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Abstract

Instruction-tuning is a widely adopted method of finetuning that enables large
language models (LLMs) to generate output that more closely resembles human
responses to natural language queries, in many cases leading to human-level
performance on diverse testbeds. However, it remains unclear whether instruction-
tuning truly makes LLMs more similar to how humans process language. We
investigate the effect of instruction-tuning on LLM-human similarity in two ways:
(1) brain alignment, the similarity of LLM internal representations to neural activity
in the human language system, and (2) behavioral alignment, the similarity of
LLM and human behavior on a reading task. We assess 25 vanilla and instruction-
tuned LLMs across three datasets involving humans reading naturalistic stories and
sentences, and discover that instruction-tuning generally enhances brain alignment
by an average of 6%, but does not have a similar effect on behavioral alignment. To
identify the factors underlying LLM-brain alignment, we compute the correlation
between the brain alignment of LLMs and various model properties, such as
model size, performance ability on problem-solving benchmarks, and ability on
benchmarks requiring world knowledge spanning various domains. Notably, we
find a strong positive correlation between brain alignment and model size (r =
0.95), as well as performance on tasks requiring world knowledge (r = 0.81). Our
results demonstrate that instruction-tuning LLMs improves both world knowledge
representations and human brain alignment, suggesting that mechanisms that
encode world knowledge in LLMs also improve representational alignment to the
human brain.

1 Introduction

Instruction-tuning is a widely adopted method for finetuning large language models (LLMs) on
datasets containing task-specific instructions. This approach enhances their ability to generalize
effectively to previously unseen tasks by learning to follow provided instructions (Wang et al.| [2022c)).
Instruction-tuning often costs only a small fraction of compute relative to pretraining (Chung et al.,
2022)), yet propels pretrained LLMs to incredible performance leaps on reasoning and problem-
solving benchmarks. This transformation has enabled LLMs to approach human performance on
many tasks, despite using only few (or zero) training examples, as well as to tackle open-world
reasoning tasks previously only achievable by humans (Zhang et al.| [2023).

In addition to teaching LLMs to understand and follow human instructions, instruction-tuning also
improves the ability of LLMs to mimic the ground-truth outputs (often human-written) of the training
data. This property allows them to produce more controllable and predictable output that is deemed
(1) more desirable by human evaluators on various metrics (Zhang et al., 2023} |Chung et al.| 2022}
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Wang et al.||2022b)), (2) more aligned to human values (Chia et al.,[2023), and (3) more stylistically
similar to human outputs (Dasgupta et al., [2022} [Safdari et al., 2023).

Consequently, instruction-tuning yields LLMs that are more similar to humans in both capability
and output similarity. From a neuroscience perspective, these observations beg the question: Does
instruction-tuning make LL.Ms more similar to the human language system? Previous work
has shown that models with high performance on next-word prediction tasks are well-aligned to the
human language system (Schrimpf et al.,|2021} |Goldstein et al., 2022; |(Caucheteux and King}, [2022),
and, on some datasets, even hit the estimated noise ceiling However, there has been no similar study
on how instruction-tuning, the training method that enabled powerful LLMs such as ChatGPT, affects
alignment to the human language system.

In this work, we explore the impact of instruction-tuning on the alignment between LLMs and the
human language system, considering two aspects: (1) brain alignment, which assesses how closely
LLMs’ internal representations match neural activity patterns in the human language system, and (2)
behavioral alignment, which evaluates the similarity between LLM behavior and human behavior. To
conduct this study, both LLMs and human participants are presented with the same language stimuli
comprised of naturalistic stories and sentences. For LLMs, we analyze their internal representations
and per-word perplexity, while for humans, we use previously collected brain activity data from
functional magnetic resonance imaging (fMRI) experiments and per-word reading times.

To measure brain alignment, we use the Brain-Score (Schrimpf et al., [2018) linear predictivity
metric, assessing how well LLM representations predict human brain activity in response to the same
language stimuli (Jain and Huth, 2018; [Toneva and Wehbe, [2019} [Schrimpf et al.| 2021} Oota et al.,
2023)), using data from three neural datasets: Pereira et al.|(2018), Blank et al.|(2014)), and [Wehbe
et al.[(2014). To evaluate behavioral alignment, we use a benchmark in Brain-Score which calculates
the Pearson correlation between LLM per-word perplexity and human per-word reading times from
the [Futrell et al.[(2018)) dataset. Perplexity for LLMs and reading times for humans offer insights into
comprehension difficulty (Ehrlich and Rayner, |1981}; [Hale}, 2001} |[Smith and Levyl, 2013)), allowing
us to examine whether LLMs and humans share similarities in terms of which words and sentences
they find challenging or surprising. Because models vary in their brain and behavioral alignment
across different architectures and training objectives (Schrimpf et al.,2021)), we estimate the effect of
instruction-tuning across 17 instruction-tuned LLMs and 8 vanilla LLMs, and report a significant
increase in brain alignment by instruction-tuned models compared to vanilla ones.

To investigate why instruction-tuning increases alignment to human brain activity, we then estimate
the contribution of various LLLM properties towards brain alignment. Specifically, we compute
Pearson correlations between an LLM’s brain alignment and its properties, including next-word
prediction (NWP) ability, model size, a range of problem-solving abilities, and world knowledge
spanning different domains. The evaluation of the latter two properties is based on the Big-Bench
Hard benchmark (BBH) (Suzgun et al.| 2022) and the Massive Multi-task Language Understanding
benchmark (MMLU) (Hendrycks et al.,|2021), respectively.

We report three major findings:

1. Instruction-tuning generally improves the alignment of LLM representations to brain activity,
increasing brain alignment by 6.2% on average for the LLMs and neural datasets we tested

(Figure [T).

2. Investigating the factors underlying LLM-brain alignment, we find that world knowledge and
model size are strongly correlated with brain alignment (r = 0.81 and 0.95 for instruction-
tuned models, respectively; Figure [2).

3. Surprisingly, our results generally indicate that instruction-tuning LL.Ms does not enhance
behavioral alignment with human reading times. Furthermore, behavioral alignment on this
dataset demonstrates poor correlations with all other measures we investigate, including task
performance and model size (Figure [3)).

3In fMRI recordings, an upper limit of representation similarity can be computed by sampling from the same
patient twice, deducing a threshold defined by the noise level of the data gathering process.
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Figure 1: Instruction-tuning aligns LLM representations to human brain activity. (A) Method
of brain alignment: We measure brain alignment as the similarity of an LLM’s internal represen-
tations to human brain activity, using a linear predictivity metric implemented in Brain-Score. We
evaluate the brain alignment of 25 vanilla and instruction-tuned LL.Ms with sizes between 80M
and 33B parameters. We use 3 neural datasets of humans reading naturalistic stories and sentences:
PEREIRA2018, BLANK2014, and WEHBE2014. (B) Instruction-tuning improves average brain
alignment by 6.2% on average. We compute each LLM’s average brain alignment using the mean
of its brain alignment on the 3 neural datasets. Then, we compare the brain alignment of each
instruction-tuned LLM against its vanilla counterpart. Each point above the identity line represents an
instruction-tuned LLLM that has greater brain alignment than its vanilla counterpart. Error bars (here
and elsewhere) represent median absolute deviation over human participants. (C) Instruction-tuning
generally improves brain alignment on all three neural datasets. (D) We instruction-tune LLaMA-7B
using the Alpaca dataset. We also train an ablation model with the same process and training data as
the default instruction-tuning, but remove the instruction portion from each training sample. This
experiment demonstrates that improvements in brain alignment from instruction-tuning are due to
both (1) training data (present in both models) and (2) the process of training LLMs to understand
and follow instructions (present only in original model).

2 Background & Related Work

Effect of Instruction-tuning on LLMs Instruction-tuning is an effective method to enhance the
capabilities and controllability of LLMs. It entails additional training of LLMs using pairs of human
instructions and desired model outputs. |[Zhang et al.| (2023) categorized the benefits of instruction-
tuning into three key aspects: (1) it helps bridge the disparity between the pretraining objective
of LLMs on next-word prediction, and the goal of accurately following human instructions, (2)
it provides a means for achieving more control and predictability over the behavior of the model
compared to standard LLMs, allowing researchers to make them more similar to humans in both
capability and output similarity (Chia et al., 2023}, [Dasgupta et al.}, 2022; [Safdari et al.,[2023)), and (3)
it often costs only a small fraction of compute relative to pretraining, enabling LLMs to swiftly adapt
to specific domains (Chung et al,[2022). We contribute to this research area from a neuroscience
perspective, by studying whether instruction-tuning makes LLMs more aligned to the human language
system in terms of brain and behavioral alignment.




Effect of Finetuning on Brain alignment Our work builds on prior works that study how finetuning
affects LMs’ alignment to human brain activity. These include studying how brain alignment is
modified as a result of finetuning on a wide range of downstream NLP tasks (Oota et al., [2022),
finetuning to summarize narratives (Aw and Toneva, 2023), and finetuning LMs to predict brain
activity recordings (Schwartz et al.,|2019). One goal of these works is to use brain alignment to study
how finetuning affects LMs and their representations. Our work demonstrates that instruction-tuning
aligns LLM representations to human brain activity. In addition, we investigate why instruction-tuned
LLMs align to brain activity by testing the correlation of brain alignment with various domains of
world knowledge and problem-solving abilities.

LM properties linked to Brain alignment There is a growing body of work on disentangling the
contribution of various model properties towards brain alignment. These include studying how brain
alignment is driven by next-word prediction ability (Schrimpf et al., [2021}; |(Caucheteux and King}
2022), multi-word semantics (Merlin and Toneva, |2022)), performance on various NLP tasks (Oota
et al., [2022), and model size (Antonello et al.,2023). To disentangle the contribution of various LM
properties toward brain alignment, instruction-tuned LLMs are especially useful. They have been
trained to respond to the question-answer format, allowing us to evaluate various LM properties
on a wide range of tasks and in a more fine-grained manner. We expand this area of research by
studying instruction-tuned LLMs to identify two properties underlying LLM-brain alignment: world
knowledge and model size.

3 Language Models

We evaluate the brain alignment of 25 large language models (LLMs) from two model families:
T5 (Raffel et al., [2020) and LLaMa (Touvron et al.,[2023). TS models are encoder-decoder LLMs
pre-trained on the Colossal Common Crawl Corpus (C4), a corpus of 356 billion tokens, using a
masked infilling objective, and then further finetuned on multi-task mixture of unsupervised and
supervised tasks converted into a text-to-text format. In our study, we use all five T5 models with
sizes between 77M to 11B parameters. LLaMA models (Touvron et al., 2023)) are decoder-only
LLM:s trained on 1.6 trillion tokens from a mixture of corpora including C4, English CommonCrawl,
Wikipedia, Github, and more. For LLaMA, we use the 7B, 13B, and 33B parameter versions in our
study.

For the instruction-tuned variants of TS models, we utilize a variety of models finetuned on the FLAN
suite (15M examples for 1,836 different tasks accompanied by instructions, |Chung et al., [2022)),
Alpaca (52K instruction-following examples generated through methods inspired by Self-Instruct,
Wang et al.| (2022a)), [Taori et al., 2023), and GPT4ALL (437K instruction-following examples
generated with GPT-3.5-turbo, /Anand et al.| 2023) datasets. As for the LLaMa model family, we
employ Vicuna’s 7B, 13B, and 33B models (Chiang et al.,2023)), which are finetuned on user-shared
conversations. Additionally, we incorporate the StableVicuna-13B model, which further refines the
Vicuna-13B model using reinforcement learning from human feedback (RLHF) (Ouyang et al., |2022)
on a range of conversational and instructional datasets. We also use the 7B version of Alpaca (Taori
et al.| 2023). Additional details about these LLMs can be found in Appendix

4 Brain Alignment

Brain alignment refers to the method of evaluating the representational similarity between LLMs and
human brain activity (Figure[I). This assessment relies on fMRI recordings obtained from human
subjects while they read specific language stimuli on potentially any topic (here: Pereira et al., 2018}
Blank et al.| [2014; [Wehbe et al.l |2014). In brain alignment studies, these same language stimuli
from prior brain recordings are provided as input to LLMs, whose intermediate layer activations are
recorded to extract model representations of the language stimuli. To study the alignment of LLM
and human data, we follow a general approach previously used in several works (Schrimpf et al.,
2018, 2021; Jain and Huth, [2018; Toneva and Wehbel [2019; |Oota et al.| 2023} |Aw and Toneva, [2023).
Specifically, we use the linear predictivity metric implemented in Brain-Score (Schrimpf et al., 2020,
Figurel[I)), first training a linear function to predict fMRI voxels associated with the human language
system using LLM representations as input features. We then apply this linear function to held-out
brain activity data from the original corpus of recordings, and evaluate the brain alignment of the
LLM as the Pearson correlation between the predicted and actual brain activity data.



Datasets We use three fMRI datasets to measure the brain alignment of LLMs. Each neural dataset
includes the brain activity of a different set of human participants, and uses a different set of language
stimuli involving naturalistic stories and sentences.

PEREIRA2018 (experiments 2 and 3 from |Pereira et al.| | 2018)): In experiment 2, nine participants read
384 sentences organized into 96 text passages. In experiment 3, six participants read 243 sentences in
72 text passages. Each sentence was displayed for four seconds on a screen.

BLANK2014 (Blank et al.,|2014): The data consists of fMRI recordings of 5 human participants
listening to naturalistic stories from the Natural Stories Corpus (Futrell et al., 2018). Participants
listened to stories presented auditorily.

WEHBE2014 (Wehbe et al.,|2014): The data includes fMRI recordings of 8 human participants read-
ing chapter 9 of the book Harry Potter and the Sorceror’s Stone (Rowling et al.||1998)). Participants
read the chapter at a fixed interval of one word every 0.5 seconds.

4.1 Instruction-tuning aligns LLM representations to human brain activity

First, we study the effect of instruction-tuning on brain alignment of LLMs. We compute each LLM’s
average brain alignment as the mean of its brain alignment scores on the 3 neural datasets and find
that instruction-tuning improves alignment by an average of 6.2% across all tested LLMs (Figure
[IB). This result holds across all three neural datasets, with average improvements (across models) of
+6.9% on PEREIRA2018, +8.0% improvement on BLANK2014, +3.8% on WEHBE2014 (Figure
[T[C). This provides a strong signal that instruction-tuning aligns LLM representations to human brain
activity. Moreover, a smaller instruction-tuned model can have a higher brain alignment than a larger
model from the same family that hasn’t been instruction-tuned (e.g., Alpaca-7B v.s. LLaMa-13B, see
detailed results in Appendix D).

To longitudinally study how instruction-tuning aligns LLM representations to brain activity, we
separately instruction-tune a LLaMA-7B model on the Stanford Alpaca instruction dataset (Taori
et al.,2023)) for 3 epochs. By measuring checkpoints regularly during training, we find that instruction-
tuning progressively improves brain alignment (Figure [ID). While it does not monotonically increase
alignment across data windows, we do observe a significant increase as the model is tuned. We
perform an ablation study to disambiguate the effect on brain alignment of the instruction-following
ability provided by the instruction-tuning step, and the effect of the added training data. We fine-tune
LLaMA-7B with the same process as we did on Stanford Alpaca, but remove the instruction portion
from each training sample. We observe that brain alignment of this ablated model increases during
fine-tuning but stays lower than its instruction-following counterpart (Figure[I]D).

To identify possible factors for why instruction-tuning improves brain alignment, we investigate other
effects of instruction-tuning on LLaMA-7B. We evaluate each training checkpoint’s performance
on various types of problem-solving and reasoning abilities (BBH benchmark), as well as world
knowledge across various domains (MMLU benchmark). Over the process of 3 training epochs,
instruction-tuning increases both problem-solving abilities (BBH: Figure[TE) and world knowledge
(MMLU: Appendix [H). Although these results hint at problem-solving ability and world knowledge
as possible factors underlying LLM-brain alignment, they were only conducted on a single LLM.
Hence, we perform a rigorous analysis in Section[d.2] where we test the full set of instruction-tuned
LLMs, in order to identify important factors underlying LLM-brain alignment.

4.2 Factors underlying LLLM-brain alignment

To identify factors underlying the representational similarity between LLMs and human brains, we
compute the Pearson correlation between LLM brain alignment and various properties of LLMs:
performance on benchmarks involving different reasoning abilities (BBH benchmark; Suzgun et al.|
2022])), performance on benchmarks requiring domain-specific world knowledge (MMLU; |Hendrycks
et al.,[2021)), language modeling ability, and model size.

World Knowledge and Reasoning abilities MMLU contains 57 tasks, categorized by the subject
domain of world knowledge tested: STEM, Humanities, Social Sciences, and Others (a very broad
category ranging from finance and marketing to professional medicine). BBH contains 23 tasks, cate-
gorized by the type of problem-solving ability tested: Algorithmic reasoning, World knowledge, etc.
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Figure 2: World knowledge and model size are important factors underlying LLM-brain
alignment. To identify factors underlying the representational similarity between LLMs and human
brains, we test the Pearson correlation between LLM brain alignment and various LLM properties,
such as model size, various types of problem-solving abilities (BBH benchmark) and world knowledge
in various domains (MMLU benchmark). We evaluate all instruction-tuned LLMs on the MMLU
and BBH benchmarks. Insets display results on individual datasets with stars reflecting statistical
significance (n.s. =p > 0.05, * =p < 0.05, ** =p < 0.005, etc.) (A) Brain alignment is significantly
and strongly correlated with world knowledge as evaluated by the MMLU Overall score (r = 0.81).
This score reports the mean performance across all world knowledge subject domains on MMLU. (B)
Brain alignment is significantly and strongly correlated with the world knowledge category on the
BBH benchmark (r = 0.68). This score reports the mean performance on tasks included in the BBH
world knowledge category. (C) Brain alignment is significantly and strongly correlated with model
size (logarithm of the number of model parameters) (r = 0.95).

We measure the performance of LLMs on BBH and MMLU using the instruct-eval repositoryﬂ
with default settings (3-shots, 5-shots respectively) and preset prompts. We measure the Pearson
correlation between LLM brain alignment and performance on each category of the MMLU and BBH
benchmarks. We compute the p-value after false discovery rate correction.

We find that brain alignment is significantly and strongly correlated with world knowledge. On
the MMLU benchmark, we observe a high correlation between brain alignment scores and the
MMLU Overall score (r = 0.81), which reports the mean performance across all world knowledge
subject domains on MMLU (Figure 2JA). Similarly, brain alignment is also significantly and strongly
correlated with the mean performance on tasks included in the world knowledge category of the
BBH benchmark (r = 0.68; Figure 2B). Interestingly, we do not find strong correlations with other
dimensions of the BBH benchmark (e.g., Algorithmic reasoning and Multilingual reasoning, see Table
[T), though this could also be due to limitations of the tested models (most are primarily pretrained on
English language data), as indicated by their low raw performance scores on some tasks. Overall, our
results provide a strong signal that more accessible representations of world knowledge are a key
factor in aligning LLM representations to human brain activity.

Language Modeling Ability Prior works have demonstrated the correlation between brain alignment
and next-word prediction (Caucheteux and King| [2022} [Schrimpf et al., [2021). We follow this
experimental setting for instruction-tuned LLMs and validate a similar finding for the correlation
between brain alignment and next-word prediction (r = -0.54, Appendix [F). Interestingly, however,
we observe that, for instruction-tuned models, the strength of correlation between brain alignment and
world knowledge performance (r = 0.81) is greater than the strength of the correlation between brain
alignment and next-word prediction (r = -0.54). This result suggests that brain alignment is a better
predictor of world knowledge understanding than language modeling, even as the brain alignment
scores are derived from a language modeling task.

Model Size Finally, we find that brain alignment is significantly and strongly correlated with model
size (as measured by the logarithm of the number of model parameters) with a correlation of 0.95
(Figure [2C). [Schrimpf et al.| (2021)) observe such a pattern for language models, and we find the
pattern holds for instruction-tuned models, and models trained at a larger scale than their study (7B+
parameters).

*https://github.com/declare-1lab/instruct-eval
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Surprisingly, the LLaMA models attain lower brain alignment scores on BLANK2014 than the
T5-XL and T5-XXL models, despite having larger sizes and performance on MMLU and BBH in
general. Consequently, we do not observe significant correlations between brain alignment and world
knowledge or model size for BLANK2014.

Table 1: Brain alignment strongly correlates with world knowledge across all subject domains
(e.g., STEM, Humanities) in MMLU, as well as the world knowledge problem-solving category
in BBH. At the same time, brain alignment is not significantly correlated with all other types of
problem-solving abilities in BBH (e.g., algorithmic or multilingual reasoning). We evaluate all
instruction-tuned LLMs on the MMLU and BBH benchmarks. We test the Pearson correlation
between LLM brain alignment and performance on each category of MMLU and BBH. We obtain
the p-value after false discovery correction.

Brain Alignment corrected Number Average Model
Task category

Correlation (r) p-value  of tasks Performance
MMLU - Overall Score 0.809  0.000329 57 0.36
MMLU - STEM 0.792  0.000343 18 0.28
MMLU - Humanities 0.791  0.000343 13 0.34
MMLU - Social Sciences 0.807  0.000329 12 0.41
MMLU - Others 0.809 0.000329 14 0.40
BBH — Overall score 0.384 0.177 23 0.28
BBH - Algorithmic reasoning 0.194 0.558 8 0.22
BBH - Language understanding 0.163 0.585 3 0.43
BBH — World knowledge 0.679 0.005 5 0.36
BBH — Multilingual reasoning -0.035 0.895 1 0.19
BBH - Others 0.478 0.083 6 0.27

S Behavioral Alignment

In the previous section, we show that instruction-tuning aligns the internal representations of LLMs
to human brain recordings (Sectiond.T). In this section, we explore whether instruction-tuning also
aligns LLM behavior to human behavior.

Following the approach previously proposed by [Schrimpf et al.| (2021) and implemented in the
Brain-Score package (Schrimpf et al.| 2020), we measure behavioral alignment by evaluating the
similarity between LLM per-word perplexity and human per-word reading times, given the same
language stimuli (Figure [3]A). We use the self-paced reading times dataset from [Futrell et al.| (2018),
consisting of the reading times of 179 human participants recorded while they were visually presented
with 10 naturalistic stories. We provide language stimuli from this data as input to LLMs and measure
their per-word perplexity. Finally, we evaluate behavioral alignment by computing the Pearson
correlation between per-word LLM perplexity and per-word human reading times.

Using the same set of models as in the previous section, we compare the behavioral alignment
of each instruction-tuned LLM against its vanilla counterpart. Our results generally indicate that
instruction-tuning LLMs does not improve behavioral alignment to human reading times (Figure [3B).
For half of the LLMs tested, it results in no change or reduced behavioral alignment. Then, we test the
correlation between LLM behavioral alignment and model size, next-word prediction ability, various
reasoning abilities (as measured by performance on the BBH benchmark), and world knowledge
across various domains (as measured by performance on the MMLU benchmark). Contrary to our
findings on the correlation between brain alignment and model size and world knowledge (Section
[.2), we do not find that these factors are correlated with the behavioral alignment of models: world
knowledge in Figure[3C (r = 0.08, p = 0.76), model size in Figure 3D (r = 0.26, p = 0.31), next-word
prediction loss for TS models in Figure (r=-0.2, p = 0.54), and next-word prediction loss for
LLaMA models in Figure[3F (r = 0.68, p = 0.21). We discuss our interpretations of these results and
possible explanations in Section
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Figure 3: Instruction-tuning LLMs generally does not improve behavioral alignment to human
reading times. Furthermore, behavioral alignment correlates poorly with all other tested mea-
sures: world knowledge, model size, and next-word prediction ability. (A) We estimate behavioral
alignment on the Futrell2018 benchmark in Brain-Score which uses a dataset of humans reading
naturalistic stories and presents the same language stimuli to the models. The score (r) reflects the
similarity between LLM perplexity for each word and human reading times for each word. (B) We
compare the behavioral alignment of each instruction-tuned LLLM against its vanilla counterpart.
Instruction-tuning does not generally improve behavioral alignment to humans on a reading task.
Furthermore, behavioral alignment is poorly and not significantly correlated with all other measures:
(C) world knowledge as evaluated using the MMLU benchmark (r = 0.08, p = 0.76), (D) model size
(r=0.26, p =0.31), (E) next-word prediction loss value for TS5 models (r =-0.2, p = 0.54), and (F)
next-word prediction loss value for LLaMA models (r = 0.68, p = 0.21).

6 Discussion

6.1 Implications for NLP: Building LLMs

In our work, we investigate the brain alignment of models to evaluate the potential of guiding future
LLMs with the human language system. Representations in the human language system support a
wide range of downstream tasks that current models still struggle on and, as shown in this work,
improved brain alignment correlates with improved performance on downstream tasks such as those
requiring world knowledge.

More brain-like internal representations could be a proxy metric for the quality of instruction-
tuned models. Prior works have used brain activity results to interpret neural networks (Dong and
Toneva, |2023), and use findings around brain alignment to release more performant models (Dapello
et al., [2020} 2022} Safarani et al., 2021])). Instruction-tuning has emerged as a breakthrough technique
to improve LLM benchmark performance, improve the quality of LLM outputs, and allow LLMs to
adapt to new tasks using minimal task-specific training examples. However, the manner in which
instruction-tuning alters the internal representations of LLMs to achieve these improvements remains



unclear. Instruction-tuning might result only in superficial and external changes to LLM behavior, or
it might significantly affect how LLMs represent and process language internally. Brain alignment
provides a proxy metric for how these representations are structured, and perhaps a roadmap for how
LLMs should be instruction-tuned, as we find significant correlation between brain alignment and
performance on downstream tasks requiring world knowledge.

6.2 Implications for Neuroscience: Studying LLM-Human Alignment

Instruction-tuned LLMs are useful for studying LLLM properties underlying brain and behav-
ioral alignment. To identify why LLM and human brains exhibit representational similarities, prior
work has mostly focused on high-level properties such as model size (Antonello et al.||2023), and
external behaviors such as predicting missing words [Schrimpf et al.[(2021); |(Caucheteux and King
(2022). However, a key to understanding these similarities is to identify lower-level or internal prop-
erties of LLMs that underlie brain alignment. This includes the amount of knowledge LLMs contain,
e.g., factual (AlKhamissi et al.;, |2022) and commonsense (Sap et al., 2020; |[Bosselut et al., 2019). Our
work shows that we can harness instruction-tuned LLM:s for this purpose as they have been trained to
respond to a general question format, allowing us to evaluate LLMs in a more fine-grained manner.
This allows the study of both internal (e.g., knowledge) and external (e.g., behavior) properties of
LLMs, and how they correlate with brain and behavioral alignment.

Examining more dimensions of behavior. To evaluate behavioral alignment, our work and many
prior works compare LM and human next-word surprisal on reading tasks (Wilcox et al., [2020;
Schrimpf et al.l 2021; [Eghbal A. Hosseini et al., [2023). This evaluates only a single dimension
of LM and human behavior (per-word perplexity and reading times). On the models we test here,
behavioral alignment is not significantly correlated with model size, world knowledge, or next-word
prediction ability. While next-word prediction performance correlates with alignment to human
reading times across a broad band of models (Schrimpf et al., |2021]), this trend does not hold up
in recent Transformer-based LMs (Oh and Schuler| 2023)), having a surprising negative correlation
with parameter count (Oh et al., 2022)). Our results highlight the need to create more benchmarks
to expand the dimensions of behavior examined for both LLMs and humans, in order to holistically
evaluate LLM behavior, as well as LLM-human behavioral alignment.

Brain alignment datasets with humans performing diverse tasks. Our work studies brain
alignment using neural datasets that are limited to humans reading naturalistic stories and sentences in
English. Unfortunately, there does not exist brain activity data for human participants attempting the
BBH and MMLU benchmarks. This may explain why brain alignment is not significantly correlated
with many categories of problem-solving on BBH, e.g., language understanding. In the future, we
hope to study brain alignment with human participants performing more diverse sets of tasks, e.g.,
reading computer program code (Ivanova et al.l[2020). This can identify more factors underlying
LLM-brain alignment, and provide insights into how brain activity and the human language system
may be shaped by various forms of problem-solving. Furthermore, for the neural datasets in our
work, many of the larger models exceed the noise ceiling estimates (Appendix D)), highlighting the
need for more neural datasets (with better ways of computing noise ceiling estimates).

World knowledge shapes brain activity. Our results show that world knowledge is a key factor
in aligning LLM representations to human brain activity. LLMs with greater world knowledge
across all tested subject domains produce representations that align more closely to human brain
activity. Analogously, this suggests that world knowledge influences human brain activity, shaping
the language comprehension systems in the brain.

7 Conclusions

We investigate whether instruction-tuning improves the alignment of LLMs to the human language
system. We evaluate 25 LLMs with parameter sizes ranging from 77 million to 33 billion, across
three neural datasets of humans reading naturalistic stories and sentences, and find that instruction-
tuning generally improves the alignment of LLM representations to brain activity. Delving into the
factors underlying LLM-brain alignment, we discover that world knowledge and model size are
key determinants of brain alignment. This correlation suggests that world knowledge helps shape
representations in the human language system, and highlights the significance of integrating world
knowledge in the development of future LL.Ms.
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A Language Models: Parameter count and Number of Layers

Table 2: Parameter count and number of layers for all 25 vanilla and instruction-tuned LLMs.
The upper part contains encoder-decoder models of the T5 family, the lower parts decoder-only
models of the LLaMA family. For the parameter count, “M" refers to million and “B" refers to billion.
The number of layers for TS models is a sum of the number of encoder and decoder layers.

Model Parameter Count Number of Layers
t5-small 7TM 16
flan-t5-small 7TM 16
t5-base 250 M 24
flan-t5-base 250 M 24
flan-alpaca-base 250 M 24
t5-large 800 M 48
flan-t5-large 800 M 48
flan-alpaca-large 800 M 48
t5-x1 3B 48
flan-t5-x1 3B 48
flan-alpaca-xl 3B 48
flan-gptdall-x1 3B 48
flan-sharegpt-xl1 3B 48
flan-alpaca-gpt4-xl1 3B 48
t5-xx1 11B 48
flan-t5-xxl1 11B 48
flan-alpaca-xxl 11B 48
llama-7b 7B 32
alpaca-7b 7B 32
vicuna-7b 7B 32
Ilama-13b 13B 40
vicuna-13b 13B 40
stable-vicuna-13b 13B 40
Ilama-33b 33B 60
vicuna-33b 33B 60
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B Language Models: Links to models weights

Table 3: Link to model weights for all 25 vanilla and instruction-tuned LLMs. The upper part
contains encoder-decoder models of the TS5 family, the lower parts decoder-only models of the
LLaMA family. We provide these links for reproducibility purposes.

Model Link to model weights

t5-small www.huggingface.co/google/t5-v1_1-small
flan-t5-small www.huggingface.co/google/flan-t5-small

t5-base www.huggingface.co/google/t5-v1l_1-base

flan-t5-base www.huggingface.co/google/flan-t5-base
flan-alpaca-base www.huggingface.co/declare-lab/flan-alpaca-base
t5-large www.huggingface.co/google/t5-vl_1-large
flan-t5-large www.huggingface.co/google/flan-t5-1large
flan-alpaca-large www.huggingface.co/declare-lab/flan-alpaca-large
t5-x1 www.huggingface.co/google/t5-v1_1-x1

flan-t5-x1 www.huggingface.co/google/flan-t5-x1

flan-alpaca-x1 www.huggingface.co/declare-lab/flan-alpaca-xl
flan-gpt4all-x1 www.huggingface.co/declare-lab/flan-gpt4all-x1
flan-sharegpt-x1 www.huggingface.co/declare-lab/flan-sharegpt-x1
flan-alpaca-gpt4-x] www.huggingface.co/declare-lab/flan-alpaca-gpt4-x1
t5-xx1 www.huggingface.co/google/t5-v1_1-xx1

flan-t5-xx1 www.huggingface.co/google/flan-t5-xx1
flan-alpaca-xxl www.huggingface.co/declare-lab/flan-alpaca-xxl
llama-7b www.github.com/facebookresearch/llama

alpaca-7b www.github.com/tatsu-lab/stanford_alpaca

vicuna-7b www.huggingface.co/lmsys/vicuna-7b-v1.3

llama-13b www.github.com/facebookresearch/llama

vicuna-13b www.huggingface.co/lmsys/vicuna-13b-v1.3
stable-vicuna-13b  www.huggingface.co/CarperAl/stable-vicuna-13b-delta
llama-33b www.github.com/facebookresearch/llama

vicuna-33b www.huggingface.co/lmsys/vicuna-33b-v1.3

C Code Repositories

We use the Brain-Score repository to evaluate brain alignment for the PEREIRA2018 and BLANK2014
datasets, as well as behavioral alignment for the FUTRELL2018 dataset. Link: www.github. com/
brain-score/language.

We use an open-source repository to evaluate brain alignment for the WEHBE2014 dataset. Link: www |
github.com/awwkl/brain_language_summarization, which builds on www.github.com/
mtoneva/brain_language_nlp.

We use Instruct-Eval repository to evaluate MMLU and BBH scores. Link: www.github.com/
declare-lab/instruct-evall

We use Stanford Alpaca repository for instruction-tuning. Link: www.github.com/tatsu-1lab/
stanford_alpaca).
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D Results for Brain alignment

Table 4: Brain alignment results for all 25 vanilla and instruction-tuned LLMs. We provide these
results for reproducibility purposes.

PEREIRA2018 BLANK2014 WEHBE2014 Average

t5-small 0.166 0.168 0.071 0.135
flan-t5-small 0.202 0.178 0.079 0.153
t5-base 0.222 0.188 0.074 0.162
flan-t5-base 0.234 0.178 0.076 0.163
flan-alpaca-base 0.227 0.179 0.076 0.161
t5-large 0.270 0.082 0.071 0.141
flan-t5-large 0.311 0.104 0.080 0.165
flan-alpaca-large 0.322 0.126 0.082 0.177
t5-xl1 0.285 0.192 0.072 0.183
flan-t5-x1 0.314 0.215 0.072 0.200
flan-alpaca-xl 0.312 0.209 0.075 0.199
flan-gpt4all-x1 0.300 0.206 0.078 0.195
flan-sharegpt-x1 0.323 0.211 0.070 0.201
flan-alpaca-gpt4-xl1 0.302 0.205 0.073 0.193
t5-xxl 0.343 0.297 0.096 0.246
flan-t5-xxl1 0.350 0.268 0.103 0.240
flan-alpaca-xxl 0.346 0.268 0.102 0.239
llama-7b 0.405 0.154 0.118 0.226
alpaca-7b 0.420 0.167 0.118 0.235
vicuna-7b 0.399 0.152 0.119 0.223
Ilama-13b 0.412 0.133 0.115 0.220
vicuna-13b 0.423 0.148 0.116 0.229
stable-vicuna-13b 0.415 0.144 0.115 0.225
llama-33b 0.426 0.145 0.109 0.227
vicuna-33b 0.436 0.156 0.105 0.232

Table 5: Noise ceiling estimates for all 3 neural datasets. For PEREIRA2018 and BLANK2014,
noise ceiling estimates are computed using the Brain-Score repository, with details provided in
Schrimpf et al.| (2021). For WEHBE2014, noise ceiling estimates are also computed using a similar
procedure.

PEREIRA2018 BLANK2014 WEHBE2014 Average
Noise ceiling 0.32 0.20 0.10 0.21
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E Results for Next-word prediction, MMLU, BBH

Table 6: WikiText-2 NWP loss, MMLU Overall Score, and BBH Overall Score for all instruction-
tuned LLMs. Results for vanilla LLMs are not shown as they are not adapted for the question
formats in the MMLU and BBH benchmarks. We provide these results for reproducibility purposes.

WikiText-2 NWP Loss MMLU Overall Score  BBH Overall Score

flan-t5-small 0.851 0.294 0.287
flan-t5-base 1.235 0.341 0.308
flan-alpaca-base 1.074 0.304 0.266
flan-t5-large 0.625 0.419 0.370
flan-alpaca-large 0.648 0.397 0.276
flan-t5-xl1 0.650 0.493 0.402
flan-alpaca-xl1 0.604 0.466 0.270
flan-gpt4all-x1 0.625 0.337 0.212
flan-sharegpt-x1 0.664 0.446 0.363
flan-alpaca-gpt4-x1 0.593 0.456 0.348
flan-t5-xx1 0.638 0.545 0.443
flan-alpaca-xxl 0.607 0.508 0.229
alpaca-7b 4.201 0.404 0.328
vicuna-7b 4.387 0.472 0.331
vicuna-13b 4.130 0.521 0.387
stable-vicuna-13b 4.623 0.495 0.380
vicuna-33b 3.940 0.590 0.426
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F Results for Correlations of Brain Alignment with LM properties

M Brain alignment A LM properties Statistical significance: p > 0.05 (n.s.), p < 0.05 (*), p < 0.005 (**), p < 0.0005 (***), etc.
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Figure 4: Correlation between brain alignment and various LM properties: (A) MMLU bench-
mark global score, (B) BBH benchmark score with only world knowledge tasks, (C) number of
parameters of the model, and (D) Next word prediction (NWP) performance.
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Figure 5: Correlation between brain alignment and various LM properties for all 25 LLMs: (A)
number of parameters of the model, and (B) Next word prediction (NWP) performance.
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G Results for Behavioral alignment

Table 7: Noise ceiling estimates for the FUTRELL2018 reading-times dataset. Noise ceiling
estimates are computed using the Brain-Score repository, with details provided in |Schrimpf et al.
(2021)).

FUTRELL2018

Noise ceiling 0.76
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H Results for Instruction-tuning LLaMA-7B on Alpaca dataset

M Brain alignment A LM properties
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Figure 6: Improvements in brain alignment from instruction-tuning are due to both additional
training data, as well as training to understand and follow instructions.

Instruction model We instruction-tune LLaMA-7B on the Stanford Alpaca dataset (Taori et al.,
2023) using the default training process, following the code in www.github.com/tatsu-lab/
stanford_alpaca. In particular, the model is instruction-tuned using 52K instruction-following
examples generated through methods inspired by Self-Instruct (Wang et al.| [2022a)). This model is
labeled “Instruction” in Figure [6]

No instruction model We also train an ablation model with the same process and training data as
the default instruction-tuning, but remove the instruction portion from each training sample. This
ablation model is labeled “No instruction" in Figure [ This ablation experiment disentangles: (1)
training data (present in both Instruction and No instruction), from (2) training LMs to understand
and follow instructions (present only in Instruction).
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