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Abstract

Deep generative models trained by maximum likelihood remain very popular
methods for reasoning about data probabilistically. However, it has been observed
that they can assign higher likelihoods to out-of-distribution (OOD) data than in-
distribution data, thus calling into question the meaning of these likelihood values.
In this work we provide a novel perspective on this phenomenon, decomposing the
average likelihood into a KL divergence term and an entropy term. We argue that
the latter can explain the curious OOD behaviour mentioned above, suppressing
likelihood values on datasets with higher entropy. Although our idea is simple,
we have not seen it explored yet in the literature. This analysis provides further
explanation for the success of OOD detection methods based on likelihood ratios,
as the problematic entropy term cancels out in expectation. Finally, we discuss how
this observation relates to recent success in OOD detection with manifold-supported
models, for which the above decomposition does not hold.

1 Introduction

Deep Generative Models (DGMs) are a staple for probabilistic modelling of high-dimensional data,
and are typically trained by maximum likelihood – or approximations thereof – over observations.
One possible application of DGMs is identifying whether new data is in- or out-of-distribution (OOD),
which naïvely seems quite straightforward given a sufficiently powerful model: average likelihood
could always be further increased by raising it for observed points, and thus lowering it for OOD
data. However, Nalisnick et al. [19] provided a landmark study showing that DGMs do not behave in
this way, as models trained on the CIFAR-10 dataset [13] produce higher likelihoods when tested on
Street View House Numbers (SVHN) [21], and similarly for models trained on Fashion-MNIST [32]
and tested on MNIST [15]. In either case, we note that the phenomenon only occurs in one direction,
with the more complicated dataset of the pair (i.e. CIFAR-10 or Fashion-MNIST) consistently scoring
lower likelihoods than the simpler one (i.e. SVHN or MNIST). Various explanations have been posed
for this phenomenon, including OOD data residing in high likelihood but low probability regions
[19, 20], early layers of the architectures encoding generic information [11, 27], poor model fit [34],
or representations of the data being being inadequate [8, 14].

In this paper, we propose a simple, alternative explanation for this phenomenon, centred on a
standard decomposition of the average likelihood into (i) a KL divergence term between the true
data distribution and the model, and (ii) an entropy term. The latter is constant with respect to the
parameters of the DGM, and is thus easily ignored in optimization, but can wildly vary over different
datasets. In particular, data distributions with high entropy may be biased towards lower likelihoods,
providing a new perspective on how even a perfect DGM could be unable to perform OOD detection.
This interpretation further explains the success of OOD detection methods based on likelihood ratios,
which we see are invariant to the entropy term in expectation. We also examine how our analysis
relates with the typical set approach [20], which itself only considers the entropy of the in-distribution
set and not the incoming test data, thus becoming exposed to pathological cases where likelihoods
are similar but the data is far different. As an addendum to the main analysis of this work, we note
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that the likelihood decomposition does not apply to DGMs supported on low-dimensional manifolds
embedded in the higher-dimensional ambient space. We conjecture that this may account for some of
the recent improvements in OOD detection for models of this type, as they may be less susceptible to
the influence of the entropy term.

2 Background

Deep Generative Models DGMs are, loosely speaking, models which combine probabilistic
elements with deep neural networks. In this paper, we focus on DGMs which admit densities1 and are
trained by maximum likelihood – or an approximation thereof – such as normalizing flows [23, 12],
variational auto-encoders (VAEs) [9, 25], and energy-based models [16, 6]. DGMs are often used
in practice as density estimators, since, in expectation, maximizing a model’s likelihood over an
observed dataset also minimizes its KL divergence from the true distribution generating this data (cf.
(1)). Likelihood-based DGMs have demonstrated practical success across a wide variety of domains
(e.g. Kingma et al. [10], Gao et al. [7], Oord et al. [22], Townsend et al. [29], Vahdat and Kautz [30]),
which might suggest that the likelihood values outputted by these models are reliable proxies for the
probability that new data is similar to the data on which the model was trained.

Failures on Out-of-Distribution Detection However, Nalisnick et al. [19] discovered that this is
not the case, as DGMs can often assign higher likelihoods to data which is dissimilar to the training
set, or out-of-distribution (OOD), particularly if this new data is considered to be “simpler” than
the training set. For example, as mentioned earlier, models trained on CIFAR-10 produce higher
likelihoods when evaluated on SVHN data, with similar phenomena observed for other pairs of
datasets. This observation has led researchers to question the meaning of likelihood values outputted
by DGMs in an attempt to both understand why this phenomenon occurs and what (if anything) can
be done about it; we discuss approaches along either of these directions throughout this work.

3 The Influence of Entropy on the Likelihood

In this section, we provide a simple and straightforward explanation for this strange OOD phenomenon
based on the standard decomposition of the likelihood into a KL divergence term and an entropy term.
We argue that the latter can inflate or deflate likelihoods, thus making these values unreliable on their
own. Throughout this section we assume all distributions admit densities, either with respect to the
Lebesgue measure on the ambient space for continuous data, or the counting measure for discrete
data; our analysis covers both cases. This agrees with standard assumptions made when building
full-support DGMs, and we will discussion the implications of relaxing this in section 5.

3.1 Decomposition of the Likelihood

Suppose we have a dataset DP := {xi}ni=1, with each xi sampled i.i.d. from an unknown data-
generating distribution P . Suppose also that we have a model for this distribution parametrized by θ,
denoted Pθ, which admits a density pθ. We can write the typical likelihood objective to estimate θ as∑n
i=1 log pθ(xi)/n, which can be rewritten in the limit of infinite data as

L(θ) := lim
n→∞

1

n

n∑
i=1

log pθ(xi) = EX∼P [log pθ(X)] = −DKL (P || Pθ)−H[P ], (1)

whereDKL denotes the KL divergence and H denotes the entropy. This well-known result can motivate
maximum likelihood estimation – indeed, Nalisnick et al. [19] provide a similar decomposition in (1)
of their work – as we have argmaxθ L(θ) = argminθDKL (P || Pθ) since H[P ] is independent of θ.

However, this result also provides a straightforward explanation for why we see strange behaviour
when evaluating the likelihood of a model on a different dataset DQ := {yj}mj=1, with each yj
sampled i.i.d. from an unknown distribution Q with the same support as P . We can again write the
average likelihood of Pθ over DQ asymptotically as

lim
m→∞

1

m

m∑
j=1

log pθ(yj) = EX∼Q[log pθ(X)] = −DKL (Q || Pθ)−H[Q]. (2)

1Either with respect to the Lebesgue measure for continuous data, or the counting measure for discrete data
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Now, suppose Q 6= P , so that DQ is considered OOD. If H[P ] is much larger than H[Q], we can
easily have EX∼Q[log pθ(X)] > EX∼P [log pθ(X)] even if Pθ is a perfect model of P . Qualitatively,
CIFAR-10 (resp. Fashion-MNIST) is far more complex – and thus ostensibly has higher entropy –
than SVHN (resp. MNIST), which succinctly explains the observation that models trained on the
former score higher likelihoods on the latter. Nalisnick et al. [19] additionally note that constant (and
thus low-entropy) inputs score very highly on likelihood, agreeing with the analysis above. At any
rate, this discussion provides further insight on the unreliability of using only the likelihood as a test
statistic to evaluate whether new data is in- or out-of-distribution.

3.2 Likelihood Ratios for OOD Detection Cancel Out the Entropy

The above analysis suggests that performing likelihood-based OOD detection without somehow
accounting for the entropy of incoming data is problematic. On the other hand, OOD detection
methods based on likelihood ratios have recently demonstrated strong performance [24, 28, 27].
Here, we argue that such approaches intrinsically control for this entropy. Suppose we have a model
Pθ with density pθ trained on data from P , and we also have access to some reference model Rφ
admitting a density rφ; Ren et al. [24] forms this as a model for the background, Schirrmeister et al.
[27] trains this on millions of unrelated images, and Serrà et al. [28] uses standard image compression
techniques such as PNG as a proxy for this distribution. The above methods assess incoming data x
as OOD if they score poorly on the likelihood ratio log(pθ(x)/rφ(x)). Now, if we assume x ∼ Q for
some unknown Q, we can take the expectation of the likelihood ratio, following (2):

EX∼Q log pθ(X)− EX∼Q log rφ(X) = −DKL (Q || Pθ)−���H[Q] +DKL (Q || Rφ) +���H[Q] . (3)

In particular, we note that this does not explicitly depend on the entropy of incoming data H[Q]. This
might explain the success of likelihood ratio methods in OOD detection, as (3) will be mediated by
the distance from Q to P , assuming Pθ is a good model of P and DKL (Q || Rφ) / DKL (P || Rφ).

4 Related Work

As far as we are aware, nobody has considered the effect of the entropy term on OOD detection. We
will review some alternative explanations here and provide further discussion.

Perfect Models Le Lan and Dinh [14] also noted that OOD detection methods based on likelihood
scoring are unreliable even when provided with a perfect density model of in-distribution data,
although under the observation that likelihood-based OOD detection techniques are not invariant to
different representations of the same data. Our work instead focuses on the impact of the entropy term
in OOD detection and thus provides a complimentary analysis; perhaps this suggests that we should
look for lower-entropy representations of data before performing likelihood-based OOD detection.

Likelihood Ratios Bishop [2] is the earliest instance of a likelihood ratio approach for novelty
detection of which we are aware, with much more recent work heading in this direction as mentioned
in subsection 3.2. Of note is that Serrà et al. [28] and Schirrmeister et al. [27] require trained models
on data of the same generic type but not the same particular distribution – an image compression
algorithm and a density model on 80 million tiny images, respectively – thus requiring additional
knowledge besides just the in-distribution training data. However, other works [14, 34] have indeed
suggested that some knowledge of the out-distribution is crucial to attacking the OOD detection
problem. Ren et al. [24] do not require additional data, but still require training a background model
on randomly perturbed in-distribution data. Noting that the above do not work well for VAEs, Xiao
et al. [33] develop a successful OOD detection method comparing the likelihood of the posterior
optimized for a single observation against the likelihood from the entire VAE. All of these approaches
control for the entropy of incoming data as previously discussed in subsection 3.2, and further can
assess individual inputs as in- or out-of-distribution which is an attractive property for practitioners.

Typicality An alternative explanation of the unintuitive OOD behaviour of likelihood-based models
is presented in Nalisnick et al. [20], who note that a probability distribution’s regions of high likelihood
may not be associated with regions of high probability – especially as dimensionality increases. This
led to the development of a test characterizing in- and out-of-distribution on the basis of typicality, i.e.
how similar test (log-)likelihood values are to those from in-distribution training data. This is akin
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to controlling for the entropy of the in-distribution data. However, as per subsection 3.1, we could
imagine a scenario where we observe OOD data with similar likelihoods to the in-distribution data,
but which also has far different KL and entropy terms that throw off the comparison. Controlling for
the entropy of the incoming data would help prevent such a scenario from occurring.

Another approach entirely is to consider test statistics other than the log likelihood, yet still comparing
on the basis of typicality. Choi et al. [5] themselves provide an early discussion on typicality, and
find that an ensemble-based estimate of the Watanabe-Akaike Information Criterion [31] performs
well empirically. Sastry and Oore [26] decide whether or not incoming data is OOD based on how
its pairwise feature correlations compare with those on in-distribution data. Morningstar et al. [18]
propose an approach which takes any reasonable statistic(s) from a pre-existing DGM and builds
a density estimator on this, rejecting points as OOD if they are not likely under this model. These
methods are fully unsupervised in that they do not require access to OOD data, but often require
additional model training or isolating seemingly random features of the data and thus make their
general application less clear.

Model Fit Failure The final perspective on OOD detection that we will cover centres around model
fit failure. Kirichenko et al. [11] focus on the inductive biases of normalizing flow methods, remarking
that these learn generic image features and thus overpower the maximum likelhood objective as it
relates to OOD detection; Schirrmeister et al. [27] find something similar in that the likelihoods
on convolutional-based architectures are dominated by low-level features. These methods propose
modified architectures or test statistics, respectively, demonstrating improved results. Zhang et al.
[34] argue that model fit is the most likely culprit in OOD detection failures, and highlights several
issues with the (typical set) idea that the support of OOD data could overlap with that of the training
data and thus assumes that this does not occur. This is yet another complementary analysis to ours: in
the view of (1) and (2), assuming we have a model Pθ which matches P perfectly, and P and Q have
non-overlapping support, then DKL (Q || Pθ) =∞ and thus EQ log pθ(X)→ −∞. Since we do not
observe this in practice, it suggests that model fit may indeed be part of the issue.

5 Discussion and Conclusion

In this work, we have presented an alternative explanation for the strange phenomenon wherein
a deep generative model trained on one dataset assigns high likelihood to OOD data, particularly
when this data is simpler than the training data. By exploiting a well-known decomposition of the
average likelihood, we find that these observations can be explained by fluctuations in the entropy
term between datasets. This also sheds further light on the success of OOD detection methods based
on likelihood ratios, as these statistics are not affected by the entropy term (in expectation).

Although we find this observation interesting on its own, one limitation of this work is that we have
not devised a new method to overcome issues posed by the entropy term, beyond the suggestion to
use pre-existing likelihood ratio approaches. We at least hope that bringing this explanation to light
might inspire other researchers to consider the impact of the entropy term when performing OOD
detection with deep generative models. We would also like to specifically probe this phenomenon in
future work with experiments and compare the relative impacts of the KL and entropy terms on the
likelihood, but will need to get around the issues with estimating entropy in high dimensions [17].

This work may also serve as a motivation for further work in OOD detection with likelihood-based
methods supported on low-dimensional manifolds embedded in high-dimensional ambient space, as
the decomposition (1) does not apply in this case. Recently, Caterini et al. [4] have shown that injective
flow methods (e.g. [3]) can accurately assign lower likelihoods to MNIST when trained by maximum
likelihood over Fashion-MNIST; perhaps these methods are not as susceptible to fluctuations in the
entropy term and can provide further improvements to likelihood-based OOD detection. Indeed, in
accordance with the manifold hypothesis [1], it seems unlikely that high-dimensional data such as
images would even admit densities with respect to the Lebesgue measure on the ambient space, and
thus low-dimensional density models appear to be an important direction forward.
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