
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EEGTRANS: TRANSFORMER-DRIVEN GENERATIVE
MODELS FOR EEG SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in Large Language Models (LLMs) have been significant,
largely due to improvements in network architecture, particularly the transformer
model. With access to large training datasets, LLMs can train in an unsupervised
manner and still achieve impressive results in generating coherent output. This
study introduces a transformer-based generative model, EEGTrans, designed for
sequentially generating synthetic electroencephalogram (EEG) signals. Given the
inherent noise in EEG data, we employ a quantized autoencoder that compresses
these signals into discrete codes, effectively capturing their temporal features and
enabling generalization across diverse datasets. The encoder of EEGTrans pro-
cesses EEG signals as input, while its decoder autoregressively generates discrete
codes. We evaluate our method in a motor imagery Brain-Computer Interface
(BCI) application, where merging data across datasets is particularly challeng-
ing due to experimental differences. Our results demonstrate that the synthetic
EEG data effectively captures temporal patterns while maintaining the complex-
ity and power spectrum of the original signals. Moreover, classification results
show that incorporating synthetic data improves performance and even surpasses
that of models based on Generative Adversarial Networks (GANs). These findings
highlight the potential of transformer-based generative models to generalize effec-
tively across multiple datasets and produce high-quality synthetic EEG signals.
The source code is available at https://anonymous.4open.science/r/EEGTrans-
Transformer-Driven-Generative-Models-for-EEG-Synthesis-0FD9/.

1 INTRODUCTION

Large language models (LLMs) have been extensively utilized across various scenarios due to their
powerful model characteristic: the generative models. These models are not restricted to producing
specific forms of output; instead, they can generate output in any form. The progress of LLMs is
largely attributed to the implementation of the attention mechanism (Vaswani et al., 2017). This
mechanism enables the processing of long-range dependency inputs and can be adapted to numer-
ous domains, such as text-to-image generation (Ramesh et al., 2021) and speech-to-text generation
(Radford et al., 2023). Recent studies demonstrate that transformer models can generate activations
resembling those observed in the human brain (Schrimpf et al., 2021; Caucheteux & King, 2022).
Additionally, models that perform well in predicting the next word in a sequence also show profi-
ciency in predicting brain measurements. This computational evidence highlights the crucial role
of predictive processing in shaping the brain’s comprehension of language. This leads to a new
question: Can transformer architecture effectively generate brain signals?

The most common generative models used in Electroencephalography (EEG) research are Gener-
ative Adversarial Networks (GANs) (Goodfellow et al., 2014). Researchers have extensively ex-
plored the application of GANs to various EEG fields, including motor imagery (Hartmann et al.,
2018; Xu et al., 2021; Fahimi et al., 2020), emotion recognition (Luo & Lu, 2018; Luo et al., 2020),
epileptic seizure detection (Wei et al., 2019; Rasheed et al., 2021), etc. Many of these applications
aimed to address the data scarcity problem by generating synthetic EEG data, often incorporating
both Conditional Generative Adversarial Networks (CGAN) (Mirza & Osindero, 2014) and Wasser-
stein Generative Adversarial Networks (WGAN) (Arjovsky et al., 2017). However, GAN models
encounter a limitation when applied to EEG, as they lack inherent temporal generation processes
(Bird et al., 2021). The generated output adheres to a fixed format and cannot extend indefinitely

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to accommodate varying sequence lengths. This limitation might pose challenges for EEG applica-
tions where the duration of signal generation is ambiguous. Moreover, in the generation process, the
signal output in each timestep lacks influence on the subsequent one, whereas EEG possesses a high
temporal resolution characteristic.

Brain-computer interfaces (BCIs) enable direct communication between humans and machines.
EEG is a common method in BCI due to its mobility and millisecond-range temporal resolution.
With the decreasing data collection costs over recent decades, the effort to collect more data has be-
come more accessible (Wolpaw et al., 2002). While more public datasets are being made available,
recent research has primarily focused on advancing sophisticated models to enhance BCI perfor-
mance. The emergence of the transformer architecture (Vaswani et al., 2017), successfully applied
in both computer vision (CV) and natural language processing (NLP) with models like the Vision
Transformer (ViT) (Dosovitskiy et al., 2020) and Generative Pre-trained Transformer (GPT) (Brown
et al., 2020), has led to its adoption in EEG as well (Song et al., 2022).

The scalability of these transformers is widely recognized, as they tend to perform better with larger
datasets (Kaplan et al., 2020; Henighan et al., 2020; Zhai et al., 2022). However, unlike in CV and
NLP, where data from various sources can be combined to create a larger dataset, this approach is
not feasible in EEG research. This is mainly due to significant variations among data from different
subjects within the same dataset (Morioka et al., 2015; Jayaram et al., 2016), as human brains differ
from each other (Gu & Kanai, 2014), resulting in differences in recorded brain activity. Moreover,
the inter-variation between datasets is much greater than the intra-variation within datasets. Each
BCI field employs distinct experimental designs, and even within the same field, each dataset has
unique experimental settings. Challenges arise when attempting to merge datasets due to differences
in experimental tasks, setups, and even the equipment used. The key strength of the transformer ar-
chitecture lies in its attention mechanism, which can effectively learn representations across various
domains. An interesting idea arises from this concept: Can a generative model be developed that
can be applied across multiple EEG datasets exploiting the transformer’s capabilities?

In this paper, we introduce EEGTrans, a novel framework designed to train generative models using
data from multiple sources, capable of generating high-quality synthetic EEG data from unseen
datasets. When we refer to ”unseen”, we are exploring the potential of applying knowledge acquired
from a previously seen dataset (source dataset) to generate synthetic data for a new dataset (target
dataset). Our EEGTrans employs a quantized autoencoder to compress EEG data into discrete codes.
This process imposes a more stringent penalty on the generative models, discouraging the learning
of trivial solutions. We conducted experiments using two publicly available motor imagery datasets.
The quality of synthetic data can be evaluated through visualization and measuring the differences
between real and synthetic data. At the same time, the model’s performance will be assessed based
on the downstream classification task. The contributions of this work can be summarized as:

1. This paper introduces a novel framework that employs a transformer-based generative
model trained on multiple datasets in motor imagery EEG. To the best of our knowledge,
this is the first research effort to take such an approach.

2. We demonstrate that, without explicit training on the new dataset, EEGTrans can generate
synthetic signals that closely resemble real data, suggesting that transformers can capture
the EEG characteristics present in motor imagery datasets.

3. We introduce a new loss design that utilizes the synthetic data generated by EEGTrans to
enhance downstream BCI classification performance.

2 RELATED WORKS

2.1 GENERATIVE MODELS FOR BIOLOGICAL SIGNALS

GAN Numerous studies have explored the utilization of GANs for generating synthetic EEG data
related to motor imagery. Hartmann et al. (2018) explored the feasibility of using Convolutional
Neural Network (CNN) to train a GAN progressively for generating synthetic EEG data. By modi-
fying the improved WGAN training, they could train a GAN in a stable manner to generate synthetic
signals closely resembling real EEG signals from a single channel and a single subject, both in the
time and frequency domains. Roy et al. (2020) utilized Bidirectional Long Short-Term Memory

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(Bi-LSTM) to build GANs for generating synthetic EEG data from a single channel. However,
the methods mentioned above did not provide information on the classification performance after
generating synthetic data.

Given the limited amount of data available from stroke patients compared to that from normal pa-
tients, Xu et al. (2021) utilized Cycle-consistent Adversarial Networks (CycleGAN) (Zhu et al.,
2017) to generate motor-imagery EEG data of stroke patients from normal patients, thereby enhanc-
ing the classification performance. Xie et al. (2021) combined Long Short-Term Memory Genera-
tive Adversarial Networks (LGANs), Multi-output Convolutional Neural Network (MoCNN), and
an attention network to enhance motor imagery classification performance. Classifiers and GANs
for EEG signals need subject-specific training due to inter-subject variation, though the referenced
studies above did not explicitly mention this. Fahimi et al. (2020) proposed a novel approach based
on the Conditional Deep Convolutional Generative Adversarial Networks (DCGANs) to generate
subject-specific artificial EEG by training on subject-independent data. This is accomplished by ap-
pending a subject-specific feature vector to both the generator and discriminator during the training
process.

Transformer GPT-2 models were utilized to produce synthetic biological signals (electromyog-
raphy and EEG) (Bird et al., 2021). However, the process of preparing these biological signals for
interpretation by GPT was not elaborated upon. They utilized pre-trained weights on GPT, yet GPT
is pre-trained on NLP, where inputs consist of tokens, which is notably different from processing
continuous EEG signals. Moreover, for n classes of data, n GPT-2 models are trained, making the
process time-consuming, especially when integrating new classes or datasets, as it requires addi-
tional time. Niu et al. (2021) built upon the previous research by utilizing GPT-2 models to generate
EEG signals, aiming to improve the prediction of epileptic seizures.

A similar work that uses transformers to learn generic representations across multiple EEG datasets
is LaBraM (Jiang et al., 2024). However, LaBraM primarily focuses on learning representations and
improving downstream classification tasks. In contrast, our study mainly investigates the generative
properties of the transformer architecture, exploring whether motor imagery datasets share under-
lying features, and whether transformers have the capability to generate synthetic EEG signals that
capture these features.

Currently, there are no methods that attempt to train a generative model using multiple source EEG
datasets.

2.2 VECTOR QUANTIZATION

Vector quantization serves as a method to compress inputs into discrete codes while simultaneously
ensuring the essential fidelity of the data is preserved (Gray, 1984). Recently, vector quantization
has gained widespread usage in deep learning following the introduction of Vector Quantized Varia-
tional AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017). For example, SoundStream (Zeghidour
et al., 2021) and EnCodec (Défossez et al., 2022) both use a residual vector quantizer (RVQ) (Juang
& Gray, 1982) to quantize the output of the encoder. Following previous works, DeWave (Duan
et al., 2023) utilized VQ-VAE to encode EEG signals into discrete codes. They suggested that en-
coding EEG signals according to their proximity to the nearest neighbor in the codex book could
decrease variations among different subjects, thus improving generalization across subjects. Draw-
ing inspiration from DeWave, we integrate the residual vector quantizer into our research and design
a novel architecture to leverage its capabilities, aiming to attain generalization across datasets.

3 METHOD

3.1 TASK DEFINITION

When working with multiple distinct datasets, we classify them into two categories: source and tar-
get datasets. Generative models are first trained on the source datasets to learn EEG characteristics,
including the temporal and frequency information of various motor imagery classes. We then adapt
these pre-trained models to generate synthetic EEG data for the target datasets.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

RVQ

Encoder DecoderTraining

Input
sequence

Reconstructed
Sequence

Inference

RVQ 25 128 ... 996 457
25 128 ... 996 45725 128 ... 996 45725 128 ... 996 457

Input
sequence

Discrete
codes

Figure 1: The architecture of the RVQ autoencoder model involves several stages (Section 3.2).
In training, the autoencoder receives a single-channel EEG sequence and produces a reconstructed
sequence, utilizing reconstruction loss to train the encoder, RVQ, and decoder. Later, the pre-trained
encoder and RVQ are employed in generating discrete codes during inference.

3.2 RVQ

With EEG sequences X ∈ RC×T , where C represents the channels and T signifies the times-
tamps, we utilize an RVQ to transform the continuous signals into discrete codes. An autoencoder
is constructed for this process, comprising three modules: encoder, RVQ, and decoder, illustrated in
Figure 1. Since the number of channels can differ among datasets, this procedure handles channels
individually, one at a time. Initially, the encoder transforms a single-channel EEG sequence x ∈ RT

into embeddings ze(x). Subsequently, these embeddings are substituted with the latent variables e
corresponding to one of the codebooks in the RVQ. This is accomplished by calculating the distance
between the embeddings and the latent variables and then substituting them with the latent vari-
ables that have the closest distance. Finally, the quantized embeddings are fed through the decoder
to obtain the reconstructed sequence xr. The autoencoder is trained using the reconstruction loss
to minimize the distance between the input sequence and its reconstructed sequence, as well as to
align their mean and standard deviation. Additionally, the codebooks are trained by minimizing the
distance between the ℓ2-normalized latent variables and the embeddings as shown in Equation 1:

LR = ||x− xr||22 + ||µ(x)− µ(xr)||22 + ||σ(x)− σ(xr)||22,

LV Q = ||sg[ze(x)]− e||22 + β||ze(x)− sg[e]||22,
(1)

where the sg denotes the stop gradients. The encoder and RVQ are subsequently utilized to produce
discrete code sequences for each EEG sequence, which will be employed in training the generative
models.

3.3 EEGTRANS

We adopted the original dense transformer architecture (Vaswani et al., 2017) as our transformer-
based generative model. Using this encoder-decoder architecture, we train an autoregressive model
that takes EEG sequences as input and generates corresponding discrete codes. A similar setup
can be found in Whisper (Radford et al., 2023), which was originally designed for speech-to-text
translation. The input (continuous) and output (discrete) formats in Whisper align with ours. How-
ever, while spectrograms are commonly used as input in speech processing, this approach is less
common in the EEG domain. For example, models like EEG Conformer (Song et al., 2022) and
LaBram (Jiang et al., 2024) directly employ EEG signals. Therefore, we followed this approach and
excluded spectrogram components from EEGTrans.

The architecture of the proposed EEGTrans utilized in this study is depicted in Figure 2. During
the training process, EEGTrans is trained using the next code prediction task. Here, the decoder is
tasked with predicting the code Yt+1 corresponding to the next timestamp, based on the EEG inputs
x and the codes Y≤t received up to the current timestamp. Once discrete codes are generated, we
employ the decoder from the pre-trained RVQ autoencoder to get the signals x̂ back. To obtain
synthetic data that more closely represents the original data, we further fine-tune the pre-trained
RVQ decoder. This fine-tuning occurs during EEGTrans training, where we continue to train the
decoder alongside EEGTrans, all while keeping the encoder and codebooks frozen. The training

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

+~
Sinusoidal
positional
encoding

...

Cross attention

EEG signal

Discrete codes

Y1 Y2 Y3 Y4 ...

SOC Y1 Y2 Y3 ...

+
Learned
positional
encoding

Code embedding

Encoder block

Encoder block

...

Encoder block

Decoder block

Decoder block

...

Decoder block

RVQ decoder

Generated
EEG signal

Next code prediction

Figure 2: EEGTrans model architecture. EEGTrans takes EEG signals as inputs and generates
discrete codes, the outputs of RVQ, in an autoregressive manner. This model is trained using the
next code prediction task during the training phase. Once all the discrete codes are generated, the
RVQ decoder is used to reconstruct the synthetic data.

Table 1: Datasets overview

Dataset No. of
participants

Sampling
rate (Hz)

No. of
channels

Duration of
each trial (s)

No. of
classes

BCI Competition II Dataset III 1 128 3 9 2
BCI Competition IV Dataset 2b 9 250 3 7 2
BCI Competition IV Dataset 1 7 1000 59 6 2
BCI Competition IV Dataset 2a 9 250 22 6 4

High Gamma Dataset 14 500 128 4 3

loss for both models is defined in Equation 2:

LEEGTrans = −
τ−1∑
t=0

log(p(Yt+1|x, Y≤t)),

LRVQ decoder = ||x− x̂||22,

(2)

where τ represents timestamps within discrete token space, which may vary from timestamps T
based on the RVQ encoder design. Additionally, t0 is a unique token SOC added to denote the start
of the code. We compared our proposed method to CycleGAN, a generative model that translates an
input from a source domain to a target domain. The model architecture details can be found in the
Appendix A.

4 EXPERIMENTS

4.1 DATASET

Three source datasets are utilized to train both RVQ autoencoder and the generative models, while
two additional target datasets used to evaluate the models’ performance and synthetic data qual-
ity. The datasets are outlined as follows: the source datasets include BCI Competition II Dataset
III (Blankertz et al., 2004), BCI Competition IV Dataset 2b (Tangermann et al., 2012), and BCI
Competition IV Dataset 1 (Tangermann et al., 2012); whereas the target datasets encompass BCI
Competition IV Dataset 2a (Tangermann et al., 2012) and the High Gamma Dataset (Schirrmeister
et al., 2017). Table 1 provides an overview of these datasets. Please refer to Appendix B.1 for a
more detailed description.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 DATA PREPROCESSING

As multiple datasets are utilized, it is essential to standardize them into a common format to facilitate
model interpretation. For instance, various datasets may have different sampling rates, meaning
that a fixed number of timestamps may represent varying durations across datasets. Consequently,
preprocessing the data is crucial to enable model training across datasets. The first step is epoching:
segmenting the complete EEG sequence of each dataset into epochs using event markers, preserving
only the data occurring from the onset of the event to 2 seconds after the event onset. Subsequently,
the data is resampled to 128 Hz, the lowest sampling rate among the five datasets used, using a fast
Fourier transform. As the motor imagery field is chosen for validating the proposed method, only
channels relevant to motor imagery are selected (refer to Appendix B.2 for more details). Finally,
the signals within each epoch are normalized to zero mean and one standard deviation along the
timestamp dimension. These processed data are then ready for training the generative models.

4.3 IMPLEMENTATION DETAILS

The RVQ autoencoder is built exclusively with a 1D convolutional layer (Conv1D) for the encoder,
while both Conv1D and transpose Conv1D are employed for the decoder. The RVQ autoencoder
is trained using the AdamW optimizer, with a learning rate of 1e-3 and a weight decay of 1e-4 for
1000 epochs. Please refer to Appendix C for further information on the configuration of the RVQ
autoencoder.

The EEGTrans model architecture comprises an encoder and a decoder. The input embedding layer
of the EEGTrans model consists of 6 Conv2D layers. The encoder block consists of 4 layers with an
embedding size of 256 and 4 attention heads. The decoder block mirrors the settings of the encoder
block, except for the input embedding layer, which is a simple lookup table storing embeddings of
a fixed dictionary size. The output then passes through a multilayer perceptron (MLP) that maps
the embeddings to discrete tokens. EEGTrans is trained using the AdamW optimizer with a cosine
learning rate scheduler and a weight decay of 1e-3. The initial learning rate is set at 1e-6, with a
warmup epoch of 20 and a maximum learning rate of 1e-3. Following 1000 epochs, the learning rate
gradually decays to 1e-5. The RVQ decoder is trained with the AdamW optimizer with a constant
learning rate 1e-3 and a weight decay of 1e-3.

The training of all models takes place on a single RTX 4090 GPU. Training for each epoch occurs
sequentially, following the order: BCI Competition II Dataset III, BCI Competition IV Dataset 2b,
and BCI Competition IV Dataset 1. Please refer to Appendix C for a more detailed description of
the configurations for cycleGAN.

4.4 EVALUATION METRICS

We evaluate performance by visually inspecting the synthetic data and measuring differences be-
tween the real and synthetic datasets, including variations in the frequency domain and sample
entropy. Furthermore, we utilize the synthetic data to train a classifier and assess whether it pro-
vides any advantages for downstream classification tasks. For EEGTrans, synthetic data is created
by feeding real data into the encoder, which then prompts the decoder to iteratively generate the next
timestamp code starting from the SOC token. Then, the fine-tuned RVQ decoder is utilized to con-
vert the discrete codes back into signals. CycleGAN employs generator G to convert EEG signals
directly into discrete codes, followed by the use of the RVQ decoder to reconstruct the signal.

4.5 DATA VISUALIZATION

We utilize EEGTrans to generate synthetic data for the BCI Competition IV Dataset 2a. In Figure
3, we provide a detailed comparison of the synthetic data produced by EEGTrans, presenting the
real data alongside the corresponding synthetic data for Subject 1. We focus on three channels
commonly used in motor imagery experiments, and two epochs are shown to allow us to confirm
the robust performance of EEGTrans across different channels and multiple epochs. Additionally,
we present the evoked data (averaged epoch data), further demonstrating EEGTrans’s effectiveness
for Subject 1. The visual comparison reveals a remarkable similarity between the synthetic and real
data, highlighting EEGTrans’s ability to generate high-quality synthetic data that closely matches
the real data, with negligible visual differences in both the time and frequency domains.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Data visualization. We visually inspect synthetic data generated by EEGTrans for Subject
1 in BCI Competition IV Dataset 2a. Both the real and synthetic data for the first two samples are
displayed, revealing minimal differences between them. Furthermore, we illustrate the average of
all epochs from Subject 1 in both the time and frequency domains.

Table 2: Spectral entropy and sample entropy comparison. Spectral entropy and sample entropy are
used to assess the characteristics of a time series. The method that produces a value closest to the
ground truth is considered the best in this case.

Entropy Method
Subject

1 2 3 4 5 6 7 8 9

Spectral

Ground truth 4.70 5.33 5.46 4.79 4.61 4.65 4.61 5.29 4.45
EEGTrans 4.61 5.16 5.25 4.70 4.67 4.59 4.56 5.16 4.46
CycleGAN 4.08 4.44 4.46 4.20 4.10 4.21 4.16 4.55 4.36

Sample

Ground truth 1.55 1.79 1.89 1.54 1.67 1.42 1.42 1.76 1.23
EEGTrans 1.50 1.69 1.78 1.48 1.59 1.39 1.39 1.68 1.27
CycleGAN 0.96 1.06 1.08 0.98 0.94 0.95 0.95 1.09 0.97

However, it should be noted that high-frequency signals are not fully retained during synthetic data
generation. Nevertheless, it is important to highlight that the most common frequency bands utilized
in motor imagery decoding, namely the alpha (8-13 Hz) and beta (14-30 Hz) bands, are generally
well-preserved. We also visualize the synthetic data generated by CycleGAN in Figure 4. While
CycleGAN can produce synthetic data that exhibit trends somewhat similar to the real data, there
are significant differences in magnitude. Additionally, the frequency distribution diverges from the
original, displaying lower power across nearly all frequency bands. Visual inspection indicates that
EEGTrans produces higher-quality synthetic data compared to CycleGAN. It is evident from the
visual comparison that EEGTrans’s generated data is significantly superior.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Visualization of synthetic data generated by CycleGAN for Subject 1 in the BCI Compe-
tition IV Dataset 2a.

4.6 TIME SERIES COMPLEXITY ANALYSIS

Besides visual inspection, we also calculate spectral entropy and sample entropy to verify synthetic
data quality. Spectral entropy measures signal complexity or randomness in the frequency domain,
derived from Shannon entropy applied to the power spectral density. Lower spectral entropy indi-
cates power concentration at specific frequencies. Sample entropy quantifies the complexity and
irregularity of time-series data, assessing the likelihood that similar patterns persist over time. Low
sample entropy suggests the time series is more regular and predictable.

Spectral entropy and sample entropy are calculated for each time series. We report the values for
each subject by averaging across all samples and all channels. As shown in Table 2, only EEGTrans
closely matches the ground truth (real data) with minor differences, retaining high sample entropy
and thus indicating high complexity and variation. However, it does not retain high-frequency com-
ponents, which is evident in the spectral entropy. The synthetic data from CycleGAN loses power
in important frequency bands for motor imagery and shows huge amplitude differences from the
ground truth in the time domain. This might explain its low sample entropy, suggesting the syn-
thetic data is not sufficiently representative.

4.7 BCI CLASSIFICATION TASK

To further validate the data quality, we utilize EEGNet (Lawhern et al., 2018), a widely used clas-
sification model in the EEG domain. This model has demonstrated its effectiveness in conducting
classification tasks across various EEG applications and has emerged as a standard benchmark for
comparison. In short, EEGNet is trained to perform a multi-class classification task separately on
each target dataset. For detailed information about EEGNet, please refer to Appendix D.

In BCI Competition IV Dataset 2a, there are four classes for classification: left hand, right hand,
both feet, and tongue. While generative models are trained without explicit labels, it is crucial to
recognize that certain classes, like ”tongue,” may not have been present in the source datasets during

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Classification performance on BCI competition IV Dataset 2a (Section 4.7). R: real data; S:
synthetic data; RS: combination of real and synthetic data; Aux: combination of real and synthetic
data with auxiliary loss; *: p < 0.05.

EEGTrans (%) CycleGAN (%)

Subject R S RS Aux * S RS Aux

1 84.72
±2.92

85.59
±3.64

87.33
±4.74

86.98
±4.62

51.57
±5.23

77.77
±2.12

85.94
±3.46

2 73.77
±5.02

64.59
±3.13

72.38
±3.24

73.78
±2.95

52.07
±4.87

64.92
±2.42

71.53
±3.13

3 91.67
±3.84

87.14
±4.32

89.75
±3.08

93.23
±2.75

62.49
±5.09

90.44
±0.79

92.70
±2.66

4 80.20
±2.01

74.82
±3.35

79.51
±4.14

82.46
±3.42

59.38
±4.65

77.26
±3.94

80.38
±4.44

5 79.86
±4.40

81.77
±2.71

84.02
±2.80

82.46
±2.95

73.61
±4.03

80.55
±2.47

82.46
±3.20

6 74.12
±4.96

74.99
±4.38

77.42
±1.13

76.90
±2.76

61.80
±3.39

69.78
±2.21

75.34
±2.12

7 88.03
±5.62

83.86
±3.27

85.95
±4.84

87.32
±5.31

68.58
±3.19

80.90
±2.70

82.47
±3.17

8 85.07
±2.50

81.76
±1.85

86.28
±1.63

84.02
±2.60

51.92
±5.47

82.13
±3.98

85.59
±2.34

9 90.27
±2.08

91.67
±1.14

90.79
±2.03

92.54
±2.52

65.79
±4.63

91.31
±1.35

90.45
±3.70

Mean 83.08
±6.17

80.69
±7.64

83.71
±5.74

84.41
±6.11

60.80
±7.42

79.45
±8.06

82.98
±6.34

training. Table 3 shows the classification accuracy achieved through various approaches: using
only real data, only synthetic data, combining real and synthetic data, and incorporating real data
with synthetic data along with auxiliary loss. For a comprehensive analysis, we employ five-fold
cross-validation instead of the original train-test split used in the competition. We then report each
subject’s mean and standard deviation of classification accuracy. We conduct comparisons between
EEGTrans and CycleGAN across all these scenarios.

We designate ”using only real data” as the benchmark. In the case of ”using only synthetic data,”
synthetic data corresponding to the training index in that fold is utilized as training data, aligning
with the benchmark. This approach ensures that no synthetic data corresponding to the testing index
is used for training. For the ”combining real and synthetic data” case, both real data and synthetic
data of the training index are used in training, effectively doubling the number of training data
compared to the benchmark. Lastly, it is important to note that instead of simply adding synthetic
data as training data, we introduce a regularization term or sample weight to the loss function, which
benefits the training process. This modified loss function is listed in Equation 3:

Lcce(a,b) = −
K∑
j

aj log(bj),

Lcce aux(y,p, t) = −
K∑
i

(yi log(pi)× (Lcce(sg[p], t) + Lcce(sg[t],p))),

(3)

where p and t represent the output probability vectors of K classes for real and synthetic data,
respectively. Additionally, y denotes the ground truth class probability vector for that sample.

An intuitive understanding of this auxiliary loss is that high-quality synthetic data generated by
EEGTrans primarily captures the key characteristics of EEG signals. The BCI Competition IV

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation on EEGTrans model architecture.

Subject EEGTrans (%) EEGTrans w/o encoder (%) EEGTrans w/o RVQ autoencoder (%)

Mean 80.69±7.64 53.54±6.86 26.19±1.03

Dataset 2a was collected some time ago. Unlike the High Gamma Dataset, the experiment may have
been conducted without active electromagnetic shielding, leading to significant noise in the data.
By having EEGTrans generate synthetic data, we expect this data to primarily reflect EEG signal
characteristics, which can serve as a reference to assist the classifier in decision-making. However,
since EEGTrans is not trained on the target dataset, the synthetic data likely does not retain subject-
specific information, as it has not been exposed to these subjects before. As a result, the performance
of models using only synthetic data will inevitably be lower than that of models using only real data.
Nonetheless, based on the visual inspection mentioned earlier, it is clear that real and synthetic data
closely resemble each other. Therefore, the classifier should yield very similar output probability
vectors for these two types of samples. By penalizing the classifier more for significant differences
in probability vectors between real and synthetic data, we encourage the model to better align its
predictions with the characteristics present in both types of data. A paired t-test with a significance
level of p < 0.05 was conducted to determine if the performance of the proposed method was
significantly better than that of the benchmark. Only EEGTrans showed a significant improvement
over the benchmark when the auxiliary loss was applied. Additionally, we performed paired t-
tests comparing EEGTrans and CycleGAN using only synthetic data, with EEGTrans significantly
outperforming CycleGAN. The results of the High Gamma Dataset can be found in Appendix D.

4.8 ABLATION STUDY

We conducted an ablation study on EEGTrans’s architecture to assess the encoder-decoder design’s
impact. Firstly, we removed the encoder, leaving the decoder to generate tokens with the aid of initial
ground truth tokens (i.e., 25%) during inference. Secondly, we excluded the RVQ autoencoder,
resulting in direct EEG sequence generation by the decoder, trained using mean squared error loss.
This adjustment required introducing a zero vector as the substitute for the SOC token during both
training and inference phases. Please refer to Appendix E for more details.

The classification results of the ablation study using only synthetic data for training are shown in
Table 4. Here, we only present the average classification accuracy across nine subjects. Further
details, including individual subject accuracy and data visualization, are available in Appendix E. As
shown in Table 4, removing either the encoder or the discrete codes from the proposed framework
significantly hinders the model’s training effectiveness. In fact, data visualization indicates that
without these components, the generated data shows no variation across different channels within the
same data or even among different data. If inference starts from the SOC token instead of using 25%
ground truth tokens, classification performance is similar to the version without tokens, suggesting
that accuracy beyond random guessing is due to the 25% ground truth tokens. During training,
EEGTrans without tokens converges with a mean squared error loss of around 1e-6. However, during
inference, providing only a zero vector for autoregressive data generation leads to poor performance,
indicating that the model ends up learning a trivial solution without tokens.

5 CONCLUSION

This paper presents EEGTrans, a framework designed to generate synthetic data for various datasets.
By leveraging a transformer-based encoder-decoder architecture and integrating discrete codes into
the training process, our model can generalize across multiple datasets. This method produces high-
quality synthetic data that enhances downstream classification tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Jordan J Bird, Michael Pritchard, Antonio Fratini, Anikó Ekárt, and Diego R Faria. Synthetic
biological signals machine-generated by gpt-2 improve the classification of eeg and emg through
data augmentation. IEEE Robotics and Automation Letters, 6(2):3498–3504, 2021.

Benjamin Blankertz, K-R Muller, Gabriel Curio, Theresa M Vaughan, Gerwin Schalk, Jonathan R
Wolpaw, Alois Schlogl, Christa Neuper, Gert Pfurtscheller, Thilo Hinterberger, et al. The bci
competition 2003: progress and perspectives in detection and discrimination of eeg single trials.
IEEE transactions on biomedical engineering, 51(6):1044–1051, 2004.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Charlotte Caucheteux and Jean-Rémi King. Brains and algorithms partially converge in natural
language processing. Communications biology, 5(1):134, 2022.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. arXiv preprint arXiv:2210.13438, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yiqun Duan, Charles Zhou, Zhen Wang, Yu-Kai Wang, and Chin-teng Lin. Dewave: Discrete encod-
ing of eeg waves for eeg to text translation. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Fatemeh Fahimi, Strahinja Dosen, Kai Keng Ang, Natalie Mrachacz-Kersting, and Cuntai Guan.
Generative adversarial networks-based data augmentation for brain–computer interface. IEEE
transactions on neural networks and learning systems, 32(9):4039–4051, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Robert Gray. Vector quantization. IEEE Assp Magazine, 1(2):4–29, 1984.

Jenny Gu and Ryota Kanai. What contributes to individual differences in brain structure? Frontiers
in human neuroscience, 8:262, 2014.

Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. Eeg-gan: Generative adversarial
networks for electroencephalograhic (eeg) brain signals. arXiv preprint arXiv:1806.01875, 2018.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Vinay Jayaram, Morteza Alamgir, Yasemin Altun, Bernhard Scholkopf, and Moritz Grosse-
Wentrup. Transfer learning in brain-computer interfaces. IEEE Computational Intelligence Mag-
azine, 11(1):20–31, 2016.

Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic repre-
sentations with tremendous eeg data in bci. arXiv preprint arXiv:2405.18765, 2024.

Biing-Hwang Juang and A Gray. Multiple stage vector quantization for speech coding. In
ICASSP’82. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol-
ume 7, pp. 597–600. IEEE, 1982.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
Brent J Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer
interfaces. Journal of neural engineering, 15(5):056013, 2018.

Yun Luo and Bao-Liang Lu. Eeg data augmentation for emotion recognition using a conditional
wasserstein gan. In 2018 40th annual international conference of the IEEE engineering in
medicine and biology society (EMBC), pp. 2535–2538. IEEE, 2018.

Yun Luo, Li-Zhen Zhu, Zi-Yu Wan, and Bao-Liang Lu. Data augmentation for enhancing eeg-based
emotion recognition with deep generative models. Journal of Neural Engineering, 17(5):056021,
2020.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Hiroshi Morioka, Atsunori Kanemura, Jun-ichiro Hirayama, Manabu Shikauchi, Takeshi Ogawa,
Shigeyuki Ikeda, Motoaki Kawanabe, and Shin Ishii. Learning a common dictionary for subject-
transfer decoding with resting calibration. NeuroImage, 111:167–178, 2015.

Rui Niu, Yagang Wang, Haole Xi, Yulong Hao, and Mei Zhang. Epileptic seizure prediction by
synthesizing eeg signals through gpt. In Proceedings of the 2021 4th International Conference on
Artificial Intelligence and Pattern Recognition, pp. 419–423, 2021.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on Ma-
chine Learning, pp. 28492–28518. PMLR, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Khansa Rasheed, Junaid Qadir, Terence J O’Brien, Levin Kuhlmann, and Adeel Razi. A genera-
tive model to synthesize eeg data for epileptic seizure prediction. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 29:2322–2332, 2021.

Sujit Roy, Shirin Dora, Karl McCreadie, and Girijesh Prasad. Mieeg-gan: generating artificial
motor imagery electroencephalography signals. In 2020 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2020.

Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin
Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and
Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualiza-
tion. Human Brain Mapping, aug 2017. ISSN 1097-0193. doi: 10.1002/hbm.23730. URL
http://dx.doi.org/10.1002/hbm.23730.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kan-
wisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: In-
tegrative modeling converges on predictive processing. Proceedings of the National Academy of
Sciences, 118(45):e2105646118, 2021.

Yonghao Song, Qingqing Zheng, Bingchuan Liu, and Xiaorong Gao. Eeg conformer: Convolu-
tional transformer for eeg decoding and visualization. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 31:710–719, 2022.

Michael Tangermann, Klaus-Robert Müller, Ad Aertsen, Niels Birbaumer, Christoph Braun,
Clemens Brunner, Robert Leeb, Carsten Mehring, Kai J Miller, Gernot R Müller-Putz, et al.
Review of the bci competition iv. Frontiers in neuroscience, 6:55, 2012.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

12

http://dx.doi.org/10.1002/hbm.23730

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zuochen Wei, Junzhong Zou, Jian Zhang, and Jianqiang Xu. Automatic epileptic eeg detection using
convolutional neural network with improvements in time-domain. Biomedical Signal Processing
and Control, 53:101551, 2019.

Jonathan R Wolpaw, Niels Birbaumer, Dennis J McFarland, Gert Pfurtscheller, and Theresa M
Vaughan. Brain–computer interfaces for communication and control. Clinical neurophysiology,
113(6):767–791, 2002.

Jiaxin Xie, Siyu Chen, Yongqing Zhang, Dongrui Gao, and Tiejun Liu. Combining generative
adversarial networks and multi-output cnn for motor imagery classification. Journal of neural
engineering, 18(4):046026, 2021.

Fangzhou Xu, Fenqi Rong, Jiancai Leng, Tao Sun, Yang Zhang, Siddharth Siddharth, and Tzyy-
Ping Jung. Classification of left-versus right-hand motor imagery in stroke patients using supple-
mentary data generated by cyclegan. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 29:2417–2424, 2021.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved
VQGAN. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=pfNyExj7z2.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 30:495–507, 2021.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

13

https://openreview.net/forum?id=pfNyExj7z2
https://openreview.net/forum?id=pfNyExj7z2

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

EEG
sequence

Discrete
codes

G

F

Dx DY

Figure 5: CycleGAN framework. Two generators, G and F , are constructed to convert EEG se-
quences to discrete codes and vice versa. Meanwhile, two discriminators, DX and DY , are em-
ployed to differentiate between real and synthetic data corresponding to the source and target do-
mains, respectively.

A GENERATIVE MODELS

A.1 CYCLEGAN

CycleGAN (Zhu et al., 2017) was initially developed to translate images from a source domain to
a target domain. CycleGAN’s framework effectively aligns with our proposed approach, in which
EEG sequences serve as the source domain and discrete codes as the target domain. Thus, we
incorporate CycleGAN into our proposed framework to compare it with EEGTrans. As depicted in
Figure 5, our CycleGAN architecture remains unchanged from the original design, except that we
now input EEG sequences and their corresponding discrete codes. However, because both inputs
have different dimensions, we cannot employ the identity mapping loss in our case. The training
loss for CycleGAN comprises both the adversarial loss and the cycle consistency loss. For a fair
comparison, we additionally fine-tune the RVQ decoder during CycleGAN training and utilize it to
recover the signals x̂ from the generated discrete codes G(x), following the same procedure outlined
in EEGTrans.

B DATASET

B.1 DATASET DESCRIPTION

BCI Competition II Dataset III This dataset was collected from a healthy 25-year-old female
subject. The task involved controlling a feedback bar using imagery of left or right hand movements.
The experiment included 7 runs, each with 40 trials, resulting in a total of 280 trials, each lasting
9 seconds. Data was recorded using a G.tec amplifier and Ag/AgCl electrodes. Three bipolar EEG
channels were measured over C3, Cz, and C4. The EEG was sampled at 128Hz and filtered between
0.5 and 30Hz.

BCI Competition IV Dataset 2b This dataset contained EEG data from nine subjects. EEG
signals were recorded from three channels (C3, Cz, and C4) at a sampling rate of 250Hz. The data
was bandpass-filtered between 0.5Hz and 100Hz, with a notch-filter at 50Hz applied. The cue-based
screening involved two classes: motor imagery (MI) of the left hand and right hand. Each subject
completed two screening sessions without feedback. Each session included six runs, with ten trials
per run and two types of imagery per trial, resulting in 20 trials per run and 120 trials per session.
During three online feedback sessions, four runs with smiley feedback were recorded, with each run
containing twenty trials for each type of motor imagery. This setup ideally resulted in a total of 720
trials recorded per subject.

BCI Competition IV Dataset 1 This dataset was collected from seven healthy subjects who per-
formed motor imagery without feedback throughout the sessions. Each subject was asked to select
two motor imagery tasks from three options: left hand, right hand, and foot (side chosen by the
subject; optionally both feet). Each trial lasted for a duration of 6 seconds, with a total of 200 trials
conducted for each subject for the calibration sessions. The EEG recording was conducted using
BrainAmp MR plus amplifiers and an Ag/AgCl electrode cap. Signals from 59 EEG positions were

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

measured that were most densely distributed over sensorimotor areas. Signals were band-pass fil-
tered between 0.05 and 200 Hz and then digitized at 1000 Hz with 16 bit (0.1 uV) accuracy. The
channels’ locations were designated as follows: AF3, AF4, F5, F3, F1, Fz, F2, F4, F6, FC5, FC3,
FC1, FCz, FC2, FC4, FC6, CFC7, CFC5, CFC3, CFC1, CFC2, CFC4, CFC6, CFC8, T7, C5, C3,
C1, Cz, C2, C4, C6, T8, CCP7, CCP5, CCP3, CCP1, CCP2, CCP4, CCP6, CCP8, CP5, CP3, CP1,
CPz, CP2, CP4, CP6, P5, P3, P1, Pz, P2, P4, P6, PO1, PO2, O1, O2.

BCI Competition IV Dataset 2a This dataset comprises EEG recordings from 9 subjects. The
cue-based BCI paradigm involved four different motor imagery tasks: imagining the movement of
the left hand, right hand, both feet and tongue. Each subject participated in two recording sessions,
resulting in a total of 288 trials per session, with each trial lasting 6 seconds. EEG signals were
captured using twenty-two Ag/AgCl electrodes, recorded monopolarly with the left mastoid as ref-
erence and the right mastoid as ground. Sampling was done at 250Hz with bandpass filtering applied
between 0.5Hz and 100Hz. The amplifier sensitivity was set to 100µV, and a 50Hz notch filter was
activated to reduce line noise. The channels’ locations were listed as follows: Fz, FC3, FC1, FCz,
FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P1, Pz, P2, POz.

High Gamma Dataset This dataset comprises data from 14 healthy individuals, each recorded
with 128 electrodes. It includes approximately 1000 four-second trials of executed movements
spread across 13 runs per subject. The movements fall into four categories: left hand, right hand,
both feet, and rest (no movement, but with the same visual cue as the other categories). The training
set consists of around 880 trials from all runs except the last two runs, while the test set comprises
roughly 160 trials from the last two runs. The recordings were done at a sampling rate of 5 kHz and
then resampled to 500 Hz. The recording channels included Fp1, Fp2, Fpz, F7, F3, Fz, F4, F8, FC5,
FC1, FC2, FC6, M1, T7, C3, Cz, C4, T8, M2, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1,
Oz, O2, AF7, AF3, AF4, AF8, F5, F1, F2, F6, FC3, FCz, FC4, C5, C1, C2, C6, CP3, CPz, CP4, P5,
P1, P2, P6, PO5, PO3, PO4, PO6, FT7, FT8, TP7, TP8, PO7, PO8, FT9, FT10, TPP9h, TPP10h,
PO9, PO10, P9, P10, AFF1, AFz, AFF2, FFC5h, FFC3h, FFC4h, FFC6h, FCC5h, FCC3h, FCC4h,
FCC6h, CCP5h, CCP3h, CCP4h, CCP6h, CPP5h, CPP3h, CPP4h, CPP6h, PPO1, PPO2, I1, Iz, I2,
AFp3h, AFp4h, AFF5h, AFF6h, FFT7h, FFC1h, FFC2h, FFT8h, FTT9h, FTT7h, FCC1h, FCC2h,
FTT8h, FTT10h, TTP7h, CCP1h, CCP2h, TTP8h, TPP7h, CPP1h, CPP2h, TPP8h, PPO9h, PPO5h,
PPO6h, PPO10h, POO9h, POO3h, POO4h, POO10h, OI1h, OI2h.

B.2 DATA PREPROCESSING

The BCI Competition IV Dataset 1 and the High Gamma Dataset each feature numerous channels,
some of which are not relevant to the motor imagery task or occur too infrequently for practical use.
While a higher number of channels could improve downstream classification tasks, an excess might
challenge generative models in distinguishing motor imagery-related signals from unrelated ones.
As a result, we excluded such channels during the data preprocessing step. Below are the channels
that remained in both datasets after manual selection.

BCI Competition IV Dataset 1 AF3, AF4, F5, F3, F1, Fz, F2, F4, F6, FC5, FC3, FC1, FCz, FC2,
FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P5, P3, P1, Pz, P2,
P4, P6, PO1, PO2, O1, O2

High Gamma Dataset FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, FC3, FCz, FC4,
C5, C1, C2, C6, CP3, CPz, CP4, FFC5h, FFC3h, FFC4h, FFC6h, FCC5h, FCC3h, FCC4h, FCC6h,
CCP5h, CCP3h, CCP4h, CCP6h, CPP5h, CPP3h, CPP4h, CPP6h, FFC1h, FFC2h, FCC1h, FCC2h,
CCP1h, CCP2h, CPP1h, CPP2h

C IMPLEMENTATION DETAILS

C.1 RVQ AUTOENCODER MODEL ARCHITECTURE

Here, we provide the details of the RVQ Autoencoder, including the hyperparameters used for each
layer.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

RVQ autoencoder consists of an encoder, RVQ, and a decoder. RVQ comprises multiple stages that
cascade Nq layers of VQ, with each layer containing k codebooks initialized uniformly with dimen-
sion d. To make it easier to train generative models, the latent variables that represent the codebooks
for each layer are shared, which helps in reducing complexity. Additionally, to enhance code uti-
lization, ℓ2-normalized codes are used (Yu et al., 2022), and the method employed in SoundStream,
which replaces codes with hits below a certain threshold (we set the threshold to 2) with randomly
selected vectors from the current batch, is applied. Throughout this study, we fix Nq at 4, k at 2048,
and d at 128 for the RVQ autoencoder. We choose these values as they provide high code utilization
while maintaining a low reconstruction loss, and set β to 10 in the training loss. The RVQ encoder’s
configuration will ultimately determine the timestamps within the discrete token space (τ). We set
the compression factor to be 4 (τ = T

4).

The encoder features several 1D convolutional layers and GELU activations. It starts with a Conv1d
layer (1 input channel, 16 output channels, kernel size 3, stride 1, padding 1, no bias), followed by
GELU. Next is another Conv1d (16 to 32 channels, kernel size 3, stride 1, padding 1, no bias), a
grouped downsampling Conv1d (32 to 32 channels, kernel size 2, stride 2, groups 32, no bias), and
GELU. This is followed by a Conv1d (32 to 64 channels, kernel size 3, stride 1, padding 1, no bias)
and GELU. The final layers include a Conv1d (64 to 128 channels, kernel size 3, stride 1, padding
1, no bias) and another grouped downsampling Conv1d (128 to 128 channels, kernel size 2, stride 2,
groups 128, no bias).

The decoder features a combination of 1D convolutional and transposed convolutional layers along
with GELU activations. It starts with a transposed convolution (128 input and output channels,
kernel size 2, stride 2, groups 128, no bias), followed by a Conv1d (128 to 64 channels, kernel size
3, stride 1, padding 1, no bias), and GELU. Next, it includes a Conv1d (64 to 32 channels, kernel
size 3, stride 1, padding 1, no bias) with GELU, followed by a transposed convolution (32 input and
output channels, kernel size 2, stride 2, groups 32, no bias). This is followed by a Conv1d (32 to 16
channels, kernel size 3, stride 1, padding 1, no bias) with GELU, and the final layer is a Conv1d (16
to 1 channel, kernel size 3, stride 1, padding 1, no bias).

C.2 RVQ CODEBOOK UTILIZATION

We ran two versions of the RVQ autoencoder by varying the number of codebooks, while keeping
the encoder and decoder architecture unchanged, to examine the effect of codebook number on
the quantization process. We trained the autoencoder with 2048 codebooks (as in previous works
like DeWave (Duan et al., 2023)) and a larger set of 16384 codebooks. With 2048 codebooks, the
mean squared error (MSE) loss between the EEG sequence and its reconstructed sequence in the
BCI Competition IV Dataset 2a was 0.152, while with 16384 codebooks, the MSE loss was 0.131.
Although more codebooks improve quantization performance, they significantly increase memory
consumption because each latent variable requires GPU memory allocation, with 16384 codebooks
requiring more than 24GB of GPU memory during training. Another metric, active code (code
utilization), showed that roughly 50% of the codes were used with 16384 codebooks, compared to
almost 100% utilization with 2048 codebooks. Therefore, we decided to use the 2048 codebook
version.

C.3 EEGTRANS MODEL ARCHITECTURE

The architecture of the proposed EEGTrans utilized in this study is depicted in Figure 2. EEGTrans
includes both an encoder and a decoder. In the encoder, the input embedding layer is made up of 6
Conv2D layers, which closely resemble the encoder of the RVQ autoencoder, except for the fact that
the last two convolutional layers have output channels of 256. The encoder block consists of 4 layers
of attention blocks with an embedding size of 256 and 4 attention heads. Similarly, the decoder block
follows the same configuration as the encoder block, except for the input embedding layer, which is
a simple lookup table storing embeddings of a fixed dictionary size of 256. Subsequently, the output
undergoes processing through a MLP with two linear layers of output dimensions 256 and 2048,
incorporating a GELU activation function in between, to map the embeddings to discrete tokens.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.4 CYCLEGAN MODEL ARCHITECTURE

As shown in Figure 5, CycleGAN consists of two generators G and F and two discriminators Dx

and Dy .

Generator G is composed of convolutional layers and a MLP. These convolutional layers fall into
two categories: those with padding and those without. The ones with padding start with a Re-
flectionPad1d layer (padding 1), followed by a Conv1d layer (kernel size 3, stride 1, padding 0),
InstanceNorm1d layers, and a GELU activation function. Conversely, the ones without padding
begin with a Conv1d layer (kernel size 2, stride 2, padding 0), followed by InstanceNorm1d lay-
ers, and a GELU activation function. The arrangement of this generator follows a pattern of two
padding convolutional blocks, one downsampling convolutional block, two padding convolutional
blocks, one downsampling convolutional block, and finally, a MLP containing two linear layers
with output dimensions of 128 and 2048, with a GELU activation function between them, to map
the embeddings to discrete tokens.

Generator F is composed of transpose convolutional layers and convolutional layers, basically a
reverse process of Generator G. The transpose convolutional block begins with a ConvTranspose1d
layer (with a kernel size of 2 and a stride of 2), succeeded by a ReflectionPad1d layer (with a padding
of 1), a Conv1d layer (with a kernel size of 3, a stride of 1, and no padding), InstanceNorm1d layers,
and finally, a GELU activation function. The convolutional block comprises a ReflectionPad1d layer
(with a padding of 1) and a Conv1d layer (with a kernel size of 3, a stride of 1, and no padding).
To reconstruct a continuous signal from discrete codes, this generator is built with three transpose
convolutional blocks followed by one convolutional block. A token embedding is also required to
convert the inputs from discrete codes into vectors.

Discriminator Dx is composed of a sequence of Conv1d layers. Initially, there is a Conv1d layer
with a kernel size of 4, a stride of 2, padding of 1, and no bias, followed by a LeakyReLU activation
function. Subsequently, three consecutive convolutional blocks consist of a Conv1d layer (kernel
size 4, stride 2, padding 1, no bias), an InstanceNorm1d layer, and a LeakyReLU activation function.
The last Conv1d layer in these blocks has a stride of 1. Finally, the model concludes with a Conv1d
layer (kernel size 4, stride 1, padding 1, no bias). The model’s output undergoes average pooling
in the timestamp dimension to distinguish whether the input data is real or synthetic. Discriminator
Dy shares a similar model architecture with Discriminator Dy , with the distinction that it operates
with discrete input. Therefore, a token embedding is necessary to convert the code into vectors.

C.5 TRAINING AND INFERENCE OF GENERATIVE MODELS

The training procedure for EEGTrans is outlined in Section 4.3, but here are some additional details.
We train EEGTrans for 1000 epochs, although overfitting to the source datasets typically starts after
about 100 epochs. To address this, we employ an early stopping technique. Additionally, we select
the model checkpoint that performs best on the target datasets by monitoring the cross-entropy loss
of these datasets, which is then used for inference. With early stopping, the training typically takes
less than a day on a single RTX 4090 GPU.

CycleGAN is trained using the Adam optimizer and the AdamW optimizer, respectively, with the
same learning rate scheduler as EEGTrans. We apply the same early stopping strategy for Cycle-
GAN. However, for CycleGAN, the checkpoints selected for inference are based on the smallest
generator loss on the target datasets. Utilizing the early stopping strategy enables us to maintain the
training duration under a day.

D CLASSIFICATION TASK

We adhered to the original implementation of EEGNet (Lawhern et al., 2018) and implemented
it on these two datasets. However, we opted to eliminate the max norm constraint on the Dense
layer, as we observed that its removal can lead to slight performance improvements, particularly
during longer training periods. Table 5 provides comprehensive details regarding the architecture
of EEGNet. In all experiments, EEGNet is trained individually for each subject, employing the
Adam optimizer with a learning rate of 1e-3. Training occurs over 1000 epochs utilizing categorical
cross-entropy loss.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: EEGNet architecture details. Conv2D includes batch normalization; DepthwiseConv2D
and SeparableConv2D include batch normalization and ELU activation function; AveragePooling2D
includes dropout regularization with a rate of 0.5. Dense includes softmax activation function. C
denotes channels, which are 22 for the BCI Competition IV Dataset 2a and 45 for the High Gamma
Dataset. Following the original implementation, we also regularize each spatial filter by using a
maximum norm constraint of 1 on the weights of the DepthwiseConv2D.

Name Layer Filters Depth Kernel Padding Output shape

C1 Conv2D 16 - 1×64 Same C×256×16
DC1 Depthwise-Conv2D - 2 C×1 Valid 1×256×32
AP1 Average-Pooling2D - - 1×4 - 1×64×32
S1 Separable-Conv2D 32 1 1×16 Same 1×64×32

AP2 Average-Pooling2D - - 1×8 - 1×8×32
F1 Flatten - - - - 256
D1 Dense - - - - 4

Table 6: Classification performance on High Gamma Dataset. In this table, ”R” denotes using only
real data, ”S” denotes using only synthetic data, ”RS” stands for combining real and synthetic data,
and ”Aux” signifies combining real and synthetic data with auxiliary loss. While the inclusion of
synthetic data in this dataset does not significantly boost classification accuracy, EEGTrans still out-
performs CycleGAN under same conditions, demonstrating its effectiveness in generating synthetic
data across various datasets.

EEGTrans (%) CycleGAN (%)

Subject R S RS Aux S RS Aux

1 91.87 92.29 91.87 93.33 73.54 89.58 90.83

2 88.28 89.00 87.77 90.03 70.81 87.77 90.33

3 93.94 92.59 92.98 93.26 76.05 90.28 93.17

4 94.41 90.82 94.70 95.27 77.38 92.99 93.84

5 91.81 89.20 92.72 92.38 73.97 88.18 90.68

6 88.17 87.98 89.13 87.88 77.11 84.71 88.55

7 92.30 92.40 91.92 91.53 66.53 90.09 92.69

8 92.50 91.76 92.75 92.13 52.46 88.69 91.76

9 90.67 92.50 91.92 91.25 78.65 89.03 90.28

10 84.90 85.19 86.25 83.46 51.05 82.50 84.23

11 77.98 78.55 77.11 78.46 63.07 75.86 77.78

12 95.76 91.73 94.61 94.90 53.07 91.92 92.30

13 91.35 90.93 91.66 92.29 67.08 89.06 90.83

14 94.32 93.26 95.00 95.67 61.53 91.92 95.67

Mean 90.59 89.87 90.74 90.84 67.31 88.04 90.21

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Ablation on EEGTrans model architecture.

Subject EEGTrans (%) EEGTrans w/o encoder (%) EEGTrans w/o RVQ autoencoder (%)

1 85.59±3.64 49.82±1.85 24.82±2.02
2 64.59±3.13 44.10±4.76 27.77±3.04
3 87.14±4.32 53.64±2.42 25.17±3.74
4 74.82±3.35 52.06±6.28 26.04±2.28
5 81.77±2.71 65.62±5.11 25.17±5.37
6 74.99±4.38 48.94±4.55 26.21±1.66
7 83.86±3.27 62.50±5.08 25.87±3.42
8 81.76±1.85 46.68±4.57 27.77±2.56
9 91.67±1.14 58.49±5.47 26.91±1.69

Mean 80.69±7.64 53.54±6.86 26.19±1.03

The classification results of the High Gamma Dataset are presented in Table 6. Using the same exper-
imental settings as in BCI Competition IV Dataset 2a, we will report the five-fold cross-validation
mean accuracy for each subject. Although incorporating synthetic data into the training process
does not significantly enhance classification performance in this dataset, it is worth noting that for
6 subjects, using only synthetic data outperforms using only real data. Additionally, the average
performance gap between subjects is not as large as it was in the previous dataset. Since the High
Gamma Dataset was acquired in an EEG lab with a technical setup that included active electro-
magnetic shielding, and subjects sat in a comfortable armchair inside a dimly lit Faraday cabin, the
collected data is less susceptible to noise. Therefore, the real data predominantly reflects true motor
imagery EEG characteristics. Even when EEGTrans generates synthetic data, the synthetic data may
possess similar features, resulting in performance improvement that is not comparable to that of the
BCI Competition IV Dataset 2a. Nonetheless, EEGTrans continues to perform better in generating
high-quality synthetic data and outperforms CycleGAN.

E ABLATION STUDY

We performed an ablation study on the architecture of EEGTrans to determine the impact of the
encoder-decoder design on the final results. Additionally, we tested the model without the RVQ
autoencoder to see if it could still deliver satisfactory performance. First, we remove the encoder
architecture from EEGTrans while keeping everything else unchanged. This means the decoder can
no longer use cross-attention on the EEG sequences when generating discrete tokens. Since the
generated data would be completely random without an encoder if we start the inference from the
SOC token, we address this by providing the first 25% of the ground truth discrete tokens as inputs
to the decoder during inference. Second, we exclude the RVQ autoencoder from the framework,
so the decoder directly generates the continuous EEG sequence. Thus, the decoder is now trained
using mean squared error loss, minimizing the distance between the generated synthetic data and the
corresponding real data, instead of using cross-entropy loss. After removing the RVQ autoencoder,
there is no SOC token anymore. Therefore, the model is trained with a vector consisting of all zeros
prepended at the front, which serves as the SOC token in continuous form. During inference, only
this zero vector is provided initially for the decoder.

The classification results of the ablation study using only synthetic data for training are shown in
Table 7. The synthetic data generated by EEGTrans, without the encoder and RVQ autoencoder, is
shown in Figures 6 and 7. In Figure 6, it is evident that only the segments where ground truth tokens
are provided closely resemble real data. When EEGTrans starts generating tokens autoregressively,
the synthetic data lacks meaningful EEG features. This is reflected in the training loss, indicating
that EEGTrans does not train well without the encoder. Therefore, the encoder currently plays a
crucial role in EEGTrans. However, one limitation that needs to be addressed in the future is the
requirement for entire EEG sequences as input for the encoder. As shown in Figure 7, the amplitude
of the synthetic data is nearly zero during inference.

If the inference starts from the SOC token instead of using 25% ground truth tokens, the classifi-
cation performance would be similar to the version without tokens. This suggests that the accuracy

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 6: Visualization of synthetic data generated by EEGTrans without encoder for Subject 1 in
the BCI Competition IV Dataset 2a.

Figure 7: Visualization of synthetic data generated by EEGTrans without RVQ autoencoder for
Subject 1 in the BCI Competition IV Dataset 2a.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

exceeding random guessing is entirely due to the inclusion of the 25% ground truth tokens. On the
other hand, during the training process, EEGTrans without tokens performs very well in predicting
the next timestamp, achieving a mean squared error loss on the scale of 1e-6. This indicates that the
model has already converged on the training task. However, due to the high temporal proximity of
EEG signals and the availability of ground truth signals up to the current timestamp during train-
ing, the model can achieve good predictions by simply replicating the current timestamp value or
learning the difference between the next timestamp and the current one, then adding this difference
to the current timestamp to predict the next value. However, only a zero vector is provided during
inference, causing the model to perform poorly. This indicates that without tokens, the model has
learned a trivial solution. In fact, if we run inference using teacher-forcing settings, providing sig-
nals up to the current timestamp when predicting the next one, the synthetic data closely resembles
the real data.

21

	Introduction
	Related Works
	Generative Models for Biological Signals
	Vector Quantization

	Method
	Task Definition
	RVQ
	EEGTrans

	Experiments
	Dataset
	Data Preprocessing
	Implementation Details
	Evaluation Metrics
	Data Visualization
	Time Series Complexity Analysis
	BCI Classification Task
	Ablation Study

	Conclusion
	Generative Models
	CycleGAN

	Dataset
	Dataset Description
	Data Preprocessing

	Implementation Details
	RVQ Autoencoder Model Architecture
	RVQ Codebook Utilization
	EEGTrans Model Architecture
	CycleGAN Model Architecture
	Training and Inference of Generative Models

	Classification Task
	Ablation Study

