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Abstract

A multitude of (dis)similarity measures between neural network representations
have been proposed, resulting in a fragmented research landscape. Most of these
measures fall into one of two categories. First, measures such as linear regression,
canonical correlations analysis (CCA), and shape distances, all learn explicit
mappings between neural units to quantify similarity while accounting for expected
invariances. Second, measures such as representational similarity analysis (RSA),
centered kernel alignment (CKA), and normalized Bures similarity (NBS) all
quantify similarity in summary statistics, such as stimulus-by-stimulus kernel
matrices, which are already invariant to expected symmetries. Here, we take steps
towards unifying these two broad categories of methods by observing that the
cosine of the Riemannian shape distance (from category 1) is equal to NBS (from
category 2). We explore how this connection leads to new interpretations of shape
distances and NBS, and draw contrasts of these measures with CKA, a popular
similarity measure in the deep learning literature.

1 Introduction

Quantifying similarity between neural network representations is now a well-recognized topic in
computational neuroscience and deep learning [22, 52]. In neuroscience, measures of representational
similarity have been used to benchmark models of biological systems [21, 51], and to compare neural
activity across different species [26]. In deep learning, they have been used to characterize learning
dynamics [36], model robustness [18], and the effects of changing model architecture [31, 38].

Interest in this area has sparked a proliferation of measures to quantify representational (dis)similarity
including: representational similarity analysis (RSA; [25]), centered kernel alignment (CKA; [23]),
generalized shape distances [58], canonical correlations analysis (CCA; [44]), normalized Bures
similarity (NBS; [54]), and the Riemannian covariance distance [50]. While all of these methods aim
to quantify similar aspects of neural data, much more work is needed to formalize this intuition and
to characterize the practical differences between these competing methods.

Here we develop a duality principle1 that links shape distances [20, 58] to well-known quantities
in optimal transport [32] and quantum information theory [40, 35, 57]. Although similar ideas

1Following Atiyah [2], we use the term duality to broadly mean a mathematical relationship that enables
“two different points of view of looking at the same object.”
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were recently described in mathematical literature on infinite-dimensional covariance operators [34],
these results appear thus far unnoticed within the computational neuroscience and machine learning
communities. For example, we will see that two independently proposed (dis)similarity measures—
the Riemannian shape distance and NBS—are essentially equivalent to each other, suggesting that this
duality provides way to generalize the Riemannian shape distance to cases where the networks have
differing dimensionality. Moreover, we point out CKA and NBS have been extensively compared
by quantum information theorists as different measures of similarity, CKA corresponding to the
normalized Hilbert-Schmidt inner product and NBS corresponding to the fidelity between positive
semidefinite matrices with trace equal to 1 [30]. An important contribution of our work is to unify
these disconnected literatures with a self-contained exposition, but we also aim to demonstrate
how these connections can lead to novel theoretical analysis and insights in to representational
(dis)similarity.

The rest of this manuscript is organized as follows. In section 2, we formalize the problem of
comparing neural representations and summarize several relevant (dis)similarity measures. In our
review of past work, we classify representational (dis)similarity scores into two main categories: those
that explicitly align neural dimensions, and those that quantify similarity in stimulus-by-stimulus
relationships. In section 3, we summarize our main theoretical result linking shape distances to NBS,
explicitly connecting the two categories of (dis)similarity measures. In section 4, we explore the
behavior of these distances when the number of stimuli (M ) or the number of dimensions (N ) goes
to infinity. We show that the duality between NBS and shape distance can be leveraged to understand
these asymptotic regimes. Finally, in section 5 we discuss how NBS and shape distances compare
to CKA, a popular approach which does not enjoy the theoretical properties and interpretations
discussed above. We show numerically and analytically that the relationship between these quantities
is rather loose, and we therefore do not expect them to be interchangeable in practical applications.

2 Review of Representational (Dis)similarity Measures

Let fx : Z 7→ RNx and fy : Z 7→ RNy be two neural networks that map inputs over some domain
Z to neural activation vectors (e.g. the vector of activations produced at a hidden layer of a deep
network). Here, Nx and Ny respectively denote the number of neurons in each network. This
mapping from inputs to neural activations is typically considered to be deterministic (but see [11] for
the stochastic setting).

How similar is neural network fx(·) to neural network fy(·)? That is, how similar are the functions
fx(·) and fy(·) over a representative collection of inputs z1, . . . , zM ∈ Z? We proceed by mea-
suring neural responses fx(z1) . . . fx(zM ) and stacking them row-wise into a matrix X ∈ RM×Nx .
Likewise, we form a matrix Y ∈ RM×Ny from the second network’s responses, fy(z1) . . . fy(zM ).
Intuitively, one can view these matrices as approximations to each network’s input-output mapping
over a discrete set of M points.

In general, Nx ̸= Ny, but even if Nx = Ny, there is no reason we expect the raw Euclidean
distance, ∥X − Y ∥F to be meaningful since the neurons (columns of X and Y ) are often labelled
in arbitrary order. Thus, we are interested in measuring a distance that is invariant to a specified
set of nuisance transformations in the representations. For example, if we would like to ignore
orthogonal transformations (including permutations of the neuron indices), we ought to develop
distance functions for which d(X,Y ) = d(X,Y Q) and also d(X,XQ) = 0 for any orthogonal
matrix Q. This can be formalized by defining an equivalence relation between neural responses and
defining a metric over the corresponding equivalence classes [58].

Existing representational (dis)similarity measures between X and Y roughly fall into two broad
camps: methods that learn explicit mappings to align neural dimensions, and methods that utilize
stimulus-by-stimulus similarity matrices to compare across networks (fig. 1). The main purpose of our
paper is to provide a bridge between these approaches, and so we summarize a few primary examples
below. A comprehensive review of these methods is far beyond the scope of this paper, but we point
the reader to Klabunde et al. [22] and Sucholutsky et al. [52] as useful papers to cross-reference.
Indeed, Klabunde et al. [22] enumerate over 30 methods to quantify representational (dis)similarity,
showing the strong need for organizing theoretical principles to relate and unify these approaches.

2



��������

Fit alignment 
& 

measure distance Measure
distance

B)A)
��������

��������

�������� ���������

���������
���������

��������� ���������

Si
m

ila
rit

y

-

+

Si
m

ila
rit

y

-

+

Figure 1: We consider methods of measuring representational similarity from two broad categories:
(A) alignment-based measures, which fit a mapping that aligns neural dimensions, and (B) methods
that compare stimulus-by-stimulus representational similarity matrices.

2.1 (Dis)similarity measures that transform or align neural dimensions

Here we review the first major category of representational (dis)similarity measures. Recall that the
main challenge is that raw distances, such as ∥X − Y ∥F , are typically meaningless due to nuisance
transformations. To overcome this, one option is to optimize alignment functions gx : RNx 7→ S and
gy : RNy 7→ S which respectively map the rows of X and Y into a common space S . Then, given a
dissimilarity measure d : S × S 7→ R we can optimize the alignment:

minimize
gx,gy

d(gx(X), gy(Y )) subject to gx ∈ Gx , gy ∈ Gy (1)

where Gx and Gy represent the class of permitted alignment functions for X and Y , respectively.
Note that we are using gx(X) and gy(Y ) to denote the row-wise application of gx(·) and gy(·) to
matrix-valued inputs.

Intuitively, the minimal value attained in eq. (1) will be invariant to nuisance transformations that
are contained within Gx or Gy. For example, linear regression is a popular method to quantify
similarity between artificial and biological neural networks [48], and can be viewed as a special case
of eq. (1). Specifically, to predict Y from X , we would choose S = RNy , constrain gy(·) to be the
identity mapping, and minimize gx(·) over the set of affine mappings from RNx 7→ RNy . Importantly,
linear regression does not produce a symmetric notion of (dis)similarity: predicting Y from X
will produce a different result than predicting X from Y . Variants such as canonical correlations
analysis (CCA) provide symmetric, affine-invariant measures of representational similarity, and
have been used in deep learning and in neuroscience [53, 44, 14]. To see that CCA is a special
case of eq. (1), we choose S = Rn where n = min(Nx, Ny) and minimize −1 · Tr[gx(X)⊤gy(Y )]
subject to gx(X)⊤gx(X) = gy(Y )⊤gy(Y ) = I . Intuitively, CCA finds mappings of X and Y into
a common space Rn which maximize correlations along orthogonal dimensions. Other methods like
permutation matching of individual neurons [29], can also be viewed as special cases of eq. (1).

In summary, the examples above show that eq. (1) captures a broad variety of existing approaches.
We now review another example, shape distances [20], which feature prominently into our main
narrative. Kendall [19] defined shape as the structure left by a set of M landmark points in RN after
rotations, translations, and isotropic scalings are ignored. These M landmark points in our context
become the collection of M inputs to each network over which the representational similarity will
be measured. Unlike traditional shape theory, we will additionally consider reflections as in RN as
nuisance transformations, since a permutation of neuron labels (which we argued above is typically
arbitrary) can require a reflection.

Assuming that X and Y are M ×N matrices, we can define their angular distance:

θ(X,Y ) = cos−1

 Tr[X⊤Y ]√
Tr[X⊤X] Tr[Y ⊤Y ]

 . (2)

which generalizes the elementary formula for the angle between two vectors. One can then define the
Riemannian shape distance as the length of the shortest geodesic path between two shapes, and
show that this is given by [20]:

θ∗(X,Y ) = min
Q⊤Q=I

θ(CX,CY Q), (3)
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where C = I − 1
M 11⊤ is the centering matrix (11⊤ is an M ×M matrix of all ones). One may

check that the columns of CX and CY are mean-centered, and that C is a symmetric, idempotent
matrix with C⊤C = C2 = C.

Closely related to the Riemannian shape distance is a quantity called the Procrustes size-and-shape
distance [20] (which, for brevity, we will simply call the Procrustes distance):

P(X,Y ) = min
Q⊤Q=I

∥CX −CY Q∥F (4)

After expanding eq. (4) and rearranging, we can see that the cosine of the Riemannian shape distance
is related to the Procrustes distance between two matrices X and Y normalized by their centered
Frobenius norms:

cos θ∗(X,Y ) = 1− 1

2
P2

(
X

∥CX∥F
,

Y

∥CY ∥F

)
. (5)

It is straightforward to check that both Riemannian shape distance and Procrustes distance are invariant
to translations and orthogonal transformations. The Riemannian shape distance is additionally
invariant to isotropic scalings. Again, both of these distances are special cases of eq. (1).

We note that both shape distances are symmetric and satisfy the triangle inequality. That is, for
any triplet of configuration matrices X,Y ,M ∈ RM×N we have θ∗(X,Y ) = θ∗(Y ,X) and
θ∗(X,Y ) ≤ θ∗(X,M) + θ∗(M ,Y ), and likewise for P . Formally, this means that θ∗ and P
define metric spaces over the equivalence classes defined by their nuisance transformations. Williams
et al. [58] argued that these properties were advantageous for downstream analyses such as nearest-
neighbor regression and clustering methods that leverage metric space structure.

Comparing shapes of unequal dimension. Importantly, the definitions of shape distance in
eqs. (3) and (4) assume that we are comparing networks of equal size—i.e., that Nx = Ny = N .
This corresponds to the setting of traditional shape theory, but is not an ideal assumption for our
application since we often desire to compare representations across networks with different sizes or
different numbers of experimentally measured neurons. Williams et al. [58] proposed procedures
to either use PCA or zero padding to embed all networks into a common dimension. We will show
these procedures are unnecessary since we can reformulate the shape distances in terms of:

ΣX = X⊤CX , ΣY = Y ⊤CY and ΣXY = X⊤CY (6)

which are the covariance and cross-covariance matrices describing similarity between pairs of neural
tuning functions within and across networks. Specifically, let us define:

θ∗(X,Y ) = cos−1

[
∥ΣXY ∥∗√

Tr[ΣX ] Tr[ΣY ]

]
(7)

P(X,Y ) =
√
Tr[ΣX ] + Tr[ΣY ]− 2∥ΣXY ∥∗ (8)

where ∥ · ∥∗ denotes the nuclear matrix norm (also called the Schatten 1-norm), which is given by the
sum of a matrix’s singular values. Our main claim is the following:

Lemma 1. When Nx = Ny = N , the definitions of θ∗ and P given in eqs. (3) and (4) are equivalent
to the definitions of θ∗ and P given in eqs. (7) and (8).

which follows immediately from a well-known result of Schönemann [47] (Appendix 7.1).

Lemma 1 essentially shows that eqs. (7) and (8) are reasonable generalizations of shape distance that
are well-defined when Nx ̸= Ny. Although it may not be immediately obvious, we will see (due to
theorem 1 in section 3) that the new definitions of shape distance in eqs. (7) and (8) continue to satisfy
the triangle inequality, even when comparing networks with different sizes. The geometric intuition
underlying shape distances—that of fitting a rotational alignment between two neural activation
spaces—also carries over. Specifically, let us assume Nx ≤ Ny (without loss of generality). Then, we
can isometrically embed the lower-dimensional representations into RNy by, for example, appending
Ny −Nx columns of zeros to X . Then, we compute the shape distance as before, which involves
finding the optimal orthogonal transformation in Ny dimensions to match the landmark points.
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2.2 (Dis)similarity measures that quantify stimulus-by-stimulus relationships

Recall that the (dis)similarity measures summarized above relied on learning explicit alignment
transformations on the neural activation space, RN for a population of N neurons. We now turn
to review the second, alternative category of measures, which avoid the need to fit any alignment.
Instead, these methods quantify representational similarity by comparing summary statistics that are
already invariant to nuisance transformations.

For instance, given N -dimensional network responses to M sampled inputs, we can compute a
representational dissimilarity matrix (RDM) [25]: an M × M matrix of Euclidean distances
between all pairs of evoked responses within the N -dimensional response space. Intuitively, RDMs
encode a rich geometric summary of the network’s representation that is invariant to rotations and
translations of the neural activation space. In fact, since the Procrustes distance is invariant to
translations, it is easy to show that X and Y have the same RDM if and only if the size-and-shape
Procrustes distance between X and Y is zero. This already hints at deeper connections, which we
reveal in section 3.

Quantifying similarity of RDMs across networks is common in cognitive/systems neuroscience,
where the approach is broadly referred to as representational similarity analysis (RSA) [25]. Many
variants of RSA use different approaches to compute the within-network RDMs (e.g. Mahalanobis
vs. Euclidean distance) or different measures to compare two RDMs (e.g. Pearson or Spearman
correlation scores) [41, 56, 49]. But all of these variants conceptually share the same core approach.

An alternative to computing RDMs is to compute M × M kernel matrices, which use a positive
definite kernel function [46] to compute a similarity score between all pairs of evoked network
responses. Specifically, we will focus on centered linear kernel matrices (with centering matrix C
defined as in the previous section), as they are the most popular in practice:

KX = CXXTC and KY = CY Y TC . (9)

Note that KX and KY are simply covariance matrices across stimuli; they are natural counterparts
to the covariance matrices across neurons, ΣX and ΣY defined in eq. (6). Intuitively, KX and
KY hold all the information necessary to compute an RDM since the squared Euclidean distance
between stimulus i and j is given by: [KX ]ii + [KX ]jj − [KX ]2ij . Like RDMs, the kernel matrices
are invariant to rotations, reflections, and translations. An influential paper by Kornblith et al. [23]
proposed centered kernel alignment (CKA) [7, 6] as a measure of similarity between kernel
matrices:

CKA(KX ,KY ) =
Tr[KXKY ]√
Tr[K2

X ] Tr[K2
Y ]

(10)

which is the cosine of the angle between KX and KY (see eq. 2). Shahbazi et al. [50] pointed out
that CKA does not exploit the fact that KX and KY are positive semidefinite (PSD) matrices, and
they propose an alternative metric based on the Riemannian distance on PSD matrices. Yet another
measure on the linear kernel matrices is the normalized Bures similarity (NBS), defined as [37, 54]:

NBS(KX ,KY ) =
F(KX ,KY )√
Tr[KX ] Tr[KY ]

(11)

with
F(KX ,KY ) = Tr[(K

1/2
X KY K

1/2
X )1/2]. (12)

The quantity F(KX ,KY ) is known as the fidelity and is used extensively in quantum information
theory as a measure of the distinguishability of quantum states [35, 57]. We will also make use of a
related quantity known as the Bures distance on PSD matrices [4]:

B(KX ,KY ) =

√
Tr[KX ] + Tr[KY ]− 2Tr

[(
K

1/2
X KY K

1/2
X

)1/2]
. (13)

It is well-known that the Bures distance is equal to the 2-Wasserstein distance between two mean-
centered normal distributions with covariances given by KX and KY ([42], Remark 2.30). Thus, one
can interpret B(KX ,KY ) as the cost of optimally transporting mass between two normal densities.
This connection could allow one to exploit the large collection of existing knowledge of optimal
transportation, as in [34], although this is beyond the scope of the present work.
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3 Duality of Shape and Bures Distances

In section 2, we saw that many measures of representational (dis)similarity either identify an explicit
mapping between neural dimensions or directly compare stimulus-by-stimulus (dis)similarities. Each
perspective has its own conceptual appeal. The former encourages us to reason about geometric
features in the space of neural activations, such as curvature or tangling of manifold structure which
feature prominently in theories of neural computation [45, 16, 15]. The latter avoids the need to
align neural axes, and connects to a rich literature in psychology that leverages pairwise similarity
judgements to interrogate the structure of cognition [3, 12]. Our sense is that many researchers at
the intersection of neuroscience, cognitive science, and interpretable deep learning tend to develop a
personal preference for one perspective over the other. But are these approaches really so distinct?

We now turn to one of our main results, which highlights a specific case where these two perspectives
produce the same quantitative result—an example of a duality [2]. Specifically, the theorem below
states that the Procrustes distance (P , eqs. 4 and 8) is equal to the Bures distance between linear
kernel matrices (B, eq. 13). Furthermore, the normalized Bures similarity (NBS, eq. 11) is equal to
the cosine of the Riemannian shape distance (θ∗, eqs. 3 and 7).
Theorem 1. Let KX and KY be centered linear kernel matrices as in eq. (9). Then,

B(KX ,KY ) = P(X,Y ) (14)

and furthermore,
NBS(KX ,KY ) = cos θ∗(X,Y ) . (15)

The proof follows from the fact that for centered linear kernel matrices, Tr[KX ] = Tr[ΣX ] and
Tr[KY ] = Tr[ΣY ], and the following lemma:
Lemma 2. For centered linear kernel matrices, F(KX ,KY ) = ∥ΣXY ∥∗.

It is easy to see that the lemma implies the theorem. E.g., from the definitions in eqs. (8) and (13):

B2(KX ,KY ) = Tr[KX ] + Tr[KY ]− 2F(KX ,KY )

P2(X,Y ) = Tr[ΣX ] + Tr[ΣY ]− 2∥ΣXY ∥∗
So eq. (14) follows from observing that the three terms on the right hand sides above are equal due
to lemma 2. A similar argument shows that eq. (15) follows from lemma 2 as well. Thus, all that
remains is to prove lemma 2, which we do in Appendix 7.2.

The proof of theorem 1 is straightforward, and somewhat similar results have already appeared in
mathematical literature [34]. However, this result may have gone unnoticed by researchers at the
intersection of machine learning and neuroscience because prior similar statements have appeared in
a technical literature focused on distinct problems.

Theorem 1 enables us to draw upon an extensive literature to theoretically characterize shape/Bures
distances. For example, it is well known that B and cos−1 NBS both satisfy the criteria of a metric
space, including the triangle inequality [40]. Thus, we can immediately conclude that the generalized
definitions of Procrustes and Riemannian shape distance in eqs. (7) and (8) are also metrics, even
though most classical work on shape theory does not typically consider datasets with unequal
dimensions (Nx ̸= Ny).

4 Asymptotic Analysis of Shape/Bures Distances

In the previous section, we provide a concrete link between two previously disconnected perspectives
of representaitonal (dis)similarity. Beyond conceptual appeal, does this advance unlock any practical
benefits for future research? To demonstrate the utility of our result, we investigate how shape/Bures
distance changes as more inputs are sampled (M → ∞) and as the size of the neural population
increases (N → ∞). As shown below, both of these regimes are of interest to researchers in
neuroscience and deep learning, and the duality established in theorem 1 enables immediate insights.

Before proceeding, we must introduce normalization factors into our definitions of Procrustes and
Bures distances, since P(X,Y ) and B(KX ,KY ) will diverge as N,M → ∞. Thus, we define the
normalized Procrustes distance, ρ, and normalized Bures distance, b, as:

ρ(X,Y ) = 1√
NM

P(X,Y ) and b(KX ,KY ) =
1√
NM

B(KX ,KY ) (16)
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Note that we have assumed that Nx = Ny = N (i.e. the networks have the same number of neurons)
since we are interested in taking N → ∞ anyways. The motivation behind the normalizing factor of
1/

√
MN will be made clear by the discussion below.

Interpretation as M → ∞. Thus far, we have considered network representations of M input
stimuli. In most cases, these inputs are viewed as from a broader input distribution. For example,
to compare visual representations, we input M random natural images into a pair of networks and
measure their similarity. As M → ∞ we would desire that ρ(X,Y ) and b(KX ,KY ) converge to a
constant value that reflects the underlying structure of the input distribution. But in this limit KX

and KY become, loosely speaking, infinite-dimensional matrices. Thus it may not be immediately
obvious how to interpret b(KX ,KY ) without tools from functional analysis.

On the other hand, due to the law of large numbers, we have in this limit that:
1
MΣX → Σ∗

X
1
MΣY → Σ∗

Y
1
MΣXY → Σ∗

XY (17)

where Σ∗
X , Σ∗

Y , and Σ∗
XY are the true covariances and cross-covariances across neurons. Thus,

lim
M→∞

ρ(X,Y ) =
√

1
N ·
√

Tr[Σ∗
X ] + Tr[Σ∗

Y ]− 2∥Σ∗
XY ∥∗ (18)

which is in some sense the “true” Procrustes distance we are aiming to approximate, pre-multiplied
by a factor of 1/

√
N . Theorem 1 allows us to immediately conclude that b(KX ,KY ) converges to

the same value as ρ(X,Y ) in this limit.

Interpretation as N → ∞. Experimental neuroscientists often record a small random sample of
N neurons (e.g. 100-1000 cells) from brain regions that are much larger, often by several orders
of magnitude. How large do we need N to be in order to achieve a good estimate of the “true”
representational (dis)similarity [24]? In analogy to our logic above, the “true” (dis)similarity is given
by considering the limit that N → ∞. This limiting regime is also of interest to the theory of deep
learning, in which one often deals with networks with “infinitely wide” layers [13, 17, 28].

In the limit that N → ∞, shape distances become hard to conceptualize without leveraging advanced
mathematics. Conceptually, one can imagine fitting an infinite-dimensional rotation matrix that aligns
the neural axes, or else calculating eq. (8) on infinite-dimensional covariances. On the other hand, in
analogy to eq. (17), we have:

1
NKX → K∗

X
1
NKY → K∗

Y (19)

in the limit that N → ∞ due to the law of large numbers. Intuitively, K∗
X and K∗

Y are the “true”
covariances describing the expected similarity between pairs of stimuli across the fully observed
neural population. Further, it is easy to verify that the normalized Bures distance converges to the
appropriate value, up to a factor of 1/

√
M . That is,

lim
N→∞

b(X,Y ) =
√

1
M ·

√
Tr[K∗

X ] + Tr[K∗
Y ]− 2F(K∗

X ,K∗
Y ) (20)

Theorem 1 allows us to immediately conclude that ρ(X,Y ) also converges to this value in this limit.

Interpretation as M → ∞ and N → ∞. In summary, theorem 1 makes it easy to see that
normalized shape and Bures distances converge to reasonable values when either M → ∞ or
N → ∞. Deriving this insight only required us to leverage a basic law of large numbers—namely,
that empirical covariance matrices converge to the true covariance in the limit of infinite samples.

An obvious question is whether the shape/Bures distances converge to reasonable quantities when
both M and N are taken to infinity. A rigorous analysis of this scenario requires a more delicate
approach that leverages concepts from functional analysis. Nonetheless, it can be shown that as
M,N → ∞, the Bures distance between covariance matrices converges to the Bures distance between
an associated positive semidefinite covariance operator [43, 33].

5 Theoretical and Numerical Comparisons with CKA

We have seen that shape and Bures distances enjoy a special duality. Namely, they can be interpreted
as the distance found after optimally aligning the neural activation spaces (see eqs. 3 and 4) or a direct
distance between stimulus-by-stimulus kernel matrices. This special property does not appear to be

7



shared by other representational (dis)similarity measures, which are typically compatible with only
one of these perspectives. However, the shape and Bures distances only represent a very small fraction
of a much larger landscape of (dis)similarity measures, which we surveyed briefly in section 2. Do
the shape and Bures distances meaningfully differ from these alternative approaches?

In this section, we investigate the relationship between NBS and CKA [6, 7, 23], a particularly
popular approach in the deep learning literature. By comparing their definitions in eqs. (10) and (11),
one may guess that CKA is closely related to NBS (and therefore also to Riemannian shape distance
by theorem 1). However, we will show that CKA scores between networks can differ substantially
(e.g. two- to three-fold) from NBS scores. We also derive upper and lower bounds that relate CKA
and NBS; an exercise which confirms their rather loose relationship. Overall, we conclude that one
should not expect CKA and NBS to behave similarly in practical scenarios.

5.1 Relationship between CKA and Euclidean geometry

We begin our comparison by noting a relationship between CKA and Euclidean distance:

CKA(KX ,KY ) = 1− 1

2

∥∥∥∥ KX

∥KX∥F
− KY

∥KY ∥F

∥∥∥∥2
F

. (21)

Likewise, by noting that NBS(KX ,KY ) = F(KX/TrKX ,KY /TrKY ) and rearranging the
definition of Bures distance, we observe that NBS has an analogous relationship to Bures distance:

NBS(KX ,KY ) = 1− 1

2
B2
( KX

TrKX
,

KY

TrKY

)
(22)

which can be compared with eq. (5). Thus, the central conceptual difference between CKA and NBS
is the choice of metric on the space of PSD matrices. Intuitively, measuring similarity with CKA
(instead of NBS) is akin to measuring distance using a Euclidean (instead of Bures) geometry on
PSD matrices.

Many previous works have argued that using a Euclidean geometry to compare or estimate PSD
matrices is suboptimal for certain analyses [1, 10], including recent work by Shahbazi et al. [50] in
the context of comparing neural representations. To gain some intuition, consider the problem of
interpolating between two kernel matrices. In a Euclidean geometry, one obtains αKX +(1−α)KY

which is PSD if 0 ≤ α ≤ 1. However, if one extrapolates beyond these bounds (e.g. by choosing
α > 1), the resulting matrix may contain negative eigenvalues. Such extrapolations are used when
CKA is optimized by gradient descent, as done in several prior works [9, 8].

The problems mentioned above do not arise if one extrapolates along geodesics defined by the Bures
distance. Indeed, the Bures distance between a PSD matrix and a matrix with negative eigenvalues is
not well-defined. However, it is not the main point of this paper to contend that Bures geometry is
inherently superior. One can show that the topologies induced by the Euclidean and Bures distances
coincide (see Lemma 3.2 in [55]). Determining whether the Euclidean geometry is “good enough”
for a particular application should be considered carefully on a case-by-case basis.

5.2 Upper and lower bounds on NBS in terms of CKA

Having discussed a central conceptual difference between NBS and CKA, we turn our attention to a
more practical question: How big are the potential discrepancies between CKA and NBS? Figure 2
shows NBS plotted against CKA for randomly sampled pairs of PSD matrices. This figure suggests
that, while there is not a one-to-one relationship between the two quantities, the two similarity
measures constrain each other to an allowed envelope. We can derive bounds on this envelope by
expressing squared NBS and CKA in terms of matrix norms:

NBS(KX ,KY )
2 =

∥ΣXY ∥2∗
∥KX∥∗∥KY ∥∗

, CKA(KX ,KY ) =
∥ΣXY ∥2F

∥KX∥F ∥KY ∥F
(23)

(Note that we have exploited theorem 1 to reformulate the numerator of NBS.) The elementary
matrix norm inequalities ∥A∥F ≤ ∥A∥∗ ≤

√
rank(A)∥A∥F and the subsequent observation

Tr[KXKY ] ≤ F(KX ,KY )
2 lead us to the following envelope (setting r(A) = rank(A)):

CKA(KX ,KY )√
r(KX)r(KY )

≤ NBS(KX ,KY )
2 ≤ min[r(KX), r(KY )]CKA(KX ,KY ) (24)
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Figure 2: Comparing CKA and NBS. Purple points represent the similarity between pairs of matrices
generated by sampling two Wishart distributions,

√
KX ∼ W10(I, 1) and

√
KY ∼ W10(I, 5).

Black points are generated by sampling
√
KX ∼ W10(I, 1) and setting

√
KY =

√
KX + ϵ, where

ϵ ∼ W10(I, 4). (a) CKA bounds NBS within an envelope determined by the matrix ranks; see
eq. (24). (b) CKA(

√
KX ,

√
KY ) bounds NBS(KX ,KY ) with inequalities given by eq. (28).

Both of these bounds are saturated when rank(KX) = rank(KY ) = 1. Figure 2 (a) demonstrates
that while NBS is bound to an envelope by CKA set by the matrix ranks, the allowed discrepency
between these two can still be large compared with the total range of [0, 1].

5.3 Connecting NBS and CKA through Uhlmann’s theorem

The equality of the Procrustes and Bures distances can be further understood by noticing that for any
particular fixed PSD KX , there are infinitely many matrices X for which KX = XX⊤. This set
of matrices are related by orthogonal transformations– for two M × Nx matrices X and X ′ that
satisfy XX⊤ = KX = X ′X ′⊤, we have XU = X ′ with U⊤U = UU⊤ = I . This set includes
rectangular matrices of dimension M ×Nx, where Nx ≥ rank(Kx). The unique PSD square root√
KX represents a particular square member of this set.

We will now assume Nx = Ny = N , so that we can compute the Hilbert-Schmidt inner product
between X and Y to measure their overlap. Intuitively, a meaningful measure of similarity between
KX and KY could be the maximum inner product over all X and Y that are consistent with KX

and KY . Since these possible neural representations are all related by a orthogonal transformation,
we can fix X and Y arbitrarily and optimize their overlap over the set of orthogonal transformations
U(N):

max
X,Y

{|Tr[X⊤Y ]| : XX⊤ = KX ,Y Y ⊤ = KY }

= max
U

{|Tr[X⊤Y U ]| : U ∈ U(N)}

= ∥X⊤Y ∥∗ = F(KX ,KY ).

(25)

In the last equality we have used the result of lemma 2. This result, known in the quantum information
community as Uhlmann’s theorem [57], shows that the fidelity between covariance matrices can
be understood as the solution to maximizing the overlap between neural representation matrices
that are consistent with those covariance matrices. This result does not depend on the dimension
N , provided it is at least the maximum rank of KX and KY (adding extra dimensions beyond
max(rank(KX), rank(KY )) does not affect the solution to this problem). Equation (25) implies
that NBS is simply the same maximum overlap between ‘consistent’ neural representation matrices,
normalized to lie in the interval [0, 1]. Without loss of generality, we can write the maximization
problem in eq. (25) in terms of the unique M ×M PSD square roots of the covariance matrices:
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F(KX ,KY ) = max
U

{|Tr[(XX⊤)
1
2 (Y Y ⊤)

1
2U ]| : U ∈ U(M)} (26)

Choosing U = I leads to the inequality:

NBS(KX ,KY ) ≥
Tr[K

1/2
X K

1/2
Y ]√

TrKX TrKY

= CKA(K
1
2

X ,K
1
2

Y ). (27)

where we have dropped the absolute value signs because the Hilbert-Schmidt inner product between
two PSD matrices is non-negative. The inequality is saturated when

√
KX commutes with

√
KY .

This inequality shows that the CKA between two particular neural representation matrices, namely
the PSD square roots

√
KX and

√
KY , appears as a suboptimal solution to the maximization in

eq. (26). NBS(KX ,KY ), on the other hand, represents this same Hilber-Schmidt inner product
maximized over all neural representation matrices consistent with KX and KY .

Lastly, we can derive an upper bound on NBS in terms of CKA(
√
KX ,

√
KX) using the Fuchs-van

de Graaf inequalities from quantum information theory (see section 7.3). We are lead to another set
of inequalities which bound the deviation of CKA(

√
KX ,

√
KX) from NBS(KX ,KY ):

1−NBS(KX ,KX) ≤ 1− CKA(K
1/2
X ,K

1/2
Y ) ≤

√
1−NBS(KX ,KX)2 (28)

These upper and lower bounds are represented in fig. 2 (b) as the orange and blue dashed lines.

6 Discussion

Differences in neural representations are quantified by a wide variety of methods in the current
literature [22]. In many cases, the relationships between these various quantities is unclear both
conceptually and quantitatively. While prior works have made attempts to mathematically relate
various (dis)similarity measures, our work greatly expands the scope of these comparisons. In
particular, we show that two independently proposed approaches—shape distances [20, 58] and the
normalized Bures similarity (NBS; [37, 54])—are essentially identical (see theorem 1). A notable
feature of this equivalence is that the two methods are motivated from very different perspectives. The
Procrustes and Riemannian shape distances can be viewed as the residual distance that is left after
neural dimensions are aligned by an optimal rotation. In contrast, NBS directly compares the structure
of two kernel matrices, KX and KY , without any alignment. Superficially, NBS looks similar to
CKA (see eq. 23), but we have seen that these similarity scores utilize fundamentally different
geometries (eqs. 21 and 22) and can produce discrepant quantitative outcomes as we demonstrated
both analytically and numerically (see fig. 2).

NBS and Bures distance are rooted in a rich literature in quantum information theory [39, 35, 57].
Indeed, the bound on CKA derived in section 5.3 follows a classic result in this area known as
Uhlmann’s theorem. Similarly, the Bures geometry on PSD manifolds has been extensively studied
in the context of optimal transport, yielding both theoretical insights and practical algorithms [5, 27].
Our work only scratches the surface of these connections, and future studies should seek to import
additional findings from these well-developed nearby fields.

Our main result shows a duality between shape and Bures distances, and an important open question is
whether similar dualities can be found for other (dis)similarity measures. If shape and Bures distances
represent a truly unique link between the two major perspectives on the problem (summarized in
sections 2.1 and 2.2), this provides a concrete motivation for their adoption. In short, these methods
can enjoy the conceptual and practical advantages of each perspective, depending on the circumstance.
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7 Proofs

We use the following notation: if A is a positive semidefinite matrix, then it admits a decomposition
A = UΛU⊤ and a unique positive semidefinite square root A1/2 = UΛ1/2U⊤.

7.1 Proof of Lemma 1

Proof of lemma 1. We begin with the Procrustes distance:[
P(X,Y )

]2
= min

Q⊤Q=I
∥CX −CY Q∥2F

= min
Q⊤Q=I

(
Tr[X⊤C⊤CX] + Tr[Y ⊤C⊤CY ]− 2Tr[X⊤C⊤CY Q]

)
= Tr[X⊤CX] + Tr[Y ⊤CY ]− 2 max

Q⊤Q=I
Tr
[
X⊤CY Q

]
= Tr [ΣXX ] + Tr [ΣY Y ]− 2 max

Q⊤Q=I
Tr [ΣXY Q]

= Tr [ΣXX ] + Tr [ΣY Y ]− 2∥ΣXY ∥∗

where the step in the last line is the well-known result of Schönemann [47]. Similarly for the
Riemannian shape distance:

θ∗(X,Y ) = min
Q⊤Q=I

cos−1

 Tr[X⊤C⊤CY Q]√
Tr[X⊤C⊤CX] Tr[Y ⊤C⊤CY ]


= min

Q⊤Q=I
cos−1

 Tr[X⊤CY Q]√
Tr[X⊤CX] Tr[Y ⊤CY ]


= cos−1

(
maxQ⊤Q=I Tr[ΣXY Q]√

Tr[ΣXX ] Tr[ΣY Y ]

)

= cos−1

(
∥ΣXY ∥∗√

Tr[ΣXX ] Tr[ΣY Y ]

)
as claimed by the lemma.

7.2 Proof of Lemma 2

Proof. First, the nonzero singular values of X⊤Y are equal to the square root of the nonzero
eigenvalues of A = X⊤Y Y ⊤X . Thus,

∥X⊤Y ∥∗ = Tr[(X⊤Y Y ⊤X)1/2] = Tr[A1/2] (29)
Next, we argue that every nonzero eigenvalue of A ∈ RN×N is also an eigenvalue of
B = XX⊤Y Y ⊤ ∈ RM×M . To see this, suppose λ ̸= 0 is an eigenvalue of A with eigenvec-
tor v ∈ RN . Then, w = Xv ∈ RM is an eigenvector of B with the same eigenvalue, since:

X⊤Y Y ⊤Xv = λv (30)

XX⊤Y Y ⊤Xv = λXv (multiply both sides on the left by X .) (31)

XX⊤Y Y ⊤w = λw (let w = Xv.) (32)
Notice that eq. (30) together with λ ̸= 0 implies that w = Xv ̸= 0. Further, B does not contain any
additional nonzero eigenvalues or additional repeated eigenvalues, since:

rank(B) = rank(XX⊤Y Y ⊤) (33)

≤ rank(X⊤Y ) (matrix product rank inequality) (34)

= rank(X⊤Y Y ⊤X) (rank of a matrix and its Gram matrix are equal) (35)
= rank(A). (36)
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Thus, we’ve shown that the non-zero eigenvalues of A and B are equal.

Next, we define C = (XX⊤)1/2Y Y ⊤(XX⊤)1/2 ∈ RM×M , and argue that it has the same
eigenvalue spectrum as B. To see this, suppose that λ ̸= 0 is an eigenvalue of C with eigenvector
z ∈ RM . Then, w = (XX⊤)1/2z is an eigenvector of B with the same eigenvalue:

(XX⊤)1/2Y Y ⊤(XX⊤)1/2z = λz (37)

XX⊤Y Y ⊤(XX⊤)1/2z = λ(XX⊤)1/2z (multiply on the left by (XX⊤)1/2.) (38)

XX⊤Y Y ⊤w = λw (let w = (XX⊤)1/2z.) (39)

Combining this with our argument above, we conclude that the non-zero eigenvalues of A, B and
C are equal. Furthermore, from the definition C and the definition of the fidelity in eq. (12), we
have Tr[C1/2] = F(XX⊤,Y Y ⊤). We can therefore conclude the proof since, recalling eq. (29),
we have:

∥X⊤Y ∥∗ = Tr[A1/2] = Tr[B1/2] = Tr[C1/2] = F(XX⊤,Y Y ⊤) (40)
as claimed by the lemma.

7.3 Applying the Fuchs-van de Graaf inequalities to NBS and CKA

One of the Fuchs-van de Graaf inequalities tells us how the fidelity bounds the nuclear norm of the
difference between positive semidefinite matrices ρ and σ with trace equal to 1 (known as the trace
distance) [57]:

∥ρ− σ∥∗ ≤ 2
√
1−F(ρ, σ)2 (41)

Rewriting ρ = KX/Tr[KX ] and σ = KY /Tr[KY ] allows us to recognize F(ρ, σ) as
NBS(KX ,KY ). Using the norm inequality for positive semi definite operators A and B,
∥A−B∥∗ ≥ ∥

√
A−

√
B∥2F and expanding, we have:

1−NBS(KX ,KX) ≤ 1− CKA(K
1/2
X ,K

1/2
Y ) ≤

√
1−NBS(KX ,KX)2 (42)

where the first inequality on the left hand side is from eq. (27). The right hand side inequality can be
rewritten

NBS(KX ,KX) ≤
√

1− (1− CKA(K
1/2
X ,K

1/2
Y )2. (43)

which defines the orange dashed curve in fig. 2 (b).
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