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ABSTRACT

Bilevel optimization, characterized by a two-level hierarchical optimization struc-
ture, is prevalent in real-world problems but poses significant challenges, espe-
cially in noisy, constrained, and derivative-free settings. To tackle these chal-
lenges, we present a novel algorithm for BILevel Bayesian Optimization (BILBO)
that optimizes both upper- and lower-level problems jointly in a sample-efficient
manner by using confidence bounds to construct trusted sets of feasible and lower-
level optimal solutions. We show that sampling from our trusted sets guarantees
points with instantaneous regret bounds. Moreover, BILBO selects only one func-
tion query per iteration, facilitating its use in decoupled settings where upper-
and lower-level function evaluations may come from different simulators or ex-
periments. We also show that this function query selection strategy leads to an
instantaneous regret bound for the query point. The performance of BILBO is
theoretically guaranteed with a sublinear regret bound and is empirically evalu-
ated on several synthetic and real-world problems.

1 INTRODUCTION

Many real-world problems have hierarchical decision making processes involving two levels of op-
timization. Decisions made at the upper level affect the optimization problem at the lower level and
vice versa. Bilevel optimization can model hierarchical structures well and enable analysis of such
problems. Applications of bilevel optimization range from machine learning (e.g., hyperparame-
ter optimization, meta-learning) to economic problems (e.g., pricing strategies, toll setting) (Beck
& Schmidt, 2021). In energy management, energy providers determine optimal pricing strategies
for electricity (upper level) while consumers optimize their electricity demands based on the pric-
ing (lower level). Similarly, in investment, brokers or regulators set fees on different asset classes
to maximize their revenues (upper level), while investors optimize their portfolios considering ex-
pected returns and risk (lower level). Bilevel optimization has been applied in both cases (Shu et al.,
2018; Leal et al., 2020), typically using a nested framework with linear solvers at the lower level.
This approach may limit practical effectiveness but it is due to the inherent complexity of bilevel
optimization. Even with only linear constraints and objective functions, the set of feasible solu-
tions can be non-convex and non-continuous (Kleinert et al., 2021). Lower-level solutions that are
ϵ-feasible w.r.t. non-linear constraints may also lead to a bilevel solution that is arbitrarily far from
the actual bilevel solution (Beck et al., 2023).

Classical approaches (Bard & Falk, 1982; Bard & Moore, 1990) have relied on simplifying assump-
tions, such as linearity or convexity, while others, assuming the presence of gradients, use gradient
descent to solve the lower-level problem and approximate hypergradients for the upper level. On the
other hand, meta-modeling-based methods employ surrogate models for efficient optimization, like
BLEAQ (Sinha et al., 2013) which uses quadratic approximations to map upper-level points to op-
timal lower-level solutions. Meta-modeling methods have advantages over gradient-based methods
in the presence of noisy observations, derivative-free functions, constraints and discrete variables.
They can also enable global optimization, even when dealing with non-convex functions. However,
existing meta-modeling methods are limited by the fit of low capacity models and lack of theoretical
analysis on the performance bounds.

Bayesian optimization (BO), a popular meta-modeling method, has been applied extensively, includ-
ing to constrained optimization (Gelbart et al., 2014). In particular, Xu et al. (2023) and Nguyen
et al. (2023) both introduced confidence-bounds based optimistic estimations of the feasible set,
with the former providing an infeasibility declaration scheme and the latter including a function
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query strategy for decoupled settings. Compared to constrained optimization, bilevel optimization
has additional significant challenges from being constrained by unknown optimal lower-level solu-
tions, which requires optimization of a separate lower-level problem. These challenges also differ
from those in robust optimization (Bogunovic et al., 2018) and composite objectives optimization
(Li & Scarlett, 2022), as both are single level optimization, despite the additional random variable
and composite objective function respectively. Our work tackles challenges in bilevel optimization,
particularly where we consider the optimality of estimated lower-level solutions.

In bilevel optimization, BO has only been employed in a nested framework (Kieffer et al., 2017; Do-
gan & Prestwich, 2023). This approach involves optimizing the upper level via BO while separately
optimizing the lower level at each upper-level query point. The nested approach suffers from sample
inefficiency due to the lack of information flow between the upper- and lower-levels of the optimiza-
tion problem. To address this issue, Dogan & Prestwich (2023) introduced an acquisition function
that is conditional on the optimal points of the lower level during the upper-level optimization. It
still requires the lower-level problem to be optimized separately to convergence at each upper-level
point. On theoretical analysis, Fu et al. (2024) provided a theoretical guarantee for a bilevel frame-
work with stochastic gradient descent at the lower-level and BO at the upper-level. However, the
lower-level is not a blackbox optimization due to this gradient assumption.

Contributions. We propose BILevel Bayesian Optimization (BILBO), a Bayesian optimization
algorithm for general bilevel problems with blackbox functions, where both levels are optimized
simultaneously. BILBO introduces trusted sets to iteratively reduce the search space by removing
infeasible solutions and sub-optimal lower-level solutions. Points in the trusted sets have upper-
bounded instantaneous regrets, ensuring that they are good candidates for sampling. Functions
are modelled using Gaussian processes (GPs) over both upper- and lower-level variables, which
improves sample efficiency by enhancing the flow of information between lower-level optimization
and various upper-level points. The trusted sets are constructed from confidence bounds of GPs,
enabling the derivation of regret bounds. Intuitively, the trusted sets provide estimates of feasible
solutions for upper-level optimization without requiring the lower-level problem to be optimized to
convergence. We also address the decoupled setting, where only one function is chosen to be queried
per iteration instead of querying all the functions at both levels simultaneously. This approach allows
different functions of varying complexities or costs to have different number of evaluations for a
good approximation. We show that our function query selection strategy provides an instantaneous
regret bound for the query point, which leads to a sublinear regret bound. The code and data used in
the paper will be released upon publication. For clarity, notations used in this paper are summarized
in a notation table provided in Appendix A.

2 PRELIMINARIES

Bilevel optimization. Let F and f , respectively, be the upper- and lower-level black-box objective
function, such that F, f : X × Z → R. Let Cup, Clo respectively, be sets of upper- and lower-level
black-box constraints where c : X ×Z → R, ∀c ∈ Cup ∪Clo. The upper-level variable is denoted as
x ∈ X and lower-level variable as z ∈ Z , where X ⊂ RdX and Z ⊂ RdZ are assumed to be finite.
We consider a general bilevel optimization problem with constraints as

max
x∈X ,z∈P(x)

F (x, z) (2.1)

s.t. C(x, z) ≥ 0, ∀C ∈ Cup, (2.2)

P(x) ≜ {argmaxz∈Zf(x, z) | c(x, z) ≥ 0, ∀c ∈ Clo} (2.3)

where P(x) is the set of optimal lower-level solutions at upper-level variable x.

Let (x∗, z∗) denote the optimal bilevel solution, and (x, z∗(x)) denote the optimal lower-level solu-
tion w.r.t. x, where z∗ = z∗(x∗). The set of functionsF is defined asF ≜ {F, f}∪Cup∪Clo. At each
step t ≥ 1, we select a query point (xt, zt) and obtain noisy observations yh(xt, zt) ≜ h(xt, zt)+ ϵ
where ϵ ∼ N (0, σ2

n), ∀h ∈ F . In a decoupled setting, a function query ht ∈ F is selected, and only
yht

(xt, zt) is observed. Observations are accumulated into Dht,t ≜ Dht,t−1 ∪ {yht
(xt, zt)} and

Dh,0 is the set of initial observations for function h. To approximate the optimal solution (x∗, z∗),
(xt, zt) is commonly used as an estimator.
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Gaussian process. Each function h ∈ F is modelled with a Gaussian process (GP). Let xz
be a concatenation of x and z. A GPh(mh(xz), kh(xz,xz

′)) is specified by a mean function
mh(xz) ≜ E[h(xz)] and covariance function kh(xz,xz

′) ≜ E[(h(xz) − mh(xz))(h(xz
′) −

mh(xz
′))] (Williams & Rasmussen, 2006). At iteration t, given query inputs xz:t−1 and noisy

observations yh,t−1, the predictive distribution for h is Gaussian: h(xz) | xz:t−1,yh,t−1 ∼
N (µh,t−1(xz), σ

2
h,t−1(xz)). The closed-form posteriors can be found in Appendix B.1.

We introduce the maximum information gain from Srinivas et al. (2010) for a function h as γh,t ≜
max{(xt,zt)}t∈T (h)

1
2 log |I + σ−2Kh,t|, where T (h) contains the timesteps where function h was

selected for query. γh,t for common kernels were found to be sublinear and shown in Appendix B.2.

Bayesian optimization. Given a prior distribution P (h) and likelihood function P (Dht,t|h), the
posterior distribution P (h|Dht,t) can be calculated via Bayes’ theorem. The prior distribution is
often represented by a GP and the likelihood function is defined by the choice of GP kernel and
hyperparameters. The posterior distribution is also a surrogate function for modeling h. The point
which maximizes an acquisition function ah(xz) is selected as the next point to evaluate function h
at. A popular acquisition strategy is based on confidence bounds (Srinivas et al., 2010).

Regrets. Regret is defined as the loss in reward from not selecting the optimal point. Instantaneous
regret rt measures this loss at time t, while cumulative regret RT ≜

∑T
t=1 rt is the sum of instan-

taneous regrets over T rounds. An algorithm is no-regret if limT→∞ RT /T = 0 where cumulative
regret is sublinear and convergence to the optimal point is guaranteed with a large enough T .

For bilevel optimization, we propose to define the instantaneous regret as

rt ≜ max
h∈F

rh(xt, zt), (2.4)

where F ≜ {F, f} ∪ Cup ∪ Clo. The upper- and lower-level instantaneous objective regrets are
defined, respectively, as

rF (xt, zt) ≜ F (x∗, z∗)− F (xt, zt), (2.5)

rf (xt, zt) ≜ f(xt, z
∗(xt))− f(xt, zt), (2.6)

and the instantaneous constraint regrets as

∀c ∈ Cup ∪ Clo rc(xt, zt) ≜ max(0,−c(xt, zt)) . (2.7)

Note that rc is usually known as constraint violations and we have incorporated them into the def-
inition of bilevel optimization regret to have a more representative estimate of the optimality of a
point. An algorithm that is no-regret according to our definition of bilevel optimization regret, will
have all objective function regrets and constraint violations converge to 0. If the constraints and
objective functions have very different ranges, normalization of the output values can ensure a fairer
representation of the overall regret.

3 BILEVEL BAYESIAN OPTIMIZATION

Our method, called BILevel Bayesian Optimization (BILBO), maintains and samples from trusted
sets constructed from confidence bounds, where points in the trusted sets have upper-bounded in-
stantaneous regrets on constraints and the lower-level objective. This ensures that points in the
trusted sets are sufficiently good for use in the optimization of the upper-level problem, enhancing
sample efficiency. We introduce a function query strategy based on estimated regrets, which pro-
vides an instantaneous regret bound on the query point. This leads to a sublinear cumulative regret
bound for BILBO. The pseudocode is in Algorithm 1.

The trusted sets are defined in Definitions 3.3 and 3.5, and Lemmas 3.4 and 3.6 provide instantaneous
regret bounds on points in the trusted sets. Definition 3.7 defines the function query selection and
Lemma 3.8 presents a instantaneous regret bound on the query point. Finally, the cumulative regret
bound of BILBO is stated in Theorem 3.9 and the simple regret bound in Lemma 3.10.

First, we define the confidence bounds on which we use to build the trusted sets. Functions are
bounded by the confidence bounds with high probability by Corollary 3.2.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 3.1 (Confidence bounds). For a function h ∈ F modelled by a Gaussian process (GP),
∀x ∈ X , z ∈ Z , and t ≥ 1, let the upper and lower confidence bounds of h(x, z) be denoted,
respectively, as

uh,t(x, z) ≜ µh,t−1(x, z) + β
1/2
t σh,t−1(x, z), (3.1)

lh,t(x, z) ≜ µh,t−1(x, z)− β
1/2
t σh,t−1(x, z), (3.2)

where µh,t−1(x, z) and σh,t−1(x, z) are the GP’s posterior mean and standard deviation at (x, z),
and βt ≜ 2 log(|F||X ||Z|t2π2/(6δ)).

Corollary 3.2. For some small δ > 0, with probability at least 1− δ,

h(x, z) ∈ [lh,t(x, z), uh,t(x, z)].

This is derived from Lemma 5.1 of Srinivas et al. (2010) by applying union bound over h ∈ F .

Algorithm 1 BILBO

Require: X ,Z, {Dh,0}h∈F
1: Update GP posterior beliefs: {(µh,0, σh,0)}h∈F
2: Update trusted sets S+t , P+

t ▷ Definitions 3.3 and 3.5
3: for t← 1 to T do
4: if S+t = ∅ then
5: Declare infeasibility
6: end if
7: xt, zt ← argmax(x,z)∈S+

t ∩P+
t
uF,t(x, z) ▷ Equation 3.6

8: ht ← argmaxh∈F r̄h,t(xt, zt) ▷ Definition 3.7
9: if ht = f then

10: z̄t ← argmaxz∈S+
lo,t(xt)

uf,t(xt, z) ▷ Equation 3.5
11: if σf,t−1(xt, z̄t) > σf,t−1(xt, zt) then
12: zt ← z̄t ▷ Equation 3.8
13: end if
14: end if
15: Dht,t ← Dht,t−1 ∪ {yht(xt, zt)}
16: Update GP posterior belief: µht,t, σht,t

17: Update trusted sets S+t ,P+
t ▷ Definitions 3.3 and 3.5

18: end for

3.1 TRUSTED SET OF FEASIBLE SOLUTIONS

The optimal solution must not violate any of the constraints present. To approximate the unknown
feasible regions, we introduce a trusted set of feasible solutions using confidence bounds.

Definition 3.3 (Trusted set of feasible solutions). Let the trusted set of feasible solutions be defined
as

S+t ≜ {(x, z) ∈ X × Z | uc,t(x, z) ≥ 0 ∀c ∈ Cup ∪ Clo} , (3.3)

where Cup ∪ Clo is the set of all constraints, and the upper confidence bound uc,t is defined in Defi-
nition 3.1. For convenience, let S+t (x) ≜ {z | (x, z) ∈ S+t }.
Lemma 3.4. ∀(x, z) ∈ S+t , c ∈ Cup ∪ Clo, the constraint regrets are upper bounded,

rc(x, z) ≤ 2β
1/2
t σc,t−1(x, z).

The proof is provided in Appendix C.1.

Selecting a query point from S+t ensures the instantaneous constraint regrets of the chosen point is
upper bounded, where highly infeasible points are outside of the trusted set. An empty trusted fea-
sible set would imply an infeasible bilevel problem, and our algorithm would make an infeasibility
declaration.
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3.2 TRUSTED SET OF OPTIMAL LOWER-LEVEL SOLUTIONS

The upper-level problem is also constrained by the set of optimal lower-level solutions, and we
define a trusted set of optimal lower-level solutions to approximate the unknown optimal lower-
level solutions.
Definition 3.5 (Trusted set of optimal lower-level solutions). Let the trusted set of optimal lower-
level solutions be defined as

P+
t ≜ {(x, z) ∈ S+lo,t | uf,t(x, z) ≥ lf,t(x, z̄t(x)}, (3.4)

where S+lo,t ≜ {(x, z) ∈ X × Z | uc,t(x, z) ≥ 0 ∀c ∈ Clo} is the trusted set of feasible solutions
w.r.t. lower-level constraints, and

z̄t(x) ≜ arg max
z∈S+

lo,t(x)
uf,t(x, z) (3.5)

is the estimated optimal lower-level solution at x.

The trusted set P+
t allows multiple lower-level solutions to correspond to an upper-level variable,

enabling our algorithm to effectively manage multiple lower-level optima and noisy observations.
Moreover, we can handle infeasible lower-level problems, as the trusted set P+

t naturally filters out
highly probable infeasible points via the set S+lo,t, including all points with an infeasible lower-level
problem, ensuring that only probable feasible solutions are considered during optimization.
Lemma 3.6. ∀(x, z) ∈ P+

t , the lower-level objective regret is upper bounded,

rf,t(x, z) ≤ 1z̸=z̄t(x)2β
1/2
t σf,t−1(x, z̄t(x)) + 2β

1/2
t σf,t−1(x, z).

The proof is provided in Appendix C.2.

Sampling from P+
t guarantees an upper-bounded lower-level objective regret, and points outside of

the trusted set P+
t are highly unlikely to be lower-level optimal.

ϵ-optimal lower-level solutions. In some scenarios, it may be desirable to consider ϵ-optimal lower-
level solutions feasible, as it is common for real-world agents to operate sub-optimally. This ap-
proach allows us to account for practical limitations where perfect lower-level optimization may not
be achievable, for example, due to noise or the expense of querying the lower-level function. In this
case, we can relax the condition in Definition 3.5 to allow ϵ-optimal lower-level solutions to remain
in the trusted set by defining Pϵ

t ≜ {(x, z) | uf,t(x, z)+ϵ ≥ lf,t(x, z̄t(x)}, and extending the regret
bound in Lemma 3.6 to rf,t(x, z) ≤ ϵ+ 1z ̸=z̄t(x)2β

1/2
t σf,t−1(x, z̄t(x)) + 2β

1/2
t σf,t−1(x, z).

3.3 QUERY POINT SELECTION

We reduce the search space to S+t ∩ P+
t . Points in this search space have upper-bounded instan-

taneous regrets on constraints and lower-level objective with high probability, according to Lem-
mas 3.4 and 3.6. The query point at timestep t is sampled from the reduced search space and chosen
at the maximum upper confidence bound of upper-level objective uF,t,

xt, zt ≜ argmax(x,z)∈S+
t ∩P+

t
uF,t(x, z) . (3.6)

3.4 FUNCTION QUERY

In the decoupled case, a function query ht is selected at each timestep t for evaluation. We follow the
function query selection in Definition 3.7, and Lemma 3.8 provides an instantaneous regret bound
on the query (xt, zt).
Definition 3.7 (Function query). Let the function query ht selected at each timestep t be

ht ≜ argmax
h∈F

r̄h,t(xt, zt), (3.7)

where F ≜ {F, f} ∪ Cup ∪ Clo, and the estimated regrets are defined as

∀h′ ∈ F/{f}, r̄h′,t(xt, zt) ≜ 2β
1/2
t σh′,t−1(xt, zt),

r̄f,t(xt, zt) ≜ 1z̸=z̄t(xt)2β
1/2
t σf,t−1(xt, z̄t(xt)) + 2β

1/2
t σf,t−1(xt, zt),

where z̄t is defined in Equation 3.5.
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Reassignment of zt for lower-level objective function query. The lower-level variable to query,
zt, has to be reassigned as follows,

zt ← z̄t(xt) if ht = f and σf,t−1(xt, z̄t(xt)) ≥ σf,t−1(xt, zt). (3.8)
Intuitively, we want to reduce the estimated regret r̄f,t(xt, zt), which comprises both
σf,t−1(xt, z̄t(xt)) and σf,t−1(xt, zt) terms. Reassigning zt to the term that contributes more
to r̄t(xt, zt) reduces the estimated regret more effectively. If f is only queried at (xt, zt),
σf,t−1(xt, z̄t(xt)) would remain large even after repeated queries to f . This reassignment is in-
tegral to manage the uncertainty of estimated lower-level solutions as we sample query points from
the trusted set P+

t and do not globally optimize the lower-level problem at any upper-level point.
Lemma 3.8. Following the function query selection in Definition 3.7 and reassignment of query
point in Equation 3.8, the instantaneous regret for the query point (xt, zt) at time t ≥ 1 is upper
bounded by,

rt ≤ 4β
1/2
t max

h∈F
σh,t−1(xt, zt).

The proof is in Appendix C.3. By Lemma C.4, we also see that maxh∈F r̄h,t(xt, zt) ≥ rt. Thus,
maxh∈F r̄h,t(xt, zt) can be interpreted as the upper regret bound at query point (xt, zt) where a
large r̄h,t(xt, zt) suggests that function h affects rt significantly. Since r̄h,t comprises of σh,t−1,
selecting the argmaxh∈F r̄h,t in Definition 3.7 can also be seen as selecting the most uncertain
function to query at (xt, zt).

3.5 REGRET BOUND

The cumulative regret of Algorithm 1 is shown in Theorem 3.9 and proven in Appendix C.4 using
Lemma 3.8.
Theorem 3.9. Let δ ∈ (0, 1) and βt ≜ 2 log(|F||X ||Z|t2π2/6δ). With probability of at least 1− δ,
Algorithm 1 has a cumulative regret bound of

RT ≤
√
4T |F|βT max

h∈F
Chγh,T ,

where Ch ≜ 8/ log(1 + σ−2
h ), and γh,T is the maximum information gain from noisy observations

of h at (xt, zt) ∀t ∈ [T ].

This indicates that the regret bound is related to the maximum information gain across all functions
in F . Specifically, the term maxh∈F in our definition of bilevel regret in Equation 2.4 contributed to
this relationship. The presence of this maximum term suggests that the overall regret is influenced
by the most challenging function within the set F .

Our regret bound includes a larger constant compared to the regret bound for constrained Bayesian
optimization in Nguyen et al. (2023), which reflects the increased difficulties in optimizing bilevel
problems. The regret arising from the lower-level objective has a larger upper bound than regrets
from other constraints, indicating that sub-optimal lower-level solutions have a more significant
impact on upper-level optimization, making the optimization process more complex than standard
constrained optimization.

The cumulative regret bound of BILBO is sublinear as γh,T is sublinear for common kernels includ-
ing Squared Exponential and Matérn kernels (Srinivas et al., 2010). The sublinear cumulative regret
guarantees convergence to the optimal solution as RT /T → 0 as T →∞.

Selecting an estimator as
x̂T , ẑT ≜ arg min

(xt,zt)∈{(xt′ ,zt′ )}t′∈[T ]

max
h∈F

r̄h,t(xt, zt), (3.9)

we provide a simple regret bound in Lemma 3.10.
Lemma 3.10. With probability at least 1−δ, T ≥ 1, the estimator (x̂T , ẑT ), defined in Equation 3.9,
has a simple regret bound of

rT ≤
√
4|F|βT max

h∈F
Chγh,T /T ,

where βT ≜ 2 log(|F||X ||Z|T 2π2/6δ).

This follows as the simple regret of (x̂T , ẑT ) is upper bounded by the average regret bound in
Lemma 3.8 across timesteps. The detailed proof is in Appendix C.5.
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4 EXPERIMENTS

We evaluate the performance of BILBO on 4 synthetic and 2 real-world problems. We compare
BILBO with 2 baselines we introduced: “TrustedRand” and “Nested”. TrustedRand involves ran-
domly sampling query points from trusted sets, which can provide valuable insights into how much
trusted sets contribute to the overall performance of BILBO. On the other hand, Nested optimizes
the upper- and lower-level problems separately, which serves as a baseline for nested BO approaches
such as those in Kieffer et al. (2017); Dogan & Prestwich (2023). More details on TrustedRand and
Nested are in Appendix D.1. Note that Nested cannot handle constraints and it is not compared in
experiments with constraints.

Algorithms are implemented using GpyTorch (Gardner et al., 2018). All experiments, except Nested,
are initialized with 3 observations on each function. Nested approaches require more initial ob-
servations of the lower-level functions because the upper-level objective is only evaluated at the
estimated optimal lower-level solution. We allow for this to enable comparisons, which also high-
lights the sample inefficiency of nested methods. All observations are noisy with σn set to 0.01,
and the outputs are normalized to have a mean of 0 and a standard deviation of 1. We discretize the
search space using a uniformly-spaced grid in our implementation of BO to facilitate representation
of trusted sets. BILBO is implemented in a decoupled way where we query only one function per
iteration, while TrustedRand queries all function at each iteration. For comparison, the estimator is
chosen as argmax(x,z)∈S+

t ∩P+
t
µF,t(x, z) for BILBO and TrustedRand, and argmaxx∈X µF,t(x)

for Nested. Additional implementation details are in Appendix D.2.

Results are averaged over 5 runs, and we compare the performance by plotting the instantaneous
regret over number of queries with 95% confidence intervals. The instantaneous regret in this section
is calculated as the sum of each function’s instantaneous regret (

∑
h∈F rh,t) , to provide intuitive

comparison across different methods. Initial observations are included in the number of queries,
resulting in a slight gap in the regret plots, before the estimation of optimal points begin.

4.1 SYNTHETIC PROBLEMS

The synthetic problems were selected to cover a variety of scenarios, including conflicting interac-
tions, convex or multimodal functions, and active constraints.

BraninHoo+GoldsteinPrice has the Branin-Hoo function as upper-level objective F and the
Goldstein-Price function as the lower level objective f (Picheny et al., 2013). Both functions are
non-convex and multimodal. The dimensions dX and dZ are both 1, which facilitates visualization
of the models and queries. Both dimensions were discretized into 100 points. The Branin-Hoo func-
tion has 3 optimal points, but there is only 1 optimal bilevel solution when constrained by lower-level
Goldstein-Price optimal solutions.

BILBO outperforms the other two methods by a substantial margin, as seen in Figure 1a, where it
converges to the optimal bilevel solution within 150 queries. Nested BO and TrustedRand converge
equally slowly. For Nested BO, the predicted lower-level solutions may be sub-optimal because
the lower-level solver cannot handle multimodal functions and noisy observations effectively. For
TrustedRand, random queries might have led to uninformative points being sampled, reducing sam-
ple efficiency. The challenging multimodal characteristic of the functions also means that sampling
in informative areas is integral for this problem, which BILBO successfully manages to do.

Figures 1b and 1c show the upper- and lower-level objective function respectively, with the optimal
lower-level solutions (yellow dots) plotted. BILBO converged to the optimal solution, so the optimal
bilevel point (red dot) and predicted optimal point (green cross) are plotted at the same location.
Using BILBO, the surrogate models effectively captured the overall landscape of both functions,
as shown in Figures 1d and 1e, where the predicted lower-level solutions (yellow crosses) are very
similar to the lower-level optimal solutions, especially in regions where upper-level objective F is
close to the optimal. The query points chosen by BILBO over iterations on the upper- and lower-
level objective function are shown in Figures 1f and 1g respectively, with darker colors indicating
points sampled in earlier iterations. We observed that the queries mostly clustered around two
probable optimal solutions, and BILBO sampled the objective functions around the top-left region
until it was satisfied that it is not an optimal solution, and converged on the actual optimal solution,
demonstrating the effectiveness of BILBO.
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(a) Regret over number of queries

(b) F

(c) f

(d) µF,T

(e) µf,T

(f) F queries

(g) f queries

Figure 1: Results on BraninHoo+GoldsteinPrice experiment. (a) Comparison. (b) Upper-level ob-
jective, Branin-Hoo. (c) Lower-level objective, Goldstein-Price. (d-g) are BILBO outputs.

SMD2, SMD6, and SMD12 are adapted from the SMD suite of test problems for bilevel optimiza-
tion (Sinha et al., 2014). Details of implementation are in Appendix D.3. The input dimension of
the test problems is set to 5, with dX being 2 and dZ being 3. The difficulty increases in the order
of SMD2, SMD6, SMD12. SMD2 has convex functions and conflicting interactions, where improv-
ing the lower-level estimate worsens the upper-level objective value. This requires the algorithm
to predict lower-level optimal solutions accurately in order to obtain the optimal bilevel solution.
SMD6 also has convex functions and conflicting interactions, but with multiple lower-level opti-
mal solutions at each upper-level point (i.e., a convex valley). An algorithm must concurrently
estimate multiple lower-level optimal solutions and identify the point corresponding to the optimal
upper-level objective. Finally, SMD12 is the most challenging problem from the SMD suite, where
both levels have 3 active constraints, indicating that the optimal solution is on the boundary of the
constraints. There are also multiple optimal solutions at the lower level.

Results of the SMD experiments are shown in Figure 2. For SMD2, BILBO outperforms both
TrustedRand and Nested BO. While TrustedRand’s regret decreased quickly at the start, its rate of
decrease diminishes over time, likely because random queries are initially informative but become
less effective as the process continues. For SMD6, BILBO has the smallest regret after around
250 steps. Nested BO is unable to handle multiple lower-level optimal solutions, as it only selects
one lower-level optimal solution for each upper-level point. In comparison, the trusted sets allow
multiple optimal lower-level estimates for both BILBO and TrustedRand. For SMD12, BILBO
converges faster than TrustedRand. With 8 functions in the SMD12 problem, the decoupled setting
becomes more crucial for sample efficiency. The faster convergence of BILBO demonstrates the
effectiveness of its function query strategy in selecting more informative functions to query. The
presence of active constraints did not appear to pose any difficulties for BILBO.

4.2 REAL-WORLD PROBLEMS

Energy. We simulated a real-world problem in energy markets, where energy providers bid to supply
an amount of electricity to consumers at the upper level to maximize their profits over three time
periods. At the lower level, they optimize their operations by considering costs, demand responses to
prices, and their ability to meet changing demands over time. There are 2 upper-level variables: price
and quantity of electricity to bid, and 2 lower-level variables: the ramp limit for one power plant and
the maximum power output at each period for another power plant. The lower-level variables adjust
the characteristics of the power plants, affecting the overall optimal dispatch of electricity.
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(a) SMD2 (b) SMD6 (c) SMD12

Figure 2: Instantaneous regrets over number of queries, averaged over 5 runs, for SMD2, SMD6 and
SMD12 experiments.

The dispatching of three power plants was simulated using PyPSA, a Python library for Power Sys-
tems Analysis (Brown et al., 2018), and we formulated a lower-level objective function based on the
simulation outputs. Ideally, we seek the lowest cost combination of electricity generation, incorpo-
rating penalties to reduce wear and tear or other auxiliary concerns. More details in Appendix D.4.

Results in Figure 3 show that BILBO outperforms the other two methods, with its regret over queries
decreasing the fastest. We analyse the surrogate models learned from one run of BILBO in Fig-
ures 3b to 3e. Figures 3b and 3d, respectively, show the upper-level objective F at the lower-level
optimal solutions and the estimated upper-level objective µF,T at estimated lower-level optimal so-
lutions. We observed that µF,T approximates F well, especially at regions with high F values, and
had correctly predicted the upper-level optimal solution. Figures 3c and 3e, respectively, show the
lower-level objective f and the estimated lower-level objective µf,T at the optimal upper-level vari-
able. At this upper-level point, µf,T captures the general trend of f , where points on the right of
the image are more optimal. However, the optimal lower-level solution is at a boundary with high
discontinuity. The surrogate model was unable to model this large step and thus predicted a sub-
optimal lower-level solution, resulting in an empirical asymptotic regret bound seen in Figure 3a,
compounded by noisy observations. This may be mitigated by adding a constraint function to rep-
resent the discontinuity in the lower-level objective function, and BILBO has shown the capability
to handle active constraints effectively in previous synthetic experiments.

Figure 4: Results of chemical
process experiment. Regret over
queries.

Chemical. Chemical processes in industries such as pharmaceu-
ticals, petrochemicals, and food production often involve multi-
ple stages, each requiring parameter optimization. Bilevel op-
timization simplifies this by dividing the overall process into
smaller, more manageable problems, while still accounting for
the interactions between different stages. We used COCO sim-
ulator to simulate carbonylation of Di-Methyl Ether (DME) to
Methyl Acetate, adapted from the flowsheet provided by Chem-
Sep. The upper-level problem focuses on maximizing the yield
of Methyl Acetate at 99.9% purity through a distillation column,
which takes in a reaction mixture comprising Methyl Acetate,
unreacted DME, and by-products. This optimization depends
on the outputs from the lower-level problem, which involves the
carbonylation of DME to produce Methyl Acetate in a reactor.
Additionally, an upper-level constraint is included to ensure the
process is feasible by requiring a suitable temperature range,
where chemicals are in their correct states. There is 1 upper-
level variable: the number of levels in the distillation column,
and 3 lower-level variables: temperature of the reactor, number of heating tubes, and the diameter
of heating tubes. More details are in Appendix D.5. Results are in Figure 4, where we can see that
BILBO converges well, indicating the potential efficiency and effectiveness of BILBO in optimizing
complex industrial operations.
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(a) Regret over queries

(b) F (x, z∗(x))

(c) f(x∗, z)

(d) µF,T (x, z̄T (x))

(e) µf,T (x
∗, z)

Figure 3: Results of the energy experiment. (a) Comparison of regrets over 5 runs. (b) Upper-
level objective at optimal lower-level solutions. (c) Lower-level objective at optimal upper-level
variable. (d) Estimated upper-level objective at estimated lower-level solutions (e) Estimated lower-
level objective at optimal upper-level variable. (d) and (e) are estimated by GPs from a BILBO run.
For (b-d), we plot the optimal bilevel solution (red dot) and estimated bilevel solution (green cross).

5 FUTURE WORK

We have shown theoretically and empirically that BILBO is a regret-bounded, sample efficient al-
gorithm for noisy, constrained, and derivative-free bilevel optimization. A key direction for future
work is improving scalability to high-dimensional spaces, which is a common challenge in BO.

We currently model upper-level objective F (x, z) for (x, z) ∈ X × Z , but this can be memory
inefficient as many lower-level variables z are suboptimal and irrelevant. A more efficient approach
could involve directly modeling F (x, z∗(x)) for x ∈ X , reducing the dimension of the surrogate
model from dX × dZ to dX . This poses another challenge: incorporating the uncertainty associated
with the optimality of the lower-level solution into the uncertainty of the upper-level objective value.

Adaptive discretization (Shekhar & Javidi, 2017) may also reduce computational complexity by
reducing the effective dimension of the explored space. Discretization strategies could be integrated
with trusted sets, for example concentrating the discretizations to within the trusted sets, while
taking into account constraint and objective estimates of both upper- and lower-level problems.
Approximate surrogate models (Calandriello et al., 2019) offer another possible direction for scaling
to high-dimensional functions while preserving confidence bound estimates. The theoretical work
presented in this paper could be extended to selected approximate surrogate models.

The representation of trusted sets will need to scale effectively to higher dimensions as well. Possible
approaches could be via sampling strategies like Latin Hypercube Sampling (McKay et al., 2000)
for efficient point representation in high-dimensional spaces or using hyperrectangles to represent
the trusted set efficiently (Eriksson et al., 2019).

6 CONCLUSION

We introduced BILBO, a novel bilevel Bayesian optimization algorithm that optimizes functions on
the upper- and lower-levels simultaneously, using trusted sets to reduce the search space for query-
ing. The trusted sets are constructed using confidence bounds, from which we derived instantaneous
regret bounds for points in these sets, and lead to a sublinear cumulative regret bound in the de-
coupled setting. Our experiments also show that BILBO outperforms other bilevel optimization
baselines, especially in problems with many non-convex functions. BILBO is a significant step to-
wards a more general bilevel solver, which will enable applications to complex real-world bilevel
problems involving blackbox functions.
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A TABLE OF NOTATIONS

Bilevel definitions

Upper-level Lower-level

x Upper-level variable z Lower-level variable

X Domain of x Z Domain of z

dX Dimension of x dZ Dimension of z

F Upper-level objective function f Lower-level objective function

Cup Set of upper-level constraint func-
tions

Clo Set of lower-level constraint func-
tions

xt Selected upper-level variable to
query at time t

zt Selected lower-level variable to
query at time t

x̂T Estimated optimal upper-level vari-
able at time T

ẑt Estimated optimal lower-level vari-
able at time T

F Set of functions in a bilevel problem {F, f} ∪ Cup ∪ Clo

h Arbitrary function in F
µh,t(x, z) GP posterior mean at (x, z) for function h at time t

σh,t(x, z) GP posterior standard deviation at (x, z) for function h at
time t

rh(x, z) Instantaneous regret of function h at (x, z)

rt Instantaneous bilevel regret at time t on query point (xt, zt)

RT Cumulative regret at time T

rT Simple bilevel regret at time T based on (x̂t, ẑt)

BILBO notations

uh,t(x, z) Upper confidence bound of function h at (x, z) (Defn. 3.1)

lh,t(x, z) Lower confidence bound of function h at (x, z) (Defn. 3.1)

S+t Trusted set of feasible solutions (Defn. 3.3)

S+lo,t Trusted set of feasible solutions w.r.t. only lower-level con-
straints (Defn. 3.5)

P+
t Trusted set of optimal lower-level solutions (Defn. 3.5)

z̄t(x) Estimated optimal lower-level solution at x at timestep t
(Defn. 3.5)

ht Selected function query (Defn. 3.7)

r̄h,t Estimated regret for function h (Defn. 3.7)

B MORE PRELIMINARIES DETAILS

B.1 CLOSED-FORM POSTERIORS OF GAUSSIAN PROCESSES

For a GP defined as GPh(mh(xz), kh(xz,xz
′)) for a function h. The closed-form posterior

mean is µh,t−1(xz) ≜ mh(xz) + kh,t−1(xz)
⊤(Kh,t−1 + σ2I)−1(yh,t−1 −mh,t−1) and variance

σ2
h,t−1(xz) ≜ kh(xz,xz)−k⊤

h,t−1(Kh,t−1+σ2I)−1k−1
h,t−1 where mh,t−1 ≜ [mh(x, z)]xz∈xz:t−1 ,

kh,t−1(xz) ≜ [kh(xz,xz
′)]xz′∈xz:t−1 , and Kh,t−1 ≜ [kh(xz,xz

′)]xz,xz′∈xz:t−1 .

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B.2 MAXIMUM INFORMATION GAIN

Maximum information gain on a function h from Vakili et al. (2021), where d ≜ dX + dZ :

• Squared Exponential kernel: O(logd+1(T ))

• Matérn kernels with ν > 1
2 : O(T

d
2ν+d log

2ν
2ν+d (T ))

C PROOFS

C.1 PROOF OF LEMMA 3.4

Proof. ∀c ∈ Cup ∪ Clo, (x, z) ∈ S+t ,

rc,t(x, z) ≜ max(0,−c(x, z)) From Equation 2.7
≤ max(0,−lc,t(x, z)) from Corollary 3.2

≤ max(0, uc,t(x, z)− lc,t(x, z)) from (x, z) ∈ S+t
≤ 2β

1/2
t σc,t−1(x, z). from Definition 3.1

C.2 PROOF OF LEMMA 3.6

Lemma C.1. ∀x ∈ {x | (x, z) ∈ P+
t },

uf,t(x, z̄t(x)) ≥ uf,t(x, z
∗(x)), (C.1)

where z̄t(x) ≜ argmaxz∈S+
lo,t(x)

uf,t(x, z) is the estimated optimal lower-level solution at x, and

z∗(x) is the actual optimal lower-level solution at x.

Proof. By definition of z̄t(x), ∀(x, z) ∈ S+lo,t, uf,t(x, z̄t(x)) ≥ uf,t(x, z).

Let Slo ≜ {(x, z) | c(x, z) ≥ 0 ∀c ∈ Clo} be the unknown set of feasible solutions w.r.t lower-level
constraints. Then, (x, z∗(x)) ∈ S+lo,t, because (x, z∗(x)) ∈ Slo by definition and Slo ⊆ S+lo,t from
Corollary 3.2.

Finally, by Definition 3.5 of P+
t , P+

t ⊆ S+lo,t.

Main proof for instantaneous regret bound on f in Lemma 3.6.

Proof. ∀(x, z) ∈ P+
t ,

rf,t(x, z) = f(x, z∗(x))− f(x, z) From Equation 2.6
≤ uf,t(x, z

∗(x))− lf,t(x, z) from Corollary 3.2
≤ uf,t(x, z̄t(x))− lf,t(x, z). from Lemma C.1

For z = z̄t(x),

rf,t(x, z) ≤ uf,t(x, z̄t(x))− lf,t(x, z̄t(x))

= 2β
1/2
t σf,t−1(x, z̄t(x)) from Definition 3.1

and for z ̸= z̄t(x),

rf,t(x, z) ≤ uf,t(x, z̄t(x))− lf,t(x, z)

≤ uf,t(x, z̄t(x))− uf,t(x, z) + 2β
1/2
t σf,t−1(x, z) from Definition 3.1

≤ uf,t(x, z̄t(x))− lf,t(x, z̄t(x)) + 2β
1/2
t σf,t−1(x, z) from (x, z) ∈ P+

t

= 2β
1/2
t σf,t−1(x, z̄t(x)) + 2β

1/2
t σf,t−1(x, z). from Definition 3.1
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Combining both cases, we get the instantaneous regret for lower-level objective function as

rf,t(x, z) ≤ 1z̸=z̄t(x)2β
1/2
t σf,t−1(x, z̄t(x)) + 2β

1/2
t σf,t−1(x, z).

C.3 PROOF OF LEMMA 3.8

Lemma C.2.
(x∗, z∗) ∈ S+t ∩ P+

t ,

where (x∗, z∗) is the optimal bilevel solution.

Proof. Let the unknown feasible set be S ≜ {(x, z) | c(x, z) ≥ 0 ∀c ∈ Cup ∪ Clo}. Since
(x∗, z∗) ∈ S by definition and S ⊆ S+t by Corollary 3.2, we have (x∗, z∗) ∈ S+t .

Let unknown feasible set w.r.t. lower-level constraints be Slo ≜ {(x, z) | c(x, z) ≥ 0 ∀c ∈ Clo}.
Similarly, we have (x∗, z∗) ∈ Slo ⊆ S+lo,t. Since uf,t(x

∗, z∗) ≥ f(x∗, z∗) ≥ f(x∗, z̄t(x
∗)) ≥

lf,t(x
∗, z̄t(x

∗)), we have (x∗, z∗) ∈ P+
t .

(x∗, z∗) ∈ S+t and (x∗, z∗) ∈ P+
t ⇒ (x∗, z∗) ∈ S+t ∩ P+

t

Lemma C.3. For some small δ > 0, with probability at least 1 − δ, the instantaneous upper-level
objective regret is upper bounded at the query point,

rF (xt, zt) ≤ 2β
1/2
t σF,t−1(xt, zt).

Proof.

rF (xt, zt) ≜ F (x∗, z∗)− F (xt, zt) From Equation 2.5
≤ uF,t(x

∗, z∗)− lF,t(xt, zt) from Corollary 3.2
≤ max

(x,z)∈S+
t ∩P+

t

uF,t(x, z)− lF,t(xt, zt) from Lemma C.2

= uF,t(xt, zt)− lF,t(xt, zt) from xt, zt ≜ argmaxS+
t ∩P+

t
uF,t

= 2β
1/2
t σF,t−1(xt, zt). From Definition 3.1

Lemma C.4. Given the estimated regret of the selected function query ht at the query point by
Definition 3.7, the instantaneous regret rt is upper bounded,

rt ≤ r̄ht,t(xt, zt).

Proof. Given Definition 3.7, Lemma C.3, Lemma 3.4, and Lemma 3.6, ∀h ∈ F , we can see that
r̄h,t(xt, zt) ≥ rh(xt, zt). Then,

rt ≜ max
h∈F

rh(xt, zt) From Equation 2.4

≤ max
h∈F

r̄h,t(xt, zt)

= r̄ht,t(xt, zt).

Main proof for instantaneous regret bound in Lemma 3.8

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. By Lemma C.4, if ht = f ,

rt ≤ r̄f,t(xt, zt)

= 1zt ̸=z̄t(xt)2β
1/2
t σf,t−1(xt, z̄t(xt)) + 2β

1/2
t σf,t−1(xt, zt) From Definition 3.7

≤ 4β
1/2
t max(σf,t−1(xt, z̄t(xt)), σf,t−1(xt, zt))

= 4β
1/2
t σf,t−1(xt, zt),

where the last line holds because we reassign zt ≜ z̄t(xt) if σf,t−1(xt, z̄t(xt)) ≥ σf,t−1(xt, zt) as
in Equation 3.8.

Else if ht ∈ F/{f},

rt ≤ r̄ht,t(xt, zt)

= 2β
1/2
t σht,t−1(xt, zt)

≤ 4β
1/2
t σht,t−1(xt, zt).

Combining, we obtain

rt ≤ 4β
1/2
t σht,t−1(xt, zt)

≤ 4β
1/2
t max

h∈F
σh,t−1(xt, zt).

C.4 PROOF OF THEOREM 3.9

Proof. From Lemma 3.8 and by Cauchy-Schwarz inequality, we derive the cumulative regret as

R2
T ≤ T

T∑
t=1

r2t

≤ T

T∑
t=1

16βt max
h∈F

σ2
h,t−1(xt, zt)

≤ 4TβT

∑
h∈F

∑
t∈T (h)

4σ2
h,t−1(xt, zt)

≤ 4TβT

∑
h∈F

Chγh,T (h)

≤ 4TβT

∑
h∈F

Chγh,T

≤ 4T |F|βT max
h∈F

Chγh,T ,

where T (h) contains the timesteps where function h was queried, so γT (h) ≤ γT , and

RT ≤
√
4T |F|βT max

h∈F
Chγh,T ,

where Ch ≜ 8/ log(1 + σ−2
h ), and γh,T is the maximum information gain from noisy observations

of h at (xt, zt),∀t ∈ [T ]. The proof methodology follows Srinivas et al. (2010).
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experiment length scale prior dX dZ discrete points per dimension

BraninHoo+GoldsteinPrice 0.2 1 1 100
SMD2 0.7 2 3 25
SMD6 0.2 2 3 25

SMD12 0.4 2 3 16
Energy 0.4 2 2 15

Chemical 0.8 1 3 10

Table 1: Experiment parameters

C.5 PROOF OF LEMMA 3.10

Proof.

rT ≤ min
(xt,zt)∈{(xt′ ,zt′ )}t′∈[T ]

max
h∈F

r̄h,t(xt, zt) From Equation 3.9 and Lemma C.4

≤ 1

T

T∑
t=1

max
h∈F

r̄h,t(xt, zt)

≤ 1

T

T∑
t=1

4β
1/2
t max

h∈F
σh,t−1(xt, zt) From Appendix C.3

≤
√
4|F|βT max

h∈F
Chγh,T /T . From Appendix C.4

D EXPERIMENT DETAILS

D.1 BASELINE DETAILS

TrustedRand implements a vanilla variant of the trusted sets S+t and P+
t , where mean µ is used

instead of upper confidence bound u. Query points are then randomly sampled from the trusted set
variants.

Nested uses the sequential least squares programming (SLSQP) optimizer for lower-level optimiza-
tion and BO with upper confidence bound acquisition function Srinivas et al. (2010) at the upper-
level. The lower-level problem is solved to convergence at each upper level query point. Note that
SLSQP can only work on continuous functions.

D.2 IMPLEMENTATION DETAILS

GP with Matérn 5/2 kernel was used, and the GP hyperparameters were automatically tuned at
each iteration using maximum likelihood estimation on the past observations. The hyperparameters
include length scale and prior mean. The prior mean initialized to 0 for all experiments since the
output is already normalized. The initial length scale and other parameters for each experiment are
set according to Table 1. For SMD2, energy, and chemical experiment, we sampled from P̄t ≜
{(x, z̄t(x)) ∀x ∈ X} instead of P+

t as it was empirically found to be better.

D.3 EDITS TO SMD2, SMD6, SMD12

The selected SMD problems were adapted so the input ranges from 0 to 1, and the outputs have a
mean of 0 and standard deviation of 1, for parameters p = 1, r = 1, q = 2, while ensuring that their
characteristics and optimal points remain the same. The upper- and lower-level objective functions
of SMD each have 3 components. The following only records edits to the original SMD problems.
Refer to Sinha et al. (2014) for the original SMD problems.

Let x = [x̂u1, x̂u2] and z = [x̂l1, x̂l2], x, z ∈ [0, 1]d.
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SMD2. To bound the output for the given domain, we set

F3 ≜ −
r∑

i=1

(xi
u2)

2 −
r∑

i=1

(xi
u2 − log(0.99 ∗ xi

l2 + 0.01))2,

f3 ≜
r∑

i=1

xi
u2 − log(0.99 ∗ xi

l2 + 0.01)2,

where x̂u1 ≜ (xu1 + 1)/3, x̂u2 ≜ (xu2 + 5)/6, x̂u1 ≜ (xl1 + 1)/3, and x̂l2 ≜ xl2/e.

SMD6. The different functions have imbalanced ranges. To balance the different functions in f , we
set

f̂1 ≜ f1/d

f̂2 ≜ f2/d
2

f̂3 ≜ f3/d,

where d = 3, and use f̂ ≜ f̂1 + f̂2 + f̂3 as the lower-level objective function. x̂b ≜ (xb + 1)/3, for
xb ∈ {xu1, xu2, xl1, xl2}.
SMD12. To bound the outputs in the domain, we set

F3 ≜
r∑

i=1

(xi
u2 − 2)2 +

r∑
i=1

tanh |xi
l2| −

r∑
i=1

(xi
u2 − tanhxi

l2)
2

f3 ≜
r∑

i=1

(xi
u2 − tanhxi

l2)
2

We also edited the first upper level constraint to xi
u2 − tanhxi

l2 ≥ 1, ∀i ∈ {1, ..., r}, so it becomes
an active constraint. One of the lower level constraint was also edited to bound its output range:
xj
l1 −

∑q
i=1,i̸=j(x

i
l1)

3 ≥ 0 ∀j ∈ {1, ..., q}. We normalize x̂u1 ≜ (xu1 + 5)/15, x̂u2 ≜ (xu2 +

1)/2, x̂l1 ≜ (xl1 + 5)/15, and x̂l2 ≜ (xl2 + π/2)/π.

After the following adaptations, we take the mean over input dimensions to ensure that function
values do not increase with dimensions. Finally, we normalize the outputs.

D.4 ENERGY MARKET

Let x ≜ [x1,x2], where x1 denotes a price to bid and x2 denotes a quantity in MW to supply at bid
price. x1 ∈ (0.01, 0.5),x2 ∈ (200, 500). We simulate a network with 3 generators that has to fulfill
an estimated demand schedule for 3 periods. The generators’ parameters are given in Table 2, where
z ≜ [z1, z2] are the lower-level variables. z1 ∈ (0.0, 0.2), z2 ∈ (0.5, 1.5). These two variables
were selected as a proxy for auxiliary concerns such as efficiency and maintainence costs, on top of
operational costs.

The lower-level objective function is denoted as

f(x, z) ≜ −cost(x, z)− 2.5 ∗ wr(z1)− 1.5 ∗ ww(z2),

where cost(x, z) is the operational cost of producing z2MW of power, simulated by PyPSA.
wr(z1) ≜ exp(5∗z1)−1 and ww(z2) ≜ −(log(−0.75∗z2+1.15)− (−0.75∗z2+1.15))−0.797,
where wr and ww are different nonlinear weighting functions applied to z. If dispatch is not feasible
at a point, we set the lower-level objective value with an arbitrary large negative number, and the
upper-level objective value at 0.

The upper-level objective function measures profit as

F (x, z) ≜ x1 ∗ x2 ∗ df(xt)− cost(x, z),

where df(xt) ≜ min(1, exp(−10x1 +0.25)) returns a factor that simulates the demand response of
consumers. This implies a disincentive for providers to bid at high prices, because consumers might
choose to reduce their electricity usage or look for alternative providers.

We discretized the input space into 15 at each dimension.
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type nominal power marginal cost quadratic marginal cost ramp limit max p factor

coal 200 0.005 0.0005 z1 -
gas 100 0.015 0.0005 0.5 -

wind 60 0.02 0.005 - z2

Table 2: Parameters input into PyPSA generator. ‘max p factor‘ refer to ‘p max pu‘, the maximum
power at a snapshot given as a fraction of nominal power.

Figure 5: Flowsheet of chemical process. R-101 is the reactor, and C101 is the distillation column.

D.5 CHEMICAL PROCESS

The flowsheet used is shown in Figure 5, where the output of reactor R101 contains a mix of Methyl
Acetate, unreacted DME, and other by-products, and the distillation column C101 separates these
products to obtain high purity Methyl Acetate. The flowsheet was adapted from ChemSep, where
the recycle streams have been removed to simplify the process. CO and DME are fed in at a fixed
flow rate and concentration for all experiments, as indicated in the figure. The distillation feed is
always at level 2, and we fixed the output concentration of Methyl Acetate at 99.9%. Note that we
can simulate the reactor R101 without the column C101.

The upper- and lower-level parameters to be optimized are defined in Table 3. We discretized the
input space into 10 at each dimension, and the variables are normalized to [0, 1].

Let simR101(x, z) be the simulated mass flow of Methyl Acetate (kg/s) at the output of the reactor
R101, and simC101(x, z) be the simulated mass flow of Methyl Acetate (kg/s) at the MeAce output
of the column C101.

The lower-level objective function is denoted as

f(x, z) ≜ simR101(x, z)− 1e-3 ∗ z41,
where the second term is a penalty on higher temperatures to account for energy costs.

The upper-level objective function is then denoted as

f(x, z) ≜ simC101(x, z)− 1e-4 ∗ x4
0,

where the second term is a penalty on more levels in the distillation column as it is associated with
higher costs. The higher costs could be due to maintenance, energy consumption or equipment cost.

D.6 COMPUTATIONAL RESOURCES

The experiments in this paper were done on a computer with AMD Ryzen 7 5700X 8-Core Processor
and 64 GB of RAM.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

name min max normalized symbol

Number of levels in distillation column 5 23 x0 ∈ [0, 1]
Temperature of reactor (K) 455 500 z0 ∈ [0, 1]

Number of heating tubes in reactor 600 1500 z1 ∈ [0, 1]
Diameter of heating tubes (m) 0.02 0.065 z2 ∈ [0, 1]

Table 3: Parameters of the chemical experiment.
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