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Abstract

Recent progress in sentence embedding, which001
represents a sentence’s meaning as a point002
in a vector space, has achieved high perfor-003
mance on several tasks such as the semantic004
textual similarity (STS) task. However, a sen-005
tence representation cannot adequately express006
the diverse information that sentences contain:007
for example, such representations cannot natu-008
rally handle asymmetric relationships between009
sentences. This paper proposes GaussCSE, a010
Gaussian-distribution-based contrastive learn-011
ing framework for sentence embedding that can012
handle asymmetric inter-sentential relations, as013
well as a similarity measure for identifying en-014
tailment relations. Our experiments show that015
GaussCSE achieves performance comparable016
to that of previous methods on natural language017
inference (NLI) tasks, and that it can estimate018
the direction of entailment relations, which is019
difficult with point representations.020

1 Introduction021

Sentence embeddings are representations to de-022

scribe a sentence’s meaning and are widely used in023

natural language tasks such as document classifica-024

tion (Liu et al., 2021), sentence retrieval (Wu et al.,025

2022), and question answering (Liu et al., 2020). In026

recent years, machine-learning-based sentence em-027

bedding methods with pre-trained language models028

have become mainstream, and various methods029

for learning sentence embeddings have been pro-030

posed (Reimers and Gurevych, 2019; Gao et al.,031

2021). However, as these methods represent a sen-032

tence as a point in a vector space and primarily use033

symmetric measures such as the cosine similarity034

to measure the similarity between sentences, they035

cannot capture asymmetric relationships between036

two sentences, such as entailment and hierarchica037

relations.038

In this paper, we propose GaussCSE, a Gaussian-039

distribution-based contrastive sentence embedding040
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 S1：My male friends are playing soccer. 
 S2：Some men are playing a sport. 
 S3：The man is sleeping.
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Figure 1: Sentence representations in embedding spaces
of a previous method (left) and GaussCSE (right).

to handle such asymmetric relationships between 041

sentences by extending Gaussian embedding for 042

words (Luke and Andrew, 2015). Figure 1 shows 043

examples of sentence representations obtained by 044

a previous method and by GaussCSE. Whereas the 045

previous method represents a sentence as a point, 046

GaussCSE represents a sentence as a region in the 047

embedding space, and when two sentences have an 048

entailment relation, the embedding of the entailing 049

sentence contains the embedding of the entailed 050

one. In these examples, S1 entails S2, but with 051

previous methods, it is difficult to determine the 052

entailment relation only from their embeddings. In 053

contrast, by taking into account the variances of 054

the distributions, GaussCSE can capture the asym- 055

metric relationship where S1 entails S2 but S2 does 056

not entail S1, as well as the fact that S3 is not in 057

the entailment relationship with either S1 or S2. 058

To validate the usefulness of GaussCSE, we per- 059

formed comparative experiments on two tasks: the 060

natural language inference (NLI) task, and the task 061

of predicting the entailment direction. The results 062

demonstrate that GaussCSE can accurately predict 063

the entailment direction while maintaining good 064

performance on the NLI task.1 065

1We will publish our code and fine-tuned models upon
acceptance.
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2 Sentence Representations via Gaussian066

Embedding067

GaussCSE is a method to obtain Gaussian embed-068

dings of sentences by fine-tuning a pre-trained lan-069

guage model through contrastive learning. In this070

section, we first review a representative study of071

Gaussian embeddings and then review SimCSE,072

a method that acquires sentence embeddings via073

contrastive learning. We then describe GaussCSE,074

which extends those approaches.075

2.1 Gaussian Embedding076

One representative study on Gaussian embeddings077

sought to embed a word as a Gaussian distribu-078

tion N (Luke and Andrew, 2015). In this method,079

the embedding Ni of a word wi is represented as080

N (x;µi,Σi) by using the mean vector µi in n-081

dimensional space and the variance-covariance ma-082

trix Σi.083

The similarity between two words is measured084

using the Kullback-Leibler (KL) divergence, as085

defined by the following equation:086

DKL(Ni||Nj) =087 ∫
x∈Rn

N (x;µi,Σi) log
N (x;µi,Σi)

N (x;µj ,Σj)
. (1)088

The KL divergence is an asymmetric measure089

whose value changes when the arguments are re-090

versed, which makes it suitable for capturing asym-091

metric relationships between embeddings, such as092

entailment relations.093

2.2 Supervised SimCSE094

In recent years, there has been a significant amount095

of research on methods for acquiring vector-based096

sentence embeddings (e.g., Zhang et al., 2020; Li097

et al., 2020; Tsukagoshi et al., 2021; Jiang et al.,098

2022; Chuang et al., 2022; Klein and Nabi, 2022).099

One of the most representative methods is super-100

vised SimCSE (Gao et al., 2021), which trains sen-101

tence embedding models through contrastive learn-102

ing on NLI datasets.103

NLI datasets contain collections of sentence104

pairs, where each pair comprises a premise and105

a hypothesis and is labeled with “entailment,” “neu-106

tral,” or “contradiction.” Specifically, supervised107

SimCSE uses sentence pairs labeled with “entail-108

ment” as positive examples and those labeled with109

“contradiction” as hard negative examples. This110

approach achieves high performance on semantic111

textual similarity (STS) tasks, which evaluate how112

well sentence embedding models capture the se- 113

mantic similarities between the sentences in a pair. 114

2.3 GaussCSE 115

To handle asymmetric relationships between sen- 116

tences, we fine-tune pre-trained language models 117

for representing sentences as Gaussian distributions 118

via contrastive learning. We call this approach 119

GaussCSE. First, a sentence sk is fed to BERT, and 120

the sentence’s vector representation vk is obtained 121

from the embedding of the [CLS] token. When 122

using RoBERTa, where the [CLS] token does not 123

exist, the beginning-of-sentence token <s> is used 124

as an alternative. Then, vk is fed to two distinct 125

linear layers, thus obtaining a mean vector µk and 126

a variance vector σk, which is a diagonal compo- 127

nent of a variance-covariance matrix. Note that, 128

for computational efficiency, we adopt the same 129

approach as in the previous study (Luke and An- 130

drew, 2015); that is, we represent the variance by 131

using only the diagonal elements of the variance- 132

covariance matrix. Subsequently, we use µk and σk 133

to obtain a Gaussian distribution Nk as a sentence 134

representation. 135

We then define a similarity measure by the fol- 136

lowing equation to measure the asymmetric simi- 137

larity of sentence si with respect to sentence sj : 138

sim(si||sj) =
1

1 +DKL(Ni||Nj)
. (2) 139

Because the KL divergence’s range is [0,∞), the 140

range of sim(si||sj) is (0, 1]. When the variance of 141

Ni is greater than the variance of Nj , DKL(Ni||Nj) 142

tends to be larger than DKL(Nj ||Ni), which means 143

that sim(sj ||si) tends to be larger than sim(si||sj). 144

When learning entailment relations, as with 145

word representation by Gaussian embedding, 146

GaussCSE performs learning such that the embed- 147

ding of a sentence that entails another sentence 148

has greater variance than the embedding of the 149

sentence that is entailed. To achieve this, we use 150

sentence pairs in an entailment relationship and 151

increase the variance for premise (pre) sentences 152

while decreasing it for hypothesis (hyp) sentences 153

in NLI datasets. This is accomplished by train- 154

ing the model to increase sim(hyp||pre) relative 155

to sim(pre||hyp) in accordance with the character- 156

istics of the KL divergence as described above. 157

Conversely, we decrease sim(hyp||pre) when the 158

premise does not entail the hypothesis, thus indicat- 159

ing that the sentences are not semantically related. 160

2



As the KL divergence is more sensitive to differ-161

ences in the mean than differences in the variance,162

this operation is expected to increase the distance163

between the two sentences’ distributions.164

Following the supervised SimCSE approach, we165

use contrastive learning with NLI datasets to train166

the model. During training, we aim to increase the167

similarity between positive examples and decrease168

the similarity between negative examples. We use169

the following three sets for positive and negative170

examples.171

Entailment set The set of premise and hypothesis172

pairs labeled with “entailment.” These seman-173

tically similar sentences are brought closer to174

each other.175

Contradiction set The set of premise and hypoth-176

esis pairs labeled with “contradiction.” These177

sentences with no entailment are used as neg-178

ative examples and are spread apart from each179

other.180

Reversed set The set of sentence pairs obtained181

by reversing each pair in the “entailment set.”182

These sentences, whose entailment relation183

is reversed, are used as negative examples to184

increase the variance of premise sentences and185

decrease the variance of hypothesis sentences.186

We compute sim(hyp||pre) for both positive and187

negative examples. Specifically, the similarities of188

positive and negative examples in the three sets are189

computed by using n triplets of sentences (si, s+i ,190

s−i ), where si is premise, s+i and s−i are entailment191

and contradiction hypotheses. The loss function192

for contrastive learning is defined as follows:193

VE = Σn
j=1e

sim(s+j ||si)/τ ,194

VC = Σn
j=1e

sim(s−j ||si)/τ ,195

VR = Σn
j=1e

sim(sj ||s+i )/τ ,196

L =
n∑

i=1

− log
esim(s+i ||si)/τ

VE + VC + VR
, (3)197

where n is a batch size and τ is a temperature198

hyperparameter.199

By performing learning with such a loss function,200

the model is expected to learn close mean vectors201

for sentences that are semantically similar. For202

entailment pairs, it is expected that the variance of203

the entailing sentence will become large and that204

of the entailed sentence will become small.205

3 Experiments 206

We validated the effectiveness of GaussCSE 207

through experiments on two tasks: NLI and predic- 208

tion of the entailment direction. 209

3.1 NLI Task 210

We evaluated GaussCSE by comparing it with 211

previous methods for recognizing textual entail- 212

ment. NLI tasks usually perform three-way clas- 213

sification, but we performed two-way classifica- 214

tion by collapsing the “neutral” and “contradiction” 215

cases as “non-entailment,” following revious stud- 216

ies on sentence embeddings. When the value of 217

sim(hyp||pre) was greater than a threshold, the re- 218

lation was classified as “entailment”; otherwise, it 219

was classified as “non-entailment.” 220

We used the Stanford NLI (SNLI) (Bowman 221

et al., 2015), Multi-Genre NLI (MNLI) (Williams 222

et al., 2018), and SICK (Marelli et al., 2014) 223

datasets for evaluation.2 224

We adopted the accuracy as the evaluation metric 225

and we used the threshold that achieved the highest 226

accuracy on the development set to calculate the 227

accuracy. 228

3.2 Entailment Direction Prediction Task 229

To validate that GaussCSE can capture asymmetric 230

relationships, we performed the task of predicting 231

which sentence entailed the other when given two 232

sentences A and B in an entailment relation. We 233

used the similarity to determine the entailment di- 234

rection, where A is determined to be the entailing 235

sentence if sim(B||A) was larger than sim(A||B). 236

For this task, we used only sentence pairs labeled 237

“entailment” in the datasets, and we adopted the 238

accuracy as the evaluation metric. Note that SICK 239

has instances with the bilateral entailment label. As 240

there is no unique entailment direction between a 241

pair of such sentences, we excluded such sentence 242

pairs from the dataset in this experiment. 243

3.3 Experimental Setup 244

We used BERT-base, BERT-large, RoBERTa-base, 245

and RoBERTa-large in transformers3 as pre-trained 246

language models, and report the results for BERT- 247

base and RoBERTa-large in Section 3.4.4 Follow- 248

ing Gao et al. (2021), we combined the SNLI and 249

2The details of each dataset are in Appendix A
3https://github.com/huggingface/transformers
4All the experimental results are in Appendix B and C.
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Model Loss function SNLI MNLI SICK Avg.
SimCSE (BERT-base) 74.96 78.18 86.11 79.75

ent 72.44 67.92 67.70 69.35
BERT ent+con 77.63 77.71 80.38 78.57
-base ent+rev 69.32 66.04 67.93 67.76

ent+con+rev 76.64 76.85 83.15 78.88
ent 72.54 68.67 69.96 70.39

RoBERTa ent+con 78.05 79.96 81.05 79.68
-large ent+rev 69.17 66.47 67.84 67.82

ent+con+rev 76.68 79.07 84.17 79.97

Table 1: Experimental results of the NLI task.

MNLI datasets to form the training dataset. We con-250

ducted a statistical test for differences in accuracies251

when using the same pre-trained language model252

and dataset. Specifically, we tested the differences253

in accuracies obtained by the different loss func-254

tions with McNemar’s test at a significance level of255

0.05. Details of other configurations are provided256

in the Appendix D.257

We conducted experiments with four different258

loss functions, each with different training data:259

the entailment set alone (ent), the entailment and260

contradiction sets (ent+con), the entailment and261

reversed sets (ent+rev), and all sets (ent+con+rev).262

3.4 Results263

NLI task Table 1 lists the experimental results264

of the NLI task. The performance of supervised265

SimCSE5 trained on BERT-base is given as a base-266

line. Among the four settings, those using both267

the entailment and contradiction sets (ent+con and268

ent+con+rev) performed relatively well, achieving269

comparable performance to that of SimCSE. Be-270

cause the reversed set comprised semantically sim-271

ilar sentence pairs, treating such similar sentence272

pairs as negative examples did not contribute to273

performance in the NLI task.274

Entailment Direction Prediction Task Table 2275

lists the experimental results of entailment direc-276

tion prediction. The performance of a baseline277

method which determines longer sentence as en-278

tailing one (length-baseline) is also given. We can279

see that the leveraging of the reversed set signifi-280

cantly improved the accuracy, and outperformed281

the baseline method. This indicates that GaussCSE282

succeeds in acquiring embeddings that can recog-283

nize the direction of the entailment by using the284

reverse set as negative examples.285

Regarding the differences in accuracy among286

the datasets, accuracies of over 97% and over 93%287

5https://github.com/princeton-nlp/SimCSE

Model Loss function SNLI MNLI SICK Avg.
Length-baseline 92.63 82.64 69.14 81.47

ent 64.84 61.11 60.10 62.01
BERT ent+con 64.55 56.84 69.67 63.68
-base ent+rev 97.60 92.64 87.80 92.68

ent+con+rev 97.38 91.92 86.22 91.84
ent 66.91 60.88 61.56 63.11

RoBERTa ent+con 64.57 55.31 71.38 63.75
-large ent+rev 97.89 93.97 88.71 93.52

ent+con+rev 97.42 93.61 86.57 92.53

Table 2: Experimental results of the entailment direction
prediction task.

were achieved on the SNLI and MNLI datasets, 288

respectively, whereas the accuracy on the SICK 289

dataset was relatively low, 89% at the highest. 290

These results were presumably due to the datasets’ 291

characteristics regarding the different lengths of 292

sentence pairs.6 However, the fact that GaussCSE 293

achieved 89% accuracy by leveraging the reversed 294

set even on the SICK dataset indicates that it took 295

the semantic content of sentences into account in 296

capturing entailment relationships. 297

Considering the overall experimental results of 298

the two tasks, we can conclude that by leveraging 299

both contradiction and reverse sets as negative ex- 300

amples, GaussCSE could achieve high accuracy 301

in predicting the direction of entailment relations 302

while retaining the performance of the NLI task. 303

4 Conclusion 304

In this paper, we have presented GaussCSE, a 305

Gaussian-distribution-based contrastive sentence 306

embedding to handle asymmetric relationships be- 307

tween sentences. GaussCSE fine-tunes pre-trained 308

language models via contrastive learning with 309

asymmetric similarity. Through experiments on the 310

NLI task and entailment direction prediction, we 311

have demonstrated that GaussCSE achieves com- 312

parative performance to previous methods on NLI 313

task and also accurately estimate the direction of 314

entailment relations, which is difficult with conven- 315

tional sentence representations. 316

In this study, we used a Gaussian distribution to 317

represent the spread of the meaning of a sentence 318

in the embedding space, we would like to conduct 319

a comparison with the use of other types of embed- 320

ding, such as Hyperbolic Embeddings (Nickel and 321

Kiela, 2017) or Box Embeddings (Dasgupta et al., 322

2022) in future work. 323

6Sentence length ratios of these datasets are provided in
Appendix E.
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Limitations324

Our proposed method involves supervised learn-325

ing to acquire Gaussian-based sentence represen-326

tations, but the optimal choices of the probability327

distribution and domain representation are not yet328

known. Additionally, for low-resource languages329

on which large-scale NLI datasets may not be avail-330

able for use as supervised training data, alternative331

training approaches will need to be explored. To ad-332

dress these challenges, future investigations could333

consider alternative embedding methods such as334

box embeddings going beyond Gaussian-based ap-335

proaches, as well as experiments using multilingual336

models. Furthermore, it would be beneficial to ex-337

plore unsupervised learning techniques that are less338

dependent on language resources.339
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A Details of NLI Datasets451

SNLI, MNLI and SICK datasets comprise pairs452

of premise and hypothesis sentences. SNLI con-453

tains approximately 570,000 sentence pairs, where454

the premise sentences were obtained by crawling455

image descriptions, and the hypothesis sentences456

were manually generated and annotated by human457

annotators. MNLI contains approximately 430,000458

sentence pairs, and its construction method was459

similar to that of SNLI. The key difference is that460

MNLI includes premise sentences from both writ-461

ten and spoken speech in a wider range of styles,462

degrees of formality, and topics as compared to463

SNLI. SICK contains approximately 10,000 sen-464

tence pairs. Like SNLI, the premise sentences in465

SICK were constructed from sources such as image466

descriptions; however, a portion of the premise sen-467

tences was automatically replaced by using specific468

rules to generate the hypothesis sentences.469

B Full Results of the NLI Task470

Table 3 shows experimental results of the NLI task471

for all pre-trained models. In addition to accuracy472

(Acc.), we adopted area under the precision-recall473

curve (AUPRC) as the evaluation metrics for this474

NLI task. To calculate the AUPRC, we varied the475

threshold for determining whether two sentences476

were in an entailment relation from 0 to 1 in steps477

of 0.001.478

C Full Results of the Entailment479

Direction Prediction Task480

Table 4 shows experimental results of the entail-481

ment direction prediction task for all pre-trained482

models.483

D Detail of Experimental Setup 484

The fine-tuning epoch size is 3, the tempera- 485

ture hyperparameter is 0.05, and the optimizer 486

is AdamW (Ilya and Frank, 2019). The embed- 487

ding dimensions were 768 for BERT-base and 488

RoBERTa-base and 1024 for BERT-large and 489

RoBERTa-large. These settings are the same 490

as SimCSE (Gao et al., 2021). Fine-tuning for 491

BERT-base and RoBERTa-base took about 40 min- 492

utes on a single NVIDIA A100. Fine-tuning for 493

BERT-large and RoBERTa-large took about 2 hours 494

on the same GPU. We carry out grid-search of 495

batch size ∈ {16, 32, 64, 128} and learning rate 496

∈ {1e−5, 3e−5, 5e−5} on the SNLI development 497

set, then used the best-performing combination in 498

the in-training evaluation described below. The 499

learning rate is 0 at the beginning and increases 500

linearly to a set value in the final step. Table 5 501

summarizes the detailed grid-search results. The 502

values in the table represent the AUC values of 503

the precision-recall curve for the NLI task for each 504

batch size and learning rate, where each value was 505

multiplied by 100. 506

In each experiment, the AUC of the precision- 507

recall curve for the NLI task on the SNLI de- 508

velopment set was calculated every 100 training 509

steps, and the model with the best performance 510

was used for the final evaluation on the test set. We 511

conducted experiments with five different random 512

seeds, and their mean was used as the evaluation 513

score. 514

E Ratio of Length of Sentence Pairs 515

Figure 2 shows histograms of the ratios of the 516

length of the premise sentence to that of the hy- 517

pothesis sentence for each sentence pair in each 518

dataset. 519
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Model Loss function SNLI MNLI SICK
Acc. AUPRC Acc. AUPRC Acc. AUPRC

SimCSE (BERT-base) 74.96 66.76 78.18 75.88 86.11 81.41
ent 72.44 60.65 67.92 56.96 67.70 68.26

BERT ent+con 77.63 70.95 77.71 74.21 80.38 82.12
-base ent+rev 69.32 54.21 66.04 53.87 67.93 63.60

ent+con+rev 76.64 67.07 76.85 71.34 83.15 79.45
ent 73.51 62.79 69.88 61.96 70.85 72.56

BERT ent+con 77.79 71.11 78.31 75.23 81.24 83.73
-large ent+rev 69.46 54.67 66.23 55.28 68.13 64.73

ent+con+rev 77.02 68.02 77.86 73.65 83.73 80.99
ent 72.10 59.98 68.77 58.39 67.50 67.02

RoBERTa ent+con 77.60 70.58 78.76 75.90 81.21 83.26
-base ent+rev 69.35 54.21 66.19 54.50 66.54 61.90

ent+con+rev 76.37 66.39 77.74 73.01 82.95 80.46
ent 72.54 60.74 68.67 60.21 69.96 72.01

RoBERTa ent+con 78.05 71.41 79.96 78.12 81.05 84.91
-large ent+rev 69.17 54.54 66.47 55.96 67.84 68.05

ent+con+rev 76.68 67.14 79.07 75.58 84.17 82.41

Table 3: Experimental results of the NLI task for all combination of a pre-trained model and loss function.

Model Loss function SNLI MNLI SICK Avg.
Length-baseline 92.63 82.64 69.14 81.47

ent 64.84 61.11 60.10 62.01
BERT ent+con 64.55 56.84 69.67 63.68
-base ent+rev 97.60 92.64 87.80 92.68

ent+con+rev 97.38 91.92 86.22 91.84
ent 62.06 60.09 62.09 61.41

BERT ent+con 62.43 54.87 69.01 62.10
-large ent+rev 97.66 92.76 88.03 92.81

ent+con+rev 97.55 93.11 85.94 92.20
ent 65.84 60.41 59.69 61.98

RoBERTa ent+con 65.66 55.24 69.97 63.62
-base ent+rev 97.74 93.15 87.90 92.93

ent+con+rev 97.44 93.10 88.43 92.99
ent 66.91 60.88 61.56 63.11

RoBERTa ent+con 64.57 55.31 71.38 63.75
-large ent+rev 97.89 93.97 88.71 93.52

ent+con+rev 97.42 93.61 86.57 92.53

Table 4: Experimental results of the entailment direc-
tion prediction task for all combination of a pre-trained
model and loss function.

Model Batch size Learning rate
1e-5 3e-5 5e-5

BERT-base

16 63.05 65.72 66.21
32 62.02 64.69 64.84
64 60.44 62.93 64.20
128 58.99 61.26 62.66

BERT-large

16 64.66 65.65 61.09
32 63.73 65.56 63.42
64 62.24 65.01 62.46

128 60.72 63.41 64.68

RoBERTa-base

16 64.66 65.78 66.31
32 63.06 65.09 65.68
64 61.59 64.18 64.95
128 60.48 62.54 63.84

RoBERTa-large

16 66.22 67.17 61.69
32 65.96 67.10 60.64
64 64.26 66.01 66.88

128 63.07 64.91 65.72

Table 5: Grid-search results.
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0
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100

150 MNLI

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0
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Figure 2: Histograms representing the distributions of
the logarithmic values of the length ratios of the premise
sentences and their corresponding hypothesis sentences
in the SNLI, MNLI, and SICK datasets. The horizontal
axis represents the logarithm of the length ratio, and the
vertical axis represents the number of sentence pairs.
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