task and j-th class,
and λ is a hyperparameter.

To determine the embeddings of new task centroids for all clients in the encoder’s latent space,
the server utilizes the Lennard-Jones Potential formulations (Jones, 1924). Specifically, the total
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potential energy U of the system, which represents the interactions between all pairs of class centroid
embeddings, is calculated as follows:

K,N∑
i,j=1

∑
i′,j′ ̸=i,j

4ε

( σ

∥pi′
j′
− pij∥

)12

−

(
σ

∥pi′
j′
− pij∥

)6
 , (8)

where ∥pi′
j′
− pij∥ is the Euclidean distance between the centroid embeddings. The parameters ε

and σ determine the depth of the potential well and the equilibrium distance, respectively.

To update the centroid embeddings, the server iteratively adjusts each pij using the gradient of the
potential energy, optimized with a learning rate η. The update can be mathematically expressed as:

pij ← pij − η
∑

i′,j′ ̸=i,j

24ε

[
2

(
σ12

∥pi′
j′
− pij∥13

)
−

(
σ6

∥pi′
j′
− pij∥7

)]
(pij − pi′

j′
). (9)

Leonard-Jones formulations laid out above determine the global alignment of centroids for new
classes in new tasks. As described in lines 6–8 of Algorithm 1, where clients compute the unaligned
embeddings for new classes and send them to the server. Then the server aligns these centroids and
sends them back to the clients. Clients use these aligned centroids to train on new tasks, ensuring
minimal overlap with existing classes globally.

Memory update routine at the clients follows the well-known fixed memory procedure (Rebuffi
et al., 2017) (as opposed to growing memory design (Masana et al., 2020)) where the number of
exemplars of the classes decreases as new classes arrive (Dong et al., 2022). To not cause clutter we
refrain from reciting those well-known routines.

Algorithm 1 HR Algorithm for FCIL at the Server
1: Inputs: R: total clients, K: tasks, I: clients per round, L:

local epochs, Ω: communication rounds
2: Output: Optimized autoencoder θ∗

K

3: Initialize: θ0 at the server
4: for h = 1 to K do
5: Select I clients randomly from R
6: Receive unaligned centroids {phj} from clients for task h
7: Align centroids {phj} for task h via Eq. 9
8: Broadcast aligned centroids {phj} for task h to clients
9: for ω = 1 to Ω do

10: for each client i from selected clients in parallel do
11: Update θh at client i using Algorithm 2
12: end for
13: Receive θc

h from clients after communication round ω
14: θh ← 1

I

∑I
c=1 θ

c
h ▷ FedAvg (McMahan et al., 2017)

15: Broadcast θh to clients
16: end for
17: end for

Synthetic data generation for replay
operates through a dual-path mecha-
nism, as outlined in Algorithm 2. For
each client, if exemplars of a partic-
ular class from previous tasks exist
in the client’s memoryMc

ij
, they are

passed through the decoder g(θh−1)
to regenerate the corresponding sam-
ples (Line 6 of Algorithm 2). This
ensures faithful reproduction of pre-
viously encountered data, preventing
local forgetting. If exemplars are ab-
sent, the centroid embedding pc

ij
of

that class is perturbed with Gaussian
noise N (0, σ2) (Line 8 of Algorithm
2) and then decoded to generate syn-
thetic samples. This method enables
the client to generate synthetic data
even for tasks or classes it has not en-
countered directly, effectively preventing global forgetting.

Classification in the model is performed by mapping input x through the encoder f(θ∗,x) directly.
The predicted class for x is determined by argminc,i,j∥f(θ∗,x) − pc

ij
∥ where ∥ · ∥ denotes the

Euclidean distance. This metric identifies the class whose centroid pc
ij

from client c is nearest to the
encoded representation of x.

Local and Global Forgetting (Dong et al., 2022) has been detailed in the previous section in our
mathematical framework where in Eqs. 5 and 6 we identified four primary challenges in FCIL:
(i) preserving prior knowledge, (ii) effectively integrating new tasks, (iii) mitigating intra-client
task confusion, and (iv) resolving inter-client task confusion. In the literature, the challenges of
preserving prior knowledge and mitigating intra-client task confusion are collectively referred to as
local forgetting, while resolving inter-client task confusion is termed global forgetting (Dong et al.,
2022). In the following, we discuss how Algorithm 1 and Algorithm 2 overcome local and global
forgetting:
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During the learning of task h, local forgetting is addressed through a dual strategy: replaying
previously seen data (Lines 7 and 9 of Algorithm 2) and applying knowledge distillation (Lines 19,
20, and 21 of Algorithm 2) to retain knowledge from earlier tasks. In contrast, global forgetting is
handled differently. Losses related to task h across different clients, as expressed in Eqs. 5 and 6 and
shown in Fig. 1, cannot be minimized during the same session due to the unavailability of the relevant
data or its synthetic representation at the other clients. Instead, this minimization is deferred to the
(h+ 1) session, where clients receive the class centroid embeddings {pij} (Line 8 of Algorithm 1).
These embeddings enable clients to generate synthetic data representing tasks from other clients,
helping the optimization of cross-client task losses and mitigating global forgetting.

5 EXPERIMENTS

Algorithm 2 HR Algorithm for FCIL at Clients

1: Input: {T1, T2, . . . , TK}, {f(θ0), g(θ0)}, memoryM0

2: Output: θ∗
K , memoriesM∗

K , and {pc
ij}

3: for h = 1 to K do
4: Initialize dataset Dh ← Th

5: for each client c, each previous task i < h, each class j do
6: if memoryMc

ij exists then
7: Dh ← Dh ∪ g(θh−1,Mc

ij ) ▷ Use memory data
to synthesize samples

8: else
9: Dh ← Dh ∪ g(θh−1,p

c
ij +N (0, σ2)) ▷

Synthesize data samples from centroids with Gaussian noise
10: end if
11: end for
12: Copy f(θh−1) and g(θh−1) to f(θh), g(θh)
13: Calculate unaligned {phj} = avg(f(θh−1, Th))
14: Transmit unaligned {phj} to the server
15: for ω = 1 to Ω do ▷ For each communication round
16: for e = 1 to E do ▷ For each epoch
17: for b = 1 to B do ▷ For each minibatch
18: Minimize the following loss:
19: L(Dh, g(θh, f(θh, Dh)), f(θh, Dh))+
20: ∥f(θh−1, Dh)− f(θh, Dh)∥+
21: ∥g(θh−1, f(θh−1, Dh))−g(θh, f(θh, Dh))∥
22: Using an optimizer to obtain f(θ∗

h), g(θ
∗
h)

23: end for
24: end for
25: end for
26: Update memory:Mh ← f(θh, g(θh−1,Mh−1)) ▷

Re-encode using new encoder and old decoder outputs
27: Remove f(θh−1), g(θh−1)
28: Mh ← random(Th) ▷ Randomly sample from the current

task’s data to populate the memory
29: end for

Following the simulation settings
outlined by Dong et al. (2022),
our experimental evaluations were
conducted across five benchmarks:
CIFAR-100 (10/10/50/5 and
20/5/50/5), ImageNet-Subset
(10/20/100/10 and 20/10/100/10),
and TinyImageNet (10/5/300/30),
where (A/B/C/D) indicates the
simulation configuration, with A
denoting the number of tasks, B,
classes per task, C, number of clients,
and D, the number of active clients
per round. The inclusion of both
short and long task sequences for
CIFAR-100 and ImageNet-Subset
allows us to assess the robustness
of different baselines across varying
task lengths (Masana et al., 2020).
We utilized a ResNet-18 architecture
for the discriminator/encoder f(), as
referenced in (Babakniya et al., 2023;
2024), and a four-layer CNN for the
generator/decoder g(). The data for
each task is distributed among clients
using Latent Dirichlet Allocation
(LDA) with the parameter α = 1.
Clients utilize an SGD optimizer for
local model training. The reported
results represent the averages from ten
random initializations accompanied
by SEMs.

We benchmark HR against a diverse set of baselines that can be categorized into three approaches:
data-based, data-free, and hybrid approaches. Following Dong et al. (2022) we include iCaRL
(Rebuffi et al., 2017), BiC (Wu et al., 2019), PODNet (Douillard et al., 2020), DDE (Hu et al.,
2021)+iCaRL, GeoDL (Simon et al., 2021) + iCaRL, SS-IL (Ahn et al., 2021), and GLFC (Dong
et al., 2022) as the data-based approaches. For data-free approaches, we include FedFTG (Zhang
et al., 2022), FedSpace (Shenaj et al., 2023), TARGET (Zhang et al., 2023), and MFCL (Babakniya
et al., 2024). And finally, for hybrid approaches, REMIND (Hayes et al., 2020), REMIND+ (Wang
et al., 2021), and i-CTRL (Tong et al., 2022) are considered.

Results from Table 2 show that exemplar-based approaches generally outperform model-based
(data-free) approaches, particularly in scenarios involving longer task sequences. This is because
exemplar-based methods can directly use stored exemplars to mitigate forgetting, ensuring more stable
and consistent performance across tasks. However, these approaches often come with significant
memory costs, which can be impractical for FCIL applications. In contrast, hybrid approaches not
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Table 2: HR versus exemplar-based and exemplar-free baselines. Accuracies and SEMs for 10 runs.

Methods/Benchmarks CIFAR-100 ImageNet-Subset TinyImageNet

FCIL Configuration 10/10/50/5 20/5/50/5 10/20/100/10 20/10/100/10 10/5/300/30

Exemplar-based Approaches (20 exemplars per class)
iCaRL (Rebuffi et al., 2017) 50.25 ±0.53 47.83 ±0.49 46.05 ±0.37 42.71 ±0.32 47.34 ±0.40

BiC (Wu et al., 2019) 54.38 ±0.49 51.03 ±0.43 48.83 ±0.41 45.02 ±0.36 48.79 ±0.43

PODNet (Douillard et al., 2020) 58.97 ±0.47 54.09 ±0.40 51.38 ±0.46 48.91 ±0.44 53.12 ±0.47

DDE (Hu et al., 2021) + iCaRL 56.46 ±0.50 54.12 ±0.48 52.01 ±0.49 48.31 ±0.40 53.06 ±0.41

GeoDL + iCaRL 60.73 ±0.57 56.98 ±0.54 49.89 ±0.40 47.11 ±0.35 50.70 ±0.41

SS-IL (Ahn et al., 2021) 52.97 ±0.52 50.23 ±0.47 45.49 ±0.43 41.49 ±0.39 45.08 ±0.32

GLFC (Dong et al., 2022) 61.83 ±0.59 57.09 ±0.51 53.83 ±0.46 49.06 ±0.41 54.23 ±0.57

Data-Free Approaches
FedFTG (Zhang et al., 2022) 46.86 ±0.49 43.01 ±0.43 42.89 ±0.31 39.08 ±0.27 43.23 ±0.39

FedSpace (Shenaj et al., 2023) 45.73 ±0.51 41.57 ±0.45 40.69 ±0.24 38.28 ±0.31 42.71 ±0.32

TARGET (Zhang et al., 2023) 48.38 ±0.42 42.79 ±0.39 41.04 ±0.25 39.92 ±0.34 45.13 ±0.42

MFCL (Babakniya et al., 2024) 50.03 ±0.33 44.88 ±0.30 43.71 ±0.38 40.04 ±0.36 46.71 ±0.47

Hybrid Approaches (200 latent exemplars per class)
REMIND (Hayes et al., 2020) 62.29 ±0.52 58.22 ±0.42 53.80 ±0.47 49.51 ±0.45 54.79 ±0.60

REMIND+ (Wang et al., 2021) 63.47 ±0.56 59.61 ±0.44 54.79 ±0.52 50.23 ±0.49 55.92 ±0.57

i-CTRL (Tong et al., 2022) 63.31 ±0.49 58.93 ±0.40 54.55 ±0.38 49.92 ±0.36 55.23 ±0.54

Our Proposed Hybrid Approach (200 latent exemplars per class) and Ablation Study
HR 65.84 ±0.57 60.48 ±0.47 56.48 ±0.38 52.35 ±0.31 57.86 ±0.59

HR-mini w 10× less memory 60.42 ±0.49 56.81 ±0.44 53.04 ±0.36 48.74 ±0.29 54.02 ±0.53

HR w/o Latent Exemplars 52.27 ±0.32 45.18 ±0.29 47.85 ±0.31 43.62 ±0.27 48.95 ±0.49

HR w Perfect Exemplars 66.53 ±0.45 62.37 ±0.40 57.65 ±0.32 54.46 ±0.27 59.25 ±0.51

HR w/o KD 64.07 ±0.52 58.13 ±0.41 55.71 ±0.34 50.38 ±0.29 54.80 ±0.55

HR w/o Global Replay 51.76 ±0.24 44.38 ±0.23 46.27 ±0.25 41.09 ±0.21 46.95 ±0.42

HR w RFA 65.73 ±0.60 60.50 ±0.48 56.44 ±0.39 52.35 ±0.33 57.81 ±0.63

only match but often exceed the performance of exemplar-based methods. Their advantage lies in the
ability to store compressed or encoded exemplars instead of raw data, enabling up to 10 times more
exemplar storage within the same memory budget.

In Table 2, our proposed HR approach, even without latent exemplars (denoted as HR-mini w 10×
less memory), surpasses existing data-free methods by relying solely on synthetic data generation
to address forgetting (Line 9 of Algorithm 2). When HR operates in its default mode, using latent
exemplars (Line 7 of Algorithm 2), it significantly outperforms exemplar-based baselines, not only in
short task sequences but also in longer ones. We attribute this superior performance to HR’s strong
mathematical foundations leading to a well-justified approach, which ensures effective mitigation of
both local and global forgetting.

Ablation results are provided in the lowest section of Table 2 where the first scenario labeled HR-
mini w 10× less memory reports the performance of our approach under a significantly reduced
memory budget. This scenario demonstrates the potential of HR to perform on par with exemplar-
based approaches, despite using 10 times less memory. HR w/o Latent Exemplars explores a truly
model-based and data-free variant of our approach. This model-based variant of HR outperforms the
data-free baselines considerably, proving the robustness of HR even without relying on stored latent
exemplars.

HR w Perfect Exemplars investigates the potential performance drop caused by the compression
and storage of exemplars in the latent space. Interestingly, the results show that the performance
difference between the storage of perfect exemplars and latent/encoded exemplars is negligible. This
aligns with recent studies in (Van de Ven et al., 2020), suggesting that, for overcoming forgetting (as
opposed to learning), the image quality for replay is not a major factor. Thus, even compressed latent
exemplars are sufficient for preventing forgetting. HR w/o KD examines the impact of removing the
knowledge distillation (KD) regularization loss function (Lines 20 and 21 of Algorithm 2). Without
KD, we observe a noticeable performance degradation, particularly in long task sequences, primarily
due to increased weight drift, which aligns with findings from studies conducted by Rebuffi et al.
(2017); Masana et al. (2020). This reinforces the importance of regularization in mitigating forgetting
and striking the right balance in the stability-plasticity dilemma.

Another critical aspect of our approach is global replay, which ensures that clients have access to
representations of tasks from other clients (Line 9 of Algorithm 2). HR w/o Global Replay evaluates
the consequences of removing this feature. The results reveal a severe performance drop, which
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Figure 3: In the first row, the table reports the impact of the memory size on the final accuracy for the
three FCIL configurations. In the second row, the forgetting trends are shown for HR and various
baselines. Hybrid replay consistently outperforms the model-based or data-based approaches.

can be attributed to the onset of global forgetting. As expected, without global replay, the system
struggles to retain knowledge of tasks learned by other clients, leading to significant degradation in
overall performance. Lastly, in the case labeled HR w RFA, we replaced the Lennard-Jones potential
with the Repulsive Force Algorithm (RFA) (Nazmitdinov et al., 2017) for class embedding alignment.
The results indicate that RFA performs comparably to the Lennard-Jones formulation (Jones, 1924).

Privacy-Performance Trade-off. Fig. 3 (first row) illustrates the trade-off between privacy and
performance across different replay approaches. In exemplar-based methods, performance improves
consistently as more memory becomes available to store additional exemplars. By contrast, model-
based approaches lack this flexibility, as their performance remains constant regardless of memory
size. However, model-based methods offer a significant privacy advantage, as they do not store exact
data samples.

Hybrid replay strikes an effective balance between these two approaches: it achieves high performance
with low memory consumption while retaining the ability to improve further by storing more
exemplars. This can be seen in Fig. 3 (first row) where hybrid replay approaches of HR (ours),
REMIND+, and i-CTRL outperform, respectively. In terms of privacy, hybrid replay positions itself
between model-based and exemplar-based methods, better than exemplars-based approaches but
worse than model-based approaches.

Figure 3 (second row) illustrates the forgetting trends across three FCIL configurations. Hybrid replay
approaches, particularly our approach, exhibit the least forgetting. This advantage arises from the
ability of hybrid methods to store a greater diversity of exemplars within the same memory budget.
The increased memory diversity significantly enhances performance and mitigates forgetting, making
hybrid replay a highly effective solution.

Table 3 compares the performance of our hybrid replay with three other exemplar-based replay
baselines. It can be seen that for the same given memory and compute budget HR yields greater
performance.

6 CONCLUSION

In the FCIL literature, two main categories of approaches have been explored to address local
and global forgetting: exemplar-based (data-based) and model-based approaches. In this work,
we introduced Hybrid Replay (HR), a novel approach that leverages a customized autoencoder
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Table 3: Performances for a given memory and compute budgets for two FCIL configurations.

Strategies Benchmarks # Exemplars Memory # Epochs WC Time Performance
Decoder Exemplar

HR CIFAR-100(10/10/50/5) 150 (latent) 1.4M 4.6M 50 682min 65.43 ±0.93

ImageNet-Subset(10/20/100/10) 190 (latent) 1.8M 40.54M 70 974min 56.09 ±0.64

GeoDL CIFAR-100(10/10/50/5) 20 (raw) - 6M 60 763min 60.12 ±0.91

ImageNet-Subset(10/20/100/10) 20 (raw) - 42.34M 80 1146min 49.23 ±0.62

SS-IL CIFAR-100(10/10/50/5) 20 (raw) - 6M 60 725min 52.81 ±0.74

ImageNet-Subset(10/20/100/10) 20 (raw) - 42.34M 80 1096min 45.67 ±0.63

GLFC CIFAR-100(10/10/50/5) 20 (raw) - 6M 60 788min 61.70 ±0.79

ImageNet-Subset(10/20/100/10) 20 (raw) - 42.34M 80 1259min 53.83 ±0.55

for both discrimination and synthetic data generation. By combining latent exemplar replay with
synthetic data generation, HR effectively mitigates both local and global forgetting. Furthermore,
we presented a mathematical framework to formalize the challenges of local and global forgetting
and demonstrated how HR addresses these issues in principle. Extensive experiments across diverse
baselines, benchmarks, and ablation studies confirmed the effectiveness of the proposed approach.

Limitations of HR and potential directions for future work. Since, our proposed FCIL approach,
named HR, heavily relies on data generation based on latent exemplars and class centroids, it requires
careful consideration of the decoder’s design to strike the right balance between realism and privacy.
If the decoder lacks sufficient representational capacity, it may fail to generate realistic images
necessary for effective replay. Conversely, if the decoder is overly complex, it could inadvertently
memorize training samples, raising potential privacy concerns. This trade-off is particularly important
because, for replay purposes, unlike for learning, generating high-quality samples is not necessary
and a larger decoder would inflict a higher computational load during training (but not inference
because the classification is only done via the encoder). Future work could explore alternative decoder
architectures that optimize this balance, tailoring the trade-off between computational efficiency,
replay performance, and privacy to the requirements of the target application.
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