
Under review as a conference paper at ICLR 2023

CRISP: CURRICULUM INDUCING PRIMITIVE IN-
FORMED SUBGOAL PREDICTION FOR HIERARCHICAL
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical reinforcement learning is a promising approach that uses temporal
abstraction to solve complex long horizon problems. However, simultaneously
learning a hierarchy of policies is unstable as it is challenging to train higher-
level policy when the lower-level primitive is non-stationary. In this paper, we
propose to generate a curriculum of achievable subgoals for evolving lower-level
primitives using reinforcement learning and imitation learning. The lower level
primitive periodically performs data relabeling on a handful of expert demonstra-
tions using our primitive informed parsing. We provide expressions to bound the
sub-optimality of our method and develop a practical algorithm for hierarchical
reinforcement learning. Since our approach uses a handful of expert demonstra-
tions, it is suitable for most robotic control tasks. Experimental results on complex
maze navigation and robotic manipulation environments show that inducing hier-
archical curriculum learning significantly improves sample efficiency, and results
in better learning of goal conditioned policies in temporally extended tasks.

1 INTRODUCTION

Reinforcement learning (RL) algorithms have made significant progress in solving continuous con-
trol tasks like performing robotic arm manipulation (Levine et al., 2015; Vecerı́k et al., 2017) and
learning dexterous manipulation (Rajeswaran et al., 2017). However, the success of RL algorithms
on complex long horizon continuous tasks has been limited by issues like long term credit assign-
ment and inefficient exploration (Nachum et al., 2019; Kulkarni et al., 2016), especially in sparse
reward scenarios (Andrychowicz et al., 2017). Hierarchical reinforcement learning (HRL) (Dayan
& Hinton, 1993; Sutton et al., 1999; Parr & Russell, 1998) promises the benefits of temporal abstrac-
tion and efficient exploration for solving tasks that require long term planning. In goal-conditioned
hierarchical framework, the high-level policy predicts subgoals for lower primitive, which in turn
performs primitive actions directly on the environment (Nachum et al., 2018; Vezhnevets et al.,
2017; Levy et al., 2017). However, simultaneously learning multi-level policies has been found to
be challenging in practice due to non-stationary higher level state transition and reward functions.

Prior works have leveraged expert demonstrations to bootstrap learning (Nair et al., 2017; Ra-
jeswaran et al., 2017; Hester et al., 2017). Some approaches rely on leveraging expert demon-
strations via fixed parsing, and consequently bootstrapping multi-level hierarchical RL policy using
imitation learning (Gupta et al., 2019). Generating an efficient subgoal transition dataset is crucial in
such tasks. In this work, we propose an adaptive parsing technique for leveraging expert demonstra-
tions and show that it outperforms fixed parsing based approaches on tasks that require long term
planning. Ideally, a good subgoal should properly balance the task split between the hierarchical
levels according to current goal reaching ability of the lower primitive, thus avoiding degenerate
solutions. As the lower primitive improves, the subgoals provided to lower primitive should become
progressively more difficult, such that (i) the subgoals are always achievable by the current lower
level primitive, (ii) task split is properly balanced between hierarchical levels, and (iii) reasonable
progress is made towards achieving the final goal. In this work, we introduce hierarchical curricu-
lum learning to deal with non-stationarity issue. We build upon these ideas and propose a generally
applicable HRL approach: Curriculum inducing primitive informed subgoal prediction (CRISP).

1

Under review as a conference paper at ICLR 2023

CRISP parses a handful of expert demonstrations using our novel subgoal relabeling method: prim-
itive informed parsing (PIP). In PIP, current lower primitive is used to perform data relabeling on
expert demonstrations dataset to generate efficent subgoal supervision for the higher level policy.
Since the lower primitive performs data relabeling, this approach does not require explicit labeling
or segmentation of demonstrations by an expert. The periodically generated higher level subgoal
dataset is used with an additional imitation learning (IL) objective to provide curriculum based reg-
ularization for the higher policy. For imitation learning, we devise inverse reinforcement learning
regularizer (Ghasemipour et al., 2020; Kostrikov et al., 2018; Ho & Ermon, 2016), which constraints
the state marginal of the learned policy to be similar to that of the expert demonstrations. The details
of CRISP, PIP, and IRL objective are mentioned in Section 3. We also derive sub-optimality bounds
in Section 3.2 to theoretically justify the benefits of curriculum learning in hierarchical framework.
Finally, we provide a practical approach to perform hierarchical reinforcement learning.

Since our approach uses a handful of expert demonstrations, it is generally applicable on most
complex long horizon tasks. We perform experiments on random maze navigation and complex
robotic pick and place environments, and empirically verify that the proposed approach clearly
outperforms the baseline approaches on long horizon tasks.

2 BACKGROUND

We consider Universal Markov Decision Process (UMDP) (Schaul et al., 2015) setting, which is
a Markov Decision process (MDP) augmented with the goal space G. UMDPs are represented
as a 6-tuple (S,A, P,R, γ,G), where S is the state space, A is the action space, P (s

′ |s, a) =

P(st+1 = s
′ |st = s, at = a) is the transition function that describes the probability of reach-

ing state s
′

when the agent takes action a in the current state s. The reward function R gener-
ates rewards r at every timestep, γ is the discount factor, and G is the goal space. In the UMDP
setting, a fixed goal g is selected for an episode, and π(a|s, g) denotes the goal-conditioned pol-
icy. dπ(s) = (1 − γ)

∑T
t=0 γ

tP (st = s|π) represents the discounted future state distribution, and
dπc (s) = (1− γc)

∑T
t=0 γ

tcP (stc = s|π) represents the c-step future state distribution for policy π.
The overall objective is to learn policy π(a|s, g) which maximizes the expected future discounted
reward objective J = (1− γ)−1Es∼dπ,a∼π(a|s,g),g∼G [r(st, at, g)]

Let s be the current state and g be the final goal for the current episode. In our goal-conditioned hi-
erarchical RL setup, the overall policy π is divided into multi-level policies. The higher level policy
πH(sg|s, g) predicts subgoals (Dayan & Hinton, 1993) sg for the lower level primitive πL(a|s, sg),
which in turn executes primitive actions a directly on the environment. The lower primitive πL tries
to achieve subgoal sg within c timesteps by maximizing intrinsic rewards rin provided by the higher
level policy. The higher level policy πH gets extrinsic reward rex from the environment, and predicts
the next subgoal sg for the lower primitive. The process is continued until either the final goal g is
achieved, or the episode terminates. We consider sparse reward setting where the lower primitive is
sparsely rewarded intrinsic reward rin if the agent reaches within δL distance of the predicted sub-
goal sg: rin = 1(∥st−sg∥2 ≤ δL), and the higher level policy is sparsely rewarded extrinsic reward
rex if the achieved goal is within δH distance of the final goal g: rex = 1(∥st − g∥2 ≤ δH). We
assume access to a handful of expert demonstrations D = {ei}Ni=1, where ei = (se0, s

e
1, . . . , s

e
T−1).

We only assume access to demonstration states sei (and not demonstration actions) which can be
obtained in most robotic control tasks.

3 METHODOLOGY

In this section, we explain our hierarchical curriculum learning based approach CRISP. An overview
of the method is depicted in Figure 1. First, we formulate our primitive informed parsing method PIP,
which periodically performs data relabeling on expert demonstrations to populate subgoal transition
dataset. Then, we explain how we use this dataset to learn high level policy using reinforcement
learning and additional inverse reinforcement learning(IRL) based regularization objective.

2

Under review as a conference paper at ICLR 2023

πᴴ(τ|s,g)

πᴸ(τ|s,sg)

Upper
Subgoal
Dataset

D₉

Lower
expert

dataset
D

Upper
Replay
Buffer

Lower
Replay
Buffer

πᴸ(τ|s,sg)
Lower
expert

dataset
D

Upper
Subgoal
Dataset

D₉

πᴴ(τ|s,g)

πᴸ(τ|s,sg)

Env

IL

IL

RL

RL

IL PIP

Training

After u timesteps

Testing

a

sg

after every c steps

after every step

Figure 1: Overview of CRISP: While
training, both upper policy(πH) and lower
primitive(πL) are trained using RL and
IL(imitation learning). After every u
timesteps, Dg is re-populated using PIP.

Figure 2: This figure depicts CRISP subgoals
progress vs training epochs elapsed. The
higher level policy generates a curriculum of
subgoals for lower primitive(walls:yellow, fi-
nal goal:red, subgoals:blue)

3.1 PRIMITIVE INFORMED PARSING: PIP

Primitive informed parsing approach uses the current lower primitive πL to parse expert state demon-
strations datasetD(PIP only requires expert state demonstrations and does not require expert actions
from demonstrations, as explained later in this section.) The underlying idea is: PIP should se-
lect sequences of maximally temporally separated states from demonstration trajectory e. These
maximally temporally separated state sequences constitute the higher level subgoal dataset Dg . We
explain below how PIP adaptively parses expert demonstration trajectories from D.

We start with current lower primitive πL and an expert state demonstration trajectory e =
(se0, s

e
1, . . . , s

e
T−1) . The environment is reset to state se0. Starting at i = 1 to T − 1, we incre-

mentally provide states sei as subgoals to lower primitive πL. From se0, πL tries to achieve sei within
c timesteps. If πL fails to achieve the subgoal sei from the initial state, we add sei to the list of sub-
goals. The underlying idea is that since sei−1 was the last subgoal achieved by lower-level primitive,
it thus makes a good candidate for maximally reachable subgoal. Once we have added sei−1 to the
list of subgoals, we continue the process after setting sei−1 as the new initial state until we reach
the end of demonstration trajectory e. This subgoal transition sequence thus collected is added to
Dg . The method thus populates the subgoal transition dataset with maximally temporally separated
achievable subgoals.

Algorithm 1 PIP: Primitive Informed Parsing
1: Initialize Dg = {}
2: for each trajectory e = (se0, s

e
1, . . . , s

e
T−1) in D do

3: initial state← se0
4: final goal← g
5: Initialize list of subgoals De

g = {}
6: for i = 1 to T − 1 do
7: Reset to initial state
8: Pass sei as the current goal to πL
9: if sei is not achieved by πL in c time-steps then

10: Add (initial state, sei),final goal) to De
g

11: initial state← sei−1

12: Dg ← Dg ∪De
g

The pseudocode for PIP is given in Algorithm 1. PIP maximizes the utility of the lower level
primitive while ensuring that it always receives achievable subgoals. However, it assumes that we
can reset the environment to any state in D while collecting subgoal dataset. We discuss different
ways to relax this assumption in Section 6.

3

Under review as a conference paper at ICLR 2023

3.2 SUBOPTIMALITY ANALYSIS

In this section, we analyze the suboptimality of our method, and examine how the performance
benefits from curriculum learning and imitation learning objective. Let π∗ and π∗∗ be the unknown
higher level and lower level optimal policies respectively, πH

θH
be our high level CRISP policy, and

πL
θL

be our lower CRISP primitive policy, where θH and θL are trainable parameters of higher and
lower level policies respectively. DTV (π1, π2) denotes total variation divergence between proba-
bility distributions π1 and π2. s is the current state, g is the final episodic goal, sg is the subgoal
provided by upper level policy and τ are c length sub-trajectories. Let ΠH

D and ΠL
D be the upper

level probability distributions which generate datasets DH and DL respectively, κ is some distribu-
tion over states and actions, and G is the goal space. Firstly, we extend the definition from (Ajay
et al., 2020) to goal-conditioned policies:

Definition 1. π∗ is ϕD-common in ΠH
D , if Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

∗(τ |s, g)||πH
D (τ |s, g))] ≤ ϕD

We define the suboptimality of policy π with respect to optimal policy π∗ as:

Subopt(θ) = |J(π∗)− J(π)| (1)

Theorem 1. Assuming the optimal policy π∗ is ϕD common in ΠH
D , the suboptimality of upper

policy πH
θH

, over c length sub-trajectories τ sampled from dπ
∗

c can be bounded as:

|J(π∗)− J(πH
θH)| ≤ λH ∗ ϕD + λH ∗ Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

H
D (τ |s, g)||πH

θH (τ |s, g))]] (2)

where λH = 2
(1−γ)(1−γc)Rmax∥d

π∗
c

κ ∥∞

Furthermore, the suboptimality of lower primitive πL
θL

can be bounded as:

|J(π∗∗)− J(πL
θL)| ≤ λL ∗ ϕD + λL ∗ Es∼κ,πL

D∼ΠL
D,sg∼πL

θL

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]]
(3)

where λL = 2
(1−γ)2Rmax∥d

π∗∗
c

κ ∥∞

The proofs for Equations 2 and 3 are provided in Appendix A.1 and A.2 respectively. Equation 2
can be rearranged to yield the following form:

J(π∗) ≥ J(πH
θH)− λH ∗ ϕD − λH ∗ Es∼κ,πH

D∼ΠH
D ,g∼G[d(π

H
D (τ |s, g)||πH

θH (τ |s, g))] (4)

where, d(πH
D (τ |s, g)||πH

θH
(τ |s, g)) = DTV (π

H
D (τ |s, g)||πH

θH
(τ |s, g))

This can be solved as a minorize maximize algorithm which intuitively means: the overall ob-
jective can be optimized by (i) maximizing the objective J(πH

θH
) via RL, and (ii) minimizing

TV divergence between π∗ and J(πH
θH

). We use entropy regularized RL technique Soft Actor
Critic (Haarnoja et al., 2018a) to maximize J(πH

θH
).

3.3 HIERARCHICAL CURRICULUM LEARNING

In Equation 2, the suboptimality bound is dependent on ϕDg
, which represents how good is the

subgoal dataset Dg populated by PIP. A lower value of ϕDg
implies that the optimal policy π∗ is

closely represented by the dataset Dg . Since we use lower primitive to parse expert demonstrations,
as the lower primitive gets better, πDg gets closer to π∗. Hence Dg improves and the value of
parameter ϕD decreases, which implies that suboptimality bound in Equation 2 gets tighter.

To implement curriculum learning while generating subgoal transition dataset Dg , the dataset Dg is
cleared after every u timesteps, and re-populated using PIP, as explained in Algorithm 2. Periodi-
cally re-populating buffer Dg after u timesteps generates a natural curriculum for lower primitive,
as shown in Figure 2.

4

Under review as a conference paper at ICLR 2023

3.4 IMITATION LEARNING REGULARIZATION FOR HIGHER-LEVEL POLICY

Different approximations to the distance function d in Equation 4 yield different imitation learn-
ing regularizers. If d is replaced by Kullback–Leibler divergence, the imitation learning regularizer
becomes behavior cloning objective(BC) (Nair et al., 2017). If we replace d with Jensen-Shannon
divergence, the imitation learning objective takes the form of Inverse reinforcement learning(IRL)
objective. Henceforth, CRISP-IRL will denote our method CRISP with IRL regularizer, and CRISP-
BC will denote our method CRISP with BC regularizer. We consider both behavior cloning and IRL
objectives in our experiments. We devise IRL objective as a GAIL (Ho & Ermon, 2016) like objec-
tive implemented using LSGAN (Mao et al., 2016). Let (se, ge, seg) ∼ Dg be a subgoal transition
where se is a state in an expert trajectory, ge is the corresponding final goal and seg is the subgoal.
Let sg be the subgoal predicted by the high level policy πH

θ (·|se, ge) and DH
ϵ be the higher level

discriminator with parameters ϵ. We bootstrap the learning of higher level policy by optimizing:

max
πH
θ

min
ϵ

1

2
E(se,ge,seg)∼Dg

[DH
ϵ (seg)− 1]2 +

1

2
E(se,ge)∼Dg,sg∼πH

θ (·|se,ge)[DH
ϵ (πH

θ (·|se, ge))− 0]2

(5)
This objective forces the higher policy subgoal predictions to be close to subgoal predictions of the
dataset Dg . For brevity, let JH

D and JL
D represent upper and lower IRL objectives, which depend on

parameters (θH , ϵH) and (θL, ϵL) respectively. The discriminator DH
ϵ creates a natural curriculum

for regularizing higher level policy by assigning the value 1 to the predicted subgoals that are closer
to the subgoals from dataset Dg , and 0 otherwise. The discriminator improves with training, and
regularizes the higher policy to predict achievable subgoals.

3.5 POLICY OPTIMIZATION

The higher level policy is trained to produce subgoals, which when fed into the lower level primitive,
maximize the sum of future discounted rewards for our task using off-policy reinforcement learning.
Here, πL

θ is the current lower primitive, st is the state at time t, T is the task horizon and g is the
sampled goal for the current episode. For brevity, we can refer to this objective function as JH

θH
and

JL
θL

for upper and lower policies. We use the IRL objective to leverage the primitive-parsed dataset
Dg . Therefore, the high level policy is trained by optimizing

max
θH

JH
θH + ψ(min

ϵH
JH
D (θH , ϵH)) (6)

Whereas, the lower level primitive is trained by optimizing,

max
θL

JL
θL + ψ(min

ϵL
JL
D(θL, ϵL)) (7)

Algorithm 2 CRISP
Require: Expert state demonstrations D, hyperparameter u

1: Initialize higher level subgoal transition dataset Dg = {}
2: for epoch i = 1 . . . N do
3: if i%u == 0 then
4: Clear Dg

5: Populate Dg by relabeling D using PIP
6: for j = 1 to T − 1 do
7: Collect off policy experience using πH and πL
8: Update lower primitive via Soft Actor Critic (SAC) and IRL(Eq 7)
9: Sample transitions from Dg

10: Update higher policy via SAC and IRL(Eq 6)

The lower policy is regularized using primitive expert demonstration dataset, and the upper level is
optimized using subgoal transition dataset populated using PIP. ψ is the regularization weight hyper-
parameter for the IRL objective. When ψ = 0, the method reduces to HRL policy with no higher
level policy regularization. When ψ is too high, the method might overfit to the expert demonstration
dataset. We perform ablation analysis to choose ψ in our experiments in Appendix A.3. The CRISP
algorithm is shown in Algorithm 2

5

Under review as a conference paper at ICLR 2023

4 RELATED WORK

Learning effective hierarchies of policies has garnered substantial research interest in RL (Barto
& Mahadevan, 2003; Sutton et al., 1999; Parr & Russell, 1998; Dietterich, 1999). Options frame-
work (Sutton et al., 1999; Bacon et al., 2016; Harutyunyan et al., 2017; Harb et al., 2017; Harutyun-
yan et al., 2019; Klissarov et al., 2017) learns temporally extended macro actions, and a termination
function for solving long horizon tasks. However, these approaches run into degenerate solutions in
absence of proper regularization, where a sub-policy either terminates after each step, or runs for the
entire episode. In goal-conditioned learning, some previous approaches restrict the search space by
greedily solving for specific goals (Kaelbling, 1993; Foster & Dayan, 2002). This approach has also
been extended to hierarchical RL (Wulfmeier et al., 2019; 2020; Ding et al., 2019). HIRO (Nachum
et al., 2018) and HRL with hindsight (Levy et al., 2017) approaches deal with the non-stationarity
issue in hierarchical learning by relabeling transition data for training goal-conditioned policies,
where the higher level predicts subgoals for the lower primitive. In contrast, our method deals with
non-stationarity by regularizing the higher policy with imitation learning to provide a curriculum of
achievable subgoals to the lower primitive. Our approach is inspired from curriculum learning (Ben-
gio et al., 2009), where the task difficulty for the lower primitive gradually increases in complexity,
thereby amortizing non-stationarity.

Previous approaches that leverage expert demonstrations have shown impressive results (Nair et al.,
2017; Rajeswaran et al., 2017; Hester et al., 2017). Expert demonstrations have also been used
to bootstrap option learning (Krishnan et al., 2017b; Fox et al., 2017; Shankar & Gupta, 2020;
Kipf et al., 2019). Other approaches use imitation learning to bootstrap hierarchical approaches
in complex task domains (Shiarlis et al., 2018; Krishnan et al., 2017a; 2019; Kipf et al., 2019).
Relay Policy Learning (RPL) (Gupta et al., 2019) parses uses simple fixed window based approach
for parsing expert demonstrations to generate subgoal transition dataset for training higher level
policy. However, fixed parsing based approaches might predict subgoals that are either too hard for
the lower level primitive, in which case the higher level is cursed with ambiguous extrinsic reward
signal, or too easy subgoals, in which case the higher level is forced to do most of the heavy-lifting
for solving the task. In contrast, our data relabeling technique PIP segments expert demonstration
trajectories into meaningful subtasks, without requiring an external expert. Our adaptive parsing
approach considers the limited goal reaching ability of lower primitive, and is therefore able to
produce much better subgoals.

5 EXPERIMENTS

For experimental analysis, we considered various complex tasks with continuous state and action
spaces. We perform experiments on the following two robotic Mujoco (Todorov et al., 2012) envi-
ronments: (i) maze navigation, and (ii) pick and place environment. These environments employ a
7-DoF robotic arm to perform maze navigation and robotic manipulation. We empirically show the
performance comparison of our approach with various baselines in challenging task domains.

5.1 COMPARATIVE ANALYSIS

Here, we enlist the baseline methods for comparison, and explain the rationale.

• Relay Policy Learning (RPL) (Gupta et al., 2019) parses subgoals from expert state
demonstrations using a fixed window approach. We use this baseline to highlight the ad-
vantage of adaptive parsing of subgoals compared to fixed window parsing. We perform
extensive search for the window size hyper-parameters in RPL for each environment, which
we provide in appendix A.

• Hierarchical 2-level policy (Hier) denotes a hierarchical policy where the high level policy
is trained using only reinforcement learning, and the lower level policy is trained using
RL and IRL using primitive expert demonstrations. We use it to show the importance
of curriculum based subgoal generation and consequent IRL based regularization on the
higher level policy. The hierarchical 2-level policy where both the upper and lower levels
are trained using only RL failed to show good performance compared to other methods.
Hence, we do not include it in the baseline comparisons.

6

Under review as a conference paper at ICLR 2023

• Discriminator Actor Critic (DAC) (Kostrikov et al., 2018) uses IRL to learn a single-level
policy using low level expert demonstrations D. Using this baseline, we demonstrate the
advantage of using hierarchy, curriculum based subgoal generation and consequent IRL
based regularization in our approach.

5.2 ROBOTIC MAZE NAVIGATION ENVIRONMENT

Here we provide details about the maze navigation environment, its implementation and results.

5.2.1 ENVIRONMENT SETUP

In this environment, a 7-DOF robotic arm gripper navigates across random four room mazes. The
gripper arm is kept closed and the positions of walls and gates are randomly generated. The table is
discretized into a rectangularW ∗H grid, and the vertical and horizontal wall positionsWP andHP

are randomly picked from (1,W − 2) and (1, H − 2) respectively. In the four room environment
thus constructed, the four gate positions are randomly picked from (1,WP − 1), (WP + 1,W − 2),
(1, HP − 1) and (HP + 1, H − 2). The height of gripper is kept fixed at table height, and it has to
navigate across the maze to the goal position(shown as red sphere). The maximum task horizon T
is kept at 225 timesteps, and the lower primitive is allowed to execute for c = 15 timesteps.

5.2.2 IMPLEMENTATION DETAILS

The following implementation details refer to both the higher and lower level polices, unless oth-
erwise explicitly stated. The state and action spaces in the environment are continuous. The actor,
critic and discriminator networks are formulated as 3 layer fully connected neural networks with
512 neurons in each layer. The state is represented as the vector [p,M], where p is current gripper
position andM is the sparse maze array. The higher level policy input is thus a concatenated vector
[p,M, g], where g is the target goal position, whereas the lower level policy input is concatenated
vector [p,M, sg], where sg is the sub-goal provided by the higher level policy. The current position
of the gripper is the current achieved goal. The sparse maze arrayM is a discrete 2D one-hot vector
array, where 1 represents presence of a wall block, and 0 absence. In our experiments, the size of p
andM are kept to be 3 and 110 respectively. The upper level predicts subgoal sg , hence the higher
level policy action space dimension is the same as the dimension of goal space. The lower primitive
action a which is directly executed on the environment, is a 4 dimensional vector with every dimen-
sion ai ∈ [0, 1]. The first 3 dimensions provide offsets to be scaled and added to gripper position
for moving it to the intended position. The last dimension provides gripper control(0 implies a fully
closed gripper, 0.5 implies a half closed gripper and 1 implies a fully open gripper). We select 100
randomly generated mazes each for training, testing and validation. For selecting train, test and
validation mazes, we first randomly generate 300 distinct mazes, and then randomly divide them
into 100 train, test and validation mazes each. Each experiment is run on 4 parallel workers. We
use off-policy Soft Actor Critic (Haarnoja et al., 2018b) algorithm for optimizing RL objective in
our experiments. We keep the regularization weight hyperparameter as Ψ = 0.0078 in our experi-
ments. We use Adam (Kingma & Ba, 2014) optimizer in our experiments. The hyperparameter u
which is the number of training iterations after which the replay buffer is flushed and re-populated
is set as 100. The experiments are run for 2.93e6 timesteps. The method for generating expert
demonstrations is provided in Appendix A.4.

5.2.3 RESULTS

In Table 1, we report the success rate performance of the proposed methods and other baselines in
the maze navigation and pick and place environments averaged over 3 seeds. CRISP-IRL is CRISP
with Inverse RL(IRL) regularization objective, and CRISP-BC is CRISP with behavior cloning(BC)
regularization. While training and testing, we evaluate success rates over N = 100 random episodic
rollouts. Since the test mazes are randomly generated, the performance also proves a measure of
generalization capability of our proposed approach. From the results, it is evident that the proposed
approach outperforms the baselines, and demonstrates impressive generalization.

7

Under review as a conference paper at ICLR 2023

Table 1: Success rates: Maze navigation and Pick and place environment
Method Maze Navigation Pick and Place

CRISP-IRL 0.65 ± 0.07 0.88 ± 0.03
CRISP-BC 0.53 ± 0.02 0.73 ± 0.01

RPL 0.57 ± 0.035 0.02 ± 0.01
Hier 0.52 ± 0.08 0.02 ± 0.02
DAC 0.27 ± 0.06 0.38 ± 0.07

5.3 ROBOTIC PICK AND PLACE ENVIRONMENT

Here we provide details about the pick and place environment, its implementation and results.

5.3.1 ENVIRONMENT SETUP

In this environment, a 7-DOF robotic arm gripper has to pick a square block and bring/place it to a
goal position. We set the goal position slightly higher than table height. The maximum task horizon
T is kept at 225 timesteps, and the lower primitive is allowed to execute for c = 15 timesteps. In
this complex task, the gripper has to navigate to the block, close the gripper to hold the block, and
then bring the block to the desired goal position. We provide the success rate results and baseline
comparisons in section 5.3.3

5.3.2 IMPLEMENTATION DETAILS

In this environment, the actor, critic, and discriminator networks are formulated as 3 layer fully
connected networks with 512 neurons in each layer. The state is represented as the vector [p, o, q, e],
where p is current gripper position, o is the position of the block object placed on the table, q is
the relative position of the block with respect to the gripper, and e consists of linear and angular
velocities of the gripper and the block object. The higher level policy input is thus a concatenated
vector [p, o, q, e, g], where g is the target goal position. The lower level policy input is concatenated
vector [p, o, q, e, sg], where sg is the sub-goal provided by the higher level policy. The current
position of the block object is the current achieved goal. In our experiments, the sizes of p, o, q,
e are kept to be 3, 3, 3 and 11 respectively. The upper level predicts subgoal sg , hence the higher
level policy action space and goal space have the same dimension. The lower primitive action a
is a 4 dimensional vector with every dimension ai ∈ [0, 1]. The first 3 dimensions provide gripper
position offsets, and the last dimension provides gripper control(0 means closed gripper and 1 means
open gripper). While training, the position of block object and goal are randomly generated(block
is always initialized on the table, and goal is always above the table at a fixed height). We select 100
randomly pick and place environments each for training, testing and validation. For selecting train,
test and validation mazes, we first randomly generate 300 distinct environments with different block
and target goal positions, and then randomly divide them into 100 train, test and validation mazes
each. Each experiment is run on 4 parallel workers. We use off-policy Soft Actor Critic (Haarnoja
et al., 2018b) algorithm for the RL objective in our experiments. We keep the regularization weight
hyperparameter as Ψ = 0.005 in our experiments, and use Adam (Kingma & Ba, 2014) optimizer
in our experiments. The hyperparameter u which is the number of training iterations after which the
replay buffer is flushed and re-populated is set as 50. The experiments are run for 6.75e6 timesteps.
The method for generating expert demonstrations is provided in Appendix A.5.

5.3.3 RESULTS

In Table 1, we report the success rate performances averaged over 3 seeds. CRISP-IRL is CRISP
with Inverse RL(IRL) regularization, and CRISP-BC is CRISP with behavior cloning(BC) regu-
larization. While training and testing, we evaluate success rates over N = 100 random episodic
rollouts. From Table 1 it is apparent that CRISP-BC and CRISP-IRL clearly outperform the base-
lines by a large margin. This provides convincing evidence that stable hierarchical learning indeed
demonstrates better performance on complex long horizon tasks.

8

Under review as a conference paper at ICLR 2023

Figure 3: The success rate plots show performance comparison between our method and baselines
in maze navigation (Column 1) and pick and place (Column 2) versus number of training epochs.
Columns 3 and 4 plots compare the methods via distance metric(average distance between achieved
goal and final goal in 100 episodic rollouts) in room maze navigation (Column 3) and pick and place
(Column 4). As can be seen, our methods show impressive performance compared to baselines.

5.4 ABLATIVE STUDIES

To elucidate the importance of various constituent design choices in our proposed approach, we show
success rate comparison plots in Figure 3 columns 1 and 2. We compare our proposed approach
with RPL to demonstrate the advantage of adaptive parsing over fixed window parsing and thus
segmenting the task into meaningful subtasks using the lower primitive, while using curriculum
of subgoals for evolving lower primitive. The comparison with Hier method shows the advantage
of curriculum based subgoal regularization using imitation learning. Finally, DAC highlights the
importance of using hierarchy and curriculum based subgoal regularization using imitation learning.
CRISP shows faster convergence and stable learning when compared to other approaches. In Figure
3 columns 3 and 4, we compare the methods in terms of distance between final achieved goal and
desired goal averaged over 100 episodic rollouts. This metric gives an idea of how accurately an
approach solves the task. CRISP clearly demonstrates better accuracy in reaching the final goal.

The number of expert demonstrations is kept to be 100 after performing ablation experiments as
shown in Figure 4 in Appendix A.3. If the number of demonstrations is less, the policy might overfit
to the demonstrations, thereby hampering overall performance, as depicted in Figure 4. Although
the number of available expert demonstrations is generally dependent on the task environment, we
increased the expert demonstrations until there was no significant performance improvement. It is
important to note that since CRISP uses PIP to select good subgoals from lower level expert dataset,
we require ”good” lower level expert demonstration trajectories. If the expert trajectory is ”bad”,
PIP is unable to select good subgoals, leading to poor performance.

We perform ablation experiments for choosing hyperparameter u, which is the number of training
iterations after which the replay buffer is flushed and re-populated. The ablation experiments are
provided in 5 in Appendix A.3. For RPL experiments, we choose the window size hyper-parameter
c by running RPL experiments for different values of c. The experiments are shown in Figure 7 in
Appendix A.3. After performing experiments in maze navigation and pick and place environments,
c is set to 4 and 8 respectively. We also performed ablation analysis for choosing the imitation
learning weight hyperparameter λ. The experiments are shown in Figure 6 in Appendix A.3.

6 DISCUSSION AND FUTURE WORK

We introduce CRISP, which is our general purpose lower level primitive informed method CRISP for
efficient hierarchical reinforcement learning. CRISP leverages primitive parsed expert demonstra-
tions and performs data relabeling on expert demonstrations to populate subgoal transition dataset
for regularizing higher level policy. CRISP employs hierarchical curriculum learning to deal with
non-stationarity. We evaluate our method on complex robotic maze navigation and pick and place
manipulation tasks, and demonstrate that it makes substantial gains over its baselines.

However, CRISP assumes the ability to reset the environment to any state from expert demonstra-
tions dataset while collecting subgoal dataset using PIP. A possible method for relaxing this assump-
tion is to combine CRISP with (Eysenbach et al., 2017) that learns a backward controller that tries
to reset the environment. This approach is an interesting avenue for future work.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline prim-
itive discovery for accelerating offline reinforcement learning, 2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel H Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In NIPS, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. CoRR,
abs/1609.05140, 2016.

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
13:2003, 2003.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pp. 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605585161. doi: 10.1145/1553374.1553380. URL https://doi.org/10.1145/
1553374.1553380.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Advances in Neural Infor-
mation Processing Systems 5, [NIPS Conference], pp. 271–278, San Francisco, CA, USA, 1993.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-274-7.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decom-
position. CoRR, cs.LG/9905014, 1999. URL https://arxiv.org/abs/cs/9905014.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imita-
tion learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf.

Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning to
reset for safe and autonomous reinforcement learning, 2017.

David Foster and Peter Dayan. Structure in the space of value functions. Machine Learning, 49
(2-3):325–346, 2002.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options,
2017.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization
perspective on imitation learning methods. In Conference on Robot Learning, pp. 1259–1277.
PMLR, 2020.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay pol-
icy learning: Solving long-horizon tasks via imitation and reinforcement learning. CoRR,
abs/1910.11956, 2019.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies
for hierarchical reinforcement learning. In International Conference on Machine Learning, pp.
1851–1860. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018b. URL http://arxiv.org/abs/1801.01290.

Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option
: Learning options with a deliberation cost. CoRR, abs/1709.04571, 2017. URL http://
arxiv.org/abs/1709.04571.

10

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://arxiv.org/abs/cs/9905014
https://proceedings.neurips.cc/paper/2019/file/c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c8d3a760ebab631565f8509d84b3b3f1-Paper.pdf
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1709.04571
http://arxiv.org/abs/1709.04571

Under review as a conference paper at ICLR 2023

Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, and Ann Nowé. Learning with
options that terminate off-policy. CoRR, abs/1711.03817, 2017. URL http://arxiv.org/
abs/1711.03817.

Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Rémi Munos, and Doina Precup. The
termination critic. CoRR, abs/1902.09996, 2019. URL http://arxiv.org/abs/1902.
09996.

Todd Hester, Matej Vecerı́k, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew
Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John P. Agapiou, Joel Z. Leibo, and Au-
drunas Gruslys. Learning from demonstrations for real world reinforcement learning. CoRR,
abs/1704.03732, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. CoRR, abs/1606.03476,
2016. URL http://arxiv.org/abs/1606.03476.

Leslie Pack Kaelbling. Learning to achieve goals. In IN PROC. OF IJCAI-93, pp. 1094–1098.
Morgan Kaufmann, 1993.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
http://arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a con-
ference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning, pp. 3418–3428. PMLR, 2019.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end
for continuous action tasks. CoRR, abs/1712.00004, 2017. URL http://arxiv.org/abs/
1712.00004.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. arXiv preprint arXiv:1809.02925, 2018.

Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg. DDCO: discovery of deep continuous
options forrobot learning from demonstrations. CoRR, abs/1710.05421, 2017a. URL http:
//arxiv.org/abs/1710.05421.

Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg. Ddco: Discovery of deep continuous
options for robot learning from demonstrations, 2017b.

Sanjay Krishnan, Animesh Garg, Richard Liaw, Brijen Thananjeyan, Lauren Miller, Florian T Poko-
rny, and Ken Goldberg. Swirl: A sequential windowed inverse reinforcement learning algorithm
for robot tasks with delayed rewards. The International Journal of Robotics Research, 38(2-
3):126–145, 2019. doi: 10.1177/0278364918784350. URL https://doi.org/10.1177/
0278364918784350.

Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Joshua B. Tenenbaum. Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. CoRR,
abs/1604.06057, 2016.

Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning. Technical report,
1998.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. CoRR, abs/1504.00702, 2015.

Andrew Levy, Robert Platt Jr., and Kate Saenko. Hierarchical actor-critic. CoRR, abs/1712.00948,
2017.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, and Zhen Wang. Multi-class generative
adversarial networks with the L2 loss function. CoRR, abs/1611.04076, 2016. URL http:
//arxiv.org/abs/1611.04076.

11

http://arxiv.org/abs/1711.03817
http://arxiv.org/abs/1711.03817
http://arxiv.org/abs/1902.09996
http://arxiv.org/abs/1902.09996
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1712.00004
http://arxiv.org/abs/1712.00004
http://arxiv.org/abs/1710.05421
http://arxiv.org/abs/1710.05421
https://doi.org/10.1177/0278364918784350
https://doi.org/10.1177/0278364918784350
http://arxiv.org/abs/1611.04076
http://arxiv.org/abs/1611.04076

Under review as a conference paper at ICLR 2023

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. CoRR, abs/1805.08296, 2018.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning? arXiv preprint arXiv:1909.10618,
2019.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. CoRR, abs/1709.10089, 2017.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In M. Jordan,
M. Kearns, and S. Solla (eds.), Advances in Neural Information Processing Systems, volume 10.
MIT Press, 1998.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning and
demonstrations. CoRR, abs/1709.10087, 2017.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1312–1320,
Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/
schaul15.html.

T. Shankar and Abhinav Gupta. Learning robot skills with temporal variational inference. In ICML,
2020.

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. TACO:
Learning task decomposition via temporal alignment for control. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 4654–4663. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/shiarlis18a.html.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.
ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.
sciencedirect.com/science/article/pii/S0004370299000521.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Matej Vecerı́k, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nico-
las Heess, Thomas Rothörl, Thomas Lampe, and Martin A. Riedmiller. Leveraging demon-
strations for deep reinforcement learning on robotics problems with sparse rewards. CoRR,
abs/1707.08817, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. CoRR,
abs/1703.01161, 2017.

Markus Wulfmeier, Abbas Abdolmaleki, Roland Hafner, Jost Tobias Springenberg, Michael Ne-
unert, Tim Hertweck, Thomas Lampe, Noah Y. Siegel, Nicolas Heess, and Martin A. Riedmiller.
Regularized hierarchical policies for compositional transfer in robotics. CoRR, abs/1906.11228,
2019. URL http://arxiv.org/abs/1906.11228.

Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas Lampe, Abbas Abdolmaleki, Tim Her-
tweck, Michael Neunert, Dhruva Tirumala, Noah Y. Siegel, Nicolas Heess, and Martin A. Ried-
miller. Data-efficient hindsight off-policy option learning. CoRR, abs/2007.15588, 2020. URL
https://arxiv.org/abs/2007.15588.

12

https://proceedings.mlr.press/v37/schaul15.html
https://proceedings.mlr.press/v37/schaul15.html
https://proceedings.mlr.press/v80/shiarlis18a.html
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
http://arxiv.org/abs/1906.11228
https://arxiv.org/abs/2007.15588

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 SUB-OPTIMALITY ANALYSIS PROOF FOR HIGHER LEVEL POLICY

The sub-optimality of upper policy πH
θH

, over c length sub-trajectories τ sampled from dπ
∗

c can be
bounded as:

|J(π∗)− J(πH
θH)| ≤ λH ∗ ϕD + λH ∗ Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

H
D (τ |s, g)||πH

θH (τ |s, g))]] (8)

where λH = 2
(1−γ)(1−γc)Rmax∥d

π∗
c

κ ∥∞

Proof. We extend the suboptimality bound from (Ajay et al., 2020) between goal conditioned poli-
cies π∗ and πH

θH
as follows:

|J(π∗)− J(πH
θH)| ≤ 2

(1− γ)(1− γc)
RmaxEs∼dπ∗

c ,g∼G[DTV (π
∗(τ |s, g)||πH

θH (τ |s, g))] (9)

By applying triangle inequality:

DTV (π
∗(τ |s, g)||πH

θH (τ |s, g)) ≤ DTV (π
∗(τ |s, g)||πH

D (τ |s, g)) +DTV (π
H
D (τ |s, g)||πH

θH (τ |s, g))
(10)

Taking expectation wrt s ∼ κ, g ∼ G and πH
D ∼ ΠH

D ,

Es∼κ,g∼G[DTV (π
∗(τ |s, g)||πH

θH (τ |s, g))] ≤ Es∼κ,πH
D∼ΠH

D ,g∼G[DTV (π
∗(τ |s, g)||πH

D (τ |s, g))]+

Es∼κ,πH
D∼ΠH

D ,g∼G[DTV (π
H
D (τ |s, g)||πH

θH (τ |s, g))]
(11)

Since π∗ is ϕD common in ΠH
D , we can write 11 as:

Es∼κ,g∼G[DTV (π
∗(τ |s, g)||πH

θH (τ |s, g))] ≤ ϕD + Es∼κ,πH
D∼ΠH

D ,g∼G[DTV (π
H
D (τ |s, g)||πH

θH (τ |s, g))]
(12)

Substituting the result from Equation 12 in Equation 9, we get

|J(π∗)− J(πH
θH)| ≤ λH ∗ ϕD + λH ∗ Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

H
D (τ |s, g)||πH

θH (τ |s, g))]] (13)

where λH = 2
(1−γ)(1−γc)Rmax∥d

π∗
c

κ ∥∞

A.2 SUB-OPTIMALITY ANALYSIS PROOF FOR LOWER LEVEL POLICY

Let the optimal lower level policy be π∗∗. The suboptimality of lower primitive πL
θL

can be bounded
as follows:

|J(π∗∗)− J(πL
θL)| ≤ λL ∗ ϕD + λL ∗ Es∼κ,πL

D∼ΠL
D,sg∼πL

θL

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]]
(14)

where λL = 2
(1−γ)2Rmax∥d

π∗∗
c

κ ∥∞

Proof. We extend the suboptimality bound from (Ajay et al., 2020) between goal conditioned poli-
cies π∗∗ and πL

θL
as follows:

|J(π∗∗)− J(πL
θL)| ≤

2

(1− γ)2
RmaxEs∼dπ∗∗

c ,sg∼πL
θL

[DTV (π
∗∗(τ |s, sg)||πL

θL(τ |s, sg))] (15)

By applying triangle inequality:

DTV (π
∗∗(τ |s, sg)||πL

θL(τ |s, sg)) ≤ DTV (π
∗∗(τ |s, sg)||πL

D(τ |s, sg)) +DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))
(16)

13

Under review as a conference paper at ICLR 2023

Taking expectation wrt s ∼ κ, sg ∼ πL
θL

and πL
D ∼ ΠL

D,

Es∼κ,sg∼πL
θL

[DTV (π
∗∗(τ |s, sg)||πL

θL(τ |s, sg))] ≤ Es∼κ,πL
D∼ΠL

D,sg∼πL
θL

[DTV (π
∗∗(τ |s, sg)||πL

D(τ |s, sg))]+

Es∼κ,πL
D∼ΠL

D,sg∼πL
θL

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]
(17)

Since π∗∗ is ϕD common in ΠL
D, we can write 17 as:

Es∼κ,sg∼πL
θL

[DTV (π
∗∗(τ |s, sg)||πL

θL(τ |s, sg))] ≤ ϕD + Es∼κ,πL
D∼ΠL

D,sg∼πL
θL

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]
(18)

Substituting the result from Equation 18 in Equation 15, we get

|J(π∗∗)− J(πL
θL)| ≤ λL ∗ ϕD + λL ∗ Es∼κ,πL

D∼ΠL
D,sg∼πL

θL

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]]
(19)

where λL = 2
(1−γ)2Rmax∥d

π∗∗
c

κ ∥∞

A.3 ABLATION EXPERIMENTS

Figure 4: Column 1(maze navigation environment) and column 2(pick and place environment) show
success rate performance plots of varying number of expert demonstrations versus number of train-
ing epochs. The number of expert demos should not be too less to cause the policy to overfit. We
increase the number demonstrations until there is no significant progress in policy performance.
Based on the experiments, we choose 100 expert demonstrations for both environments.

Figure 5: Column 1(maze navigation environment) and column 2(pick and place environment) show
success rate performance plots of CRISP for different values of hyperparameter u, plotted against
number of training epochs.

14

Under review as a conference paper at ICLR 2023

Figure 6: The success rate plots show the performance of CRISP for various values of imitation
learning weight parameter ψ versus number of training epochs. Column 1 shows experiments on
maze navigation environment and column 2 shows experiments on pick and place environment.

Figure 7: The success rate plots show the performance of RPL for various values of k window
size parameter versus number of training epochs. Column 1 shows experiments on maze navigation
environment and column 2 should experiments on pick and place environment.

A.4 GENERATING EXPERT DEMONSTRATIONS FOR MAZE NAVIGATION TASK

We use the path planning RRT Lavalle (1998) algorithm to generate optimal paths P =
(pt, pt+1, pt+2, ...pn) from the current state to the goal state. RRT has privileged information about
the obstacle position which is provided to the methods through state consisting sparse maze array.
Using these expert paths, we generate state-action expert demonstration dataset for the lower level
policy.

A.5 GENERATING EXPERT DEMONSTRATIONS FOR PICK AND PLACE TASK

In order to generate expert demonstrations, we used a human expert to perform the pick and place
task in virtual reality based Mujoco simulation. In this task, an expert first picks up the block using
robotic gripper, and then takes it to the target goal position. Using these expert trajectories, we
generate state-action expert demonstration dataset for the lower level policy.

A.6 ROBOTIC ROPE MANIPULATION ENVIRONMENT

Here we provide details about the rope manipulation environment, its implementation and results.

A.6.1 ENVIRONMENT SETUP

In the robotic rope manipulation task, a deformable rope is kept on the table and the robotic arm
performs pokes to nudge the rope towards the desired goal rope configuration. The task horizon is
fixed at 25 pokes. The deformable rope is formed from 15 constituent cylinders, held together by
joints.

15

Under review as a conference paper at ICLR 2023

Table 2: Success rates: Rope manipulation environment
Method Rope Manipulation

CRISP-IRL 0.29 ± 0.04
CRISP-BC 0.32 ± 0.056

RPL 0.18 ± 0.12
Hier 0.1 ± 0.07

A.6.2 PRETRAINING TASK FOR THE LOWER LEVEL PRIMITIVE

In this complex environment, we first pretrain the lower level primitive using simpler goal rope
configurations which can be achieved within a few pokes (the simple goal rope configurations are
chosen based on L2 distance between the initial and goal rope configurations). We specially pre-
trained the lower primitive on a simpler task in rope manipulation environment since without pre-
training, the methods failed to provide significant results. In order to ascertain fair comparisons,
we kept this pre-training requirement consistent among all the baselines in this environment. After
pre-training the lower primitive, the lower primitive is used with our method CRISP.

A.6.3 GENERATING EXPERT DEMONSTRATIONS

In complex environments, we generally do not have access to lower level expert demonstrations.
Moreover, hard coding an expert policy may generate sub-optimal expert demonstrations. In rope
environment we did not have access to lower level expert demonstrations. However, recall that
our method requires only expert state demonstrations and not expert action demonstrations. For
generating expert state demonstrations, we used an interpolation based approach, where we obtain
subgoals sgi by linearly interpolating between the starting rope configuration s and the final rope
configuration g as:

sgi =
i

N
g +

N − i
N

s, i ∈ {1, 2, . . . , N − 1} (20)

We found N = 15 to perform well empirically. After generating these interpolations, we performed
simple transformations to assure that the interpolations are valid rope configurations. Note that since
we do not have access to lower level expert action demonstrations, we do not use expert actions
demonstrations dataset to train the lower level in CRISP and other baselines.

A.6.4 IMPLEMENTATION DETAILS

The following implementation details refer to both the higher and lower level polices, unless oth-
erwise explicitly stated. The state and action spaces in the environment are continuous. The actor,
critic and discriminator networks are formulated as 3 layer fully connected neural networks with
512 neurons in each layer. The state space for the rope manipulation environment is a vector formed
by concatenation of the intermediate joint positions. The upper level predicts subgoal sg for the
lower primitive. The action space of the poke is (x, y, η), where (x, y) is the initial position of the
poke, and η is the angle describing the direction of the poke. We fix the poke length to be 0.08.
While training our hierarchical approach, we select 100 randomly generated initial and final rope
configurations each for training, testing and validation. For selecting train, test and validation con-
figurations, we first randomly generate 300 distinct configurations, and then randomly divide them
into 100 train, test and validation mazes each. Each experiment is run on 4 parallel workers. We use
off-policy Soft Actor Critic (Haarnoja et al., 2018b) algorithm for optimizing RL objective in our
experiments. We keep the regularization weight hyperparameter as λ = 0.01 in our experiments.

A.6.5 RESULTS

In Figure 8, we show the subgoals predicted by our method in at various timesteps, thereby gen-
erating a curriculum of subgoals for the higher level policy. In Table 2, we report the success
rate performance of the proposed methods and other baselines, averaged over 3 seeds. CRISP-IRL
is CRISP with Inverse RL(IRL) regularization objective, and CRISP-BC is CRISP with behavior
cloning(BC) regularization. While training and testing, we evaluate success rates over N = 100
random episodic rollouts. Since the lower level expert action demonstrations were not available,

16

Under review as a conference paper at ICLR 2023

Figure 8: This figure depicts CRISP subgoals progress vs training epochs elapsed in rope manip-
ulation environment. The higher level policy generates a curriculum of subgoals for lower primi-
tive(walls:yellow, final goal:red, subgoals:blue)

Figure 9: The success rate plots show performance comparison between our method and baselines
in rope manipulation environment (Column 1) versus number of training epochs. Columns 2 plot
compare the methods via distance metric(average distance between achieved goal and final goal
configuration in 100 episodic rollouts). As can be seen, our methods show impressive performance
compared to baselines.

we do not compute the DAC baseline. From Table 2 it is apparent that CRISP-BC and CRISP-IRL
clearly outperform the baselines by a large margin. This provides convincing evidence that stable
hierarchical learning indeed demonstrate better performance on complex long horizon tasks. The
success rate comparison plots are provided in Figure 9

17

	Introduction
	Background
	Methodology
	Primitive Informed Parsing: PIP
	Suboptimality analysis
	Hierarchical curriculum learning
	Imitation learning regularization for higher-level policy
	Policy optimization

	Related Work
	Experiments
	Comparative analysis
	Robotic Maze Navigation Environment
	Environment Setup
	Implementation details
	Results

	Robotic Pick and Place Environment
	Environment Setup
	Implementation details
	Results

	Ablative studies

	Discussion and future work
	Appendix
	Sub-optimality analysis proof for higher level policy
	Sub-optimality analysis proof for lower level policy
	Ablation experiments
	Generating expert demonstrations for maze navigation task
	Generating expert demonstrations for pick and place task
	Robotic Rope Manipulation Environment
	Environment Setup
	Pretraining task for the lower level primitive
	Generating expert demonstrations
	Implementation details
	Results

