
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PICK YOUR TEXTUAL GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Automated prompt optimization using textual gradients is a promising approach to improve the
performance of Large Language Models (LLMs) with the guidance of natural language feedback.
However, the iterative application of these gradients is notoriously unstable. We identify two pri-
mary sources of this instability: 1) gradient noise from correctly handled examples, and 2) a loss
of generalization, where performance on simpler tasks declines due to over-specialization on com-
plex cases. To address this, we propose a novel framework that stabilizes the optimization process
through two core mechanisms: Error-Driven Refinement and Regularized Verification. First, the
error-driven approach ensures a high-quality learning signal by exclusively generating textual gra-
dients from “picking” incorrect model outputs, thereby mitigating the noise introduced by correctly
handled examples. Second, the regularized verification step treats each resulting prompt update as a
candidate, which is “picked” only if it passes a preservation test on a fixed holdout set of general ex-
amples, ensuring that targeted improvements do not compromise broad robustness. Experiments on
several complex instruction-following and reasoning benchmarks demonstrate that our framework
drastically reduces optimization instability, prevents performance degradation on general test cases,
and consistently finds more robust prompts than standard iterative methods. Our work provides a
principled approach to harnessing textual gradients with a high-quality learning signal and prevent-
ing specialization-induced degradation, thus enabling a more stable and effective methodology for
automated prompt optimization.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of applications, from
complex reasoning (Zhang et al., 2025; Yao et al., 2023; Kojima et al., 2022) to acting as the backbone for autonomous
agents (Wang et al., 2024; Schick et al., 2023; Park et al., 2023). However, their performance is sensitive to the input
prompt. Manually engineering prompts to elicit optimal performance is a tedious process that is often unpredictable
and difficult to scale. While automated prompt optimization (APO) methods (Zhang et al., 2024a; Jain & Jindal, 2025)
offer a promising alternative, they face challenges due to the stochasticity of the model’s outputs. First, the opti-
mization is undermined by the inherent non-determinism of LLM inference. Even with deterministic decoding (zero
temperature), low-level computational variations in floating-point arithmetic and parallelization introduce stochastic-
ity to the model’s outputs (Whitehead & Fit-Florea, 2017). This variance creates a noisy evaluation landscape, making
it difficult to reliably determine if a prompt update is genuinely effective. Second, this issue is amplified in methods
that use a chain of LLM calls for feedback and updates, such as textual gradients (Yuksekgonul et al., 2024). A mi-
nor variance in the initial output can be magnified as it passes through the evaluator and optimizer LLMs, a form of
cascading variance (Dohan et al., 2022).

To explore this process, early approaches explored the vast prompt space using search algorithms, including Monte
Carlo Tree Search (e.g., PromptAgent (Wang et al., 2023)), genetic algorithms (e.g., GPS (Xu et al., 2022), EvoPrompt
(Guo et al., 2023)), and discrete editing methods (e.g., GRIPS (Prasad et al., 2022), COPLE (Zhan et al., 2024)). While
innovative, these methods often struggle with the semantic complexity of language and can be sample-inefficient. More
recently, iterative refinement using textual gradients has emerged as the state-of-the-art (Zhang et al., 2024b; Pryzant
et al., 2023; Yuksekgonul et al., 2024; Yu et al., 2025).

However, in this work, we identify and analyze two fundamental sources of instability inherent in this paradigm. First,
we find that the quality of the textual gradient is highly dependent on the correctness of the initial output. As shown
in Figure 1 (a), generating feedback from examples that the model already handles correctly produces a low-signal
and high-noise gradient, often leading to destructive edits. While this observation suggests that the solution is to
optimize exclusively on the high-signal feedback from failed cases, we find it is not this straightforward, because
repeated refinement on these hard examples leads to over-specialization, sacrificing the prompt’s general applicability
on simpler tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Initial Prompt: You will answer a reasoning question. Think step by
step. The last line of your response should be of the following format:
'Answer: $VALUE' where VALUE is a numerical value.

Optimized prompt using wrong case: You will answer a reasoning question.
To ensure accuracy, follow these steps: First, identify and count each
item individually... After calculating, verify your count by Double-check
your calculations to ensure... Use logical reasoning to

Optimized prompt using correct case: You will answer a reasoning
question. Regardless of the order or format of the input..., focusing only
on This counting strategy should be applied with an efficient and
adaptable approach, ensuring accuracy for various items and larger lists.

test accuray: 38.5%

test accuray: 88.9%

test accuray: 74.1%

Question 1: I have a fridge, an
oven, a car, a toaster, a microwave,
a table, and a bed. How many
objects do I have?
Ground Truth: 7

Quetion 2: I have a potato, a yam,
two heads of broccoli, and a
cauliflower. How many vegetables
do I have?
Ground truth: 5

Answer 1: You have 7 objects:
fridge, oven, car, toaster,
microwave, table, and bed.
Answer: 7 (Correct)

Answer 2: You have a potato, a
yam, two heads of broccoli, and
a cauliflower, which totals to 4
vegetables.
Answer: 4

(Wrong)

(b) Over-specialization on hard cases

(a) Detrimental effect of using correctly-handled examples

Quetion: I have a potato, a yam, two heads of broccoli, and a cauliflower.
How many vegetables do I have?
Ground truth: 5

Answer:You have a potato, a yam, two heads of broccoli, and a cauliflower,
which totals to 4 vegetables.
Answer: 4 (Wrong)

(Step=1) Optimized prompt (~200 tokens): You will answer a reasoning
question. To ensure accuracy, follow these steps: First, identify and count
each item individually... After calculating, verify your count by Double-
check your calculations to ensure... Use logical reasoning to

Step 1 test accuray: 88.9%

Step 12 test accuray: 73.2%

(Step=12) Optimized prompt (1000+ tokens): You will answer a reasoning
question. To ensure accuracy, follow these steps: 1. identify and list all
relevant items before counting them.. 14. For instance, if given 'a drum, a
book, and a violin,'...

Figure 1: (a) The detrimental effect of using correctly-handled examples. Using a single prompt with a baseline
accuracy of 74.1%, the executor LLM correctly answers Question 1 but fails on Question 2. Training new prompts
through wrong cases can significantly improve the prompt accuracy (88.9%) compared to the correct one (38.5%). This
is because correct cases produce a random gradient. Our work analyzes how the feedback derived from these different
outcomes critically impacts the stability and effectiveness of the optimization process. (b) The over-specialization
example on hard cases. It repeatedly refines the prompt on both failed and successful cases without verification,
leading to overfitting. While an initial optimization step boosts accuracy to 88.9%, continued refinement over 12 steps
results in an over-specialized prompt (1000+ tokens) with significantly degraded final accuracy (73.2%).

Second, we find that optimizing exclusively on difficult cases is surprisingly unstable. While initial gradients are
corrective, performance degrades sharply after just a few iterations, as shown in Figure 1 (b). This occurs because
the optimizer attempts to solve hard examples by adding more specific constraints and multi-step procedures into the
prompt. For instance, to solve a complex object-counting problem, the prompt might be amended with explicit rules
like, ”First, list every potential object. Second, categorize each object. Third, create a final count based only on valid
categories.” While this rigid algorithm is effective for the targeted hard case, it becomes overly redundant for a simple
case like ”count the number of apples.” For simpler inputs, the verbose and complex instructions can confuse the
executor model or lead to inefficient reasoning paths, thereby degrading its performance. Consequently, the prompt
becomes over-specialized at the cost of its general capabilities.

Train Failed
Cases

STEVE Pipeline

0.88

Scores

0.73

(Step=12) Optimized
STEVE prompt (~300
tokens): You will answer a
reasoning question. 1.
Identify and List 2. Step-
by-Step Reasoning 3.
Verification 4. Contextual
Awareness 5. Assumption
Transparency 6. Structured
Format

test 12 accuray: 95.1%

Full Train Set :
Question/ Ground

Truth

Preservation Set

Hard Set
Optimized prompt candidates

Previous Step Prompt

1.25

Seperate

Score and Compare

Figure 2: Our proposed STEVE pipeline’s Error-driven Refinement mechanism can optimize a prompt based on
failure cases by iteratively separating the training data into a Hard Set and a Preservation Set. At each step,
Regularized Verification generates and scores multiple candidates using a regularized objective and select the best.

This process avoids overfitting, producing a concise (∼300 tokens) and highly effective final prompt that achieves
95.1% accuracy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To address these two instabilities, we propose STEVE: Stabilizing Textual Gradients via Error-Driven Refinement
and Regularized Verification. Our framework, as shown in Figure 2, introduces two core mechanisms. First, our
Error-Driven Refinement strategy ensures a high-quality learning signal by exclusively generating textual gradients
from model failures, filtering out the noise from correct examples. Second, to counter over-specialization, our Reg-
ularized Verification mechanism acts as a gate. It validates each candidate prompt against a holdout set of general
examples, accepting an update only if the gain on the complex case does not compromise overall robustness. Together,
these components create a stable optimization loop that effectively balances specialization and generalization.

Our contributions are threefold:

• We are the first to systematically identify and analyze two primary sources of instability in iterative prompt opti-
mization: the generation of noisy, destructive gradients from correctly-handled examples, and the rapid overfitting
that occurs when optimizing exclusively on model failures.

• We propose STEVE, a simple yet effective framework that directly counteracts these instabilities in iterative prompt
optimization, comprising two core mechanisms. Error-Driven Refinement ensures a high-quality learning signal
by generating gradients only from model failures, while Regularized Verification acts as a novel gating mechanism
that accepts a prompt update only if it preserves performance on a general holdout set, explicitly preventing over-
specialization on hard cases after multiple iterations.

• We demonstrate through extensive experiments on complex reasoning benchmarks that our framework leads to a
more stable and effective optimization process. STEVE consistently discovers robust and concise prompts that
achieve state-of-the-art performance, preventing the random texual gradient that plagues standard iterative prompt
optimization methods.

2 RELATED WORK

Automated Prompt Optimization Manual prompt optimization methods (Wei et al., 2022) reveal that fine-tuning
prompts can further improve the performance of LLMs and reduce token cost. They offer a baseline for automated
prompt optimization methods, but fail to apply to extensive areas. The majority of automated prompt optimization
work can be divided into two parts. Soft prompt tuning-based methods (Lester et al., 2021; Hu et al., 2022; Liu
et al., 2024) utilize task-specific latent embeddings, limited by closed-source black-box LLMs. Discrete token search
approaches further alleviate the availability by using textual (Wang et al., 2023; Do et al., 2024; Sinha et al., 2024) or
numerical (Zhou et al., 2022; 2023b; Deng et al., 2022; Zhang et al., 2024a) signal as feedback. The different types of
evaluation feedback provide ways to identify promising prompt candidates.

Textual gradient-based learning Taking advantage of textual gradient to guide the process of prompt optimization,
ProTeGi (Pryzant et al., 2023) and TextGrad (Yuksekgonul et al., 2024) emerge as the state-of-art method in the
domain of prompt optimization. These methods simulate a gradient in the discrete space of text, allowing for a more
directed and efficient search for better prompts. The core idea is to use a separate LLM as an evaluator. When a target
LLM produces an incorrect or suboptimal output based on the current prompt, the critic LLM is prompted to provide
a natural language critique. This critique, which explains the flaws in the output and suggests improvements, is treated
as a textual gradient. It provides a semantic direction for how the prompt should be edited. REVOLVE(Zhang et al.,
2024b) further refines this by not only considering the immediate textual gradient but also the historical evolution of
responses. This allows for a more nuanced optimization that is analogous to second-order methods, leading to more
robust and efficient prompt improvements.

Quality of Learning Signals A core challenge in iterative optimization is the quality of the guiding signal. Our
Error-Driven Refinement mechanism is motivated by established principles in active learning and information the-
ory(Nguyen et al., 2021; Li et al., 2024). The central tenet of active learning (Settles, 2009) is that a model learns most
efficiently from examples it finds difficult or uncertain about. Correctly handled examples provide a low-information
signal. Forcing an LLM to generate feedback on a correct output can lead to random or stylistic critiques that act as
noise, degrading the prompt rather than improving it. This aligns with findings from instruction tuning, LIMA(Zhou
et al., 2023a) demonstrates that a small set of high-quality, diverse data is far more effective than a large volume of
noisy or low-quality data.

3 METHOD

TextGrad (Yuksekgonul et al., 2024) is a prominent iterative method that leverages textual gradients for prompt opti-
mization. While we use TextGrad as our foundational optimizer, the framework we introduce is primarily data-driven
and largely agnostic to the specific gradient generation process, making it broadly applicable to any iterative and tex-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

tual gradient-based method (Pryzant et al., 2023; Yang et al., 2023; Zhang et al., 2024b). The central contribution
of our work is a novel framework designed to stabilize this optimization process by directly addressing two critical
failure modes we identified: the generation of noisy, often destructive gradients from correctly handled examples, and
over-specialization on hard cases. In the following sections, we will detail the two core components of our solution:
Error-Driven Refinement and Regularized Verification.

3.1 PRELIMINARIES: ITERATIVE OPTIMIZATION WITH TEXTUAL GRADIENTS

The goal of prompt optimization is to find an optimal instruction, or prompt p∗, that maximizes the performance of an
LLM M across a given task distribution D. Formally, this can be expressed as following:

p∗ = arg max
p∈pspace

E(x,y)∼D[S(M(p, x), y)] (1)

where x is a question, y is the ground-truth answer, and S is a task-specific evaluation metric.

To navigate this challenge, recent works Zhang et al. (2024b); Pryzant et al. (2023); Cui et al. (2024) have proposed
using an iterative refinement process guided by textual gradients. This approach typically employs a multi-agent
framework. At each iteration t, the process unfolds as follows:

(a) Forward Pass Generation: A executor LLM uses the current prompt, pt, to process an input, x, and generate an
output, y = Mexecutor(pt, x).

(b) Feedback (Gradient Calculation): A powerful evaluator LLM evaluates the output y′ and calculate the loss
from y and ground truth ytruth. The evaluator generates a “textual gradient,” gtext. This gradient is a natural
language critique that explains the failure and provides actionable advice for improving the prompt, gnext =
Mevaluator(pt, x | y, ytruth)

(c) Update: An optimizer LLM, conditioned on the original prompt pt and the textual gradient gtext, synthesizes an
improved prompt, pt+1. This update step can be represented as: pt+1 = Moptimizer(pt, gtext).

This iterative loop allows for semantic and non-differentiable improvements to the prompt. While this powerful
paradigm forms the backbone of our method, we show that this standard approach suffers from significant instability,
which often prevents it from converging to a robust and high-performing solution. The following sections will analyze
and address these instabilities.

3.2 THE INSTABILITY OF TEXTUAL GRADIENT OPTIMIZATION

While the iterative process described in Section 3.1 provides a powerful framework, its practical application is hindered
by gradient instability. Based on our experiment, we characterize two primary sources of this instability, which
motivate our proposed control mechanisms.

Noisy Gradients from Correct Examples. Our initial investigation reveals a stark contrast in the utility of feedback
based on the correctness of an output. As illustrated in Figure 3, a single round of optimization using feedback from
previously failed cases yields a significant performance improvement. Conversely, using feedback from correctly-
handled cases results in a sharp drop in accuracy. This observation leads us to hypothesize that textual gradients
generated from correct examples are noisy and often counter-productive. We validate this hypothesis in our ablation
study (Table 2), where a model trained exclusively on correct examples not only fails to improve but even sees its
performance degrade below the initial baseline. This suggests that the evaluator LLM struggles to extract a meaningful,
generalizable improvement signal from successful outputs, instead producing feedback with noisy gradients that acts
as a random perturbation.

Over-Specialization on Hard Cases. Simply optimizing on failed cases, however, is not a complete solution. We
observe that sustained, multi-round optimization exclusively on hard examples is also unstable, with performance
degrading after an initial phase of improvement. This decay is a symptom of overfitting in the prompt space. As we
show with a qualitative example in the Appendix A.3, the prompt becomes progressively more verbose and convoluted
over iterations, accumulating an excessive number of specific constraints and detailed steps. While these highly
specific instructions may resolve the targeted hard cases, they make the prompt brittle and less effective for simpler,
more general problems. The added complexity is detrimental to its overall generalization, motivating a mechanism to
explicitly control this trade-off.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Correct Incorrect
OBJECT_COUNTING

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e A
cc

ur
ac

y

0.688±0.203
0.843±0.081

Correct Incorrect
NAVIGATE

0.0

0.2

0.4

0.6

0.8

1.0

0.715±0.101

0.782±0.093

Correct Incorrect
GSM8K

0.0

0.2

0.4

0.6

0.8

1.0

0.671±0.184
0.768±0.047

Figure 3: A comparison of single-step prompt refinement on three reasoning benchmarks Object Counting, Navigate
and GSM8k (Suzgun et al., 2022; Cobbe et al., 2021) . The bars show the final average accuracy of a prompt optimized
for one round using feedback from either a batch of previously correct examples or a batch of previously incorrect
examples. Across all datasets, optimizing on incorrect cases consistently yields a prompt with significantly higher
accuracy, demonstrating that failures provide a superior learning signal.

3.3 COMPONENT 1: ERROR-DRIVEN REFINEMENT FOR HIGH-QUALITY GRADIENTS

To address the instability caused by noisy gradients, we introduce our first mechanism: Error-Driven Refinement.
Motivated by the idea of Prioritized Experience Replay(Schaul et al., 2015; Ma et al., 2022) in the field of Reinforce-
ment Learning, the model can focus more on transitions where its value prediction was wrong, effectively balancing
the training process by focusing on hard or more informative samples. This principle that focuses on hard examples
is critical for effective learning and is well-established in the machine learning literature. Seminal examples include
boosting algorithms like AdaBoost(Freund & Schapire, 1997), which iteratively re-weights misclassified data points,
and online hard example mining (OHEM)(Shrivastava et al., 2016) in object detection, which explicitly trains on the
most challenging examples. The core principle of this strategy is to ensure a high signal-to-noise ratio in the learning
process by exclusively generating textual gradients from examples that the executor model fails to handle correctly.

We formalize this by partitioning the training set, Dtrain, based on the performance of the current prompt, pt. Specif-
ically, we define a “hard case pool,” Dhard, as the subset of training examples where the executor model’s output is
deemed incorrect by the scoring function:

Dhard(pt) = {(x, y) ∈ Dtrain | S(Mexecutor(pt, x), y) < τ} (2)

where τ is a predefined success threshold (typically 1 for exact match tasks).

At each optimization iteration t, instead of sampling from the entire training distribution, our method samples an
instance (xi, yi) exclusively from this dynamically defined hard case pool, Dhard(pt). A textual gradient, gtext, is then
generated based on the model’s failure on this specific instance.

By design, this error-driven strategy acts as a powerful information filter. It guarantees that every textual gradient used
for an update is a high-signal, corrective piece of feedback derived from a clear failure. This eliminates the random
walk behavior caused by the low-signal, high-noise gradients generated from correct examples, thereby solving the
first source of instability and providing a solid foundation for targeted prompt improvement.

3.4 COMPONENT 2: REGULARIZED VERIFICATION FOR PRESERVING GENERALIZATION

While Error-Driven Refinement ensures that each textual gradient is informative, it does not prevent the optimization
from over-specializing. To address this second instability, we introduce our second component: a Regularized Ver-
ification mechanism. This mechanism functions as a gate, evaluating each proposed prompt update to ensure that
improvements in specialization do not come at an unacceptable cost to generalization.

Our approach is conceptually inspired by regularization-based methods in continual learning designed to combat catas-
trophic forgetting, most notably Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017). EWC adds a quadratic
penalty to the loss function to discourage modifications to network weights that are critical for performance on previ-
ously learned tasks. Analogously, our Regularized Verification mechanism treats the performance degradation on the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Generalization Preservation Set as a direct penalty against forgetting. However, unlike the continuous, differentiable
parameter space of neural networks where penalties can be directly integrated into a loss function, the prompt space is
discrete and symbolic. Therefore, instead of modifying a loss function, we implement this regularization principle as
a discrete verification step: a “generate-and-select” mechanism where candidate prompts are explicitly evaluated for
their trade-off between specialization and generalization.

Central to this process is the Generalization Preservation Set,Dpreserve, a fixed holdout set of representative examples
sampled from the training distribution. This set is typically constructed from examples that the current prompt already
handles correctly, thus representing the current baseline capabilities we aim to preserve.

Dpreserve ⊂ {(x, y) ∈ Dtrain | S(Mexecutor(p0, x), y) ≥ τ} (3)

The verification process is integrated into a multi-stage refinement loop. First, a batch of hard cases {dh}b1 ⊂ Dhard is
sampled. An evaluator model synthesizes a textual gradient, gbatch, that summarizes the common failure modes across
this batch. Using this gradient, an updater model generates a set of n diverse candidate prompts, {pcand,i}n1 . The best
candidate is then chosen based on our regularized objective. The formal update rule is:

pt+1 =

{
pbest cand if Improvement(pcand, dhard) > λ · Regression(pcand,Dpreserve)

pt otherwise
(4)

where λ ≥ 0 is the regularization hyperparameter that controls the trade-off. λ is annealed per step so that it can
balance the generalization and specialization. By including pt in the set of choices, we ensure an update only occurs
if a new candidate offers a better trade-off than the status quo. The full process is detailed in Algorithm 1.

Algorithm 1 The STEVE Algorithm (Stabilizing Textual Gradients via Error-Driven Refinement and Regularized
Verification)

Require: Initial prompt p0, training data Dtrain, iterations T , regularization λ.
Require: Preservation sample size k, hard-case batch size b, num candidates n.
Ensure: Optimized prompt pT .

1: Initialize Dpreserve ⊂ {(x, y) ∈ Dtrain | S(M(p0, x), y) ≥ τ}.
2: pt ← p0
3: for t = 0 to T − 1 do
4: Define hard case pool Dhard(pt) = {(x, y) ∈ Dtrain | S(M(pt, x), y) < τ}.
5: if |Dhard(pt)| < b then
6: break ▷ Not enough errors to fix.
7: end if
8: for j = 1 to n do
9: Sample a batch Dbatch = {(xi, yi)}bi=1 from Dhard(pt).

10: Forward pass {y′i}bi=1 ← {Mexecutor(pt, xi)}bi=1
11: ▷ Error-Driven Refinement (Section 3.3)
12: Synthesize a batch gradient gbatch = Mevaluator(pt, Dbatch, {y′i}bi=1).
13: Generate candidate prompt pcand = Moptimizer(pt, gbatch).
14: ▷ Regularized Verification (Section 3.4)
15: Sample Dsample = {(xj , yj)}kj=1 from Dpreserve.
16: best score← 0
17: ▷ Objective score of the current prompt is 0.
18: Improvement← 1

b

∑b
i=1(S(Mexecutor(pcand, xi), yi)− S(Mexecutor(pt, xi), yi)).

19: Regression← 1
k

∑k
j=1(S(Mexecutor(pt, xj), yj)− S(Mexecutor(pcand, xj), yj)).

20: objective score← Improvement− λ ·max(0,Regression).
21: if objective score > best score then
22: best score← objective score
23: pt+1 ← pcand
24: end if
25: end for
26: end for
27: return p∗ = argmaxp∈{p0,...,pT } E(x,y)∼Dtest [S(Mexecutor(p, x), y)].

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENT

We conduct a comprehensive evaluation to validate our proposed framework, STEVE. Our experiments are designed
to: (1) assess whether STEVE significantly outperforms established baselines and state-of-the-art prompt optimization
methods across diverse reasoning tasks; (2) quantify the contribution of our core components via ablation studies; and
(3) analyze the impact of evaluator model quality on the final optimized prompt. More results and settings are available
in the section Appendix. All the source code and datasets will be made available to the public.

4.1 DATASETS AND TASKS

To ensure a thorough assessment of our method’s generalization capabilities, we evaluate it on 10 challenging bench-
marks spanning four distinct reasoning domains. For mathematical reasoning, we use GSM8k (Cobbe et al., 2021)
and MultiArith (Roy & Roth, 2016), which test multi-step numerical problem-solving. For complex commonsense
reasoning, we assess multi-hop logical deduction using StrategyQA (Geva et al., 2021) and the Navigate task from
Big-Bench Hard (BBH) (Suzgun et al., 2022). To evaluate precise procedural execution in symbolic and procedu-
ral reasoning, we use four tasks from BBH: Object Counting, Penguins in a Table, Geometric Shapes, and Date
Understanding. Finally, to assess expert-level knowledge reasoning on domain-specific topics, we use the College
Physics and Machine Learning subsets from the Massive Multitask Language Understanding (MMLU) benchmark
(Hendrycks et al., 2020).

4.2 EXPERIMENTAL SETUP

Baselines. We compare our method, STEVE, against four baselines. Zero-shot CoT (Wei et al., 2022) serves as
the standard initial prompt (P0) for all iterative methods. Three-shot CoT represents a strong, manually crafted
few-shot baseline. While these static baselines keep the prompt unchanged, we also compare against two state-of-
the-art iterative optimization methods. The first is TextGrad (Yuksekgonul et al., 2024), the textual gradient method
our work builds upon, optimize and refine the outputs of LLM output by using textual feedback as a gradient. The
second is REVOLVE (Zhang et al., 2024b), an advanced method that enriches the learning signal by analyzing the
historical evolution of responses to a given problem over time, creating a more nuanced update process analogous to a
second-order optimization method.

Implementation Details. For a fair comparison, all iterative methods (TextGrad, REVOLVE, and STEVE) use
the same setup. The executor model is gpt-3.5-turbo-0125 and the default evaluator/optimizer models are
gpt-4o, gemini-2.5-flash, and gpt-5. Optimization is run for T = 12 steps with a hard-case batch
size of b = 4. The decoding temperature is set to 0.0 for all models to ensure reproducibility. For our method, the
regularization parameter λ is initialized at 1.5 and is annealed by +0.1 at each step. The primary evaluation metric is
accuracy, and we report the average over three independent optimization runs.

4.3 RESULTS

We present our primary findings in Table 1, which compares the final accuracy of STEVE against all baselines across
our 10 benchmark datasets and three evaluator/optimizer models. The results demonstrate that STEVE consistently
and significantly outperforms both static baselines (Zero-shot and Three-shot CoT) and state-of-the-art iterative opti-
mization methods on the vast majority of configurations. Averaged across all 30 settings, STEVE achieves an absolute
improvement of over 15% compared to the initial Zero-shot CoT prompt and outperforms the strongest iterative base-
line, REVOLVE, by an average of 3.5%.

The significant performance gap between STEVE and TextGrad, which also uses textual gradients, highlights the
importance of our stability mechanisms. While both methods start from the same initial prompt, TextGrad’s optimiza-
tion trajectory can be volatile. This is particularly evident on tasks like Geometric Shapes with the gpt-5 executor,
where TextGrad’s accuracy collapses from 41.1% to 33.9%, indicating a destructive update sequence. In stark contrast,
STEVE’s combination of Error-Driven Refinement (filtering for high-quality signals) and Regularized Verification
(preventing generalization loss) navigates the optimization landscape more effectively, achieving a stable improvement
to 44.2%. This demonstrates our framework’s ability to prevent overfitting and harness textual gradients reliably.

STEVE shows particularly strong performance on tasks requiring complex procedural or symbolic reasoning. For
instance, on Navigate and Penguins in a Table with the gemini-2.5-flash evaluator/optimizer, STEVE achieves
gains of over 27% and 30% respectively. We hypothesize that these tasks involve discovering non-obvious, robust
strategies that are easily missed by unstable optimizers. STEVE’s verification mechanism allows it to safely explore

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Main results on Mathematical, Commonsense, Symbolic/Procedural, and Expert-Level Knowledge Rea-
soning benchmarks, broken down by executor model. All iterative methods are optimized for 12 steps. We report
accuracy with the absolute improvement (↑↓) over the Zero-shot CoT baseline. The best performance for each dataset
is highlighted in bold. Underlined indicates second-best performance.

Baselines Iterative Optimization Methods

Category Task Executor Model Zero-shot Three-shot TextGrad REVOLVE STEVE (Ours)

M
at

h

GSM8k
(Cobbe et al., 2021)

gpt-4o 76.3 73.1 82.5 ↑+6.2 82.8 ↑+6.5 86.2 ↑+9.9

gemini-2.5-flash 73.8 74.2 81.1 ↑+7.3 83.9 ↑+10.1 82.9 ↑+9.1

gpt-5 73.2 77.5 78.6 ↑+5.4 81.7 ↑+8.5 84.3 ↑+11.1

MultiArith
(Roy & Roth, 2016)

gpt-4o 84.5 84.1 88.6 ↑+4.1 98.2 ↑+13.7 98.9 ↑+14.4

gemini-2.5-flash 82.9 84.3 98.1 ↑+15.2 98.4 ↑+15.5 98.7 ↑+15.8

gpt-5 84.0 84.6 100.0 ↑+16.0 100.0 ↑+16.0 100.0 ↑+16.0

C
om

m
on

se
ns

e StrategyQA
(Geva et al., 2021)

gpt-4o 88.7 91.3 90.1 ↑+1.4 90.5 ↑+1.8 93.2 ↑+4.5

gemini-2.5-flash 85.1 90.6 88.8 ↑+3.7 89.4 ↑+4.3 91.9 ↑+6.8

gpt-5 88.2 94.5 91.7 ↑+3.5 93.3 ↑+5.1 95.8 ↑+7.6

Navigate
(Suzgun et al., 2022)

gpt-4o 60.1 77.8 88.2 ↑+28.1 94.1 ↑+34.0 95.6 ↑+35.5

gemini-2.5-flash 68.7 83.6 66.9 ↓-1.8 90.4 ↑+21.7 96.2 ↑+27.5

gpt-5 62.7 83.1 78.6 ↑+15.9 86.1 ↑+23.4 83.9 ↑+21.2

Sy
m

bo
lic

Object Counting
(Suzgun et al., 2022)

gpt-4o 77.9 82.2 87.1 ↑+9.2 90.3 ↑+12.4 95.7 ↑+17.8

gemini-2.5-flash 75.4 81.8 72.5 ↓-2.9 81.1 ↑+5.7 83.6 ↑+8.2

gpt-5 79.0 87.5 80.6 ↑+1.6 82.4 ↑+3.4 91.2 ↑+12.2

Penguins in a Table
(Suzgun et al., 2022)

gpt-4o 80.8 83.3 93.1 ↑+12.3 96.0 ↑+15.2 96.5 ↑+15.7

gemini-2.5-flash 66.2 90.7 90.9 ↑+24.7 90.2 ↑+24.0 96.4 ↑+30.2

gpt-5 63.5 90.1 93.6 ↑+30.1 86.8 ↑+23.3 96.7 ↑+33.2

Geometric Shapes
(Suzgun et al., 2022)

gpt-4o 39.4 31.8 36.7 ↓-2.7 55.2 ↑+15.8 62.9 ↑+23.5

gemini-2.5-flash 36.6 36.1 48.3 ↑+11.7 65.5 ↑+28.9 66.0 ↑+29.4

gpt-5 41.1 32.7 33.9 ↓-7.2 42.4 ↑+1.3 44.2 ↑3.1

Date Understanding
(Suzgun et al., 2022)

gpt-4o 67.3 73.9 75.1 ↑+7.8 76.2 ↑+8.9 76.6 ↑+9.3

gemini-2.5-flash 70.8 68.2 74.4 ↑+3.6 74.9 ↑+4.1 80.5 ↑+9.7

gpt-5 70.1 72.7 74.3 ↑+4.2 77.8 ↑+7.7 84.0 ↑+13.9

E
xp

er
t

College Physics
(Hendrycks et al., 2020)

gpt-4o 57.6 52.1 61.4 ↑+3.8 66.9 ↑+9.3 71.2 ↑+13.6

gemini-2.5-flash 61.0 52.8 57.3 ↓-3.7 61.5 ↑+0.5 66.7 ↑+5.7

gpt-5 52.3 57.9 57.5 ↑+5.2 61.8 ↑+9.5 66.1 ↑+13.8

Machine Learning
(Hendrycks et al., 2020)

gpt-4o 34.2 39.8 60.1 ↑+25.9 60.3 ↑+26.2 60.7 ↑+26.5

gemini-2.5-flash 43.5 34.6 52.9 ↑+9.4 60.4 ↑+16.9 56.2 ↑+12.7

gpt-5 47.7 39.1 56.6 ↑+8.9 43.3 ↓-4.4 60.9 ↑+13.2

and lock in complex heuristics that generalize well, whereas other methods may discard them or overfit to a brittle
solution. This finding further demonstrates the robustness and effectiveness of our STEVE method.

While broadly successful, the margin of improvement varies. On tasks such as MultiArith, where the initial prompt
is already quite effective, the gains are more modest as there is less room for optimization. Notably, on the Machine
Learning MMLU task with gemini-2.5-flash, REVOLVE slightly outperforms STEVE. We conjecture that
for certain highly knowledge-intensive domains, REVOLVE’s approach of tracking response evolution may be more
effective at eliciting factual recall. It is also possible that STEVE’s conservative verification gate prevented a risky
but ultimately beneficial update for this specific configuration. This highlights a potential area for future work in
dynamically adjusting the regularization strength based on task type.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDIES

To isolate and validate the contributions of our framework’s core components, we conduct a series of ablation studies
on a representative subset of datasets: GSM8k, StrategyQA, and Object Counting. The results, summarized in Table
2, confirm our design choices.

Table 2: Ablation studies on the core components of STEVE. We report performance on a representative subset of
datasets. The results demonstrate the importance of both the regularized verification gate and the error-driven learning
signal. The best performance for each dataset is highlighted in bold.

Model Variant GSM8k StrategyQA Object Counting
Initial CoT Prompt 76.3 88.7 77.9

Analysis of Regularized Verification
w/o Verification 84.1 91.5 92.2

Analysis of the Error-Driven Refinement
w/ Full Dataset 82.5 90.1 87.1
w/ Correct-Only 76.5 86.8 76.1

STEVE (Full Model) 86.2 93.2 95.7

Contribution of Regularized Verification. First, to demonstrate the necessity of our verification gate, we evaluate
STEVE w/o Verification. In this variant, we remove the Verification module, meaning the candidate prompts are
trained by the hard-case batch without a regression check. This variant underperforms the full STEVE model, con-
firming that without explicit regularization to safeguard general capabilities, the prompt quickly overfits to the hard
cases it is trained on.

Analysis of the Error-Driven Signal. Second, we validate our core hypothesis that the learning signal must be
error-driven. We test two variants: (1) STEVE w/ Full Dataset, which trains on the complete, unfiltered training set
containing both correct and incorrect examples, and (2) STEVE w/ Correct-Only, a control experiment that trains ex-
clusively on examples the model already handles correctly. The first variant suffers from the noisy gradients of correct
examples and performs poorly. The second variant consistently degrades the prompt’s performance, often below the
initial baseline. These results provide strong evidence that a high-quality, corrective signal derived exclusively from
errors is essential for stable and effective optimization.

5 CONCLUSION

In this work, we address the critical instability of textual gradient-based prompt optimization by reframing it as a
dual-selection problem we call “Pick Your Textual Gradients.” To solve the failure modes of noisy feedback and
over-specialization, we introduced STEVE, a framework that carefully picks its updates at two key stages. First, our
Error-Driven Refinement mechanism ensures a high-quality learning signal by selectively score feedback generated
exclusively from previously failed cases, filtering out the noise from correct examples. Second, our Regularized
Verification step addresses overfitting by selecting the best candidate prompt—not just the one that solves the hard
case, but the one with the best generalization performance as measured by a regularized objective. Our experiments
demonstrated that this principled approach of carefully picking both the learning signal and the final update allows
STEVE to consistently discover more robust and effective prompts than standard methods, paving the way for more
reliable automated prompt engineering.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Anthony Cui, Pranav Nandyalam, Andrew Rufail, Ethan Cheung, Aiden Lei, Kevin Zhu, and Sean O’Brien. Introduc-
ing mapo: Momentum-aided gradient descent prompt optimization. arXiv preprint arXiv:2410.19499, 2024.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song, Eric P Xing,
and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement learning. arXiv preprint
arXiv:2205.12548, 2022.

Xuan Long Do, Yiran Zhao, Hannah Brown, Yuxi Xie, James Xu Zhao, Nancy Chen, Kenji Kawaguchi, Michael
Shieh, and Junxian He. Prompt optimization via adversarial in-context learning. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7308–7327, 2024.

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes, Yuhuai Wu,
Henryk Michalewski, Rif A Saurous, Jascha Sohl-Dickstein, et al. Language model cascades. arXiv preprint
arXiv:2207.10342, 2022.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle use a laptop?
a question answering benchmark with implicit reasoning strategies. Transactions of the Association for Computa-
tional Linguistics, 9:346–361, 2021.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu Yang.
Connecting large language models with evolutionary algorithms yields powerful prompt optimizers. arXiv preprint
arXiv:2309.08532, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Mea-
suring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Aditi M Jain and Mayank Jindal. Systematic survey of various prompt optimization methods and their classifications.
In 2025 11th International Conference on Computing and Artificial Intelligence (ICCAI), pp. 524–536, 2025.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are
zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691, 2021.

Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Okumura. A survey on deep active
learning: Recent advances and new frontiers. IEEE Transactions on Neural Networks and Learning Systems, 36(4):
5879–5899, 2024.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt understands, too. AI
Open, 5:208–215, 2024.

Jue Ma, Dejun Ning, Chengyi Zhang, and Shipeng Liu. Fresher experience plays a more important role in prioritized
experience replay. Applied sciences, 12(23):12489, 2022.

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. An information-theoretic framework for unifying
active learning problems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9126–
9134, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S Bernstein.
Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th annual acm symposium on
user interface software and technology, pp. 1–22, 2023.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based instruction search for
prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt optimization
with” gradient descent” and beam search. arXiv preprint arXiv:2305.03495, 2023.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint arXiv:1608.01413, 2016.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. Advances
in Neural Information Processing Systems, 36:68539–68551, 2023.

Burr Settles. Active learning literature survey. 2009.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors with online hard
example mining. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 761–769,
2016.

Ankita Sinha, Wendi Cui, Kamalika Das, and Jiaxin Zhang. Survival of the safest: Towards secure prompt optimization
through interleaved multi-objective evolution. arXiv preprint arXiv:2410.09652, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-thought
can solve them. arXiv preprint arXiv:2210.09261, 2022.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen,
Yankai Lin, et al. A survey on large language model based autonomous agents. Frontiers of Computer Science, 18
(6):186345, 2024.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P Xing, and Zhit-
ing Hu. Promptagent: Strategic planning with language models enables expert-level prompt optimization. arXiv
preprint arXiv:2310.16427, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824–24837, 2022.

Nathan Whitehead and Alex Fit-Florea. Floating point and ieee-754 compliance for nvidia gpus. Nvidia Whitepaper,
2017.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, and Zhilin Yang. Gps: Genetic prompt
search for efficient few-shot learning. arXiv preprint arXiv:2210.17041, 2022.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large language
models as optimizers. In The Twelfth International Conference on Learning Representations, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing
reasoning and acting in language models. In International Conference on Learning Representations (ICLR), 2023.

Yaoning Yu, Ye Yu, Kai Wei, Haojing Luo, and Haohan Wang. Sipdo: Closed-loop prompt optimization via synthetic
data feedback. arXiv preprint arXiv:2505.19514, 2025.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and James Zou. Textgrad:
Automatic” differentiation” via text. arXiv preprint arXiv:2406.07496, 2024.

Pengwei Zhan, Zhen Xu, Qian Tan, Jie Song, and Ru Xie. Unveiling the lexical sensitivity of llms: Combinatorial
optimization for prompt enhancement. arXiv preprint arXiv:2405.20701, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang, Dongjie Wang, and Kunpeng Liu. Ratt: A thought structure
for coherent and correct llm reasoning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pp. 26733–26741, 2025.

Lechen Zhang, Tolga Ergen, Lajanugen Logeswaran, Moontae Lee, and David Jurgens. Sprig: Improving large
language model performance by system prompt optimization. arXiv preprint arXiv:2410.14826, 2024a.

Peiyan Zhang, Haibo Jin, Leyang Hu, Xinnuo Li, Liying Kang, Man Luo, Yangqiu Song, and Haohan Wang. Revolve:
Optimizing ai systems by tracking response evolution in textual optimization. arXiv preprint arXiv:2412.03092,
2024b.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili
Yu, et al. Lima: Less is more for alignment. Advances in Neural Information Processing Systems, 36:55006–55021,
2023a.

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korhonen. Survival of the most influential prompts: Efficient black-
box prompt search via clustering and pruning. arXiv preprint arXiv:2310.12774, 2023b.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. Large
language models are human-level prompt engineers. In The eleventh international conference on learning repre-
sentations, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTAL SETUP DETAILS

All the source code and datasets will be made available to the public. This section provides additional details regarding
our experimental setup to ensure full reproducibility.

A.1.1 DATASET DETAILS

Table 3 provides a summary of the datasets used in our evaluation. The column “Train Set” refers to the number of
examples available for the iterative optimization process (from which Dhard is sampled). The “Preservation Set” is a
fixed subset of the training data used for our regularized verification, and the “Test Set” is used for final evaluation.

Table 3: Summary of dataset statistics used in our experiments.

Dataset Train Set Size Test Set Size Preservation Sample Set Size Candidate Size
Mathematical Reasoning
GSM8k 50 100 20 3
MultiArith 50 50 20 3

Complex Commonsense Reasoning
StrategyQA 50 100 20 3
Navigate 50 100 20 3

Symbolic & Procedural Reasoning
Object Counting 50 100 20 3
Penguins in a Table 87 30 20 3
Geometric Shapes 50 100 20 3
Date Understanding 50 100 20 3

Expert-Level Knowledge Reasoning
College Physics 50 100 20 3
Machine Learning 67 23 20 3

A.1.2 MODEL AND API DETAILS

All experiments were conducted using API access to the respective language models. The specific model versions
used are as follows:

• Executor Model: gpt-3.5-turbo-0125
• Evaluator/Optimizer Models: gpt-4o (version gpt-4o-2024-05-13), gpt-5 (version
gpt-5-2025-08-07), and gemini-2.5-flash (release data: June 17, 2025), whose exact version is
not available .

• Decoding Temerature: 0.0
• Top-p: 0
• Seed: 42
.

A.1.3 COMPUTATIONAL COST ANALYSIS

The primary computational cost of iterative prompt optimization methods like TextGrad and STEVE is the number of
Large Language Model (LLM) API calls required. According to Table 4, we analyze this cost on the number of tokens
and API calls..

Our method, STEVE, intentionally incurs a higher computational cost per iteration to ensure optimization stability.
The additional cost arises from two main sources within our framework. First, instead of generating a single candidate,
we generate n diverse candidates to better explore the solution space. Second, and more significantly, our regularized
verification step requires evaluating each of the n candidates on a preservation set of size k. The dominant overhead
of our method is therefore approximately n × (b + k) additional executor LLM calls per iteration compared to a
non-verifying, single-candidate approach.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Estimated token consumption and cost for a single STEVE optimization run on BBH Object Counting.
Assumes n = 3 candidates and a preservation set sample size of k = 20. Costs are based on September 2025 pricing
for gpt-4o (evaluator/optimizer) and gpt-3.5-turbo-0125 (executor).

Task Total API Calls Est. Tokens Est. Total Cost (USD)
(Executor/Evaluator/Optimizer) (Executor/Evaluator/Optimizer)

BBH Object Counting (1 Run) 2298 / 60 / 20 ∼1,730,156 / ∼36,260 / ∼108,780 ∼$4.05

A.2 IMPLEMENTATION DETAILS OF STEVE

A.2.1 PROMPTS FOR EVALUATOR AND OPTIMIZER MODELS

Reproducibility of our method relies on the meta-prompts used to guide the evaluator and optimizer models. Below
are the prompts used in our experiments.

Evaluator Prompt

“<OBJECTIVE FUNCTION>Your goal is to give feedback and criticism to the variable given the above
evaluation output.”
“Our only goal is to improve the above metric, and nothing else. </OBJECTIVE FUNCTION>”
“This conversation is part of a larger system. The <OUTPUT OF FUNCTION>was later used as
{response desc}.”
“<OBJECTIVE FUNCTION>Your goal is to give feedback to the variable to address the following feedback
on the OUTPUT OF FUNCTION: {response gradient} </OBJECTIVE FUNCTION>”
“We are interested in giving feedback to the {variable desc} ”
“for this conversation. Specifically, give feedback to the following span ”
“of text: <VARIABLE>”
“{variable short} </VARIABLE>”
“Given the above history, describe how the {variable desc} ”
“could be improved to improve the <OBJECTIVE FUNCTION>. Be very creative, critical, and intelligent.”

Optimizer Prompt

“Here is the role of the variable you will improve: <ROLE>{variable desc}</ROLE>.”
“The variable is the text within the following span: <VARIABLE>{variable short} </VARIABLE>”
“Here is the context and feedback we got for the variable:”
<CONTEXT>{variable grad}</CONTEXT>
“Improve the variable ({variable desc}) using the feedback provided in <FEEDBACK>tags.”
“Send the improved variable ”
“in the following format:”
{new variable start tag}{{the improved variable}}{new variable end tag}
“Send ONLY the improved variable between the <IMPROVABLE>tags, and nothing else.”

A.2.2 INITIAL PROMPTS (P0)

All iterative optimization methods in our experiments began from a general Zero-shot Chain-of-Thought (CoT)
prompt, P0. This ensures that performance gains are a direct result of the optimization process. To accommodate
specific output formats required by certain benchmarks, minor instructional text was added to a base prompt. Table 5
details the exact initial prompt used for each of the 10 datasets. No other task-specific modifications or in-context
examples were included.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Initial prompts (P0) used for each benchmark in our experiments.

Dataset Initial Prompt (P0) Text
Mathematical Reasoning
GSM8k You will answer a reasoning question. Think step by

step.
The last line of your response should be of the
following format:
’Answer: $VALUE’ where VALUE is a numerical value.

MultiArith You will solve arithmetic word problems. Think step
by step and output your final answer in the format
’Answer: $NUMBER’.

Complex Commonsense Reasoning

StrategyQA

Answer the following yes/no question. Think step by step and
provide reasoning before answering. The last line of your
response should be of the following format: ’Answer: True’
or ’Answer: False’.

Navigate
You will answer a reasoning question. Think step by step.
The last line of your response should be of the following
format: ’Answer: $VALUE’ where VALUE is a numerical value.

Symbolic & Procedural Reasoning
Object Counting You will answer a reasoning question. Think step by

step.
The last line of your response should be of the
following format:
’Answer: $VALUE’ where VALUE is a numerical value.

Penguins in a Table You will answer a reasoning question. Think step by
step.
The last line of your response should be of the
following format:
’Answer: $VALUE’ where VALUE is a numerical value.

Geometric Shapes You will answer a reasoning question. Think step by
step.
The last line of your response should be of the
following format:
’Answer: $VALUE’ where VALUE is a numerical value.

Date Understanding Answer the following multiple choice question. Think
step by step.
The last line must be ’Answer: $LETTER’. LETTER must
be one of A, B, C, D, E, or F.

Expert-Level Knowledge Reasoning

College Physics
You will answer multiple-choice questions. Think step by
step. The goal is to select the correct final answer from the
choices.

Machine Learning
You will answer multiple-choice questions. Think step by
step. The goal is to select the correct final answer from the
choices.

A.3 A QUALILATIVE EXAMPLE OF OVER-SPECIALIZATION ON HARD CASES

Below is the final prompt optimized by hard cases without Regularized Verification on dataset StrategyQA. The prompt
includes details about processes to solve specfic hard examples.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt on Hard Cases after 12 Steps Training

”Answer the following yes/no question. Begin with a clear ’Answer: True’ or ’Answer: False’ statement.
First, identify the core question and distinguish between primary and secondary information to understand
the specific context and intent. Ensure the initial answer is logically consistent with the provided data by
performing a preliminary check. Pay special attention to key phrases or terms that might indicate specific
contexts or conditions, such as dates and ages, to enhance contextual understanding. Define what constitutes a
p̈rojectf̈or each entity, specifying categories such as TV shows, movies, specials, and spinoffs, and apply these
definitions consistently. Evaluate the temporal context by assessing the timeline of events and their relevance
to the current year or the year in question. Cross-reference multiple reliable sources for fact verification,
listing potential sources and checking for consistency before finalizing the answer. Use a secondary model or
external knowledge base for confirmation when necessary. Ensure all information directly contributes to the
conclusion, explicitly stating how each piece supports the boolean answer. Structure the explanation in a step-
by-step manner, ensuring each point logically leads to the conclusion. Recognize and address any hypothetical
scenarios or specific conditions by identifying keywords or phrases that indicate such situations. Break down
the question into logical components and evaluate each against the given conditions to determine the boolean
outcome. Consider potential edge cases and how they might affect the outcome. Use precise language and
clarify any terms that could be interpreted in multiple ways. Incorporate strategies for handling ambiguous
queries, such as identifying potential ambiguities, seeking clarification, or providing a probabilistic answer
when certainty is not achievable. Implement a confidence scoring mechanism to express certainty in the
answer, providing a probability score or a statement of uncertainty when not fully confident, prompting further
verification or clarification. Be aware of common biases and heuristics, critically evaluating their applicability
to the specific case and considering exceptions to general rules. Reflect on training data to recall previous
similar questions and their resolutions, applying learned patterns to new queries. After formulating an initial
response, verify the answer by cross-referencing with a reliable knowledge base to ensure accuracy. Perform
a self-assessment by reflecting on potential errors or misinterpretations, and adjust the response accordingly.
Ensure alignment with the ground truth by checking the conclusion against a known correct answer or reliable
source. Provide a clear and robust justification for the answer, exploring both direct and indirect factors.
Use definitive language to avoid ambiguity and ensure logical consistency throughout the explanation. Focus
on the specific query, filtering out extraneous details and concentrating on elements crucial to answering the
question accurately. Use the following refined example as a reference for structuring your response: G̈iven the
conditions that [condition], the answer is [True/False] because [reasoning].Ïncorporate an iterative feedback
and learning loop to refine understanding and improve accuracy over time, analyzing incorrect answers to
identify errors and adjust strategies accordingly.”

A.4 LLM USAGE

We utilized an LLM solely for the purpose of refining the prose and enhancing the clarity of this paper. The model was
prompted to correct grammatical errors, improve sentence structure, and polish writing. All intellectual contributions,
including the core ideas, experimental design, and analysis, are exclusively the work of the authors. The LLM’s role
was strictly limited to that of a writing aid and did not contribute to the scientific content of this research.

16

	Introduction
	Related Work
	Method
	Preliminaries: Iterative Optimization with Textual Gradients
	The Instability of Textual Gradient Optimization
	Component 1: Error-Driven Refinement for High-Quality Gradients
	Component 2: Regularized Verification for Preserving Generalization

	Experiment
	Datasets and Tasks
	Experimental Setup
	Results
	Ablation Studies

	Conclusion
	Appendix
	Experimental Setup Details
	Dataset Details
	Model and API Details
	Computational Cost Analysis

	Implementation Details of STEVE
	Prompts for Evaluator and Optimizer Models
	Initial Prompts (P0)

	A Qualilative Example of Over-specialization on Hard Cases
	LLM Usage

