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Abstract

Recent progress in sentence embedding, which
represents a sentence’s meaning as a point
in a vector space, has achieved high perfor-
mance on several tasks such as the semantic
textual similarity (STS) task. However, a sen-
tence representation cannot adequately express
the diverse information that sentences contain:
for example, such representations cannot natu-
rally handle asymmetric relationships between
sentences. This paper proposes GaussCSE, a
Gaussian-distribution-based contrastive learn-
ing framework for sentence embedding that can
handle asymmetric inter-sentential relations, as
well as a similarity measure for identifying en-
tailment relations. Our experiments show that
GaussCSE achieves performance comparable
to that of previous methods on natural language
inference (NLI) tasks, and that it can estimate
the direction of entailment relations, which is
difficult with point representations.

1 Introduction

Sentence embeddings are representations to de-
scribe a sentence’s meaning and are widely used in
natural language tasks such as document classifica-
tion (Liu et al., 2021), sentence retrieval (Wu et al.,
2022), and question answering (Liu et al., 2020). In
recent years, machine-learning-based sentence em-
bedding methods with pre-trained language models
have become mainstream, and various methods
for learning sentence embeddings have been pro-
posed (Reimers and Gurevych, 2019; Gao et al.,
2021). Howeyver, as these methods represent a sen-
tence as a point in a vector space and primarily use
symmetric measures such as the cosine similarity
to measure the similarity between sentences, they
cannot capture asymmetric relationships between
two sentences, such as entailment and hierarchica
relations.

In this paper, we propose GaussCSE, a Gaussian-
distribution-based contrastive sentence embedding
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Figure 1: Sentence representations in embedding spaces
of a previous method (left) and GaussCSE (right).

to handle such asymmetric relationships between
sentences by extending Gaussian embedding for
words (Luke and Andrew, 2015). Figure 1 shows
examples of sentence representations obtained by
a previous method and by GaussCSE. Whereas the
previous method represents a sentence as a point,
GaussCSE represents a sentence as a region in the
embedding space, and when two sentences have an
entailment relation, the embedding of the entailing
sentence contains the embedding of the entailed
one. In these examples, S1 entails S2, but with
previous methods, it is difficult to determine the
entailment relation only from their embeddings. In
contrast, by taking into account the variances of
the distributions, GaussCSE can capture the asym-
metric relationship where S1 entails S2 but S2 does
not entail S1, as well as the fact that S3 is not in
the entailment relationship with either S1 or S2.

To validate the usefulness of GaussCSE, we per-
formed comparative experiments on two tasks: the
natural language inference (NLI) task, and the task
of predicting the entailment direction. The results
demonstrate that GaussCSE can accurately predict
the entailment direction while maintaining good
performance on the NLI task.'

'We will publish our code and fine-tuned models upon
acceptance.



2 Sentence Representations via Gaussian
Embedding

GaussCSE is a method to obtain Gaussian embed-
dings of sentences by fine-tuning a pre-trained lan-
guage model through contrastive learning. In this
section, we first review a representative study of
Gaussian embeddings and then review SimCSE,
a method that acquires sentence embeddings via
contrastive learning. We then describe GaussCSE,
which extends those approaches.

2.1 Gaussian Embedding

One representative study on Gaussian embeddings
sought to embed a word as a Gaussian distribu-
tion NV (Luke and Andrew, 2015). In this method,
the embedding N; of a word w; is represented as
N (x; i, ;) by using the mean vector y; in n-
dimensional space and the variance-covariance ma-
trix ;.

The similarity between two words is measured
using the Kullback-Leibler (KL) divergence, as
defined by the following equation:

Dxr(Ni||Nj) =

N (@5 i, 4)

r€eR™

log N (@5 i, £i) )
N (@; pj, 2j)

The KL divergence is an asymmetric measure
whose value changes when the arguments are re-
versed, which makes it suitable for capturing asym-
metric relationships between embeddings, such as
entailment relations.

2.2 Supervised SimCSE

In recent years, there has been a significant amount
of research on methods for acquiring vector-based
sentence embeddings (e.g., Zhang et al., 2020; Li
et al., 2020; Tsukagoshi et al., 2021; Jiang et al.,
2022; Chuang et al., 2022; Klein and Nabi, 2022).
One of the most representative methods is super-
vised SimCSE (Gao et al., 2021), which trains sen-
tence embedding models through contrastive learn-
ing on NLI datasets.

NLI datasets contain collections of sentence
pairs, where each pair comprises a premise and
a hypothesis and is labeled with “entailment,” “neu-
tral,” or “contradiction.” Specifically, supervised
SimCSE uses sentence pairs labeled with “entail-
ment” as positive examples and those labeled with
“contradiction” as hard negative examples. This
approach achieves high performance on semantic
textual similarity (STS) tasks, which evaluate how

well sentence embedding models capture the se-
mantic similarities between the sentences in a pair.

2.3 GaussCSE

To handle asymmetric relationships between sen-
tences, we fine-tune pre-trained language models
for representing sentences as Gaussian distributions
via contrastive learning. We call this approach
GaussCSE. First, a sentence sy, is fed to BERT, and
the sentence’s vector representation vy, is obtained
from the embedding of the [CLS] token. When
using RoBERTa, where the [CLS] token does not
exist, the beginning-of-sentence token <s> is used
as an alternative. Then, v, is fed to two distinct
linear layers, thus obtaining a mean vector pj, and
a variance vector oy, which is a diagonal compo-
nent of a variance-covariance matrix. Note that,
for computational efficiency, we adopt the same
approach as in the previous study (Luke and An-
drew, 2015); that is, we represent the variance by
using only the diagonal elements of the variance-
covariance matrix. Subsequently, we use . and o,
to obtain a Gaussian distribution IV, as a sentence
representation.

We then define a similarity measure by the fol-
lowing equation to measure the asymmetric simi-
larity of sentence s; with respect to sentence s;:
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Because the KL divergence’s range is [0, 00), the
range of sim(s;||s;) is (0, 1]. When the variance of
N; is greater than the variance of N;, Dxr,(N;||N;)
tends to be larger than Dy, (N;||N;), which means
that sim(s;||s;) tends to be larger than sim(s;||s;).

When learning entailment relations, as with
word representation by Gaussian embedding,
GaussCSE performs learning such that the embed-
ding of a sentence that entails another sentence
has greater variance than the embedding of the
sentence that is entailed. To achieve this, we use
sentence pairs in an entailment relationship and
increase the variance for premise (pre) sentences
while decreasing it for hypothesis (hyp) sentences
in NLI datasets. This is accomplished by train-
ing the model to increase sim(hyp||pre) relative
to sim(pre||hyp) in accordance with the character-
istics of the KL divergence as described above.
Conversely, we decrease sim(hyp||pre) when the
premise does not entail the hypothesis, thus indicat-
ing that the sentences are not semantically related.



As the KL divergence is more sensitive to differ-
ences in the mean than differences in the variance,
this operation is expected to increase the distance
between the two sentences’ distributions.

Following the supervised SimCSE approach, we
use contrastive learning with NLI datasets to train
the model. During training, we aim to increase the
similarity between positive examples and decrease
the similarity between negative examples. We use
the following three sets for positive and negative
examples.

Entailment set The set of premise and hypothesis
pairs labeled with “entailment.” These seman-
tically similar sentences are brought closer to
each other.

Contradiction set The set of premise and hypoth-
esis pairs labeled with “contradiction.” These
sentences with no entailment are used as neg-
ative examples and are spread apart from each
other.

Reversed set The set of sentence pairs obtained
by reversing each pair in the “entailment set.”
These sentences, whose entailment relation
is reversed, are used as negative examples to
increase the variance of premise sentences and
decrease the variance of hypothesis sentences.

We compute sim(hyp||pre) for both positive and
negative examples. Specifically, the similarities of
positive and negative examples in the three sets are
computed by using n triplets of sentences (s;, s;r,
s; ), where s; is premise, s;“ and s; are entailment
and contradiction hypotheses. The loss function
for contrastive learning is defined as follows:
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where n is a batch size and 7 is a temperature
hyperparameter.

By performing learning with such a loss function,
the model is expected to learn close mean vectors
for sentences that are semantically similar. For
entailment pairs, it is expected that the variance of
the entailing sentence will become large and that
of the entailed sentence will become small.

3 Experiments

We validated the effectiveness of GaussCSE
through experiments on two tasks: NLI and predic-
tion of the entailment direction.

3.1 NLI Task

We evaluated GaussCSE by comparing it with
previous methods for recognizing textual entail-
ment. NLI tasks usually perform three-way clas-
sification, but we performed two-way classifica-
tion by collapsing the “neutral” and “contradiction”
cases as “non-entailment,” following revious stud-
ies on sentence embeddings. When the value of
sim(hyp||pre) was greater than a threshold, the re-
lation was classified as “entailment’; otherwise, it
was classified as “non-entailment.”

We used the Stanford NLI (SNLI) (Bowman
et al., 2015), Multi-Genre NLI (MNLI) (Williams
et al., 2018), and SICK (Marelli et al., 2014)
datasets for evaluation.?

We adopted the accuracy as the evaluation metric
and we used the threshold that achieved the highest
accuracy on the development set to calculate the
accuracy.

3.2 Entailment Direction Prediction Task

To validate that GaussCSE can capture asymmetric
relationships, we performed the task of predicting
which sentence entailed the other when given two
sentences A and B in an entailment relation. We
used the similarity to determine the entailment di-
rection, where A is determined to be the entailing
sentence if sim(B||A) was larger than sim(A||B).
For this task, we used only sentence pairs labeled
“entailment” in the datasets, and we adopted the
accuracy as the evaluation metric. Note that SICK
has instances with the bilateral entailment label. As
there is no unique entailment direction between a
pair of such sentences, we excluded such sentence
pairs from the dataset in this experiment.

3.3 Experimental Setup

We used BERT-base, BERT-large, RoOBERTa-base,
and RoBERTa-large in transformers? as pre-trained
language models, and report the results for BERT-
base and RoBERTa-large in Section 3.4.* Follow-
ing Gao et al. (2021), we combined the SNLI and

The details of each dataset are in Appendix A
3https: //github.com/huggingface/transformers
4All the experimental results are in Appendix B and C.
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Model Loss function | SNLI MNLI SICK | Avg. Model Loss function | SNLI MNLI SICK | Avg.
SimCSE (BERT-base) 7496 78.18 86.11 | 79.75 Length-baseline 92.63 82.64 69.14 | 81.47
ent 7244 6792 67.70 | 69.35 ent 64.84 61.11 60.10 | 62.01
BERT ent+con 77.63 77.71 80.38 | 78.57 BERT ent+con 64.55 56.84 69.67 | 63.68
-base ent+rev 69.32 66.04 67.93 | 67.76 -base ent+rev 97.60 92.64 87.80 | 92.68
ent+con+rev 76.64 76.85 83.15 | 78.88 ent+con+rev 97.38 91.92 86.22 | 91.84
ent 72.54 68.67 69.96 | 70.39 ent 66.91 60.88 61.56 | 63.11
RoBERTa ent+con 78.05 79.96 81.05 | 79.68 RoBERTa ent+con 64.57 55.31 7138 | 63.75
-large ent+rev 69.17 6647 67.84 | 67.82 -large ent+rev 97.89 93.97 88.71 | 93.52
ent+con+rev 76.68 79.07 84.17 | 79.97 ent+con+rev 97.42 93.61 86.57 | 92.53

Table 1: Experimental results of the NLI task.

MNLI datasets to form the training dataset. We con-
ducted a statistical test for differences in accuracies
when using the same pre-trained language model
and dataset. Specifically, we tested the differences
in accuracies obtained by the different loss func-
tions with McNemar’s test at a significance level of
0.05. Details of other configurations are provided
in the Appendix D.

We conducted experiments with four different
loss functions, each with different training data:
the entailment set alone (ent), the entailment and
contradiction sets (ent+con), the entailment and
reversed sets (ent+rev), and all sets (ent+con+rev).

3.4 Results

NLI task Table 1 lists the experimental results
of the NLI task. The performance of supervised
SimCSE>? trained on BERT-base is given as a base-
line. Among the four settings, those using both
the entailment and contradiction sets (ent+con and
ent+con+rev) performed relatively well, achieving
comparable performance to that of SimCSE. Be-
cause the reversed set comprised semantically sim-
ilar sentence pairs, treating such similar sentence
pairs as negative examples did not contribute to
performance in the NLI task.

Entailment Direction Prediction Task Table 2
lists the experimental results of entailment direc-
tion prediction. The performance of a baseline
method which determines longer sentence as en-
tailing one (length-baseline) is also given. We can
see that the leveraging of the reversed set signifi-
cantly improved the accuracy, and outperformed
the baseline method. This indicates that GaussCSE
succeeds in acquiring embeddings that can recog-
nize the direction of the entailment by using the
reverse set as negative examples.

Regarding the differences in accuracy among
the datasets, accuracies of over 97% and over 93%

Shttps://github.com/princeton-nlp/SimCSE

Table 2: Experimental results of the entailment direction
prediction task.

were achieved on the SNLI and MNLI datasets,
respectively, whereas the accuracy on the SICK
dataset was relatively low, 89% at the highest.
These results were presumably due to the datasets’
characteristics regarding the different lengths of
sentence pairs.® However, the fact that GaussCSE
achieved 89% accuracy by leveraging the reversed
set even on the SICK dataset indicates that it took
the semantic content of sentences into account in
capturing entailment relationships.

Considering the overall experimental results of
the two tasks, we can conclude that by leveraging
both contradiction and reverse sets as negative ex-
amples, GaussCSE could achieve high accuracy
in predicting the direction of entailment relations
while retaining the performance of the NLI task.

4 Conclusion

In this paper, we have presented GaussCSE, a
Gaussian-distribution-based contrastive sentence
embedding to handle asymmetric relationships be-
tween sentences. GaussCSE fine-tunes pre-trained
language models via contrastive learning with
asymmetric similarity. Through experiments on the
NLI task and entailment direction prediction, we
have demonstrated that GaussCSE achieves com-
parative performance to previous methods on NLI
task and also accurately estimate the direction of
entailment relations, which is difficult with conven-
tional sentence representations.

In this study, we used a Gaussian distribution to
represent the spread of the meaning of a sentence
in the embedding space, we would like to conduct
a comparison with the use of other types of embed-
ding, such as Hyperbolic Embeddings (Nickel and
Kiela, 2017) or Box Embeddings (Dasgupta et al.,
2022) in future work.

®Sentence length ratios of these datasets are provided in
Appendix E.
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Limitations

Our proposed method involves supervised learn-
ing to acquire Gaussian-based sentence represen-
tations, but the optimal choices of the probability
distribution and domain representation are not yet
known. Additionally, for low-resource languages
on which large-scale NLI datasets may not be avail-
able for use as supervised training data, alternative
training approaches will need to be explored. To ad-
dress these challenges, future investigations could
consider alternative embedding methods such as
box embeddings going beyond Gaussian-based ap-
proaches, as well as experiments using multilingual
models. Furthermore, it would be beneficial to ex-
plore unsupervised learning techniques that are less
dependent on language resources.
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A Details of NLI Datasets

SNLI, MNLI and SICK datasets comprise pairs
of premise and hypothesis sentences. SNLI con-
tains approximately 570,000 sentence pairs, where
the premise sentences were obtained by crawling
image descriptions, and the hypothesis sentences
were manually generated and annotated by human
annotators. MNLI contains approximately 430,000
sentence pairs, and its construction method was
similar to that of SNLI. The key difference is that
MNLI includes premise sentences from both writ-
ten and spoken speech in a wider range of styles,
degrees of formality, and topics as compared to
SNLI. SICK contains approximately 10,000 sen-
tence pairs. Like SNLI, the premise sentences in
SICK were constructed from sources such as image
descriptions; however, a portion of the premise sen-
tences was automatically replaced by using specific
rules to generate the hypothesis sentences.

B Full Results of the NLI Task

Table 3 shows experimental results of the NLI task
for all pre-trained models. In addition to accuracy
(Acc.), we adopted area under the precision-recall
curve (AUPRC) as the evaluation metrics for this
NLI task. To calculate the AUPRC, we varied the
threshold for determining whether two sentences
were in an entailment relation from O to 1 in steps
of 0.001.

C Full Results of the Entailment
Direction Prediction Task

Table 4 shows experimental results of the entail-
ment direction prediction task for all pre-trained
models.

D Detail of Experimental Setup

The fine-tuning epoch size is 3, the tempera-
ture hyperparameter is 0.05, and the optimizer
is AdamW (Ilya and Frank, 2019). The embed-
ding dimensions were 768 for BERT-base and
RoBERTa-base and 1024 for BERT-large and
RoBERTa-large. These settings are the same
as SimCSE (Gao et al., 2021). Fine-tuning for
BERT-base and RoBERTa-base took about 40 min-
utes on a single NVIDIA A100. Fine-tuning for
BERT-large and RoBERTa-large took about 2 hours
on the same GPU. We carry out grid-search of
batch size € {16,32,64, 128} and learning rate
€ {le—5,3e—5,5e—5} on the SNLI development
set, then used the best-performing combination in
the in-training evaluation described below. The
learning rate is O at the beginning and increases
linearly to a set value in the final step. Table 5
summarizes the detailed grid-search results. The
values in the table represent the AUC values of
the precision-recall curve for the NLI task for each
batch size and learning rate, where each value was
multiplied by 100.

In each experiment, the AUC of the precision-
recall curve for the NLI task on the SNLI de-
velopment set was calculated every 100 training
steps, and the model with the best performance
was used for the final evaluation on the test set. We
conducted experiments with five different random
seeds, and their mean was used as the evaluation
score.

E Ratio of Length of Sentence Pairs

Figure 2 shows histograms of the ratios of the
length of the premise sentence to that of the hy-
pothesis sentence for each sentence pair in each
dataset.
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Model Loss function SNLI MNLI SICK
Acc. AUPRC Acc. AUPRC Acc. AUPRC
SimCSE (BERT-base) 7496 66.76 78.18 75.88 86.11 81.41
ent 72.44  60.65 6792 5696 67.70 68.26
BERT ent+con 77.63 7095 77.71 7421 80.38 82.12
-base ent+rev 69.32 5421 66.04 5387 6793 63.60
ent+con+rev 76.64 67.07 7685 71.34 83.15 79.45
ent 73.51 6279 6988 6196 70.85 72.56
BERT ent+con 7779 7111 7831 75.23 81.24 83.73
-large ent+rev 69.46 54.67 6623 5528 68.13 64.73
ent+con+rev 77.02 68.02 77.86 73.65 83.73 80.99
ent 72.10 5998 68.77 5839 67.50 67.02
RoBERTa ent+con 77.60 70.58 78.76 7590 81.21 83.26
-base ent+rev 69.35 5421 66.19 5450 66.54 61.90
ent+con+rev 76.37 6639 7774 7301 8295 80.46
ent 7254 60.74 68.67 6021 69.96 72.01
RoBERTa ent+con 78.05 7141 7996 78.12 81.05 8491
-large ent+rev 69.17 5454 6647 5596 67.84 68.05
ent+con+rev 76.68 67.14 79.07 75.58 84.17 8241

Table 3: Experimental results of the NLI task for all combination of a pre-trained model and loss function.

Model Loss function | SNLI MNLI SICK | Avg.
Length-baseline 92.63 82.64 69.14 | 81.47
ent 64.84 61.11 60.10 | 62.01
BERT ent+con 64.55 56.84 69.67 | 63.68
-base ent+rev 97.60 92.64 87.80 | 92.68
ent+con+rev 97.38 91.92 86.22 | 91.84
ent 62.06 60.09 62.09 | 61.41
BERT  ent+con 6243 5487 69.01 | 62.10 1307 SNH
-large ent+rev 97.66 92.76 88.03 | 92.81
ent+con+rev 97.55 93.11 85.94 | 92.20 1007
ent 65.84 60.41 59.69 | 61.98 50 4
RoBERTa ent+con 65.66 5524 69.97 | 63.62
-base ent+rev 97.74 93.15 87.90 | 92.93 01 . . ' : : : : I
ent+con+rev 97.44 93.10 88.43 | 92.99 -20 -15 -1.0 -05 00 05 1.0 15 2.0
ent 6691 60.88 61.56 | 63.11 150 { MNLI
RoBERTa ent+con 64.57 5531 71.38 | 63.75
-large ent+rev 97.89 93.97 88.71 | 93.52 100 A
ent+con-+rev 97.42 93.61 86.57 | 92.53

50 -
Table 4: Experimental results of the entailment direc-
tion prediction task for all combination of a pre-trained
model and loss function.

-20 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0

1504 SICK
. Learning rate 100 A
Model Batch size le-5 3e.5 50.5
16 63.05 65.72 66.21 501 J‘"‘VH—,_‘\
32 62.02 64.69 64.84
BERT-base 0l . . . : : . . .
16248 gggg g%gz 2;22 -20 -15 -1.0 -05 00 05 1.0 15 20
16 64.66 65.65 61.09 . . . T
32 6373 6556 63.42 Figure 2: Histograms representing the distributions of
BERT-large 64 6224  65.01 62.46 the logarithmic values of the length ratios of the premise
128 60.72 6341 64.68 sentences and their corresponding hypothesis sentences
16 64.66 65.78 66.31 in the SNLI, MNLI, and SICK datasets. The horizontal
RoBERTa-base (35421 gigg gi?g gigg axis represents the logarithm of the length ratio, and the
128 60: 48 62: 54 63: ’4 vertical axis represents the number of sentence pairs.
16 66.22 67.17 61.69
32 6596 67.10 60.64
RoBERTa-large 6| 6426 6601 66.88
128 63.07 6491 65.72

Table 5: Grid-search results.
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