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ABSTRACT

As the field of Multimodal Large Language Models (MLLMs) continues to evolve,
their potential to handle mathematical reasoning tasks is promising, as they can
handle multimodal questions via cross-modal understanding capabilities com-
pared to text-only LLMs. Current mathematical benchmarks predominantly fo-
cus on evaluating MLLMs’ problem-solving ability, yet there is a crucial gap in
addressing more complex scenarios such as error detection, for enhancing rea-
soning capability in complicated settings. To fill this gap, we formally formulate
the new task — multimodal error detection, and introduce ERRORRADAR, the
first benchmark designed to assess MLLMs’ capabilities in such a task. ERROR-
RADAR evaluates two sub-tasks: error step identification and error categoriza-
tion, providing a framework for evaluating MLLMs’ complex mathematical rea-
soning ability. It consists of 2,500 high-quality multimodal K-12 mathematical
problems, collected from real-world student interactions in an educational organi-
zation, with expert-based annotation and metadata such as problem type and error
category. Through extensive experiments, we evaluated both open-source and
closed-source representative MLLMs, benchmarking their performance against
educational expert evaluators. Results indicate challenges still remain, as GPT-4o
with best model performance is still around 10% behind human evaluation.

1 INTRODUCTION

On the path to Artificial General Intelligence, Large Language Models (LLMs) such as GPT-4 (Ope-
nAI, 2023) have emerged as a central focus in both industry and academia (Minaee et al., 2024; Zhao
et al., 2023; Zhu et al., 2023). As the real world is inherently multimodal, the evolution of Multi-
modal Large Language Models (MLLMs) such as the latest GPT-4o (OpenAI, 2024a) and Gemini
1.5 (Reid et al., 2024), has become a rapidly growing area of interest, demonstrating remarkable
effectiveness in diverse applications (Xiao et al., 2024; He et al., 2024a; Yan et al., 2024b; Hao
et al., 2024). In particular, multimodal reasoning stands to significantly benefit education scenarios
from the robust capabilities of MLLMs (Wang et al., 2024c; Li et al., 2024a), given its reliance on
multimodal inputs to comprehensively grasp users’ intentions and needs.

Within the multimodal sphere, mathematical scenarios pose a significant challenge, demanding so-
phisticated reasoning abilities from MLLMs (Ahn et al., 2024; Yan et al., 2024a). These scenarios
have attracted considerable research aimed at pushing the boundaries of MLLMs’ reasoning capa-
bilities (Hu et al., 2024b; Jia et al., 2024; Lu et al., 2024c; Shi et al., 2024b; Zhuang et al., 2024).
Besides, various representative benchmarks have been designed to measure MLLMs’ performance
in complex mathematical reasoning tasks, which involve multi-step reasoning and quantitative anal-
ysis within visual contexts (Lu et al., 2024b; Zhang et al., 2024; Qiao et al., 2024; Peng et al., 2024).

Scrutinizing the off-the-shelf mathematical reasoning benchmarks, there is a predominant focus
on evaluating the problem-solving capabilities of MLLMs, prioritizing the accuracy with which
MLLMs can solve mathematical problems (Wang et al., 2024b; Lu et al., 2024b; Zhang et al.,
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Figure 1: Comparison of research scope between pre-
vious work and our proposed ERRORRADAR bench-
mark on mathematical reasoning tasks.

Benchmarks Venue Modality Student Ans. Error Det.
TheoremQA (Chen et al., 2023a) EMNLP T - -
MathBench (Liu et al., 2024b) ACL T - -
MR-GSM8K (Zeng et al., 2024) ICLR T - -
SciEval (Sun et al., 2024) AAAI T - -
EIC (Li et al., 2024b) ACL Finding T - ✓
CMMaTH (Li et al., 2024c) COLING T, I - -
MathScape (Zhou et al., 2024) arXiv T, I - -
MATH-V (Wang et al., 2024b) NeurIPS T, I - -
QRData (Liu et al., 2024c) ACL T, I - -
IsoBench (Fu et al., 2024) COLM T, I - -
SciBench (Wang et al., 2024d) ICML T, I - -
MathVista (Lu et al., 2024b) ICLR T, I - -
MathVerse (Zhang et al., 2024) ECCV T, I - -
ERRORRADAR (Ours) - T, I ✓ ✓

Table 1: Comparison between our proposed ERROR-
RADAR benchmark vs. its relevant LLM-based math-
ematical reasoning benchmarks or datasets. Under the
column of Modality, the letters T and I represent text
and image, respectively. The column labeled as Student
Ans. indicates whether the dataset contains real student
data (i.e., students’ incorrect answers); the column la-
beled as Error Det. represents whether evaluation in-
cludes the complex reasoning task of error detection.

2024), as depicted in Figure 1 (a). However, in educational contexts, it is even more crucial to
consider user-oriented needs, such as error detection. As indicated in Figure 1 (b), this involves
not only pinpointing the first incorrect step in a student’s step-by-step solution but also categorizing
the types of errors made, which is a multifaceted process that requires a deep understanding of both
mathematical concepts and cognitive processes (Davies et al., 2021; Rabillas et al., 2023).

Towards this end, addressing the aforementioned research gap, we aim to formulate the new task
of evaluating MLLMs in the context of error detection scenarios, and therefore introduce the corre-
sponding benchmark termed ERRORRADAR. We have designed two sub-tasks to comprehensively
assess the performance: error step identification and error categorization. To construct a rich and
reliable dataset, we initially sourced a collection of multimodal K-12 level math problems from an
educational organization and subsequently refined the dataset through rigorous manual annotation to
ensure quality. In particular, we also collect real students’ answers for each multimodal question for
a relatively robust experimental setting, compared to other relevant benchmarks (as shown in Table
1). Furthermore, we categorized the dataset to better align with diverse needs as follows: Problem
types: plane geometry, solid geometry, diagram, algebra, and mathematical common sense; and
Error categories: visual perception errors, calculation errors, reasoning errors, knowledge errors,
and misinterpretation of the problem. In summary, the ERRORRADAR comprises 2,500 high-quality
instances derived from real-life problem-solving data, providing a foundational dataset to enhance
the complex reasoning capabilities of MLLMs for the research community and industry.

For ERRORRADAR, we carry out an extensive experimental analysis to determine the proficiency
in complex mathematical reasoning of various MLLMs. The evaluation encompasses both the lat-
est open-source MLLMs (e.g., InternVL2 (Chen et al., 2023b), LLaVA-NEXT (Liu et al., 2024a),
CogVLM2 (Wang et al., 2023a)), and closed-source MLLMs (e.g., GPT4-o (OpenAI, 2024a), Gem-
ini Pro 1.5 (Reid et al., 2024), Claude 3.5 (Anthropic, 2024b)). Our focus was on their error de-
tection capabilities, specifically the identification of the erroneous step and the classification of the
error type. To establish a comparative human performance standard, we involved expert human ed-
ucators who possess a graduate-level degree or higher qualifications. The results demonstrate that
ERRORRADAR, covering cutting-edge topics such as MLLMs’ complex reasoning, poses a signifi-
cant challenge, with human evaluation for two error detection tasks achieving less than 70%.

From in-depth evaluation of representative MLLMs, we obtain the following findings: ❶ Closed-
source MLLMs, particularly GPT-4o, consistently outperform open-source MLLMs in both sub-
tasks, and show more balanced accuracy across different error categories; ❷ Weaker MLLMs exhibit
an over-reliance on simpler categories, while stronger models handle complex tasks better; ❸ Both
MLLMs and humans perform better on error step identification compared to error categorization, as
localizing specific errors is inherently simpler than categorizing errors.

Our contributions can be summarized as follows:
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❶ We take the first step to formulate the multimodal error detection task, and introduce a mul-
timodal benchmark termed ERRORRADAR for evaluation. This benchmark serves as a standard
operator for assessing the complex mathematical reasoning capabilities of the latest MLLMs.

❷ We meticulously curate an extensive dataset comprising approximately 2,500 high-quality in-
stances with rigorous annotation and rich metadata derived from real user interactions in an educa-
tional organization. To the best of our knowledge, this is the first attempt to use real-world student
problem-solving data to evaluate MLLMs, providing a protocol for future research on MLLMs’
complex mathematical reasoning.

❸ Our comprehensive experimental evaluation of more than 20 MLLMs, both proprietary and open-
source, highlight the substantial room for improvement (i.e., 7%-15% in accuracy) in the complex
mathematical reasoning capabilities, underscoring the necessity for further research.

2 RELATED WORK

Benchmarks for Mathematical Reasoning. Recent advancements in mathematical reasoning
benchmarks have led to the development of both pure text and multimodal assessments (Lu et al.,
2022; Wang et al., 2024b; Zheng et al., 2024b; Huo et al., 2024). While datasets like GSM8K
(Cobbe et al., 2021), MATH (Hendrycks et al., 2021), SuperCLUE-Math (Xu et al., 2024), and
MathBench (Liu et al., 2024b) focus on text-based problems, the field has expanded to include mul-
timodal benchmarks that introduce visual elements, pushing the boundaries of AI’s mathematical
understanding. For instance, MathVista (Lu et al., 2024b) evaluates AI’s performance on visual
math QA tasks; MATH-V (Wang et al., 2024b) focuses on multimodal mathematical understanding
with competition-derived questions; MathVerse (Zhang et al., 2024) assesses visual diagram com-
prehension using CoT strategies; CMMU (He et al., 2024b) tests multi-disciplinary, multimodal
math understanding with a broad range of Chinese-language questions; MathScape (Zhou et al.,
2024) further advances the field by presenting longer, more complex, and open-ended multimodal
problems; and MMMU(Yue et al., 2024) covers college-level knowledge including interleaved math-
ematical questions. The aforementioned benchmarks assess the mathematical reasoning capabilities
of MLLMs by evaluating their problem-solving levels, but they overlook tasks based on the student’s
perspective, such as error detection, and thus fail to comprehensively evaluate the more complex role
of current MLLMs. Therefore, we propose the ERRORRADAR benchmark, which is entirely based
on real student response data to evaluate the proficiency of MLLMs in error detection tasks.

Multimodal Large Language Models. Generative foundation models such as GPT-4 (OpenAI,
2023), Claude (Anthropic, 2024b), and Gemini (Pal & Sankarasubbu, 2024) have significantly ad-
vanced various task solutions without fine-tuning (Cui et al., 2024; Yan & Lee, 2024; Zou et al.,
2025; Zhong et al., 2024). Similarly, current open-source MLLMs, built on top of powerful LLMs,
have also demonstrated promising potential in multimodal tasks such as image captioning (Yang
et al., 2024) and visual question answering (Fan et al., 2024). For instance, LLaVA-NEXT (Liu
et al., 2024a) proposed projecting visual embeddings, extracted by a pretrained vision encoder, into
the word space through a single MLP layer, where LLMs like LLaMA, Vicuna, and Mistral are fine-
tuned to understand these post-projection tokens. In a similar fashion, Phi3 (Abdin et al., 2024),
DeepSeek-VL (Lu et al., 2024a), MiniCPM-V (Yao et al., 2024), ChatGLM (GLM et al., 2024),
CogVLM (Wang et al., 2023a), Intern-VL (Chen et al., 2023b), Qwen-VL (Bai et al., 2023) and
Yi-VL (Young et al., 2024) also utilize a projector (or adapter, shared compression layer, etc.) to
align the visual embeddings extracted from a vision encoder with text embeddings, which are then
concatenated and fed into LLM. Therefore, we propose ERRORRADAR, a comprehensive bench-
mark on a fine-grained evaluation of MLLMs’ ability to detect errors based on students’ answers
and reasoning steps, thereby advancing the development of complex multimodal system.

3 THE ERRORRADAR DATASET

3.1 TASK FORMULATION

Basic Setting. In this task, we assess the model’s ability to detect errors in mathematical problem-
solving processes across multiple samples. Let N denote the total number of samples in the evalua-
tion set. For each sample i ∈ {1, 2, . . . , N}, the input set Ii is defined as:

Ii = {Qtext,i, Qimage,i, Acorrect,i, Aincorrect,i, {Sk,i}ni

k=1},
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Figure 2: Example of our annotated multimodal mathematical reasoning dataset ERRORRADAR, and perfor-
mance comparison on error categorization and error step localization tasks among representative MLLMs. It
is evident that even simple math problems can be mishandled by the currently superior MLLMs in one or both
tasks, highlighting the challenging nature of our proposed multimodal error detection setting.

where Qtext,i represents the textual statement of the i-th problem, Qimage,i represents the image
representation of the i-th problem, Acorrect,i represents the correct solution for the i-th problem,
Aincorrect,i represents the incorrect student solution for the i-th problem, and {Sk,i}ni

k=1 denotes the
sequence of ni steps in the i-th problem-solving process, with each Sk,i representing a distinct step.
Subtask 1: Error Step Identification. The task is to identify the index x of the first incorrect step
in the sequence {Sk,i}ni

k=1. The function fstep,i maps the input Ii to the index of the erroneous step:

fstep,i : Ii → xi, where xi = argmin
k

{Sk,i is incorrect}.

Subtask 2: Error Categorization. The task is to classify the type of error for the i-th problem
into one of the following categories: {VIS,CAL,REAS,KNOW,MIS}. The error categorization
function ferror,i maps the input Ii to the error category Cerror,i:

ferror,i : Ii → Cerror,i.

More concrete examples can be seen in Figure 2 and Appendix A. The discrepancies within the five
error categories are delineated as follows:

✯ Visual Perception Errors (VIS): These errors arise when there is a failure to accurately interpret
the information contained within images or diagrams presented in the question due to visual issues.

✯ Calculation Error (CAL): These errors manifest during the calculation process, which may in-
clude arithmetic mistakes such as incorrect addition, subtraction, multiplication, or division, errors
in unit conversion, or mistakes in the numerical signs between multiple steps.

✯ Reasoning Error (REAS): These errors occur during the problem-solving process when improper
reasoning is applied, leading to incorrect application of logical relationships or conclusions. In

✯ Knowledge Error (KNOW): These errors result from incomplete or incorrect understanding of
the knowledge base, leading to mistakes when applying relevant knowledge points.

✯ Misinterpretation of the Question (MIS): These errors occur when there is a failure to correctly
understand the requirements of the question or a misinterpretation of the question’s intent, leading
to responses that are irrelevant to the question’s demands. For instance, if the question asks for a
letter and a number is provided, or vice versa.

Performance Metrics. The evaluation of both subtasks is conducted separately. The model’s per-
formance is evaluated using accuracy metrics for both subtasks:
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Statistic Number

Total multimodal questions 2,500

Problem Type
- Plane Geometry 1559 (62.4%)
- Solid Geometry 191 (7.6%)
- Diagram 233 (9.3%)
- Algebra 288 (11.5%)
- Math Commonsense 229 (9.2%)

Error Category
- Visual Perception Error 395 (15.8%)
- Calculation Error 912 (36.5%)
- Reasoning Error 951 (38.0%)
- Knowledge Error 119 (4.8%)
- Misinterpretation of the Qns 123 (4.9%)

Average Reasoning Step 7.6
Maximum Reasoning Step 20
Minimum Reasoning Step 3
Average Question Length 168
Maximum Question Length 719
Minimum Question Length 13

Table 2: Key statistics of ERRORRADAR.

Figure 3: Roadmap of ERRORRADAR dataset collec-
tion, annotation, and consistent update.

Figure 4: Dataset distribution of ERRORRADAR with
respect to problem type and error category.

• Error Step Identification Accuracy. Let Gstep,i be the ground truth index of the first incorrect
step for the i-th sample. The accuracy for this subtask is:

Accstep =
1

N

N∑
i=1

I(xi = Gstep,i),

where I(·) is indicator function, returning 1 if prediction matches ground truth, and 0 otherwise.
• Error Categorization Accuracy. Let Gerror,i be the ground truth error category for the i-th sam-

ple. The accuracy for this subtask is:

Acccate =
1

N

N∑
i=1

I(Cerror,i = Gerror,i).

3.2 DATA SOURCE & ANNOTATION

Following the roadmap shown in Figure 3, this section includes how we collect and annotate ER-
RORRADAR dataset to ensure the overall data quality. Different from the conventional benchmarks
that rely on public datasets or modified textbook collections (Lu et al., 2024b; Zhou et al., 2024),
ERRORRADAR dataset is uniquely sourced from the question bank of a global educational organi-
zation. This repository encompasses a vast array of mathematical problems in K-12 levels, totaling
over a million entries. Initially, we curated approximately 180,000 math problems that feature a
single image-based question stem, aligning with our goal to target a multimodal assessment setup.
Subsequently, we refined our selection by evaluating the universality and articulation of the prob-
lem content. For each problem, we identified multiple incorrect answers. To ensure the dataset’s
relevance for error detection tasks, we selected the most frequently given incorrect answer as the
student’s response. Additionally, we scrutinized cases where the most common incorrect answer
was due to system input errors despite the answer being correct. In such instances, we amended the
dataset by incorporating the next most frequently incorrect answer.
Furthermore, since error detection tasks necessitate a step-by-step reasoning process, we enriched
our dataset with new content through manual annotation. Specifically, we provided professional
annotators with the original multimodal QA data, student’s incorrect answers, and the pedagogical
team’s analysis of correct answer process. Based on this initial data, annotators delineated the
erroneous steps leading to the incorrect answers (More details in Appendix B.1 and B.2).
Our team of annotators, consisting of around ten educational experts with domain expertise, con-
ducted two rounds of cross-checking to ensure the reliability of the annotations. In cases of incon-
sistency, the contentious question and related data were presented to the annotation lead for final
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adjudication. The annotators’ results were subject to review and quality control by the educational
organization from which the data originated, ensuring security, reliability, and consistent updates.

3.3 DATASET DETAILS

As illustrated in Table 2, ERRORRADAR dataset comprises a substantial collection of 2,500 multi-
modal math questions designed for error detection tasks. It predominantly includes plane geometry
problems, with solid geometry, diagram, algebra, and math commonsense questions making up the
remainder, highlighting its focus on diverse mathematical problems. it also categorizes errors into
visual perception, calculation, reasoning, knowledge, and question misinterpretation. Key statistics
indicate a diverse dataset with an average reasoning step of 7.6, a variety of question lengths, and
a wide range of reasoning steps (up to 38). Detailed distribution of ERRORRADAR, problem type
definition, and error category formulation can be seen in Figure 4, Appendix B.3 and B.4.

4 EXPERIMENTS AND ANALYSIS

4.1 EVALUATION PROTOCOLS

In ERRORRADAR benchmark, we propose an evaluation strategy using template matching rules.
The evaluation process consists of three stages: response generation, answer extraction, and perfor-
mance calculation. Initially, the MLLMs generate responses given the inputs, which incorporates the
multimodal mathematical question, wrong answer, and its step-by-step reasoning, using the template
from Appendix C.2. Subsequently, the short answer text can be extracted from the detailed response.
Finally, the model performance is based on the detailed score calculation as shown in Section 3.1.
The final score will be calculated by averaging the scores from three rounds of assessment.

4.2 EXPERIMENTAL SETUP

In our experimental setup, we meticulously categorized and evaluated a diverse array of MLLMs
into three distinct groups to assess their capabilities across error detection tasks. (i) The Open-
Source MLLMs category encompassed models such as InternVL-2 (Chen et al., 2023b), Phi-3-
vision (Abdin et al., 2024), Yi-VL (Young et al., 2024), DeepSeek-VL (Lu et al., 2024a), LLaVA-
v1.6-Vicuna (Liu et al., 2024a), MiniCPM-LLaMA3-V2.5 (Yao et al., 2024), MiniCPM-V2.6 (Yao
et al., 2024), Qwen-VL (Bai et al., 2023), GLM-4v (GLM et al., 2024), and LLaVA-NEXT (Liu
et al., 2024a), each demonstrating their unique strengths and capabilities in handling different types
of errors. (ii) The Closed-Source MLLMs featured proprietary models like Qwen-VL-Max (Bai
et al., 2023), Claude-3-Haiku (Anthropic, 2024a), Claude-3.5-Sonnet (Anthropic, 2024b), Gemini-
Pro-1.5 (Reid et al., 2024), GPT-4o-mini (OpenAI, 2024b), and GPT-4o (OpenAI, 2024a), providing
a comparison point for the performance of models that are not publicly accessible. (iii) Lastly, the
Human Performance category served as a benchmark for natural intelligence, allowing us to gauge
how closely MLLMs can emulate human cognitive functions across tasks such as visual perception
(More details in Appendix C.1). We provide the prompts for MLLMs and sources of MLLMs in
Appendix C.2 and C.3, respectively.

4.3 EXPERIMENTAL RESULTS

4.3.1 MAIN RESULTS

Finding #1: Closed-source MLLMs generally outperform open-source MLLMs in both error
detection tasks, with GPT-4o demonstrating the strongest performance. Table 3 shows that
closed-source MLLMs generally outperform open-source MLLMs in both STEP and CATE tasks,
and they also exhibit relatively more balanced performance across the five error categories. This
superiority can likely be attributed to the proprietary datasets and advanced training resources avail-
able to closed-source models, which allow for more robust fine-tuning (Shi et al., 2023; Yu et al.,
2024; Wang et al., 2023b). Notably, GPT-4o stands out as the best model, achieving the highest
scores not only in STEP and CATE tasks, but also in the VIS, REAS, and MIS categories, demon-
strating its overall versatility and strength. Given the current performance gap between open-source
and closed-source MLLMs, open-source MLLMs can further enhance themselves by distilling the
error detection capabilities of closed-source ones (Hsieh et al., 2023) (Details on Appendix C.4).
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Multimodal Large Language Models Parameters LLM STEP CATE VIS CAL REAS KNOW MIS
Open-Source MLLMs

InternVL2 (Chen et al., 2023b) 2B InternLM-2 9.8 25.1 32.2 38.8 12.2 0.0 24.4
Phi-3-vision (Abdin et al., 2024) 4B Phi-3 37.5 40.7 9.6 99.6 6.6 3.4 4.1

Yi-VL (Young et al., 2024) 6B Yi 15.7 32.1 9.1 77.1 4.9 14.3 0.0
DeepSeek-VL (Lu et al., 2024a) 7B DeepSeek 16.2 35.7 4.6 90.9 0.4 28.6 6.5

LLaVA-v1.6-Vicuna (Liu et al., 2024a) 7B Vicuna-v1.5 30.3 17.7 40.3 14.9 8.3 0.0 55.3
InternVL-2 (Chen et al., 2023b) 8B InternLM-2.5 44.2 44.1 12.4 99.6 13.6 10.9 2.4

MiniCPM-LLaMA3-V2.5 (Yao et al., 2024) 8B LLaMA3 37.4 38.0 4.1 100.0 2.1 2.5 0.0
MiniCPM-V2.6 (Yao et al., 2024) 8B Qwen2 17.0 39.8 11.4 87.8 12.1 10.1 17.9

Qwen-VL (Bai et al., 2023) 9B Qwen 23.8 38.9 8.6 99.1 3.5 0.0 0.8
GLM-4v (GLM et al., 2024) 13B GLM-4 44.6 44.1 2.5 92.9 25.8 0.0 0.0

LLaVA-v1.6-Vicuna (Liu et al., 2024a) 13B Vicuna-v1.5 36.9 47.8 0.0 74.5 53.7 0.8 2.4
CogVLM2-LLaMA3 (Wang et al., 2023a) 19B LLaMA3 15.0 20.1 43.3 33.8 0.7 13.4 0.0

InternVL2 (Chen et al., 2023b) 26B InternLM-2 50.4 51.2 39.2 84.6 35.6 0.8 10.6
LLaVA-NEXT (Liu et al., 2024a) 72B Qwen1.5 51.8 45.0 7.1 86.0 32.0 7.6 0.8
InternVL2 (Chen et al., 2023b) 76B Hermes-2 Theta 54.4 49.5 33.4 92.4 25.1 10.9 8.1

Closed-Source MLLMs

Qwen-VL-Max (Bai et al., 2023) - - 48.7 52.9 15.2 78.9 50.5 14.3 36.6
Claude-3-Haiku (Anthropic, 2024a) - - 45.6 48.0 10.4 77.4 46.8 4.2 1.6

Claude-3.5-Sonnet (Anthropic, 2024b) - - 50.2 49.5 35.7 48.4 64.8 21.0 11.4
Gemini-Pro-1.5 (Reid et al., 2024) - - 55.0 52.7 43.5 55.7 63.1 18.5 13.0

GPT-4o-mini (OpenAI, 2024b) - - 52.0 44.5 9.1 46.8 62.7 31.9 13.0
GPT-4o (OpenAI, 2024a) - - 55.1 53.1 46.3 50.4 64.9 9.2 46.3

Human

Human performance - - 69.8 60.7 66.8 75.9 47.6 35.3 53.7

Table 3: Comparison of open-source and closed-source MLLM performance (accuracy in percentage) across
error detection tasks. We denote STEP and CATE for the performance of error step identification task (i.e.,
Accstep) and error categorization task (i.e., Acccate), respectively. We also denote VIS, CAL, REAS, KNOW,
and MIS for visual perception error, calculation error, reasoning error, knowledge error, and misinterpretation
of the question. The highest and second highest scores (except for exceptional values) among MLLMs in each
column are highlighted in red and blue , respectively. Exceptional values in CAL column are highlighted in
grey , as more than 70% categories predicted by the MLLM are CAL (More analysis on Sec 4.3.1 Finding #2).

Figure 5: The proportion of CAL predictions of closed-
source and open-source MLLMs with top-5 CAL accuracy.

Finding #2: Weak open-source MLLMs
tend to predict CAL category, leading
to unusually high performance. Table
3 indicates that MLLMs with relatively
low performance in the CATE task tend
to exhibit unusually high performance in
the CAL category. Specifically, open-
source models like MiniCPM-LLaMA3-
v2.5 even achieve a 100% accuracy in
CAL, while Phi-3-vision and InternVL-2-
8B reach 99.6%. Upon analyzing the cat-
egory prediction proportions of CAL from
Figure 5 (See details of all MLLMs in Ap-
pendix C.5), it becomes clear that open-
source MLLMs with the top five CAL ac-
curacy predict over 80% of instances as CAL category, suggesting an over-reliance on this category.
In contrast, closed-source MLLMs with top-five CAL accuracy do not exhibit this extreme trend of
prediction bias. This phenomenon likely arises from weaker MLLMs attempting to overfit on the
CAL category, a relatively simpler classification, to compensate for their inability to handle more
complex scenarios (Tirumala et al., 2022; Xu et al., 2021). Models exhibiting this phenomenon
can assign different weights to samples of different categories during training to reduce the model’s
preference for a particular category. This can be achieved by adjusting the weight parameters in the
loss function (e.g., Focal Loss & AdaFocal) (Li et al., 2022; Ghosh et al., 2022).

Finding #3: MLLMs with strong overall performance tend to handle STEP easier than CATE.
From Table 3, the best open-source MLLMs, such as InternVL2-76B, and the best closed-source
MLLMs, like GPT-4o, exhibit a tendency where their STEP performance surpasses that of CATE.
This trend holds even for human performance, where accuracy on STEP is higher (69.8%) compared
to CATE (60.7%). The reason for this disparity is likely that identifying the error step is inherently
easier, as it involves localizing a specific point of failure. On the other hand, categorizing the error
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Figure 6: The error category dis-
tribution of misjudged VIS cases
of GPT-4o.

Figure 7: The error category dis-
tribution of misjudged VIS cases
of CogVLM2-LLaMA3.

Figure 8: The error step distribu-
tion (in percentage) of error cate-
gories in ERRORRADAR.

requires more complex reasoning and contextual understanding to classify the nature of the error,
which adds difficulty. This mirrors the settings in object detection, where localization (i.e., pre-
dicting where an object is) is relatively simpler than classification (i.e., predicting what an object
is) (Zou et al., 2023; Jiao et al., 2021). To improve the performance of error categorization tasks,
MLLMs need to better understand the relationship between the problem itself and the steps where
errors occur. Thus, modeling this part of the relationship can be a focus in the design of training
data (Ling et al., 2023; Shi et al., 2024a; Zheng et al., 2024a; Song et al., 2025).

Finding #4: CAL is the easiest category for MLLMs, while KNOW is the most difficult. CAL
is the category with the highest performance among most MLLMs (excluding those with excep-
tional values), which could be attributed to the structured and deterministic nature of calculations,
where errors often result in clear, quantifiable deviations from expected outcomes, making them
more straightforward to detect (Lewkowycz et al., 2022; Kojima et al., 2022). Conversely, KNOW
stands out as the most challenging category, suggesting that MLLMs struggle significantly with
tasks requiring deep factual understanding and contextual reasoning. The complexity of knowledge
errors likely stems from the need for comprehensive domain expertise, which current MLLMs may
not fully encapsulate yet. Even human performance reflects this trend, with knowledge error scoring
notably lower than other categories, albeit with higher accuracy than MLLMs, highlighting the in-
herent difficulty of this task for both humans and AI (Kandpal et al., 2023; Feng et al., 2023). Thus,
adding domain-specific knowledge to the dataset of MLLM is a direct solution (Ling et al., 2023).

Finding #5: MLLMs still have a gap to close to reach human-level intelligence in error detec-
tion. Human performance significantly outperforms the best MLLMs in both the STEP and CATE
tasks, with accuracy scores of 69.8% and 60.7% respectively, compared to the highest MLLM scores
of 55.1% and 53.1%. Notably, the detection of VIS by humans is markedly superior to the best
MLLMs, with a difference of nearly 20%. This substantial lead may be attributed to the sophisti-
cated pattern recognition inherent to human visual processing (Doerig et al., 2022), which MLLMs,
despite their advancements, have yet to fully emulate. Besides, it is interesting to note that human
performance in REAS detection is lower than all closed-source MLLMs but higher than almost
all open-source MLLMs. This may suggest that closed-source MLLMs benefit from proprietary
datasets and algorithms that better capture the nuances of logical reasoning (Wang et al., 2024e).

4.3.2 VISUAL PERCEPTION ANALYSIS

Finding #1: Closed-source MLLMs are most likely to misjudge VIS as REAS in error catego-
rization task. Taking the best-performing GPT-4o model as an example, as shown in the Figure 6,
48% of VIS are misclassified as REAS, followed by 30% being misjudged as MIS. In multimodal
mathematical scenarios, where the MLLM needs to handle information involving both visual and
linguistic elements simultaneously, particularly in problems related to plane and solid geometry, the
complexity of the diagrams makes it difficult for the model to accurately extract certain features,
leading to the frequent misclassification of VIS as REAS. For instance, if an erroneous response to a
mathematical query originates from VIS (e.g., misinterpreting a diagram), MLLM may mistakenly
attribute this to a flaw in logical reasoning that occurs subsequent to initial visual misinterpretation.

Finding #2: Open-source MLLMs are more likely to misclassify VIS as CAL. Taking the open-
source model CogVLM2-LLaMA3, which performs best in identifying VIS, as an example, CAL
accounts for 64% of misclassified category, as illustrated in the Figure 7. When handling complex
visual information, especially in geometry problems, the MLLM often struggles to accurately ex-
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tract key features. Due to the open-source MLLM’s weaker multimodal integration capabilities, it
simplifies visual issues into numerical calculation problems. The lack of sufficient training and data
for visual-related errors is also a key reason behind this phenomenon. More analysis on misclassifi-
cation and visual perception case study can be seen in Appendix C.6 and C.8.

4.3.3 RELATION BETWEEN ERROR CATEGORY AND ERROR STEP

Finding #1: There is a close relationship between different error category and their distribu-
tion in the reasoning steps. As shown in Figure 8, VIS tends to occur in the earlier to mid-stages,
accounting for a median proportion of 0.5 of total steps. In contrast, MIS, REAS, CAL, and KNOW
are more likely to arise in the later stages, with their median proportions ranging from 0.7 to 0.9.
More analysis of this relationship across MLLMs can be seen in Appendix C.7.

Finding #2: VIS occurs in the earlier stages of problem-solving reasoning. This finding could be
closely linked to the sequence in which students approach the task (Binz & Schulz, 2023; Kennedy
& Romig, 2024). Since image content often serves as a key reference early on, any misinterpre-
tation of this visual information directly impacts the subsequent problem-solving steps. Students
typically first examine the image, and then integrate the information before proceeding to reasoning
or calculation. As a result, visual perception errors arise earlier compared to other types of errors.

Finding #3: Other error categories are primarily in later stages of problem-solving reasoning.
This may be linked to the increasing cognitive load students encounter during problem-solving.
Cognitive Load Theory posits that information complexity ranges from low to high interactivity
(Paas et al., 2010; Binz & Schulz, 2023). While low-interactivity information can be understood
independently, high-interactivity information requires simultaneous processing of related elements,
thus increasing cognitive load (Kennedy & Romig, 2024; Abbad-Andaloussi et al., 2023).

4.3.4 SCALING ANALYSIS

Figure 9: The accuracy of STEP and
CATE of two representative MLLM series:
LLaVA-NEXT and InternVL2. We denote
Tiny, Small, Middle, Large as the 2B, 8B,
26B, 76B for InternVL2 and None, 7B, 13B,
72B for LLaVA-NEXT, respectively.

Finding #1: The performance of MLLMs on STEP
task increases with the scale of parameters. We ob-
serve a phenomenon similar to the scaling law (Kaplan
et al., 2020) in our experiments. As shown in Figure
9, when the size of the InternVL2 model increases from
Tiny to Huge, the accuracy of STEP task rises from 9.8%
to 54.4%, showing an improvement of 44.6%. Similarly,
as the size of LLaVA-NEXT increases from Small to
Large, its accuracy of STEP also improves from 30.3% to
51.8%, demonstrating that larger MLLMs exhibit greater
reasoning ability in localizing erroneous steps.

Finding #2: CATE task is relatively more difficult to
improve through scaling. While the accuracy of CATE
shows a trend of improvement for both the InternVL2 and
LLaVA-NEXT models as their size increases from Tiny
(Small) to Middle, a slight decrease is also observed when
the model size reaches Large. We presume that this is because CATE is a more challenging task
compared to STEP, and merely increasing the model size without fine-tuning is insufficient for
sustained improvement and may even introduce bias (Aghajanyan et al., 2023; Muennighoff et al.,
2024). This phenomenon can also be seen in Table 3, consistent with Section 4.3.1 Finding #2.

5 CONCLUSION

In conclusion, this work introduces ERRORRADAR, the first multimodal benchmark designed specif-
ically for evaluating MLLMs’s reasoning in mathematical error detection scenarios. By focusing on
both error step identification and error categorization, ERRORRADAR bridges a critical research
gap in assessing MLLMs’ capabilities in complex mathematical reasoning. The dataset’s construc-
tion, based on real-world student interactions, ensures a robust evaluation framework that reflects
genuine user needs. Our extensive experimental analysis, comparing leading open-source and pro-
prietary MLLMs, reveals significant challenges in error detection, highlighting the need for con-
tinued advancements in this domain. As MLLMs continue to evolve, ERRORRADAR serves as an
essential benchmark for driving improvements in the effectiveness of multimodal reasoning systems
in real-world applications, on the path to Artificial General Intelligence.
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A MORE MULTIMODAL QUESTION EXAMPLES

Figure 10: Multimodal mathematical example one (type: counting) from ERRORRADAR dataset.

Figure 11: Multimodal mathematical example two (type: plane geometry) from ERRORRADAR dataset.
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Figure 12: Multimodal mathematical example three (type: plane geometry) from ERRORRADAR dataset.

Figure 13: Multimodal mathematical example four (type: counting) from ERRORRADAR dataset.
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Figure 14: Multimodal mathematical example five (type: plane geometry) from ERRORRADAR dataset.
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B ADDITIONAL DATASET DETAILS

B.1 ANNOTATION DETAILS

To ensure the quality and relevance of the ERRORRADAR dataset for error detection tasks, we em-
ployed a rigorous manual annotation process, involving professional educational experts as anno-
tators. This section outlines the details of the annotation procedure, focusing on how the data was
enriched with step-by-step reasoning processes, identification of erroneous steps, and error catego-
rization.

Annotator Selection and Training. Given the complexity of the task, we recruited a group of ten
annotators with specialized knowledge in educational theory and mathematics, particularly in K-12
pedagogy. These annotators were trained extensively to familiarize themselves with the structure
and expectations of the task. The training covered the specifics of multimodal problem-solving in
mathematics, typical student error patterns, and the need for precise identification of reasoning steps
that led to incorrect answers. The annotators were also briefed on using the provided tools and the
quality assurance process.

Annotation Process. Each mathematical problem in the dataset was annotated with a step-by-step
reasoning process, capturing both correct and incorrect approaches to problem-solving. Annotators
were provided with:

1. The original question stem (comprising both text and image components).
2. The student’s most frequent incorrect answer.
3. The correct answer to the question.
4. The pedagogical analysis of the correct reasoning process, prepared by educational experts.

Based on these inputs, annotators were tasked with:

1. Step-by-Step Reasoning Annotation: For each problem, annotators mapped out the log-
ical steps that students should ideally follow to arrive at the correct answer. This involved
identifying key stages in the problem-solving process, such as formula application, arith-
metic operations, or logical deductions.

2. Error Step Identification: For problems where students provided incorrect answers, an-
notators identified the exact steps where the reasoning went wrong. These error steps were
explicitly marked and linked to the incorrect responses, ensuring that they could be traced
back to specific problem-solving mistakes.

3. Error Categorization: Once the erroneous step was identified, annotators assigned an ap-
propriate error category based on a predefined schema. These categories included common
types of errors such as misinterpretation of the question (More details can be seen in Sec-
tion 3.1). The categorization was designed to align with known student error patterns in
mathematical learning.

Quality Control and Cross-Validation. To ensure annotation accuracy and consistency, each prob-
lem underwent two rounds of cross-checking:

1. First Round of Cross-Validation: After the initial annotation, another annotator indepen-
dently reviewed the annotations. Any discrepancies between the first and second annotators
were flagged for further analysis.

2. Second Round of Cross-Validation: In the second round, if the errors or discrepancies
persisted, the problem was escalated to a senior educational expert who acted as the anno-
tation lead. The annotation lead adjudicated these contentious cases, ensuring that the final
decision was both pedagogically sound and aligned with the dataset’s goals.

Dataset Refinement. Throughout the annotation process, we worked closely with the educational
organization from which the dataset originated. This collaboration ensured that the annotations were
not only reliable but also adhered to the standards of the organization’s question bank. Addition-
ally, ongoing feedback and updates from the organization helped refine the dataset, making it more
accurate and relevant for multimodal error detection tasks.
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Annotation Duration and Effort. The annotation process for the ERRORRADAR dataset spanned
over a period of at least two months. During this time, the annotators, comprised of both profes-
sional educational experts and domain specialists, worked meticulously through several stages of
preparation, annotation, and validation. Each annotator dedicated significant time to understanding
the dataset, reviewing the provided pedagogical analyses, and applying their domain knowledge to
identify and categorize errors. The first phase, involving step-by-step reasoning annotation, took ap-
proximately six weeks, while the subsequent cross-validation and quality control efforts accounted
for the remaining two weeks. Given the complexity of the tasks and the necessity for high precision,
the team’s sustained efforts ensured that the final dataset was of the highest quality.

By incorporating these annotations, ERRORRADAR provides a robust foundation for studying stu-
dent errors in mathematical reasoning and enables the development of advanced models for error
detection and correction.

B.2 DETAILS OF HANDLING INCONSISTENT ANNOTATIONS

To ensure the quality and reliability of our dataset for the multimodal mathematical error detection
task, we established a systematic approach to resolve annotation inconsistencies. This process bal-
ances annotator independence with rigorous quality control, ensuring that the dataset is both accurate
and representative.

B.2.1 ANNOTATION AGREEMENT PRINCIPLES

1. Guided Consensus: Annotations must align with clear, predefined guidelines covering the
five error categories. Annotators are trained extensively to reduce subjective biases.

2. Cross-Checking and Agreement Threshold: Each instance is annotated by at least three
annotators. Disagreements are flagged for further review.

3. Systematic Review Process: For inconsistent cases, a multi-step resolution process is ap-
plied:

(a) Initial Review: Annotators discuss disagreements, referencing annotation guidelines
and the specific problem context.

(b) Expert Arbitration: For unresolved cases, a domain expert (e.g., an educational pro-
fessional) reviews and finalizes the annotation.

(c) Consensus-Driven Decisions: When possible, annotations are harmonized based on
majority opinion or shared agreement after discussions.

B.2.2 CASE RESOLUTION FRAMEWORK

Case Example 1: Visual Perception vs. Reasoning Error

• Example: A problem presents a bar chart requiring students to determine the highest value.
A student misidentifies the tallest bar and selects the wrong answer.

– Annotator A labels this as a Visual Perception Error, arguing the mistake stems from
misreading the chart.

– Annotator B classifies it as a Reasoning Error, interpreting the mistake as a failure to
compare values logically.

• Resolution: Annotators revisit the problem:

– If evidence shows the student misunderstood the chart format (e.g., interpreting height
as quantity but misjudging due to poor visualization), it is classified as a Visual Per-
ception Error.

– If the student correctly interprets the chart but misapplies logical comparisons (e.g.,
failing to compare values explicitly), it is categorized as a Reasoning Error.

For persistent disagreement, an expert examines the student’s work, including any notes or
intermediate steps, to determine the correct annotation.
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Case Example 2: Knowledge vs. Misinterpretation of the Question

• Example: A problem asks for the perimeter of a rectangle, but the student calculates the
area instead.

– Annotator A identifies this as a Knowledge Error, attributing the mistake to a lack of
understanding of perimeter concepts.

– Annotator B labels it as a Misinterpretation of the Question, asserting that the student
misunderstood what was being asked.

• Resolution:

– Did the student’s work demonstrate understanding of the concept but apply it incor-
rectly (Misinterpretation of the Question)?

– Did the mistake reveal a fundamental gap in knowledge about perimeter (Knowledge
Error)?

If disagreement persists, the annotators consult the expert, who may analyze additional
context (e.g., previous responses or annotations).

B.2.3 HANDLING IRRECONCILABLE DISAGREEMENTS

If discrepancies persist despite review and arbitration, the affected data points are excluded from the
dataset. This strict policy prioritizes the overall quality and consistency of the dataset, ensuring that
retained samples maintain high reliability.

B.2.4 MONITORING AND FEEDBACK

Periodic feedback sessions are conducted to recalibrate annotators and refine guidelines based on
observed patterns of disagreement. This iterative approach minimizes future inconsistencies and
enhances annotator alignment over time.

B.3 DEFINITION OF PROBLEM TYPE CATEGORY

The ERRORRADAR dataset distinguishes five primary types of multimodal mathematical problems,
each characterized by unique features:

✯ Plane Geometry Problems: These involve two-dimensional shapes and figures, requiring knowl-
edge of properties such as angles, lines, and polygons. Solving these problems often depends on
understanding basic geometric principles and theorems about plane figures.

✯ Solid Geometry Problems: In contrast to plane geometry, solid geometry involves three-
dimensional objects, such as cubes, cylinders, and spheres. These problems require spatial vi-
sualization and understanding of volume, surface area, and the relationships between different
three-dimensional shapes.

✯ Diagram-Based Problems: These require analysis of provided visual information, such as
graphs, charts, or diagrams, to solve mathematical queries. Interpreting visual data correctly is
crucial, as these problems test the ability to extract and analyze quantitative information from
visual aids.

✯ Algebra Problems: Algebra problems focus on abstract symbols and variables to represent num-
bers and relationships. These include tasks like solving equations, manipulating algebraic ex-
pressions, and understanding functions. The problem-solving process typically involves logical
reasoning and manipulation of mathematical symbols.

✯ Math Commonsense Questions: These encompass a variety of problem types, including time
judgment, direction judgment, counting, and pattern recognition. Unlike the other categories,
math commonsense challenges rely on everyday mathematical reasoning and problem-solving
strategies that do not necessarily require formal mathematical knowledge, testing intuitive under-
standing rather than procedural skills.

These problem types highlight the ERRORRADAR dataset’s diverse nature, with each category pre-
senting distinct challenges and requiring specific reasoning abilities.
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B.4 DEVELOPMENT AND VALIDATION PROCESS OF ERROR CATEGORY

1. CROSS-TEAM COLLABORATION TO ALIGN TASK NEEDS

The process began with close collaboration between the research team and the education team to
ensure that the error categories aligned with the unique requirements of the multimodal math error
detection task. The research team provided insights into the task’s technical objectives, focusing
on precision and comprehensive error coverage. Simultaneously, the education team contributed
their understanding of real-world educational scenarios, emphasizing the practical relevance and
applicability of the error taxonomy to students’ and teachers’ needs.

Key Outcomes:

• Initial consensus that the categories must address both multimodal challenges and real-life
classroom scenarios.

• Recognition of the need to balance academic rigor with user-friendly categorization.

2. BENCHMARK SURVEY AND FOCUS ANALYSIS

The research team conducted an extensive survey of representative benchmarks, focusing on error
analysis frameworks in existing datasets. Examples included studies on problem-solving steps in
educational AI and cognitive error modeling in multimodal tasks. The aim was to identify gaps in
current frameworks and understand how existing taxonomies handle errors specific to visual, textual,
and logical reasoning elements.

Key Outcomes:

• Identification of inadequacies in current benchmarks, particularly in addressing multimodal
interactions like visual misinterpretations and reasoning errors tied to diagram-based tasks.

• Validation of the necessity for distinct categories to capture errors unique to multimodal
math problems.

3. COLLECTION OF FEEDBACK FROM STUDENTS AND TEACHERS

The education team collected qualitative and quantitative feedback from students and teachers to
ensure that the proposed error categories were grounded in real-world educational needs. Focus
groups, surveys, and interviews were used to gather perspectives on common error patterns encoun-
tered during classroom activities and assessments.

Key Insights:

• Teachers highlighted frequent calculation errors (CAL) and reasoning errors (REAS) as
significant roadblocks to effective problem-solving.

• Students often reported confusion stemming from visual misinterpretations (VIS) and mis-
understanding the question intent (MIS).

• Feedback emphasized the importance of separating reasoning-based errors from
knowledge-based errors (KNOW) for better diagnostic support.

4. SECOND ROUND OF DISCUSSION AND ALIGNMENT

Following the feedback collection, the research and education teams reconvened to refine and align
the error taxonomy. This phase involved iterative discussions to ensure that each category was
distinct, comprehensive, and intuitive for annotators and end-users.

Adjustments Made:

• Clarified the scope of Reasoning Errors (REAS) to focus on improper logical application
rather than factual knowledge gaps.

• Strengthened the definition of Visual Perception Errors (VIS) to address multimodal-
specific challenges, such as interpreting diagrams or image-based data.

• Enhanced examples for each category to support annotation clarity.
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5. INITIAL FINALIZATION AND FEEDBACK FROM EDUCATIONAL ORGANIZATION

The refined error categories were presented to a partner educational organization for feedback. This
organization, which specializes in global education assessments, conducted an independent review
and provided expert input.

Key Outcomes:

• Positive validation of the categories’ relevance and comprehensiveness.
• Minor recommendations, such as specifying units and signs in the Calculation Errors

(CAL) category, were integrated.

6. FINAL VALIDATION AND ALIGNMENT WITH ANNOTATION TEAM

After incorporating feedback, the final set of error categories was finalized. The annotation team,
comprising educational experts, received detailed guidelines and training to ensure consistent appli-
cation of the taxonomy during the annotation process. Mock annotations were conducted to test the
clarity and usability of the categories.

Final Adjustments:

• Annotators highlighted the need for clearer boundaries between Reasoning Errors
(REAS) and Knowledge Errors (KNOW), leading to additional examples and decision
rules in the annotation guidelines.

• Alignment meetings ensured that all discrepancies and ambiguities were resolved before
the dataset’s official annotation began.

The aforementioned development process ensured that the five categories are comprehensive, robust,
and applicable to both multimodal tasks and real-world educational scenarios.
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 HUMAN PERFORMANCE EVALUATION

In the Human Performance section, the evaluation involved three educational expert evaluators, each
independently performing the two subtasks — error step identification and error categorization —
on a set of multimodal math problems. To ensure the validity of their assessments, a rigorous cross-
checking procedure was implemented. After the initial independent evaluations, the results from all
three experts were compared for both the identification of error steps and the categorization of those
errors. When discrepancies arose, particularly in cases where the experts disagreed on which step
contained an error or how an error should be classified, a structured conflict resolution process was
followed.

The cross-check process began with identifying areas of disagreement between the evaluators. These
conflicts were discussed in a series of consensus meetings, where the evaluators would review
the conflicting steps or categorizations in detail. Each expert provided their rationale, referenc-
ing the mathematical principles involved as well as the multimodal representations of the problems.
Through open dialogue, the evaluators aimed to reach a consensus on the correct interpretation of
the error.

In cases where consensus could not be easily achieved, a majority-vote system was employed. How-
ever, for particularly complex or ambiguous cases, an additional adjudicator — who did not par-
ticipate in the initial evaluations but had equivalent expertise — was consulted to provide a final
judgment. This adjudicator reviewed the contentious cases along with the evaluators’ justifications,
ensuring an unbiased final decision. The outcome of this process was the creation of a refined
ground truth dataset that balanced expert knowledge with the goal of consistent and reliable error
identification and categorization.

C.2 PROMPT FOR MLLM EVALUATION

Task Definition: You are an education expert proficient in K-12 mathematics. Your task
is to identify the first step where the mistake occurred in the incorrect answer reasoning
steps based on the following mathematical question (including the textual and visual parts),
reference answer, and incorrect answer.

Output format:
Error Step: Step X

Below is the reference content you need to identify the error step:
Question Image: {image}
Question text: {content}
Correct Answer: {answer}
Incorrect Answer: {user answer}
Incorrect Answer Reasoning Steps:{user answer steps}

Instruction: Please provide the corresponding error step identification in the format ”Error
Step: Step X”, without any additional content.

Figure 15: Prompt for error step identification task.

25



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Task Definition: You are an education expert proficient in K-12 mathematics. Your task
is to identify the category of error for the incorrect answer based on the following question
(including the textual and visual parts), reference answer, and incorrect answer. The error
should belong to one of the following categories: Visual Perception Error, Reasoning Error,
Knowledge Error, Calculation Error, or Misinterpretation of the Question.

Output format:
Error Category: Clearly indicate which error category it belongs to.

The definitions of the error categories are as follows:
✯Visual Perception Error: Failure to accurately obtain information from the images or charts
in the question due to visual issues, leading to errors.
✯Reasoning Error: Improper reasoning during the problem-solving process, failure to cor-
rectly apply logical relationships or draw conclusions, leading to errors
✯Knowledge Error: Errors occur when applying relevant knowledge points due to incom-
plete or incorrect understanding of knowledge.
✯Calculation Error: Errors occur in the calculation process, such as addition, subtraction,
multiplication, division mistakes, or unit conversion errors, or errors in numerical symbols
between multiple steps.
✯Misinterpretation of the Question: Failure to correctly understand the requirements of the
question or misinterpreting the meaning of the question stem, leading to an irrelevant an-
swer, such as answering with numbers when letters are required, and vice versa.

Below is the reference content you need to identify the error step:
Question Image: {image}
Question text: {content}
Correct Answer: {answer}
Incorrect Answer: {user answer}
Incorrect Answer Reasoning Steps:{user answer steps}

Instruction: Please provide the corresponding error category in the format ”Error Category:
X”, without any additional content.

Figure 16: Prompt for error categorization task.
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C.3 MODEL SOURCES

Table 4 details specific sources for the various MLLMs we evaluated. The hyperparameters for the
experiments are set to their default values unless specified otherwise.

MLLMs Source URL

InternVL2-2B local checkpoint https://huggingface.co/
OpenGVLab/InternVL2-2B

InternVL2-8B local checkpoint https://huggingface.co/
OpenGVLab/InternVL2-8B

InternVL2-26B local checkpoint https://huggingface.co/
OpenGVLab/InternVL2-26B

InternVL2-76B local checkpoint https://huggingface.
co/OpenGVLab/
InternVL2-Llama3-76B

Phi-3-vision-4B local checkpoint https://huggingface.
co/microsoft/
Phi-3-vision-128k-instruct

Yi-VL-6B local checkpoint https://huggingface.co/01-ai/
Yi-VL-6B

DeepSeek-VL-7B local checkpoint https://huggingface.
co/deepseek-ai/
deepseek-vl-7b-chat

LLaVA-v1.6-
Vicuna-7B

local checkpoint https://huggingface.
co/llava-hf/llava-v1.
6-vicuna-7b-hf

LLaVA-v1.6-
Vicuna-13B

local checkpoint https://huggingface.
co/llava-hf/llava-v1.
6-vicuna-13b-hf

LLaVA-NEXT-72B local checkpoint https://huggingface.co/
llava-hf/llava-next-72b-hf

MiniCPM-V2.5-8B local checkpoint https://huggingface.co/
openbmb/MiniCPM-Llama3-V-2_5

MiniCPM-V2.6-8B local checkpoint https://huggingface.co/
openbmb/MiniCPM-V-2_6

Qwen-VL-9B local checkpoint https://huggingface.co/Qwen/
Qwen-VL-Chat

GLM-4v-13B local checkpoint https://huggingface.co/THUDM/
glm-4v-9b

CogVLM2-19B local checkpoint https://huggingface.co/THUDM/
cogvlm2-llama3-chat-19B

Qwen-VL-Max qwen-vl-max-0809 https://modelscope.cn/
studios/qwen/Qwen-VL-Max

Claude-3-Haiku claude-3-haiku https://www.anthropic.com/api

Claude-3.5-Sonnet claude-3-5-sonnet https://www.anthropic.com/api

Gemini-Pro-1.5 gemini-1.5-pro-latest https://deepmind.google/
technologies/gemini/pro/

GPT-4o-mini gpt-4o-mini-2024-07-18 https://platform.openai.com/
docs/models/gpt-4o-mini

GPT-4o gpt-4o-2024-08-06 https://platform.openai.com/
docs/models/gpt-4o

Table 4: Sources of our evaluated MLLMs.
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C.4 DETAILED ACTIONABLE SUGGESTIONS

Finding #1: Closed-source MLLMs outperform open-source MLLMs
Actionable Suggestion:
In order to improve the performance of open-source MLLMs, it is crucial to focus on distilling the
error detection capabilities of closed-source models (Hsieh et al., 2023; Liang et al., 2024). One
effective approach is to use a teacher-student framework in which the more powerful closed-source
model acts as the teacher and the open-source model as the student. This method allows the
open-source models to learn from the strengths of closed-source models, particularly in error
detection tasks including error step identification and error categorization. Moreover, open-source
models should leverage datasets used by closed-source models and augment their training process
to better mimic the proprietary training regimens of these models (Liang et al., 2024; Aslam et al.,
2024). To optimize performance, fine-tuning should be guided by the insights from closed-source
models, including how these models handle complex error categories and balance their performance
across various error types. This approach will ensure a more robust open-source model, capable of
addressing the current performance gaps.

Finding #2: Open-source MLLMs over-predict CAL category
Actionable Suggestion:
The tendency for open-source MLLMs to over-predict the CAL (Calculation Error) category is an
issue that arises from their bias towards easier tasks. To address this, models should be regularized
during training to reduce their preference for simpler categories like CAL. This can be achieved
through the use of weighted loss functions, such as Focal Loss (Li et al., 2022) or AdaFocal
(Ghosh et al., 2022), which down-weight easier categories and force the model to focus on more
challenging ones. Additionally, introducing class balancing techniques such as oversampling the
underrepresented categories (e.g., REAS, KNOW) or undersampling the CAL category can further
help in addressing this bias (Ghosh et al., 2024). Another key approach is data augmentation,
where the variety and complexity of error cases are increased, particularly for the more challenging
categories. This will ensure that the model learns to classify all types of errors more evenly, avoiding
an over-reliance on CAL (Iqbal et al., 2024). Finally, meta-learning techniques can be employed to
dynamically adjust the model’s bias toward different categories during training, allowing the model
to better adapt to different error types (Vettoruzzo et al., 2024).

Finding #3: STEP tasks are easier than CATE tasks
Actionable Suggestion:
The disparity in performance between STEP and CATE tasks suggests that MLLMs need to be
trained to better handle the complexity of error categorization. Since STEP tasks primarily involve
localizing specific errors, which is conceptually simpler than categorizing them, it is crucial to build
a stronger relationship between the two tasks in the training process. One effective method is to
use multi-task learning, where the model is simultaneously trained on both STEP and CATE tasks,
allowing it to learn not only how to localize errors but also how to classify them accurately (Chen
et al., 2024; Xin et al., 2024). Additionally, contrastive learning can be used to distinguish between
similar error steps and categories, improving the model’s ability to reason about the relationship
between error localization and categorization. Training data should also be designed to emphasize
this relationship, ensuring that the model can learn the necessary contextual understanding to
categorize errors correctly. By focusing on these aspects, MLLMs will be better equipped to handle
the more complex task of error categorization (Hu et al., 2024a).

Finding #4: CAL is the easiest category, while KNOW is the hardest
Actionable Suggestion:
The difficulty gap between CAL and KNOW errors highlights the need for specialized strategies to
handle knowledge errors. Since CAL errors are generally more deterministic and easy to identify,
while KNOW errors require deeper understanding and reasoning, MLLMs should incorporate
domain-specific knowledge to improve their performance in this category. One approach is to inte-
grate external knowledge bases or knowledge graphs into the training dataset, providing the model
with richer, contextually relevant information. This will help the model recognize errors related
to factual inaccuracies or incomplete reasoning (Sun et al., 2023; Pan et al., 2024). Additionally,
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knowledge-intensive reasoning models can be introduced to simulate more advanced human-like
problem-solving capabilities. Techniques such as external validation of logical consistency can also
be applied to better identify and rectify knowledge errors. Furthermore, few-shot learning methods
can be used to allow MLLMs to generalize from limited examples, especially for rare or complex
knowledge errors that are more difficult to detect (Ma et al., 2023a;b). By improving the model’s
access to domain-specific knowledge and reasoning tools, its ability to handle KNOW errors will
be significantly enhanced.

Finding #5: Gap to human-level performance in error detection
Actionable Suggestion:
To bridge the gap between human-level performance and MLLM performance, particularly in tasks
such as Visual Perception Errors (VIS) and Reasoning Errors (REAS), MLLMs need to be trained
to better mimic human cognitive processes. One promising approach is to employ Reinforcement
Learning from Human Feedback (RLHF), where human evaluators guide the model by providing
corrective feedback and insights into error causes (Wang et al., 2024a; Kirk et al., 2023). This
will help the model align more closely with human reasoning mechanisms, particularly in tasks
that require higher-level cognitive functions. In addition, models can be trained to simulate human
visual perception by integrating attention mechanisms and vision-language models that enable
more sophisticated visual error detection. Incorporating logical reasoning modules into the model
will also improve its performance in REAS, allowing it to understand the logical flow of the
problem and detect reasoning errors more effectively. Finally, cross-modal alignment between
text and image modalities will ensure that MLLMs process visual and textual inputs in a more
integrated and human-like manner, thereby improving performance in VIS error detection (Shen
et al., 2023). By aligning MLLMs more closely with human cognitive processes, it is possible
to achieve significant improvements in error detection tasks and approach human-level performance.

C.5 CAL AND NON-CAL DISTRIBUTION OF MLLMS

In this section, we indicate the distribution of CAL and non-CAL category predictions of 21 MLLMs
we evaluate, as shown in Figure 17. It can be seen that there is a bias towards CAL category among
most open-source MLLMs, while closed-source ones except for Claude-3-Haiku and Qwen-VL-
Max do not have such a bias for error categorization task.
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Figure 17: Distribution of CAL and non-CAL category predictions of all MLLMs we evaluate.
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C.6 ANALYSIS OF CONFUSION MATRIX FOR CATE TASK

Figures 18 and 19 present the confusion matrices for InternVL2-76B and GPT-4o, two MLLMs
evaluated on five error categories. The matrices show the count of predictions for each category,
with diagonal entries representing correct predictions and off-diagonal entries indicating misclassi-
fications. These visualizations provide insights into each model’s strengths and weaknesses.

InternVL2-76B shows strong performance in detecting CAL, with 843 correct predictions, indicat-
ing its robust numerical reasoning capability. However, the model struggles to distinguish between
REAS and CAL, misclassifying 626 REAS instances as CAL. This confusion suggests an over-
reliance on numerical features and an inability to separate logical reasoning tasks from computa-
tional ones. Additionally, there is significant misclassification of VIS into CAL, with 244 cases,
highlighting a potential weakness in integrating visual and textual modalities. These trends may
stem from InternVL2-76B’s limited domain-specific reasoning ability.

GPT-4o, on the other hand, demonstrates relatively good performance in VIS, with 183 correct pre-
dictions, significantly outperforming InternVL2-76B. Its capability in REAS is also notable, with
617 correct predictions, suggesting a more balanced reasoning ability. However, GPT-4o struggles
more with CAL, achieving only 460 correct predictions, and shows significant confusion between
CAL and REAS, with 299 CAL instances misclassified as REAS. Furthermore, the model has diffi-
culty with MIS, misclassifying 45 MIS cases as REAS, pointing to challenges in identifying nuanced
interpretational issues. These trends suggest that GPT-4o’s emphasis on multimodal alignment and
contextual understanding contributes to its strengths in VIS and REAS but comes at the expense of
CAL performance.

Comparing the two models reveals distinct strengths and weaknesses. GPT-4o significantly outper-
forms InternVL2-76B in VIS, likely due to superior multimodal visual-text alignment capabilities.
Both models exhibit confusion between REAS and CAL, but GPT-4o shows a more balanced clas-
sification ability in REAS. MIS remains a challenging category for both models, though GPT-4o
struggles slightly more in distinguishing it from REAS. These differences may arise from varia-
tions in model architecture and training objectives. This analysis underscores the complementary
strengths of these models: InternVL2-76B excels in numerical reasoning, while GPT-4o performs
better in visual perception and logical reasoning. Future research could explore ways to integrate
their strengths for a more robust multimodal error detection system.
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Figure 18: The confusion matrix of five error categories predicted by InternVL2-76B, the open-source MLLM
with the best overall performance on error detection.

Figure 19: The confusion matrix of five error categories predicted by GPT-4o, the closed-source MLLM with
the best overall performance on error detection.
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C.7 COGNITIVE LOAD ANALYSIS ACROSS MLLMS

In analyzing the error step distribution for the multimodal error detection task using InternVL2-
76B (see Figure 20) and GPT-4o (see Figure 21), we observe a consistency in the pattern of error
category distribution across both MLLM’s predictions and those in ERRORRADAR (see Figure 8). In
particular, VIS tends to occur in the earlier stages of problem-solving for both MLLMs, which aligns
with the sequence in which students typically approach tasks. Since visual content often serves
as a key reference at the outset, any misinterpretation of this information can significantly impact
subsequent steps. Students generally examine the image first and then integrate the information
before proceeding to reasoning or calculation, leading to visual perception errors arising earlier
compared to other types of errors.

Other error categories, such as REAS, CAL, MIS, and KNOW, are more likely to emerge in the later
stages of problem-solving. This pattern is linked to the increasing cognitive load students encounter
as they progress. According to Cognitive Load Theory, information complexity ranges from low
to high interactivity. Low-interactivity information can be understood independently, whereas high-
interactivity information requires the simultaneous processing of related elements, thereby increas-
ing cognitive load. In the later stages, students must integrate complex information from multiple
sources, which can lead to errors like forgetting to take the square root or miscalculating differ-
ences when calculating distances, for example. Consequently, the frequency of errors in later steps
increases with the rising cognitive load.

Despite the overall pattern being consistent, there may be subtle differences between InternVL2-
76B and GPT-4o in terms of error step distribution, especially for MIS category. These differences
could be attributed to the models’ distinct architectures and training data, which might influence
their approaches to error detection. As an open-source MLLM, InternVL2-76B might not have
been optimized for specific types of questions or educational contexts, which could lead to a higher
variability in MIS.

Figure 20: The error step distribution (in percent-
age) of error categories predicted by InternVL2-
76B, the open-source MLLM with the best overall
performance on error detection.

Figure 21: The error step distribution (in percent-
age) of error categories predicted by GPT-4o, the
closed-source MLLM with the best overall perfor-
mance on error detection.
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C.8 VISUAL BAD CASES PREDICTED BY GPT-4O

Visual perception errors are critical in multimodal error detection tasks, as they impact the accurate
comprehension of mathematical problems presented with both text and diagrams. As illustrated in
Figure Figures 22, 23, 24, 25 and 26, the five primary categories of visual errors observed in GPT-4o
(the MLLM with best overall and VIS performance) include distance perception, diagram per-
ception, spatial perception, flip/fold perception, and shape perception. These categories differ
in their cognitive demands: distance perception focuses on point identification; diagram percep-
tion on quantitative estimation; spatial perception on geometric visualization; flip/fold perception
on mental rotation; and shape perception on object classification (Lu et al., 2024b; Zhang et al.,
2024). Detecting such errors is challenging because they often require both intricate visual process-
ing and precise interpretation of mathematical relations, which can be difficult to encode in current
MLLMs. To overcome these challenges, future MLLMs should incorporate more advanced visual
reasoning capabilities, possibly through enhanced alignment between vision and language modali-
ties, enabling better detection and correction of complex perception errors (Song et al., 2023). This
could significantly improve the robustness of MLLMs in mathematical and other perception-heavy
tasks.

Figure 22: Distance bad case where GPT-4o predicts visual perception errors incorrectly.

Figure 23: Diagram bad case where GPT-4o predicts visual perception errors incorrectly.
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Figure 24: Spatial bad case where GPT-4o predicts visual perception errors incorrectly.

Figure 25: Flip & fold bad case where GPT-4o predicts visual perception errors incorrectly.

Figure 26: Shape bad case where GPT-4o predicts visual perception errors incorrectly.
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