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Abstract

We propose an autoregressive entity linking001
model, that is trained with two auxiliary tasks,002
and learns to re-rank generated samples at infer-003
ence time. Our proposed novelties address two004
weaknesses in the literature. First, as recent005
improvements in entity linking suggest learn-006
ing mention detection explicitly could increase007
performance, we train mention detection as an008
auxiliary task. Second, previous work suggests009
that re-ranking could help correct prediction010
errors. We add a new, auxiliary task, match011
prediction, to learn re-ranking. Without the012
use of a knowledge base or candidate sets, our013
model sets a new state of the art in two bench-014
mark datasets of entity linking: COMETA in015
the biomedical domain, and AIDA-CoNLL in016
the news domain. We show through ablation017
studies that each of the two auxiliary tasks in-018
creases performance, and that re-ranking is an019
important factor to the increase. Finally, our020
low-resource experimental results suggest that021
performance on the main task benefits from the022
knowledge learned by the auxiliary tasks, and023
not just from the additional training data.024

1 Introduction025

Entity linking (Zhang et al., 2010; Han et al., 2011)026

is the task of linking mentions of entities in a text027

document to concepts in a knowledge base. It is028

a basic building block used in many NLP applica-029

tions, such as question answering (Pouran Ben Vey-030

seh, 2016; Yu et al., 2017; Dubey et al., 2018; Shah031

et al., 2019), word sense disambiguation (Raganato032

et al., 2017; Uslu et al., 2018), text classification033

(Basile et al., 2015; Scharpf et al., 2021), and so-034

cial media analysis (Liu et al., 2013; Yamada et al.,035

2015; Waitelonis and Sack, 2016).036

The task of entity linking (EL) can be decom-037

posed into two subtasks: Mention Detection (MD)038

and Entity Disambiguation (ED). Many statistical039

and LSTM-based methods propose to cast EL as a040

two-step problem, and optimize for both MD and041
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Our Multi-Task Model

Figure 1: Example of an Entity Linking (EL) source text
and generated outputs. Entity mentions to be recognized
and disambiguated are denoted in blue in the source text.
In the outputs, red denotes errors, green denotes correct
answers, yellow denotes close matches.

ED (Guo et al., 2013; Luo et al., 2015; Cornolti 042

et al., 2016; Ganea and Hofmann, 2017). 043

Recent entity linking methods based on language 044

models propose to cast entity linking as a single, 045

end-to-end trained task (Broscheit, 2019; Poerner 046

et al., 2020; El Vaigh et al., 2020). An example is 047

autoregressive entity linking (Petroni et al., 2021; 048

De Cao et al., 2021b), which formulates entity link- 049

ing as a language generation problem, where men- 050

tion detection is learned implicitly. In contrast, a 051

more recent, non-autoregressive approach (De Cao 052

et al., 2021a) shows that learning mention detection 053

explicitly can increase performance. 054

Methods based on word embedding models 055

(Basaldella et al., 2020) propose to learn entity dis- 056

ambiguation by mapping embedding spaces. Their 057

high accuracy at 10 results show that re-ranking 058

could increase entity linking performance. 059

Contributions. In this paper, we propose an 060

autoregressive entity linking method, that is trained 061

jointly with two auxiliary tasks, and learns to re- 062
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rank generated samples at inference time. Our pro-063

posed novelties address two weaknesses in the lit-064

erature. First, autoregressive entity linking learns065

mention detection implicitly, but recent methods066

show learning MD explicitly could increase perfor-067

mance (De Cao et al., 2021a). We propose to add068

MD as an auxiliary task, that explicitly teaches the069

model to learn where entity mentions are within070

the input and target sentences. Second, previous071

work suggests that re-ranking could correct predic-072

tion errors (Basaldella et al., 2020). We propose073

to train a second, new auxiliary task, called Match074

Prediction. This task teaches the model to re-rank075

generated samples at inference time. We define076

match prediction as a classification task where the077

goal is to identify whether entities in a first sen-078

tence were correctly disambiguated in the second079

sentence. We train this second task with samples080

generated by the model at each training epoch. At081

inference time, we then rank the generated samples082

using our match prediction scores.083

Our multi-task learning model outperforms the084

state of the art in two benchmark datasets of entity085

linking across two domains: COMETA (Basaldella086

et al., 2020) from the biomedical and social media087

domain, and AIDA-CoNLL (Hoffart et al., 2011)088

from the news domain. We show through four ab-089

lation study experiments that each auxiliary task090

provides improvements on the main task. Then,091

we show that using our model’s match prediction092

module to re-rank generated samples at inference093

time plays an important role in increasing perfor-094

mance. Finally, we devise three experiments where095

we train auxiliary tasks with a smaller dataset. Re-096

sults suggest that our model’s performance is not097

only due to more training datapoints, but also due098

to our auxiliary task definition.099

2 Related Work100

Entity Linking (EL). Entity Linking is often (Hof-101

fart et al., 2011; Steinmetz and Sack, 2013; Pic-102

cinno and Ferragina, 2014; De Cao et al., 2021a)103

trained as two tasks: Mention Detection (MD) and104

Entity Disambiguation (ED). Mention detection is105

the task of detecting entity mention spans, such106

that an entity mention m is represented by start and107

end positions. A mention m refers to a concept in108

a given knowledge base. Entity disambiguation is109

the task of finding the right knowledge base con-110

cept for an entity mention, thereby disambiguating111

its meaning.112

Early EL methods (Hoffart et al., 2011; Stein- 113

metz and Sack, 2013; Daiber et al., 2013) rely on 114

probabilistic approaches. Hoffart et al. (2011) pro- 115

pose a probabilistic framework for MD and ED, 116

based on textual similarity and corpus occurrence. 117

They test their framework using the entity candi- 118

date sets available in the AIDA-CoNLL dataset. 119

More recently, neural methods propose to train 120

end-to-end EL models. Francis-Landau et al. 121

(2016) propose a convolutional neural EL model to 122

take into account windows of context. 123

Kolitsas et al. (2018) propose a neural model for 124

joint mention detection and entity disambiguation. 125

They use a bidirectional LSTM (Hochreiter and 126

Schmidhuber, 1997) to encode spans of entities. 127

They then embed candidate entities and train layers 128

to score the likelihood of a match. 129

Sil et al. (2018) introduce an LSTM-based model 130

that uses multilingual embeddings for zero-shot 131

transfer from English-language knowledge bases. 132

EL as Language Modeling. Language mod- 133

eling approaches have enabled new, end-to-end 134

definitions of the entity linking task. These new 135

settings enable to bypass the two-step MD-then-ED 136

setting for entity linking, and propose to cast entity 137

linking as a single task. 138

Broscheit (2019) propose to reformulate end-to- 139

end EL problem as a token-wise classification over 140

the entire set of the vocabulary. Their model is 141

based on BERT (Devlin et al., 2019). The train- 142

ing combines mention detection, candidate genera- 143

tion, and entity disambiguation. If an entity is not 144

detected, then the prediction is O. If an entity is 145

detected, the classification head has to classify it 146

as the corresponding particular entity within the 147

vocabulary. 148

De Cao et al. (2021b) propose an autoregressive 149

setting for EL. They use BART (Lewis et al., 2020) 150

and cast entity linking as a language generation 151

task. In this setting, the input is the source sentence 152

with the entity mention. The goal is to generate an 153

annotated version of the input sentence, such that 154

the entity mention is highlighted and mapped to a 155

knowledge base concept. Brackets and parentheses 156

are used to annotate the entity mention and concept: 157

“I took the [flu shot] (influenza vaccine).”. They 158

then introduce a constrained beam search to force 159

the model to annotate. De Cao et al. (2021c) is a 160

multilingual extension of this work. 161

EL as Embedding Space Mapping. Language 162

models like BERT, as well as embedding models 163
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like FastText (Bojanowski et al., 2017), enable to164

retrieve context-aware representations of entities165

and knowledge base concepts.166

Basaldella et al. (2020) propose to map the em-167

beddings of entity mentions to the embeddings168

of knowledge base concepts. For this purpose,169

they use the embeddings of FastText, as well as170

BioBERT (Lee et al., 2020), a BERT-based model171

trained on the PMC dataset. They find that the right172

mapping is more often found among the ten closest173

concept embeddings (accuracy at 10) rather than174

being the closest concept embedding (accuracy at175

1). Their results suggest that generated sample176

re-ranking could improve entity linking systems.177

Basaldella et al. (2020) also introduce the178

COMETA dataset: an entity linking benchmark179

based on social media user utterances on medical180

topics, and linked to the SNOMED-CT biomedi-181

cal knowledge base (Donnelly et al., 2006). The182

dataset has four splits, based on whether the183

dev/test set entities are seen during training (strat-184

ified) or not (zeroshot), and on whether the entity185

mapping is context-specific (specific) or not (gen-186

eral). Liu et al. (2021a) propose a self-alignment187

pre-training scheme for entity embeddings, and188

show that it benefits the context-free splits (strat-189

ified general and zeroshot general). Liu et al.190

(2021b) propose MirrorBERT: a data-augmented191

approach for masked language models. Lai et al.192

(2021) and Kong et al. (2021) propose convolution-193

based and graph-based methods, respectively, for194

embedding mapping between entities and knowl-195

edge base concepts.196

All of the above methods use knowledge base197

concepts. In our biomedical entity linking setting,198

we choose the harder zeroshot specific split. We199

propose to use the language modeling task setting200

instead of the embedding mapping method. We201

therefore bypass the need to embed each and every202

knowledge base concept, whereas only a small por-203

tion (<10%) of the SNOMED-CT knowledge base204

concepts are used in the COMETA dataset.205

3 Multi-Task Learning for Autoregressive206

Entity Linking207

We propose an autoregressive entity linking model,208

that is trained along with two auxiliary tasks, and209

uses re-ranking at inference time.210

In this section, we first describe the main entity211

linking task. Then, we define the two auxiliary212

tasks: Mention Detection and a new task, called213

Match Prediction. Third, we train our multi-task 214

learning architecture with a weighted objective. Fi- 215

nally, we propose to use the match prediction mod- 216

ule for re-ranking during inference. An overview 217

of our architecture is in Figure 2. 218

3.1 Autoregressive Entity Linking 219

We train autoregressive entity linking as a lan- 220

guage generation task. We follow the setting of the 221

encoder-decoder model of De Cao et al. (2021b). 222

They train their model to generate the input sen- 223

tence containing both the entity mention and the 224

target entity, annotated with parentheses and brack- 225

ets. For simplicity, we omit these annotations from 226

the examples in the figures. 227

For entity linking (EL), we optimize the follow- 228

ing negative log-likelihood loss: 229

LEL = −
N∑
i=1

logP (yi|y1, ..., yi−1,x) (1) 230

where x is the input sentence, and y is the output 231

sentence of length N . 232

3.2 Entity Mention Detection 233

The first auxiliary task is mention detection (MD). 234

The goal of this task is to teach the model to dis- 235

tinguish tokens that are part of entities from tokens 236

that are not part of any entity. As a result, this 237

task is in essence a token-wise binary classification 238

task. This setting is similar to semantic role label- 239

ing (Carreras and Màrquez, 2005) or named entity 240

recognition. Broscheit (2019) propose a similar 241

task definition, but combine entity detection with 242

entity disambiguation. Their task definition is a 243

classification task over the entire knowledge base 244

vocabulary, rather than our binary setting. 245

In this task, we train the model to predict where 246

the tokens of the entities are in the input sentence 247

and in the target (annotated) sentence. Therefore, 248

this auxiliary task has to output two sequences of 249

entity indicators: “E” for entity mention or concept 250

tokens, and “O” for all other tokens. To train our 251

model to generate sequences for the input and tar- 252

get sentences, we augment our existing dataset. We 253

create two datasets of the same size: the first has se- 254

quences of entity indicators for the input sentences, 255

and the second has sequences of entity indicators 256

for the target sentences. 257

As shown at the left of Figure 2, we use two dif- 258

ferent tagging heads for mention detection: one for 259
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Encoder

Decoder (EL)

Output Layer Classification 
HeadTagging Head

(Target Sentence)

I took the flu shot. I took the flu shot. I took the flu shot.
I took the flu vaccine.

1. Entity Mention 
Detection (MD)

2. Autoregressive 
Entity Linking (EL)

3. Entity Match 
Prediction (MP)

Decoder (MP)Decoder (MD)

Tagging Head
(Source Sentence)

I took the flu shot.
O  O  O  E  E O

I took the influenza vaccine.
O  O  O    E      E  O I took the influenza vaccine.

Prediction: 0.45
Entities do not match

Multi-Task Training Inference Time

Input

Autoregressive
Entity Linking

𝑘 sampled outputs
Ranked by LM probability

𝑘 sampled outputs
Ranked by prediction score

Entity Match 
Prediction

Generating & Re-ranking
𝑘 sampled outputs

Figure 2: Architecture of our proposed multi-task autoregressive entity linking model. Each task is trained using a
shared encoder and a task-specific decoder and output layer. The auxiliary mention detection task uses datasets
derived from one entity linking dataset, whereas the match prediction task uses sampled outputs. At inference time,
we use the match prediction module to re-rank generated samples.

the input sentence, and one for the output sentence.260

We use two tagging heads as the model learns dif-261

ferent mappings from two different kinds of input.262

For the input sentence, we feed the encoder em-263

beddings to the first tagging head. We cast this264

as a classification problem. For mention detection265

on the output sentence, we use a separate decoder,266

and feed this decoder’s embeddings to the second267

tagging head. We cast this task as a generation task.268

For both tasks, we optimize a cross entropy (CE)269

loss. In summary, we optimize the following loss270

function for mention detection (MD):271

LMD =CE (Enc(x), Ent(x))

+ CE (Dec(Enc(x)), Ent(y))
(2)272

where Enc(·) is the encoder representation, Dec(·)273

is the decoder representation, and Ent(·) indicates274

the corresponding sequence of entity indicators.275

3.3 Entity Match Prediction276

In their biomedical entity linking experiments us-277

ing word embedding space mapping, Basaldella278

et al. (2020) find that accuracy at 10 is often more279

than double the accuracy at 1. They then suggest280

that re-ranking could significantly improve perfor-281

mance. We build on this observation to introduce282

the second auxiliary task: entity match prediction283

(MP). The goal of this task is to teach the model284

to re-rank generated samples based on the input285

sentence, with the aim to help narrow the gap with 286

the accuracy at 10 scores. 287

The input to this task is composed of two sen- 288

tences: the first one is the input sentence, and the 289

second is a sentence where entity mentions are 290

replaced by entities that may or may not be the 291

matching target entities. We train the model to pre- 292

dict whether the entities match (score of 1) or not 293

(score of 0) between both sentences. 294

At regular intervals during training, we gener- 295

ate k samples for each input sentence using beam 296

search on the autoregressive entity linking part of 297

the trained model. We then form k sentence pairs. 298

The corresponding ground truth label for a given 299

sentence pair indicates whether the entities match 300

or not. This data generation setting exposes the 301

model to its own successes and failures in the main 302

entity linking task. 303

It may be the case that no generated sample con- 304

tains entities that match the input sentence, and 305

therefore that all labels for a pair are 0. In this 306

case, the model would not be shown what an ex- 307

ample of matching entities looks like. To mitigate 308

this issue, we decide to add one additional sen- 309

tence pair, where the second sentence is the target 310

sentence used in the autoregressive entity linking 311

training. We add this additional sentence pair to all 312

datapoints for consistency. 313

We train entity match prediction using a mean 314

squared error loss: 315
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LMP =
(
PMP(ŷ|x)− 1

)2
+

k∑
i=1

(
PMP(ys

i |x)− ŷMP
i

)2 (3)316

where ŷ is the target sentence, ys
i is the i-th gen-317

erated sample, PMP(·|·) is the probability that the318

entities in the left-hand sequence match the ones319

in the right-hand sequence, and ŷMP
i is the ground320

truth label for entity match prediction for the i-th321

generated sample.322

De Cao et al. (2021a) propose to rank candidate323

concepts from a predefined set after the detecting324

entity mentions. In our case, we do not learn to325

rank predefined sets of candidates, nor do we rank326

concepts. Instead, we generate sentences using327

beam search, and propose to learn to re-rank them.328

3.4 Multi-Task Learning329

We propose to optimize simultaneously for all three330

tasks using a single loss function. We set one331

weight for each auxiliary task. We discuss the task332

weight hyperparameter tuning in §4.3.333

Given the losses defined in equations 1, 2, and334

3, our loss function for multi-task learning is as335

follows:336

LMTL = LEL + λMDLMD + λMPLMP (4)337

where λMD and λMP are the auxiliary task weights338

for mention detection and match prediction, respec-339

tively.340

As shown in Figure 2, we use three separate de-341

coders for training: one for each task. We use two342

separate tagging heads for mention detection. For343

the match prediction task, we feed the last decoder344

output to the classification head. This follows the345

training scheme of BART (Lewis et al., 2020) for346

sentence classification tasks.347

Our model architecture is inspired by MT-DNN348

(Liu et al., 2019), a multi-task model that obtained349

state-of-the-art results across many NLP tasks in-350

volving sentence representation. In the MT-DNN351

architecture, the encoder is shared across tasks, and352

prediction heads are task-specific. Nonetheless,353

other multi-task architectures remain compatible354

with our auxiliary tasks and re-ranking, which are355

the novelties we focus on in this work.356

AIDA-CoNLL COMETA
Split Documents Mentions Mentions
Train 942 18,540 13,714
Dev 216 4,791 2,018
Test 230 4,485 4,283

Table 1: Statistics of Entity Linking benchmark datasets.

3.5 Inference-time Re-ranking 357

In order to bridge some of the gap between ac- 358

curacy at 1 and accuracy at 10 (Basaldella et al., 359

2020), we propose to use the entity match predic- 360

tion module to re-rank generated samples. The 361

right side of Figure 2 illustrates the process. 362

At inference time, we first generate k samples 363

ranked by their language modeling probability. We 364

then use the separate entity match prediction (MP) 365

decoder to predict an entity match probability. To 366

do so, we input the source sentence and a generated 367

sample to the MP decoder. We use the resulting 368

MP probabilities to re-rank the k generated sam- 369

ples. We select the sample with the highest MP 370

probability to compute the evaluation metrics. 371

4 Experiments 372

4.1 Datasets and Setup 373

We use two benchmark datasets for English- 374

language entity linking. We use the standard data 375

splits for both datasets, as detailed in Table 1. 376

AIDA-CoNLL (Hoffart et al., 2011) is a dataset 377

consisting of annotated news articles from the 378

Reuters Corpus (Lewis et al., 2004). The knowl- 379

edge base concepts come from the titles of the 380

English-language Wikipedia. Each news article 381

contains multiple entity mentions. Articles are 382

sometimes too long for the maximum sequence 383

length of our model. We follow De Cao et al. 384

(2021a) and cut the articles into separate chunks. 385

We use the Micro-F1 metric for evaluation. We 386

only evaluate mentions present in the knowledge 387

base, following the In-KB setting (Röder et al., 388

2018), in line with previous work (De Cao et al., 389

2021b,a). This dataset contains candidates for each 390

entity mention. Our method does not use these 391

entity candidates, although several baselines do 392

(Kolitsas et al., 2018; Martins et al., 2019; De Cao 393

et al., 2021a). 394

COMETA (Basaldella et al., 2020) is a dataset of 395

biomedical entity mentions from social media (Red- 396

dit) utterances. In this dataset, each user-written 397
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(a) Choosing the optimal λMD, setting λMP = 0.3.

(b) Choosing the optimal λMP, given the optimal λMD.

Figure 3: Task weight tuning on the dev set for Mention
Detection (MD) and Match Prediction (MP). We first
optimize for λMD (a), and then λMP (b).

utterance contains exactly one entity mention. The398

metric used to evaluate this dataset is accuracy399

at 1 (Acc@1). We measure Acc@1 by check-400

ing whether the correct knowledge base concept401

is present in the top generated sample. We use402

the zeroshot specific split, where the entity men-403

tion and disambiguation pairs in the test set are404

not seen during training, and the entity linking is405

context-specific.406

4.2 Training Details407

We use BART Large (Lewis et al., 2020) as our408

base model. We use three decoders, all initialized409

from the same checkpoint decoder. We train for410

100 epochs on AIDA-CoNLL, and for 10 epochs411

on COMETA. We use the same model checkpoint412

as De Cao et al. (2021b), which is trained on an413

English Wikipedia dataset for entity linking. We414

generate k = 10 samples for the Match Prediction415

training and validation, as well as for inference.416

4.3 Task Weight Tuning417

For each dataset, we optimize the auxiliary task418

weights λMD for mention detection, and λMP for419

match prediction. We select these hyperparame-420

ters based on the highest performance in Micro-F1421

(AIDA-CoNLL) or accuracy at 1 (COMETA) on422

the dev set.423

We trial all values from 0.1 to 1.0 with 0.1 in-424

crements, for both task weights. We start by opti-425

mizing λMD given λMP = 0.3, and then optimize426

λMP given the optimal λMD weights. The results427

are in Figure 3. The graphs show that performance428

on the main entity linking task can vary visibly429

when the weights of the auxiliary tasks change.430

AIDA-CoNLL COMETA
MD MP Rk Micro-F1 Acc@1
Ablation of Auxiliary Tasks and Re-ranking
✗ ✗ ✗ 86.4 31.2

Ablation of Auxiliary Tasks
✓ ✗ ✗ 87.5 31.9
✗ ✓ ✓ 88.8 34.1

Ablation of Re-ranking
✓ ✓ ✗ 87.8 32.8

MD, MP and Re-ranking (Ours)
✓ ✓ ✓ 89.6 34.3

Table 2: Results of the ablation studies on the dev
sets. We perform ablation studies on Mention Detection
(MD), Match Prediction (MP), and the re-ranking of
generated samples (Rk).

Moreover, the optimal task weights are different 431

for every dataset and domain: we find that the op- 432

timal auxiliary task weights are λMD = 0.4 and 433

λMP = 0.6 for AIDA-CoNLL, and λMD = 0.5 434

and λMP = 0.3 for COMETA. We use these task 435

weights for the next experiments. 436

4.4 Ablation Studies 437

We perform two types of ablation studies to analyze 438

the added value of our novelties. First, we evaluate 439

how do the two auxiliary tasks and the re-ranking 440

impact entity linking performance. Second, we 441

implement a low-resource scenario for the auxiliary 442

tasks, as we ask whether the main task benefits 443

more from the knowledge learned the auxiliary 444

tasks, or from the additional training data. 445

Auxiliary Tasks and Re-ranking. Our main 446

novelties are multi-task learning with mention de- 447

tection and match prediction, and the re-ranking 448

of generated samples at inference time. The aux- 449

iliary tasks aim to explicitly teach the model how 450

to detect mentions of entities, and how to pre- 451

dict whether entities were correctly disambiguated 452

given an input sentence and a generated sample. 453

We perform ablation studies to gauge the added 454

value of each task and re-ranking. We perform four 455

additional experiments, keeping the same number 456

of model parameters. First, we perform an abla- 457

tion of both auxiliary tasks and the re-ranking, by 458

setting λMD = 0.0 and λMP = 0.0, and not chang- 459

ing the order of the generated samples. Second, 460

we remove the match prediction training objec- 461

tive (λMP = 0.0), and therefore also remove the 462

re-ranking, but we keep the optimally weighted 463

mention detection objective. Third, we remove 464

6



the mention detection training objective by setting465

λMD = 0.0, but we keep the optimally weighted466

mention prediction objective, along with the re-467

ranking. Finally, we keep both optimally weighted468

auxiliary tasks, but remove the inference-time re-469

ranking of generated samples.470

We show the results of all ablation experiments471

on the dev sets in Table 2. We notice that the low-472

est scores are obtained when both auxiliary tasks473

and re-ranking are ablated. This shows the added474

value of all of our main novelties on the main en-475

tity linking task. In addition, each auxiliary task476

individually increases performance, as shown on477

the second and third row of results. The auxil-478

iary match prediction task along with re-ranking479

provide a larger performance increase than the aux-480

iliary mention detection task alone. This could be481

due to the fact that the match prediction task gets a482

larger number of samples to train on. Finally, the483

difference in performance between our model and484

the re-ranking ablation study shows that re-ranking485

of generated samples is an important contribution486

to the final performance. This result backs the sug-487

gestion of Basaldella et al. (2020) that re-ranking488

can bridge some of the gap between accuracy at 1489

and accuracy at 10.490

Impact of additional training data. In this491

subsection, we ask whether the main task benefits492

more from the knowledge learned by the auxiliary493

tasks, or from the large sizes of the auxiliary task494

datasets. The mention detection task has two data-495

points for every entity linking datapoint, while the496

match prediction task has k + 1 = 11 datapoints497

for every entity linking datapoint. Therefore, in a498

given training epoch, there are more datapoints to499

train on for the auxiliary tasks in comparison with500

the main task.501

We devise three experiments to gauge whether502

a lower amount of training datapoints for auxiliary503

tasks impacts the main task results. We propose504

a low-resource regimen of training for auxiliary505

tasks, such that we bring the ratio of training data-506

points down to 1:1 between the auxiliary tasks and507

the main task. We train on one out of every two508

MD datapoints, and on one of out every 11 MP509

datapoints. In other words, we skip 50% of the510

training data of the MD task, and 91% of the train-511

ing data of the MP task. We spread out the input512

such that, at each training step, the model sees one513

EL input sentence, one MD input sentence, and514

one MP input sentence pair. In each epoch, we skip515

% of Train Set AIDA-CoNLL COMETA
MD MP Micro-F1 Acc@1

Ablation of Auxiliary Tasks and Re-ranking
0% 0% 86.4 31.2

Low-Resource Experiments
50% 9% 88.5 34.0
50% 0% 89.3 33.4
0% 9% 88.5 33.8

No Low-Resource (Ours)
100% 100% 89.6 34.3

Table 3: Results on the dev sets of the low-resource
experiments. We reduce the training datasets of the
auxiliary mention detection MD and match prediction
MP tasks to gauge whether the main task continues to
benefit from multi-task learning. We add the first and
last row of results as reference points for comparison.

the same datapoints so that the model only sees a 516

reduced number of training datapoints. 517

In the first experiment, we train for both auxil- 518

iary tasks on a train set ratio of 1:1 with the main 519

task. In the second and third experiments, we apply 520

the low-resource setting only to the mention de- 521

tection task, and only to the match prediction task, 522

respectively. In all three experiments, we keep the 523

same selection of skipped datapoints for each task, 524

and we keep re-ranking. 525

We show the results of the low-resource experi- 526

ments in Table 3. For reference, we add the results 527

from our model and the model without auxiliary 528

task nor re-ranking from Table 2. The results show 529

that globally, there is a slight decrease in perfor- 530

mance when the training set is smaller, compared 531

to our model. However, the low-resource experi- 532

ments show a significant increase in performance 533

compared to the ablation experiment of the first 534

row. This shows that our proposed method’s edge 535

does not only come from the additional training 536

data, but also from our formulation of the auxiliary 537

tasks, and the re-ranking of generated samples. 538

4.5 Results and Discussion 539

AIDA-CoNLL. The test results for the AIDA- 540

CoNLL dataset are on Table 4. Our model estab- 541

lishes a new state of the art for this task. 542

Note that our model is autoregressive and, com- 543

pared to the state-of-the-art autoregressive model 544

on AIDA-CoNLL De Cao et al. (2021b), our 545

method shows a 2.0-point improvement in Micro- 546

F1 score. This increase shows that our model is 547

able to correct some errors with the re-ranking at 548
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Method Micro-F1
Hoffart et al. (2011) 72.8
Steinmetz and Sack (2013) 42.3
Daiber et al. (2013) 57.8
Moro et al. (2014) 48.5
Piccinno and Ferragina (2014) 73.0
Kolitsas et al. (2018) 82.4
Peters et al. (2019) 73.7
Broscheit (2019) 79.3
Martins et al. (2019) 81.9
van Hulst et al. (2020) 80.5
Févry et al. (2020) 76.7
Kannan Ravi et al. (2021) 83.1
De Cao et al. (2021a) 85.5
Autoregressive Entity Linking Models
De Cao et al. (2021b) 83.7
Our model 85.7

Table 4: Results on the AIDA-CoNLL test set.

inference time, and that our multi-task setting ben-549

efits the main entity linking task.550

Our model scores a Micro-F1 0.2 higher than the551

model of De Cao et al. (2021a). However, De Cao552

et al. (2021a) use a predefined candidate set of553

concepts, whereas the autoregressive models – in-554

cluding our own – do not. This shows that our555

model is able to bypass the knowledge base, and556

that our method leverages language modeling to557

gain knowledge of the news domain.558

COMETA. There are no pre-defined sets of can-559

didate concepts in the COMETA dataset. In this560

task, there is a knowledge base of biomedical con-561

cepts from which the model can choose. Similarly562

to our AIDA-CoNLL setting, our model does not563

use the knowledge base.564

We consider three baselines for our biomedical565

entity linking benchmark. The first baseline is the566

embedding mapping method of Basaldella et al.567

(2020). They use BioBERT and a max-margin568

loss with negative target embeddings. The sec-569

ond baseline is the BERT- and classification-based570

method of Broscheit (2019). We train this baseline571

by classifying tokens into the concepts present in572

the COMETA dataset, as opposed to the entire vo-573

cabulary of 350K knowledge base concepts. This574

is for computational purposes, as a 350K-way clas-575

sification would be difficult to train. The third576

baseline is the autoregressive, single-task model of577

De Cao et al. (2021b). We train this baseline as a578

reference point for our model.579

Method Acc@1
Basaldella et al. (2020) 27.0
Broscheit (2019) 24.5
Autoregressive Entity Linking Models
De Cao et al. (2021b) 30.9
Our model 32.4

Table 5: Results on the COMETA test set.

The test results of the COMETA dataset experi- 580

ments are on Table 5. Our model is able to exceed 581

over five percentage points the baselines that use 582

the knowledge base concepts. This shows that our 583

method can efficiently generalize without the need 584

for a knowledge base, but only through learning 585

about the biomedical domain. Note that we use 586

the zeroshot specific split here, where the entity 587

mention and disambiguation pairs in the test set 588

are not seen during training. Moreover, our model 589

exceeds the autoregressive single-task baseline by 590

1.5%. This increase shows that our multi-task set- 591

ting and re-ranking can generalize, and increase 592

performance under zeroshot settings. 593

5 Conclusions 594

We propose a multi-task learning and re-ranking ap- 595

proach to autoregressive entity linking. Our main 596

two novelties address two weaknesses in the lit- 597

erature. First, whereas autoregressive entity link- 598

ing can increase performance, mention detection 599

is only learned implicitly. We propose to cast this 600

problem as a language generation task while ex- 601

plicitly teaching the model how to detect entity 602

mentions. Second, previous work suggests that a 603

sizeable portion of errors could be corrected with 604

re-ranking. We propose to use samples generated at 605

training time to teach the model to re-rank outputs. 606

We devise four ablation study experiments, and 607

show that our model benefits from both auxiliary 608

tasks and re-ranking. In particular, we show that re- 609

ranking plays a major role in increasing entity link- 610

ing scores. Then, we propose three low-resource 611

experiments for auxiliary tasks. The results show 612

that our model’s performance is not only due to 613

additional training datapoints, but also due to how 614

we defined our auxiliary tasks. Finally, our model 615

establishes a new state of the art in both COMETA 616

and AIDA-CoNLL. The increases in performance 617

across both datasets show that our model can learn 618

and leverage domain-specific knowledge, without 619

using a candidate set or a knowledge base. 620
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A Additional Training Details 903

Following De Cao et al. (2021b), we use con- 904

strained beam search to force the model to annotate 905

mentions and concepts. We set the learning rate 906

at 3 · 10−5. We use an Adam optimizer where the 907

betas are 0.9 and 0.999. The Adam epsilon is 10−8, 908

and the dropout is 0.1. The total number of param- 909

eters for our multi-task model is 915 million. We 910

select the best model based on the lowest loss value 911

on the dev set. We generate samples at every train- 912

ing epoch for COMETA, and at every 2 epochs for 913

AIDA-CoNLL. 914

B Reproducibility Details 915

We will open-source the code and trained models 916

along with the camera-ready version. 917

For training, we use 8 GPUs of 32GB each. The 918

average runtime per training epoch is 3 minutes 919

for COMETA, and 12 minutes for AIDA-CoNLL. 920

All validation results for the reported test results 921

of our best-performing models are in Table 3 of 922

the main paper. We use Micro-F1 as metric for 923

AIDA-CoNLL, and accuracy at 1 for COMETA. 924

We describe the hyperparameter search for multi- 925

tasking in §4.3. 926

We report the statistics about the dataset 927

in Table 1. We did not exclude any data. 928

For COMETA, one has to email Prof. 929

Nigel Collier (nhc30@cam.ac.uk) to 930

get the dataset. For AIDA-CoNLL, we 931

use the pre-processed dataset available at 932

this link: https://mega.nz/folder/ 933

l4RhnIxL#_oYvidq2qyDIw1sT-KeMQA. 934

For the low-resource experiments, we form the 935

low-resource datasets as follows. At the very begin- 936

ning of the experiment, we select which datapoints 937

we will omit, and which ones we will train with. 938

For our multi-task setting, we train at each step on 939

one EL input sentence, two MD input sentences 940

(technically one, for which we produce two out- 941

puts), and k + 1 = 11 MP input sentence pairs. In 942

contrast, for our low-resource setting, we train at 943

each step with one input for each task. For Match 944

Prediction, we truncate the last few datapoints in 945

the low-resource setting, as the sizes of the training 946

sets in both datasets are not dividable by 11. 947
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