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ABSTRACT

In resilient cooperative multi-agent reinforcement learning (c-MARL), a fraction
of agents exhibit Byzantine behavior, sending fabricated or adversarially crafted
information to hinder the learning process. Unlike existing approaches that often
rely on a central controller or impose stringent behavior requirements on agents,
we propose a fully decentralized method using reward machines (RMs) that can
learn an optimal policy for temporally extended tasks. We introduce a belief-
based Byzantine detection mechanism for discrete-time multi-agent reinforcement
learning (MARL), where defender (non-Byzantine) agents iteratively update prob-
abilistic suspicions of peers using observed actions and rewards. RMs allow us to
encode the temporal dependencies in the reward structure of the task and guide the
learning process. Our methods introduce tabular Q-learning and actor-critic algo-
rithms with reward machines to learn a robust consensus mechanism to isolate the
influence of Byzantine agents, in order to ensure effective learning by defender
agents. We establish theoretical guarantees, demonstrating that our algorithms
converge to an optimal policy. We further evaluate our method against baselines
in two case studies to show its effectiveness and performance.

1 INTRODUCTION

In multi-agent settings, where multiple learners interact within a shared environment, reinforce-
ment learning (RL) enables collaborative exploration and policy optimization. However, real-world
deployments, such as autonomous vehicle networks or distributed sensor arrays often involve dis-
tributed systems where agents communicate locally. One main challenge in these settings arises
from Byzantine agents, which may act arbitrarily or maliciously due to adversarial attacks or mal-
function Lamport & Fischer (1982); Yin et al. (2018), transmitting corrupted data to undermine the
collective learning objective.

RL frameworks assume benign agents or centralized coordination, rendering them vulnerable to such
adversarial disruptions. Recent advances, such as those in distributed RL Alsadat et al. (2025), have
begun addressing robustness, yet many rely on a central server. This work tackles Byzantine-robust
multi-agent RL in a fully decentralized setting, where agents communicate over a time-varying net-
work without a central coordinator. We introduce two novel algorithms: BQL-RM (Belief-based Q-
learning with Reward Machines) and BAC-RM (Belief-based Actor-Critic with Reward Machines)
for resilient multi-agent reinforcement learning (MARL).

In our methods, we use reward machines (RMs) Icarte et al. (2018), which are a type of Mealy
machine that encode the task structure, and provide a structured approach to specify tasks with
Markovian or non-Markovian reward functions for reinforcement learning agents. RMs provide a
formal framework for representing complex Alsadat & Xu (2024), temporally extended tasks in a
way that can guide reinforcement learning similar to temporal logic Aria & Xu (2025), but with the
added advantage of learnable temporal dependencies and allows for transfer learning since it learns
the task structure Icarte et al. (2018). By encoding the reward structure as a finite state machine, RMs
make the temporal dependencies in the task explicit and learnable. This is particularly important
for tasks that depend on temporal structure of the events or have long-term dependencies that are
difficult to capture with standard Markovian reward functions.
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Related Work. In resilient RL, there are several main approaches to handle adversarial agents. One
is to use robust aggregation Huang et al. (2024); Blanchard et al. (2017), another is to use a belief
mechanism for Byzantine detection Li et al. (2023) or considering adversarial agents as uncertainty
in the environment He et al. (2023). Our approach combines decentralized belief updates with RMs
to handle temporally extended tasks without a central coordinator.

Byzantine-Robust Distributed RL: Byzantine resilience in distributed systems traces to Lamport’s
seminal work on fault-tolerant consensus Lamport & Fischer (1982). Recent RL adaptations, such
as Byzan-UCBVI Zhang et al. (2021) requires episodic synchronization, incurring high communi-
cation costs. On the other hand, clique-overweight (COW) Chen et al. (2023), proposes robust mean
estimators for aggregating gradients from untrusted batches. While COW handles arbitrary batch
sizes, it focuses on supervised settings and assumes a central server; a single point of failure in
decentralized MARL. In contrast, our belief mechanism operates fully decentralized.

Adversarial MARL: Adversarial methods like RADAR Phan et al. (2021) co-train the protagonist
and antagonist agents, but require exhaustive adversary sampling, becoming intractable for large
systems. M3DDPG Li et al. (2019) uses minimax optimization for worst-case perturbations but as-
sumes fixed budgets, failing against adaptive adversaries. BARDec-POMDP Li et al. (2023) frames
adversaries as Bayesian types but lacks convergence guarantees. COMA Foerster et al. (2018) and
PPO-QMIX Rashid et al. (2020) excel in cooperation but require fixed agent numbers. Our work
eliminates ratio assumptions and provides rigorous discrete-time analysis with convergence guaran-
tees.

Belief-Based Coordination: Belief systems in ad hoc teamwork Stone et al. (2010); Albrecht &
Ramamoorthy (2015) enable agents to adapt to unknown teammate types. However, these methods
presume cooperative agents with shared objectives, unlike our adversarial setting. Recent exten-
sions Rahman et al. (2021) handle open teams (agents can enter and leave the team), but do not
address Byzantine failures. Closest to our work is Tessler et al. (2018), which uses reward shaping
for robustness, but their mechanism lacks theoretical grounding.

We present a belief-based framework that uses reward machines to encode task structure and guide
learning in cooperative MARL. We further propose a robust Byzantine-detection mechanism over
an augmented state space with provable guarantees. Using these components, we develop two al-
gorithms, a Q-learning approach and an actor-critic method that integrate RMs with our detection
scheme. We provide theoretical proofs establishing convergence to an optimal policy.

2 PROBLEM FORMULATION

We model the environment as a multi-agent labeled Markov decision process (MDP).

Labeled Markov Decision Processes. We define a multi-agent labeled MDP as a tuple M =
(S,N, sI , A, p, γ,P, L) which consists of a finite set of states denoted by S, a finite set of agents
denoted by N such that N = {1, . . . , N} where N ∈ N is the total number of agents, initial states
denoted by sI = {s0I , . . . , sNI} where for each agent i ∈ N we have siI ∈ S , a finite set of joint
actions denoted by A =

∏
i∈N Ai, a transition probability function denoted by P : S × Ai × S →

[0, 1], a discount factor denoted by γ ∈ [0, 1), a finite set of atomic propositions denoted by P , and
a labeling function denoted by L : S ×Ai × S → 2P that maps transitions to sets of propositions.

Reward machines (RMs) are a type of Mealy machine that encode Markovian and non-Markovian
reward functions. They process a sequence of labels to produce rewards.

Definition 1 (Reward machine) A reward machine (RM) is defined as A = ⟨U, uI , 2P ,M, δ, σ⟩
where U is a finite set of states, uI ∈ U is the initial state, 2P is the input alphabet, M ⊆ R is
the output alphabet (which represents its reward), δ : U × 2P 7→ U is the transition function, and
σ : U× 2P 7→M is the output function mapping to reward.

An RM Ai for agent i processes a label sequence li0l
i
1 . . . l

i
k to generate a sequence of RM states

ui0u
i
1 . . . u

i
k and a corresponding reward sequence ri0r

i
1 . . . r

i
k. The initial RM state is ui0 = uiI ,

and subsequent states are determined by uik+1 = δi(uik, l
i
k+1). Rewards are computed as rik =

σi(uik, l
i
k+1). The reward function of the labeled MDP for agent i is replaced with the reward ma-
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chineAi that maps a trajectory si0a
i
0s

i
1a

i
1 . . . s

i
ka

i
ks

i
k+1 with labels li0l

i
1 . . . l

i
k to the reward sequence

ri0r
i
1 . . . r

i
k, as defined by Ai(li0l

i
1 . . . l

i
k).

A policy πi(si, ui, ai) for agent i defines the probability of taking action ai ∈ Ai in MDP state si ∈
S given RM state ui ∈ U. Under policy πi, agent i in MDP state si and RM state ui reaches MDP
state s′ and RM state u′ with probability P (si, ui, ai, si,′, ui,′) after taking action ai. We denote a
trajectory by si0u

i
0a

i
0s

i
1u

i
1a

i
1 . . . s

i
ku

i
ka

i
ks

i
k+1u

i
k+1 where k ∈ N represents a sequence of states and

actions visited by agent i. The corresponding label sequence to a trajectory is λi = l0l1 . . . lk where
lk = L(sik, a

i
k, s

i
k+1). A trace is a pair (λi, ρi) consisting of a label sequence λi and corresponding

reward sequence ρi = ri0r
i
1 . . . r

i
k.

3 METHODOLOGY

In cooperative multi-agent systems, it may be the case that some of the agents are improvised or
malicious, i.e., they are not following the specified policy either due to a malfunction or adversarial
attacks; therefore, experience Byzantine failures Yin et al. (2018); Xue et al. (2021). We characterize
the Byzantine agents by their type θi ∈ {0, 1}, 0 is for defender agents and 1 is for Byzantine agents.
We denote the finite set of types by Θ = ×i∈Nθ

i. In our setting, we assume that the Byzantine
agents can send fabricated or adversarially crafted or adversarially crafted information to hinder the
learning process of defender agents. At the beginning of each episode, we randomly select a fraction
of agents to be Byzantine, i.e., θi = 1 for i ∈ NB where NB ⊆ N is the set of Byzantine agents.
We apply Assumption 1 to ensure that the number of Byzantine agents is less than the number of
defenders, so that the defender can learn a robust policy against Byzantine agents.

Assumption 1 (Byzantine agents number) We apply the constraint to the number of Byzantine
agents, i.e., |N| − |NB | ≥ M |NB | + 1 where M ∈ Z+ \ {0} ensures that the number of defender
agents is at least M times the number of Byzantine agents.

For the Byzantine agents, we assume that they can send fabricated or adversarially crafted or adver-
sarially crafted information to hinder the learning process of defender agents, namely, we character-
ize this attack in our setting by sampling an action from the Byzantine agent’s policy π̂i(· | si, ui, bi),
i.e., âik ∼ π̂i(· | si, ui, bi) and replacing the defender agent’s action ak with âik. Therefore, the
Byzantine agents at time k can send messages to the defender agents, where the defender agents can
use these messages to update their policy. Agents execute the actions simultaneously and transition
to the next state with probability p(sik+1, u

i
k+1, b

i
k+1 | sik, uik, bik, âik). By executing the Byzantine

agent’s action, the defender agents can be misled to learn a suboptimal policy. We assume that the
Byzantine agents can send fabricated information to the defender agents. This assumption is com-
mon in Byzantine-robust RL literature Chen et al. (2023); Zhang et al. (2021). We can write the
value function for each type as follows:

Vθi(si, ui, bi) = Eâi
k∼π̂θi (·|sik,u

i
k,b

i
k)

[ ∞∑
k=0

γkrik

]
(1)

Across the current literature, some methods assume that the Byzantine agents can only send ad-
versarial information to the defender agents, such as M3DDPG Li et al. (2019) and ROMAX Sun
et al. (2022). Our method also uses state-adversarial MDP Zhang et al. (2020) since it considers the
adversary during the decision-making process.

3.1 ADVERSARIAL ATTACK MODEL

There have been studies for single-agent and multi-agent reinforcement learning where adversarial
attacks are in the form of action perturbations Tessler et al. (2019); Li et al. (2019). Moreover, au-
thors in Li et al. (2019) extend the action perturbation model to multi-agent reinforcement learning
by offering a more dynamic and a less conservative alternative to existing methods by treating agent
types as uncertain and using belief updates while remaining robust against adversarial attacks. Ac-
tion uncertainties, often modeled as adversarial attacks like adversarial policies Gleave et al. (2019);
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Wu et al. (2021); Guo et al. (2021) or non-oblivious adversaries Dinh et al. (2023), represent a
practical and disruptive form of attack that is difficult to mitigate. Building upon these works, we
propose a realistic threat model with specific assumptions regarding attackers and defenders.

Assumption 2 (Adversarial Model) During an episode, a fraction of agents are Byzantine, i.e.,
θi = 1 for i ∈ NB , and they can send fabricated information to the defender agents. The defender
agents are unaware of the types of other agents and must learn a robust policy against the worst-
case adversary. The type θi is determined by nature and cannot be changed during an episode Li
et al. (2023).

In our work, there can be more than one Byzantine agent as long as Assumption 1 holds. Despite
similar methods such as Li et al. (2019), we assume that in each episode, more than one agent could
be Byzantine. Additionally, the type space may be more complex, having a non-binary type space
Xie et al. (2022), perturbing actions irregularly Lin et al. (2017). In a resilient cooperative multi-
agent reinforcement learning setting with fixed policies, there exists a worst-case adversary that can
cause the most harm to the defender agents Li et al. (2023). We also assume limitations in defender
agents’ capabilities and information access during the training.

Assumption 3 (defenders’ limitations) We assume that the defender agents can communicate with
each other only through local communication and can only observe their own actions and rewards
and their neighbors’ actions and rewards. The defender agents do not have access to the type θi of
other agents. The defender agents can only observe the labels associated with their own actions. We
also assume that the policy of defender agents is fixed against the Byzantine agents’ policies, π̂i,⋆.

3.2 BELIEF-BASED BYZANTINE DETECTION

In this section, we introduce our belief-based mechanism for detecting Byzantine agents. Each agent
i ∈ N maintains a belief state bij ∈ B where B is a finite set of beliefs for each of its neighbors j ∈ N.
This value represents agent i’s belief that neighbor j is Byzantine. At the start of each episode, the
belief state is initialized to a prior value p ∈ (0, 1). It is then updated iteratively based on the
observed actions and rewards of the neighbors, following the update rules described below.

ζij(k + 1) =

{
ζij(k) + γ+α(1− ζij(k)) if ajk ̸= a⋆,jk ,

ζij(k)− γ−αζij(k) if ajk = a⋆,jk ,
(2)

If the neighbor agent j takes a non-optimal action (by comparing it against its own optimal action in
the same state), that is, ajk ̸= a⋆,jk , the belief state is increased by a factor of γ+α(1− bij(k)), where
γ+ > 0 is the update rate for non-optimal actions and α ∈ (0, 1) is the learning rate. Conversely, if
the neighbor agent j takes an optimal action, i.e., ajk = a⋆,jk , the belief state is decreased by a factor
of γ−αbij(k), where γ− > 0 is the update rate for optimal actions. After each update, the belief
state is discretized into three categories: if bij(k + 1) ≤ βl, the agent i considers the neighbor agent
j as a defender, i.e., Bij = 0; if βl < bij(k + 1) ≤ βu, the agent i considers the neighbor agent j
as suspicious , i.e., Bij = 1; and if bij(k + 1) > βu, the agent i considers the neighbor agent j as
Byzantine, i.e., Bij = 2 where βl, βu ∈ [0, 1] and βl < βu are the lower and upper thresholds for the
belief state, respectively. Theorem 1 shows that the belief update mechanism converges.

Theorem 1 (Belief Update Convergence) The belief update mechanism in equation 2 converges to
the ground truth belief state, where each agent i ∈ N maintains a belief state bij ∈ B for each of its
neighbors j ∈ N.

Proof of Theorem 1 is provided in the Appendix.

Algorithm 1 shows how each agent updates its belief state to detect Byzantine agents. Each agent
i maintains a belief bi about which other agents may be Byzantine, based on observed actions and
rewards. The algorithm allows agents to identify and isolate those sending fabricated or faulty
information. Each agent maintains a probabilistic belief about whether the other agents are Byzan-
tine, updating these beliefs iteratively based on observed actions and rewards. The algorithm be-
gins by initializing the belief states for each agent i ∈ N at time k = 0, where for every agent

4
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Algorithm 1 Belief update for detecting Byzantine agents
Input: Agent set N, initial belief prior p ∈ (0, 1)
Parameter: learning rate α ∈ (0, 1), suspicion threshold β ∈ (0, 1), update rates γ+, γ−, γr > 0
Output: {ζij}, {i, j ∈ N}

1: Function BeliefUpdate()
2: for i ∈ N ∧ k = 0 do
3: for j ∈ N, j ̸= i do
4: ζij(0)← p
5: end for
6: ζii (0)← 0
7: end for
8: for i ∈ N do
9: for j ∈ N ∧ j ̸= i do

10: Observe ajk and rjk
11: Compute optimal action a⋆,jk
12: // Action-based belief update (Equation (2))
13: if ajk ̸= a⋆,jk then
14: ζij(k + 1)← ζij(k) + γ+α(1− ζij(k))
15: else
16: ζij(k + 1)← ζij(k)− γ−αζij(k)
17: end if
18: // Discretize belief state
19: if ζij(k + 1) ≤ βl then
20: Bij ← 0 // Defender
21: else if βl < ζij(k + 1) ≤ βu then
22: Bij ← 1 // Suspicious
23: else
24: Bij ← 2 // Byzantine
25: end if
26: end for
27: end for
28: return {ζij}, {i, j ∈ N}

j ̸= i, agent i assigns an initial belief probability ζij(0) = p, with p ∈ (0, 1) as a prior (Lines
2 to 4), and sets its belief about itself to zero, i.e., ζii (0) = 0 (Line 6). We then iterate over all
agent pairs i and j ̸= i at each time step (Lines 8 to 9) to update belief states for each i and j
at time step k. Agent i observes j’s action ajk (sampling action from Byzantine agents Li et al.
(2023)) and reward rjk (Line 10), and then, using its own value function, each agent i determines
whether the action taken by another agent j was optimal (Line 11). If the observed action differs
from the optimal (Line 13), the belief is increased (i.e., the suspicion that the agent j is Byzan-
tine increases) via ζij(k + 1) ← ζij(k) + γ+α(1 − ζij(k)) (Line 14); otherwise, it decreases via
ζij(k + 1) ← ζij(k) − γ−αζij(k) (Line 16). The belief is then discretized into defender (0), suspi-
cious (1), or Byzantine (2) using thresholds for lower and upper bounds, i.e., βl and βu (Lines 19 to
24), assigning Bij accordingly. Finally, the algorithm returns the set of beliefs probabilities {ζij} for
all agent pairs (Line 28), enabling robust decision-making in the presence of Byzantine agents.

3.3 Q-LEARNING WITH REWARD MACHINES AND BELIEF STATES

In this section, we present our Q-learning algorithm that incorporates reward machines and belief
states to learn robust policies in the presence of Byzantine agents. We extend the standard Q-
learning algorithm to handle reward machines and belief states. The Q-learning algorithm learns a
Q-function Qi(si, ui, bi, ai) for each agent i ∈ N, which represents the expected cumulative reward
for taking action ai in state si with RM state ui and belief state bi. The Q-function is updated using
the Bellman equation shown in Definition 3.

5
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We also incorporate the belief update mechanism from Algorithm 1 to update the belief states of the
agents based on the observed actions and rewards of their neighbors.

Definition 2 (Q-function) The Q-function for agent i is defined as Qi(si, ui, bi, ai), which repre-
sents the expected cumulative reward for taking action ai in state si with RM state ui and belief
state bi.

Definition 3 (Q-learning update) The Q-learning update for agent i is defined as:

Qi(si, ui, bi, ai)← (1− αQ) ·Qi(si, ui, bi, ai)+

αQ · (rik + γ · max
ai,′∈Ai

Qi(si,′, ui,′, bi,′, ai,′)) (3)

where αQ ∈ (0, 1) is the learning rate, γ ∈ [0, 1) is the discount factor, si,′ is the next MDP state,
ui,′ is the next RM state, and bi,′ is the next belief state.

We use Algorithm 2 to train agents using Q-learning with reward machines and belief states. The
proposed algorithm, BQL-RM (belief-based Q-learning with reward machines), is designed to learn
decentralized optimal policies in cooperative multi-agent systems with Byzantine agents. First, we
initialize the algorithm by initializing the Q-function Qi(si, ui, bi, ai) for each agent i ∈ N across
all states si, RM states ui, belief states bi, and actions ai (Line 2). Then we set the initial RM state
to ui0 = uI (Line 3), and initializes belief states bi0 (Line 3). Afterwards, we iterate overQ episodes
(Line 5) where we reset the environment state to si0 (Line 6), reinitialize RM states (Line 7), and
resets belief states using Algorithm 1. Within each episode, a time step loop from k = 0 to T (Line
9) initializes action and belief lists (Line 10), selects actions via an epsilon greedy policy (Line 13),
and updates lists (Line 14). Then each agent executes its action and transitions to a new MDP state
sik+1 (Line 18) and receives a label lik+1 from the environment (Line 19). By receiving the label, the
agent then updates its RM state (Line 21) and receives a reward rik (Line 21). We then update the
belief states every m ∈ Z+ steps (Lines 23 to 25) in order to find and isolate the Byzantine agent.
Afterwards, the Q-values are updated using equation 3 to learn the optimal action-value functions
(Line 31). We then transition to the next time step, following the state updates (Line 32). Finally,
the BQL-RM returns the Q-functions {Qi}i∈N (Line 36), encoding optimal action-value functions
for each agent’s task, in the adversarial context, ensuring robust learning against Byzantine agents.

4 ALGORITHMS

We analyze the convergence properties of BQL-RM and BAC-RM, establishing theoretical guaran-
tees for learning in Byzantine environments. BQL-RM converges to optimal policies under tabular
assumptions, while BAC-RM converges to stationary points with function approximation. Detailed
proofs are in the appendix.

4.1 LEARNING GUARANTEES FOR BQL-RM

BQL-RM convergence analysis extends classical Q-learning results to augmented state spaces with
Byzantine agents and belief updates. First, we require finite state spaces S, U, and B to ensure finite
Q-table dimensions, which is practical since reward machines have finite states and belief spaces
can be discretized.

Second, we require that all state-action pairs (si, ui, bi, ai) are visited infinitely often with probabil-
ity 1. This exploration condition can be satisfied through appropriate ϵ-greedy policies with ϵ > 0
and proper belief update mechanisms that ensure sufficient exploration of the augmented state space.

Assumption 4 (Infinite Visitation) For each agent i ∈ N and each state-action pair (si, ui, bi, ai)
in the augmented state space, the pair is visited infinitely often:

p

( ∞∑
k=0

I[(sik, uik, bik, aik) = (s, u, b, a)] =∞

)
= 1 (4)

where I[·] is the indicator function.

6
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Algorithm 2 BQL-RM, Belief-based Q-learning with RM
Input: Agent set N, reward machine A, belief update function
Parameter: learning rate αQ ∈ (0, 1), discount factor γ ∈ [0, 1), exploration rate ϵ ∈ (0, 1)
Output: Q-functions {Qi}i∈N

1: for i ∈ N do
2: Qi(s, u, b, a)← InitQ () for all (s, u, b, a)
3: ui0 ← InitRMState (uI) , bi0 ← InitBelS ()
4: end for
5: for episode = 1, . . . ,Q do
6: Initialize environment state si0 for all i ∈ N
7: Reset RM states ui0 ← uI for all i ∈ N
8: Reset belief states using belief update function
9: for k = 0, . . . T do

10: ak ← {}; bk ← {}
11: for i ∈ N do
12: // Action selection with ϵ-greedy policy
13: aik ← GetGreedyAction(Ai)
14: ak ← ak ∪ {aik}, bk ← bk ∪ {bik}
15: end for
16: // Environment transition
17: for i ∈ N do
18: sik+1 ← ExecuteAction(aik, s

i
k)

19: lik+1 = Li(sik, a
i
k, s

i
k+1)

20: // Reward machine transition
21: uik+1 ← δi(uik, l

i
k+1) , rik ← σi(uik, l

i
k+1)

22: end for
23: if mod (k, m) = 0 then
24: // Update belief state based on observations
25: bk+1 ← BeliefUpdate(bk,ak)
26: end if
27: // Update Q-values
28: for i ∈ N do
29: Qi(sik, u

i
k, b

i
k, a

i
k)←

30: (1− αQ)Q
i(sik, u

i
k, b

i
k, a

i
k)+

31: αQ

[
rik + γmaxai,′ Qi(sik+1, u

i
k+1, b

i
k+1, a

i,′)
]

32: sik ← sik+1, uik ← uik+1, bik ← bik+1
33: end for
34: end for
35: end for
36: return {Qi}i∈N

Third, we assume the learning rate sequence {αQ(k)} satisfies the Robbins-Monro conditions, en-
suring appropriate convergence. Additionally, we require that the belief update mechanism provide
asymptotically correct estimates of Byzantine agents.

Under the stated assumptions, we establish the following convergence result:

Theorem 2 (Convergence of BQL-RM) The Q-function learned by BQL-RM converges almost
surely (i.e., with probability 1) to the optimal Q-function:

lim
k→∞

Qi(si, ui, bi, ai) = Qi,∗(si, ui, bi, ai) (5)

where Qi,∗ is the optimal Q-function.

The proof of Theorem 2 (detailed proof in Appendix Section BQL-RM Convergence) follows from
the contraction property of the Bellman operator in the augmented state space and the Markov prop-
erty preservation when beliefs are included as state representation.
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Figure 1: Grid environment showing three agents (orange triangles numbered 0, 1, 2) at their initial
positions and five objects (colored circles labeled a-e) across the grid.

4.2 LEARNING GUARANTEES FOR BAC-RM

For BAC-RM, we use two-timescale stochastic approximation theory where critic updates occur
faster than actor updates. We require Lipschitz continuity of both the policy and Q-function with
respect to their parameters, ensuring stability of the gradient-based updates. Assuming appropriate
two-timescale learning rates with critic updates faster than actor updates, we establish:

Theorem 3 (Convergence of BAC-RM) The parameters learned by BAC-RM converge almost
surely (i.e., with probability 1) to a stationary point (ϕi,∗, ψi,∗) of the objective function:

lim
k→∞

∥∇ϕiJ(ϕik)∥ = 0 (6)

where J(ϕi) is the objective function, ϕi is the actor parameter, and ψi is the critic parameter.

The proof of Theorem 3 uses two-timescale analysis (detailed proof in Appendix Section Actor-
Critic Convergence), where belief-based Byzantine detection ensures unbiased gradient estimates
despite adversarial agents.

5 EXPERIMENTS

We evaluate our proposed algorithms, BQL-RM and BAC-RM, in a cooperative multi-agent setting
with Byzantine agents using a grid-world where three agents cooperate while one provides fabricated
information. The environment tests agents’ ability to identify Byzantine behavior while maximizing
rewards. Our second experiment (Search and Rescue) is presented in the Appendix.

5.1 FORAGING

We consider a foraging scenario where agents navigate a 6× 4 grid-world to collect resources while
dealing with Byzantine agents. This is a variation of level-based foraging (LBF) Papoudakis et al.
(2020) where agents must cooperate to collect assigned resources.

Figure 3 shows results for the foraging task. Both BQL-RM and BAC-RM outperform baselines
without reward machines. PPO-QMIX achieves the highest baseline performance, while COMA
and M3DDPG show limited effectiveness due to the inability to capture temporal dependencies.

Figure 3: Cumulative rewards for the foraging task with Byzantine agents. BQL-RM outperforms
baselines using reward machines and belief states.

The BQL-RM algorithm achieves higher cumulative rewards and converges faster than baselines,
demonstrating the effectiveness of reward machines and belief states in Byzantine-robust c-MARL.
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v0start

v1

v2

v3 v4

(a1, 0)

(c2, 0)

(¬a1 ∧ ¬c2 ∧ ¬d3, 0)

(d3, 0)

(c2 ∨ d3, 0)

(¬c2 ∧ ¬d3, 0)

(a1 ∨ d3, 0)
(¬a1 ∧ ¬d3, 0)

(b12 ∧ e3, 1)

(¬(b12 ∧ e3), 0)
(⊤, 0)

Figure 2: Team-level reward machine for the foraging task. Label a1 indicates Agent 1 has visited
location ′a′, c2 indicates Agent 2 has visited location ′c′, d3 indicates Agent 3 has visited location
′d′, b12 indicates both Agents 1 and 2 have visited location ′b′, and e3 indicates Agent 3 has visited
location ′e′. The team receives a reward only when at least two agents have completed their assigned
tasks.

BAC-RM also performs well but converges more slowly, indicating both algorithms effectively learn
robust policies against Byzantine agents.

5.2 LIMITATIONS AND DISCUSSIONS

Our experiments demonstrate that integrating reward machines with a belief-based detection mech-
anism provides an effective solution for temporally extended tasks in decentralized settings with
local communication. Our proposed framework preserves formal guarantees in the tabular cases
and provides two algorithms, BQL-RM and BAC-RM. These methods strike different trade-offs be-
tween sample efficiency and scalability, yielding faster convergence and higher cumulative returns
across the evaluated benchmarks. While our algorithms perform well in the tabular setting, they
may not scale well to large state and action spaces. Extending the tabular BQL-RM to settings
with function approximation would enable scaling to larger state and action spaces. The current
belief update mechanism compactly models agent types from observed actions, but richer inference
strategies could yield more robust detection under noisy or ambiguous observations. As agent num-
bers increase, network constraints are likely to play a more central role, underscoring the need for
communication-efficient designs. Finally, while our theoretical guarantees hold under the stated
assumptions, we find that empirical performance can be sensitive to hyperparameter choices and
environment dynamics.

6 CONCLUSIONS

We study decentralized Byzantine-resilient cooperative MARL for temporally extended tasks by us-
ing reward machines with a belief-based Byzantine detection mechanism under local agent-to-agent
communication. We demonstrated that our belief update mechanism can effectively identify Byzan-
tine agents over time, enabling robust cooperation among defenders. We introduce two classes of
algorithms, Belief-based Q-learning with Reward Machines (BQL-RM) and Belief-based Actor-
Critic with Reward Machines (BAC-RM) that augment the agent state with RM and belief informa-
tion to isolate malicious influences. We show the convergence of BQL-RM in the tabular setting and
established that BAC-RM converges to stationary points under the stated assumptions. Empirical
results on a foraging grid-world and a search and rescue task shows that our methods learn robust
cooperative behaviors and outperform baseline approaches in the presence of diverse adversaries.
Future work will focus on scaling to large state/action spaces with function approximation, learning
reward-machine structure from data Neider et al. (2021), and transferring the decentralized resilient
framework to real multi-robot and networked systems Li et al. (2022).
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