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ABSTRACT

Facial recognition has been increasingly employed in real-world applications, rais-
ing serious privacy concerns over mass surveillance and unauthorized tracking.
Existing anti-facial recognition methods perturb face images using generative mod-
els to protect privacy but often introduce global artifacts, depend on reference image
prompts, or require target identity, compromising both visual quality and anonymity.
To address the above limitations, we introduce MASQUE, a diffusion-based frame-
work that generates localized adversarial makeup guided by user-defined text
prompts. By leveraging precise null-text inversion, targeted cross-attention fusion
with masking, and a novel pairwise adversarial guidance mechanism using images
of the same individual, MASQUE achieves robust dodging performance without the
need for an external target identity. Extensive evaluations on open-source FR
models and commercial APIs show that MASQUE significantly enhances privacy
protection over all baselines, achieving average protection success rates of 90% for
identification and 87% for verification while preserving high perceptual fidelity.

1 INTRODUCTION

Facial recognition (FR) systems (Parkhi et al., 2015) have been widely adopted across security,
biometrics, and commercial applications. However, their unregulated deployment raises serious
privacy concerns, as governments and private entities often employ them for mass surveillance and
unauthorized tracking. To address these concerns, anti-facial recognition (AFR) technologies (Wenger
et al., 2023) have emerged to protect users from being identified in online-posted facial images. In
particular, adversarial-based methods stand out for their effectiveness in disrupting unauthorized FR
models by altering facial images to evade detection. Noise-based approaches (Yang et al., 2021)
obscure facial features by crafting norm-bounded global perturbations, while patch-based techniques
(Xiao et al., 2021) optimize adversarial patterns in localized image patches. However, these methods
usually introduce noticeable visual artifacts, compromising the usability of the produced images.

Built upon state-of-the-art image generative models, makeup-based AFR methods (Yin et al., 2021;
Hu et al., 2022; Shamshad et al., 2023; Sun et al., 2024a) strikes a balance by integrating adversarial
features into natural and visually appealing facial makeup modifications. Although makeup-based
approaches offer promising solutions for safeguarding privacy without compromising aesthetics, they
often struggle to preserve the fine-grained details of the original facial images or fail to adhere to the
user instructions embedded in different makeup prompts. In addition, these methods require external
target identity images to guide the generation process for adversarial makeup transfer, primarily
focusing on the impersonation setting. However, when considering the more privacy-relevant dodging
scenarios, they often exhibit a significant performance drop in protection success rates, and we argue
that the strong reliance on target identity poses additional privacy risks that should be avoided.

Contributions. We propose MASQUE, a novel generative method for localized adversarial makeup
based on diffusion-based image editing with text guidance, which simultaneously fulfills the following
criteria: (i) Non-Intrusive Identity Protection: achieve high protection success rates under dodging
scenarios while eliminating the need for a specific target identity; (ii) Localized Perturbation: preserve
fine details of the original facial images while confining adversarial modifications to the intended
areas; (iii) User Control: strong prompt-following ability and adaptivity to diverse text makeup
prompts, offering greater user control and convenience than existing AFR approaches.

1



Reference Original TIP-IM AMT-GAN C2P (I) C2P (D) DiffAM MASQUE

PSR (I / D) - 0.62 / 0.49 0.38 / 0.37 0.55 / 0.31 - / 0.45 0.71 / 0.50 - / 0.85

“red lipstick”

“blue eyebrow”

“pink eyeshadow”

0.51

0.33

0.27

0.53

0.42

0.20

0.50

0.34

0.27

0.28

0.07

0.10

0.40

0.34

0.46

0.21

0.24 0.250.20

0.40

0.34

0.53

0.42

0.25

Figure 1: Visualizations of protected images across various AFR methods. The columns (from left to
right) stand for the reference image and text makeup prompts, original images, and protected images
produced by the respective AFR method. The yellow text denotes the cosine similarity with the
corresponding gallery image. Below the images, we demonstrate the average protection success rate
(PSR) under impersonation and/or dodging scenarios across four FR models and three makeup styles.

Related Work. We review the prior AFR approaches that are most relevant to ours (see Appendix A
for more detailed discussions on related works). Shamshad et al. (2023) proposed CLIP2Protect (C2P),
which adopts a vision-language model for text-guided adversarial makeup transfer but struggles with
localizing the perturbations, causing global artifacts and loss of fine details such as the background.
While C2P supports the functionality of dodging, it still requires a target identity image to guide the
generation process to maintain sufficient visual quality. Sun et al. (2024a) proposed DiffAM, which
employs diffusion models and two-step makeup transfer, achieving better image quality but relying
on reference image prompts, restricting user flexibility compared to text-based methods. Besides, it
is designed solely for impersonation, leaving dodging scenarios unaddressed.

2 LIMITATIONS OF EXISTING AFR APPROACHES

In this section, we discuss the limitations of existing AFR approaches, which motivate the design of
MASQUE. In particular, Figure 1 visualizes and compares the performance of different AFR techniques,
including TIP-IM (Yang et al., 2021), AMT-GAN (Hu et al., 2022), C2P (Shamshad et al., 2023),
DiffAM (Sun et al., 2024a), and our method (see Appendix B for detailed experimental settings)

Decreased PSR under Dodging Scenario. The goal of AFR is to protect privacy by preventing users
from unauthorized facial recognition. Yet most existing works (Yang et al., 2021; Hu et al., 2022; Sun
et al., 2024a) only consider impersonation, where FR systems are misled into identifying individuals
as specific targets. While Shamshad et al. (2023) provides a dodging variation of their method, it still
requires a target identity to ensure the image generation quality. While effective for impersonation,
these methods raise ethical concerns, as they allow users to imitate another user’s identity without
consent, potentially leading to deceptive or harmful misuse. A truly privacy-preserving approach
must account for dodging that prevents recognition of the original identity and ensures anonymity
without substituting a target identity. In addition, achieving high protection success for impersonation
does not necessarily mean effective protection under dodging. As shown in Figure 1, the protection
success rate (PSR) achieved by existing AFR methods usually exhibits a noticeable performance drop
under dodging scenarios, indicating that focusing solely on impersonation is inadequate.

Limited User Control and Image Quality. Previous AFR methods struggle to accurately apply
makeup based on reference text or image images, limiting user control while also struggling to
maintain high image quality. As Figure 1 illustrates, AMT-GAN and DiffAM fail to transfer makeup
precisely, resulting in noticeable artifacts despite utilizing reference images from a pretrained makeup
transfer dataset. C2P, while depending solely on text prompts, lacks fine-grained control over subtle
details. Moreover, GAN-based methods tend to modify areas beyond the face, such as altering the
background, making them unsuitable for scenarios where users require precise, facial-only editings.
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Figure 2: The pipeline of MASQUE involves: (1) fusing the editing and reconstruction prompts to
produce an updated cross-attention map for diffusion, (2) creating a mask M to define a target
region and optimize an edit loss to maximize makeup-related attention inM, and (3) using pairwise
adversarial guidance with same-identity images to enhance identity confusion without external targets.

3 MASQUE: LOCALIZED ADVERSARIAL MAKEUP USING DIFFUSION MODELS

To address the limitations, we introduce MASQUE, aiming to disrupt FR models by crafting adversarial
makeup guided by a user-defined text prompt p∗. The prompt directs realistic, localized changes, while
our novel adversarial guidance ensures these perturbations mislead FR systems without sacrificing
visual fidelity. Figure 2 illustrates the overall pipeline of MASQUE (see Appendix D for details).

Applying Localized Makeup. Before applying edits, we obtain a faithful latent representation of
the original image x using null-text inversion (Mokady et al., 2023), which mitigates reconstruction
errors common in direct DDIM inversion (Song et al., 2020). By conditioning on an empty prompt,
we align the forward and reverse diffusion trajectories, ensuring near-perfect reconstruction of the
original image’s structure and identity. With an accurate latent representation in hand, we introduce
makeup attributes based on the text prompt p∗ by manipulating the cross-attention (CA) layers of the
diffusion model (Rombach et al., 2022). Note that CA layers control how spatial features correspond
to semantic tokens. At each diffusion step τ , we extract attention maps Aτ (reconstruction) and A∗

τ
(editing) and blend them: preserving CA values from Aτ for shared tokens to maintain structure,
while incorporating values from A∗

τ for makeup-specific tokens in p∗:

(
Update(Aτ , A

∗
τ )
)
i,j

:=

(Aτ )i,j , if token j is in both p and p∗,

(A∗
τ )i,j , if token j is unique to p∗,

where p denotes the original text prompt. This results in Âτ , a set of mixed CA maps that preserve
the original facial layout while steadily introducing adversarial makeup features (Hertz et al., 2022).

Enhancing Semantic Edits and Locality. To ensure precise localization, we generate a maskM
that defines the region for modification. To achieve this, we embed the prompt p∗ using a Sentence
Transformer (Reimers & Gurevych, 2019) model and compare it to embeddings of predefined facial
regions. The closest match determines the relevant area for the edit. For instance, if the prompt
specifies “a face with red lipstick”, the model identifies lips as the target and generates a lip-area
mask. Once the target regionM is determined, we enhance the influence of makeup-related tokens
by maximizing their attention within M. Constraining edits to this region prevents unintended
modifications and preserves overall image quality (Mao et al., 2023). Specifically, we optimize:

Ledit :=

(
1− 1

|M|
∑
i∈M

(A∗
τ )i,new

(A∗
τ )i,new +

∑
j∈share(Aτ )i,j

)2

,

where (A∗
τ )i,new denotes the attention weights for the new makeup tokens at spatial index i, and∑

j∈share(Aτ )i,j is the sum of attention weights corresponding to tokens shared by both the original
and makeup prompts. By prioritizing makeup-specific attention in the masked regionM, this loss
term ensures the final protected image xp has realistically applied localized adversarial makeup.
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Table 1: Comparison of PSR and image quality across various AFR methods. PSR is evaluated in a
black-box dodging scenario for both identification (first value) and verification (second value) tasks.

Method
Protection Success Rate (PSR) ↑ Image Quality

IR152 IRSE50 MobileFace FaceNet Face++ LPIPS ↓ PSNR ↑ SSIM ↑

Clean 0.10/0.05 0.13/0.05 0.24/0.10 0.05/0.04 0.01 − − −
TIP-IM 0.62/0.44 0.86/0.60 0.74/0.40 0.65/0.51 0.28 0.31 32.16 0.93
AMT-GAN 0.61/0.40 0.48/0.32 0.57/0.26 0.51/0.52 0.60 0.34 19.51 0.61

C2P (I) 0.31/0.12 0.38/0.11 0.57/0.21 0.22/0.14 0.16 0.46 18.92 0.58

C2P (D) 0.75/0.52 0.76/0.47 0.77/0.42 0.56/0.40 0.74 0.47 17.99 0.56

DiffAM 0.76/0.50 0.73/0.41 0.80/0.45 0.58/0.63 0.64 0.40 18.31 0.77

MASQUE 0.98 / 0.96 0.89 / 0.97 0.94 / 0.79 0.78 / 0.76 0.84 0.29 25.82 0.86

Pariwise Adversarial Guidance. While our makeup edits ensure semantic plausibility, the primary
adversarial goal is to disrupt FR models. Previous AFR methods often target another identity,
compromising privacy and limiting applicability in dodging scenarios. By contrast, our approach
leverages a pair (x, x̃) of face images from the same individual, where x̃ serves as the guide image.
This strategy highlights a significant issue with naively using the distance from the original image as
the adversarial loss. Note that in the standard diffusion process, the objective is to generate images
similar to the original. If we merely maximize the distance from the original image as an adversarial
loss, it potentially creates conflicting objectives, leading to an unstable performance in both image
quality and adversarial effectiveness (see Table 4 in Appendix B for supporting experiments).

Adversarial and Quality Trade-off. We introduce adversarial perturbations during the later stage of
the diffusion process, ensuring coarse structure remains intact while subtly altering identity-specific
features. To balance adversarial potency with visual fidelity, we incorporate perceptual similarity
constraints alongside a cosine similarity (CoSi) measure that captures adversarial effectiveness:

Ladv := λCoSi · CoSi(xp, x̃) + λLPIPS · LPIPS(xp,x)

where xp denotes the protected image. CoSi ensures that the adversarial perturbations sufficiently
diverge from recognizable identity features, while LPIPS (Zhang et al., 2018) maintain perceptual
and structural fidelity, respectively. The parameters λCoSi, λLPIPS allow fine-tuning of this trade-off.

4 EXPERIMENTS

We evaluate MASQUE using images from CelebA-HQ and compare it against several AFR baselines
on both public and commercial FR models. We report PSR for verification and Rank-1 accuracy for
identification. Detailed descriptions of our experimental settings are provided in Appendix B.

Protection Success under Dodging. Table 1 presents the protection success rate (PSR) under dodging
scenarios across both face verification and identification settings, evaluated in black-box scenarios
using four widely used pretrained FR feature extractors (Deng et al., 2019; Hu et al., 2018; Schroff
et al., 2015; Chen et al., 2018). For each target model, the remaining three serve as surrogate models,
with results averaged across three makeup styles. Our method significantly outperforms all baselines,
achieving an average PSR of 89.67% for identification and 86.92% for verification. In addition,
we evaluate our approach against the commercial Face++ API in verification mode, which assigns
similarity scores from 0 to 100 with dynamic thresholds. As a proprietary model with unknown
training data and parameters, it serves as a realistic testbed for evaluating the effectiveness of AFR
methods. Our approach achieves the highest protection success rates, demonstrating effectiveness in
both open-source and closed-source settings, reinforcing its real-world applicability.

Advantages in Visual Aspects. Our method achieves superior image quality across multiple evalua-
tion metrics, as summarized in Table 1 and illustrated in Figure 1. While TIP-IM attains the highest
PSNR and SSIM due to its small perturbation budget, these pixel-level metrics often fail to reflect
perceptual quality. In contrast, our approach prioritizes perceptual consistency, balancing content
fidelity and visual realism, as demonstrated by its strong LPIPS performance. We also confirm the
advantages of MASQUE over existing AFR methods in achieving precise, localized makeup transfer
and better alignment in terms of prompt following (see additional experiments in Appendix C).
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A BACKGROUND AND RELATED WORK

A.1 ANTI-FACIAL RECOGNITION

The problem task of AFR can be characterized as a two-party security game between an attacker and
a defender. The attacker aims to recognize online face images belonging to certain target victims’
identities using facial recognition models, whereas the defender adopts AFR techniques to protect
the victims’ face images from being identified by the attacker. Built on the foundational concept of
adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014b), numerous AFR methods have
been proposed, targeting different stages of the facial recognition pipeline (Wenger et al., 2023). In
particular, we focus on adversarial-based AFR methods that craft naturalistic adversarial perturbations
to the victim’s facial images to fool black-box FR models:
Definition A.1 (Adversarial-based AFR). Let FR : X → Y be a facial recognition model, which
maps any face image x ∈ X to an identity y ∈ Y . Let D be a collection of clean face images, each
paired with the corresponding ground-truth identity. Then the objective of adversarial-based AFR is
to learn a perturbation function AFR : X → X with respect to the following optimization problem:

max
1

|D|
∑

(x,y∗)∈D

1
{
FR
(
AFR(x)

)
̸= y∗

}
s.t.

1

|D|
∑

(x,y∗)∈D

∆
(
AFR(x);x

)
≤ γ, (1)

where y∗ denotes the ground-truth identity of the input image x, ∆
(
AFR(x);x

)
captures the visual

quality of the perturbed image AFR(x) with reference to the original face image x, and γ > 0 is a
threshold parameter indicating how much distortion can be tolerated.

A desirable adversarial-based AFR method is expected to attain a high protection success rate (PSR)
on any collection of user face images against unauthorized FR models, specified by the optimization
objective in Equation 1. Since the defender does not have the underlying knowledge of the attacker’s
actual FR model, we consider the black-box FR scenario when evaluating the PSR of an AFR method.
From the user’s perspective, perturbed images generated by AFR(·) should look natural or even
visually similar to the corresponding original face images, which is characterized by the optimization
constraint in Equation 1. Otherwise, if AFR(x) has an unsatisfying image quality, users may not be
willing to post the protected face image on their social media, even if a high PSR has been achieved.

Existing AFR Literature. Earlier works on AFR proposed to use obfuscation techniques to obscure
the facial identity features or craft ℓp-norm bounded perturbations to fool FR models (Yang et al.,
2021). While effective, these methods often compromise image quality, limiting their practicality in
real-world scenarios. Poisoning-based methods (Cherepanova et al., 2021; Shan et al., 2020) intro-
duced a new approach by injecting subtle adversarial noise into images to degrade the effectiveness of
recognition models. These techniques excel at disrupting model training or inference without visibly
altering the image, but their reliance on model-specific perturbations limits their generalizability
across diverse architectures. Unrestricted adversarial examples, which aim to create natural-looking
modifications, marked a significant advancement by integrating adversarial signals into realistic alter-
ations without relying on specific constraints. These strategies leverage the flexibility of generative
models to balance visual coherence and adversarial effectiveness.

Adversarial Makeup Transfer. Adversarial makeup transfer (Yin et al., 2021; Hu et al., 2022;
Shamshad et al., 2023; Sun et al., 2024a) has emerged as a practical solution to realize the goal of facial
privacy protection. These methods leverage the strong generative capability of generative models to
embed adversarial perturbations into natural makeup-based facial modifications, deceiving attackers’
facial recognition models while largely preserving the aesthetic appeal. For example, Hu et al. (2022)
proposed AMT-GAN, which introduces a regularization module and a joint training pipeline for
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adversarial makeup transfer within the generative adversarial network (GAN) framework (Goodfellow
et al., 2014a). Recent advancements in generative models have further enhanced the performance of
adversarial makeup transfer, such as Clip2Protect (Shamshad et al., 2023) and DiffAM (Sun et al.,
2024a), which adopt text-guided StyleGAN model and diffusion-based framework respectively to
enable seamless adversarial face modifications with much improved visual quality. In this work,
we build upon these developments by leveraging diffusion models to generate visually consistent,
localized adversarial makeup for privacy protection in dodging scenarios.

A.2 MAKEUP TRANSFER

Recent advancements in makeup transfer have moved from GAN-based methods to more advanced
diffusion models. Traditional approaches like BeautyGAN (Li et al., 2018) and PSGAN (Liu et al.,
2020) use histogram matching, attention mechanisms, and spatial encodings to transfer makeup while
preserving structure. CPM (Nguyen et al., 2021) expands beyond color transfer using UV mapping,
while RamGAN (Xiang et al., 2022) ensure component consistency. However, GAN-based models
struggle with extreme styles and rely on imprecise pseudo-paired data, limiting fidelity.

To overcome these challenges, diffusion-based methods like SHMT (Sun et al., 2024b) and Stable-
Makeup (Zhang et al., 2024) offer improved realism and robustness. SHMT eliminates reliance on
pseudo-paired data through a self-supervised “decoupling-and-reconstruction” framework, leveraging
a Laplacian pyramid for hierarchical texture transfer. Stable-Makeup employs a diffusion model with
a Detail-Preserving encoder and cross-attention layers to ensure precise, structure-preserving makeup
application. These approaches set a new standard for high-fidelity, real-world makeup transfer.
However, our study takes a different approach—rather than transferring makeup from a reference
image, we focus on text-guided makeup generation using diffusion models, enabling intuitive and
flexible image editing to create customizable makeup based solely on textual descriptions. This also
eliminates the need for model fine-tuning on specific makeup images, allowing us to generate the
desired makeup directly during inference, resulting in a more efficient and adaptable approach.

A.3 DIFFUSION-BASED IMAGE EDITING

Stable Diffusion (Rombach et al., 2022) generates high-quality images by denoising a random latent
zT conditioned on a text embedding C. The model is trained to predict the added noise ϵ via:

min
θ

Ez0,ϵ∼N (0,I),t∼Unif(1,T )

[
∥ϵ− ϵθ(zt, t, C)∥22

]
.

Localized editing methods extend diffusion models for targeted modifications. Mask-based ap-
proaches (Avrahami et al., 2023; Couairon et al., 2022) constrain edits to specific regions using spatial
masks, preserving unedited areas but often struggling with structural consistency. Attention-based
approaches (Hertz et al., 2022; Tumanyan et al., 2023) guide edits via attention injection, achieving
better global structure preservation but suffering from unintended changes (editing leakage). Our
proposed method, MASQUE, utilizes both mask-based and attention-based guidance without any fine-
tuning, combining mask precision with attention flexibility, ensuring semantically consistent and
region-specific modifications while addressing the limitations of prior approaches.

B DETAILED EXPERIMENTAL SETTINGS

Dataset. We conduct experiments using 300 face images of 1024× 1024 resolution from the CelebA-
HQ dataset (Karras et al., 2017) to account for the image uploading situation. We randomly select
100 identities from the dataset, with three images per identity. For each identity, one image serves as
the probe image to be protected, another as the reference image for guidance, and the third as the
gallery image, which is assumed to be stored in the facial recognition system for comparison.

Configuration. For performance comparison, we evaluate against the following baselines: TIP-
IM (Yang et al., 2021), the SOTA method of noised-based AFR, and other recent generative-based
AFR methods, including AMT-GAN (Hu et al., 2022), Clip2Protect (Shamshad et al., 2023), and
DiffAM (Sun et al., 2024a). For Clip2Protect, we denote it as C2P for simplicity, where both the
impersonating version (denoted as C2P (I)) and the dodging version (i.e., C2P (D)) are assessed. We
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Table 2: Comparison of perceptual similarity metrics across in-mask and out-mask regions

Metric Method In-Mask Out-Mask Diff ∆

DISTS (↓)

TIP-IM 2.0125 0.0937 1.9188
AMT-GAN 7.9930 0.1493 7.8437
C2P (I) 8.9453 0.1532 8.7921
C2P (D) 10.0111 0.1688 9.8423
DiffAM 9.6447 0.1409 9.5038
MASQUE 12.3058 0.1039 12.2019

LPIPS (↓)

TIP-IM 0.3217 0.3046 0.0171
AMT-GAN 0.3602 0.3159 0.0443
C2P (I) 0.4002 0.4468 −0.0466
C2P (D) 0.4355 0.4604 −0.0249
DiffAM 0.5089 0.4098 0.0991
MASQUE 0.4343 0.2900 0.1443

PieAPP (↓)

TIP-IM 3.6214 0.4623 3.1591
AMT-GAN 21.3250 0.8136 20.5114
C2P (I) 17.1863 1.1375 16.0488
C2P (D) 20.8504 1.3140 19.5364
DiffAM 17.5233 1.3123 16.2110
MASQUE 21.4338 0.6445 20.7893

compare the performance of MASQUE with existing AFR techniques on four public FR models: IR152
(Deng et al., 2019), IRSE50 (Hu et al., 2018), FaceNet (Schroff et al., 2015), and MobileFace (Chen
et al., 2018). We also evaluate AFR methods against a commercial FR API: Face++.1

Evaluation Metric. In alignment with previous studies, we utilize the Protection Success Rate
(PSR) as the primary evaluation metric. To compute PSR, we adopt the thresholding strategy for face
verification and a closed-set strategy for face identification. For face verification, PSR is defined as:

PSR =
1

N

∑
x

I
(
cos(FR(xp),FR(xg)) > τ

)
× 100%,

where I is the indicator function, N is the number of face images x, FR represents the target face
recognition model, xp denotes the protected image corresponding to x, xg stands for the gallery
image of the corresponding identity, and τ is the similarity threshold. The value of τ is set at 0.01
False Acceptance Rate (FAR) for each victim model. For face identification, we measure the Rank-1
Accuracy, which indicates whether the top-1 candidate list excludes the same identity as the original
image x, thus signifying a successful dodging attack. We also employ metrics like LPIPS, PSNR,
and SSIM (Wang et al., 2004) to assess the quality of the generated AFR-protected images. A lower
LPIPS score indicates higher perceptual similarity, while higher PSNR and SSIM values signify
better pixel-wise and structural alignment with the original images.

Implementation Detail. MASQUE builds on the pre-trained Stable Diffusion v1.4 model, using DDIM
denoising over T = 50 steps with a fixed guidance scale of 7.5. During the backward diffusion
process, CA injection occurs in [T, T − τattn] (τattn = 40), localize optimization in [T, T − τedit]
(τedit = 5), and adversarial guidance in [T − τadv, 0] (τadv = 45). We set λCoSi = 0.1, λLPIPS = 1,
and cap optimization to max_adv = 15 iterations.

C ADDITIONAL EXPERIMENTS

Localized Edit. To evaluate whether edits are confined to the desired region, images are divided
into in-mask and out-mask regions using a binary mask, isolating the corresponding areas in both
images via element-wise multiplication. The areas are then used to normalize similarity metrics
proportionally, ensuring fair comparisons. Specifically, we employ DISTS, LPIPS, and PieAPP as
evaluation metrics in this experiment: DISTS measures perceptual dissimilarity based on structure
and texture, LPIPS uses deep features, and PieAPP reflects human perceptual preferences.

1https://www.faceplusplus.com/face-comparing/
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Table 3: Evaluation of model prompt adherence using CLIP similarity scores.

Makeup Prompt AMT-GAN C2P (I) C2P (D) DiffAM MASQUE
“red lipstick” 0.0115 0.0497 0.0516 0.0424 0.0499

“blue eyebrow” 0.0093 0.0426 0.0437 0.0215 0.0344
“pink eyeshadow” 0.0146 0.0413 0.0390 0.0355 0.0498

Table 4: Comparison of identification confidence, verification similarity, and image quality metrics
across different numbers of guide images employed in MASQUE.

# Guide Images Identification Conf. (↑) Verification Sim. (↓) LPIPS (↓) PSNR (↑)
0 0.1143 0.3654 0.3026 24.3865
1 0.1348 0.3488 0.2915 25.8278
10 0.2069 0.2658 0.2913 25.8277

Table 2 compares the effectiveness of localized edits, where higher ∆ values indicate stronger
localization of perturbations. TIP-IM (Yang et al., 2021), as a noise-based method, applies pixel-wise
adversarial perturbations uniformly, resulting in the smallest Delta for all metrics due to minimal
distinction between in-mask and out-mask regions. In contrast, our method introduces significant
perturbations in the in-mask region, leading to poorer metrics there, but achieves the best or second-
best results in the out-mask region, indicating minimal disruption to untouched areas.

Prompt Following Ability. To evaluate the model’s ability to follow prompts, we conduct ex-
periments to measure whether the specified modifications appeared in the intended regions of the
image. Specifically, we utilize the CLIP model to compute the similarity between the image and the
textual prompt. The evaluation metric involves comparing the CLIP similarity scores before and
after modification. An increase in similarity indicates that the intended change was successfully
applied, providing a quantitative measure of the model’s effectiveness in generating prompt-aligned
alterations. Table 3 demonstrates the advantages of our method compared with existing approaches

Pairwise Adversarial Guidance. MASQUE introduces pairwise adversarial guidance as a means to
protect identities without introducing external target references, distinguishing it from impersonation
attacks that modify images to resemble another individual. By comparing and aligning features
between these two images, we identify and manipulate identity-relevant cues directly, injecting subtle
adversarial signals that steer the diffusion process away from a recognizable identity manifold. The
guide image acts as a proxy for the gallery image, providing guidance on the direction in which
the latent representation should be altered. This approach eliminates reliance on external identities,
avoiding any ethical concerns surrounding impersonation and ensuring that identity protection does
not result in intrusive content. Instead of mimicking another individual, MASQUE leverages the guide
image to inform the latent adjustments necessary for identity obfuscation.

Leveraging multiple guide images further stabilizes adversarial training, preventing perturbations
from being biased toward any single representation and ensuring alignment with the natural identity
boundary. To evaluate the effectiveness of our pairwise adversarial guidance, we use 100 identities
from CelebA-HQ, varying the number of guide images per identity. The effectiveness is measured by
the confidence score, defined as the gap between the similarity score of the original identity’s gallery
image and that of the misidentified identity. Additionally, we assess similarity with the corresponding
gallery image in verification tasks using FaceNet for both tasks.

As reflected in Table 4, increasing the number of guide images x̃ improves adversarial effectiveness,
leading to higher confidence in identity obfuscation while reducing similarity with the original
identity. Furthermore, images generated with guide images in the pairwise adversarial guidance step
exhibit superior quality compared to those without, where adversarial loss is applied only to the
original image. This supports our intuition that simply maximizing distance from the original image
is ineffective, as it conflicts with the diffusion process’s goal of preserving similarity, leading to
instability in both image quality and adversarial effectiveness. These results highlight that the pairwise
adversarial guidance of MASQUE provides a reliable, privacy-centric solution while maintaining high
visual quality. In the future, we plan to explore the generalizability of the proposed method across
more diverse makeup prompts and other facial recognition benchmarks.
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D ALGORITHM PSEUDOCODE

Algorithm 1 Adversarial Makeup Generation with CA Guidance
Input: zedit, zrec: Edited and original latent, eedit, erec: Edited and original text embeddings, D:

Stable Diffusion model, T : Number of diffusion steps, τattn, τedit, τadv: Step thresholds,
M: Binary region mask, Itarget: Target token indices, dk: Key/Query dimensionality,
λedit, λCoSi, λLPIPS: Loss weights, η: Learning rate, σ(t): Noise scale function, x: Input
image, x̃: Guide image, max_adv: Maximum adversarial iterations

Output: Final protected image xp

for k ← T to 1 do
if k > T − τattn then

//Perform cross-attention edit

CArefined ← {}
for ℓ ∈ CrossAttnLayers do

Qℓ,Kℓ, Vℓ ← D.UNet.GetCrossAttentionComponents(zedit, eedit, ℓ)

CAℓ ← Softmax
(

Qℓ K
⊤
ℓ√

dk

)
CArefined

ℓ ← CAℓ · Vℓ

CArefined ← CArefined ∪ {CArefined
ℓ }

if k > T − τedit then
//Perform edit loss update
Ledit ← 0
foreach CArefined

ℓ ∈ CArefined do
CAtarget ← ExtractTargetAttention

(
CArefined

ℓ , Itarget
)

CAmasked ← CAtarget ⊙M

Ledit ← Ledit +
(
∑

(i,j)∈M CAmasked[i,j])
2∑

(i,j)∈M M[i,j]

Ledit ← Ledit

|CArefined|
∇zedit

Ledit ← Backprop(Ledit)
zedit ← zedit − η · λedit · ∇zedit

Ledit

//Apply classifier-free guidance during all diffusion steps
ϵrec ← D.UNet(zrec, tk, erec)

ϵedit ← D.UNet(zedit, tk, eedit,CA
refined)

zrec ← zrec − σ(tk) · ϵrec
zedit ← zedit − σ(tk) · ϵedit
zedit =M · zedit + (1−M) · zrec
if k < T − τadv then

//Perform pairwise adversarial optimization
for i← 0 to max_adv − 1 do

xrec ← D.VAE.Decode(zedit)
Ladv ← λCoSi · CoSi

(
FR(xrec),FR(x̃)

)
+ λLPIPS · LPIPS(xrec,x)

grad← Backprop(Ladv)
zedit ← zedit − η · grad
zedit ← zedit ⊙M + zrec ⊙

(
1−M

)
//Decode the final latent to produce the protected image
xp ← D.VAE.Decode(zedit)
return xp
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