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ABSTRACT

The goal of few-shot action recognition is to recognize actions in video sequences
for which there exist only a few training samples. The challenge is to adapt a
base model effectively and efficiently when the base and novel data have signifi-
cant distributional disparities. To this end, we learn a model of a temporal causal
mechanism from the base data by variational inference. When adapting the model
by training on the novel data set we hold certain aspects of the causal mechanism
fixed, updating only auxiliary variables and a classifier. During this adaptation
phase, we treat as invariant the time-delayed causal relations between latent causal
variables and the mixing function that maps causal variables to action represen-
tations. Our experimental evaluations across standard action recognition datasets
validate our hypothesis that our proposed method of Temporal Causal Mechanism
Transfer (TCMT) enables efficient few-shot action recognition in video sequences
with notable performance improvements over leading benchmarks.

1 INTRODUCTION

Supervised action recognition continues to be an active and productive area of research (Xing et al.,
2023b; Ahn et al., 2023; Zhou et al., 2023; Zhang et al., 2023). However, given the immense variety
of possible actions in the real world, there is a natural challenge of learning action representations
with little training data. One promising approach for overcoming this lack of labeled data is few-shot
learning (Cao et al., 2020; Perrett et al., 2021; Thatipelli et al., 2022). Few-shot learning involves
training a model on a large (base) dataset, and then using a small number of samples from another
(novel) dataset to update the model (e.g., tune parameters). We apply few-shot learning to action
recognition, where the action labels in the novel data differ from the base data, and these datasets
can be drawn from significantly different distributions.

One popular approach to few-shot action recognition is to tune a feature extractor and/or classifier,
as done by ORViT (Herzig et al., 2022), SViT (Ben Avraham et al., 2022) and ActionCLIP (Wang
et al., 2021). Few-shot action recognition can be made more efficient by fixing parts of the learned
model that do not get updated during the adaptation phase, as long as this can be done without
sacrificing model performance. For example, VideoPrompt (Ju et al., 2022) tunes a feature extractor
only partially and VL Prompting (Rasheed et al., 2023) only tunes an ancillary module on the novel
data. Several metric-based approaches have been proposed in which a metric space is learned from
base data and assumed to transfer to novel data without adjustment (Wang et al., 2023c; Xing et al.,
2023a). Generally, a major challenge is to determine which aspects of the learned model should be
held fixed and which should be updated for efficient and effective adaptation, which depends on the
distributional disparities between the base and novel data.

The causes and nature of distributional disparities are largely uninvestigated in the current literature
on few-shot action recognition. If we can isolate the factors that cause the distributional disparities,
we can update only that part of our model during adaptation. To this end, our approach builds on
recent advances in causal representation learning (Schölkopf et al., 2021; Huang et al., 2022; Feng
et al., 2022; Kong et al., 2022; Xie et al., 2023). We learn a generative model which consists of a
transition function that models the transitions of latent causal variables and a mixing function that
models how the latent variables determine observable action representations over time. At each
time instant the causal variables evolve according to a transition function, and the mixing function
generates the action representation accordingly. However, formal descriptions of the factors that
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Figure 1: Motivating example of Temporal Causal Mechanism Transfer (TCMT) for few-shot action recog-
nition (The original PDF files for this Figure are available in zip of supplementary, providing additional and
clearer illustration) : (a) shows the UMap visualization of the action feature embeddings obtained by a fixed
ViT-B/16 backbone (Radford et al., 2021) on the base data (red) and novel data (blue) in the Sth-Else dataset.
The obvious distribution disparities demonstrate the difficulty of few-shot learning for action recognition; (b)
shows an example of pairplot of the values of latent causal variables from two trained models, one trained only
on the base data (red) and the other only on the novel data (blue) from Sth-Else. (c) shows a pairplot of UMap
projections for action feature embeddings x and latent variables z from two models: one trained on base data
(red) and the other on novel data (blue) from the Sth-Else dataset. The near-perfect alignment in (b) and (c)
supports our hypothesis of invariant transition and mixing functions across base and novel data.

cause the disparities cannot be done without further assumptions. Our central assumption is that the
base data and novel data share certain aspects of the temporal causal mechanism – namely, transition
function and mixing function – and that an auxiliary variable captures the disparate aspects of the two
data distributions. We therefore propose a Temporal Causal Mechanism Transfer (TCMT) approach,
in which we assume that the distribution discrepancies between the base and novel data stem from
an auxiliary variable, allowing us to update this auxiliary variable along with the action classifier
during adaptation while holding the transition function and mixing function fixed.

Figure 2a illustrates an example of the generative model we use to describe the temporal causal
process. The time-delayed causal relations of the N -dimensional latent causal variables (z) are
represented by the arrows going left-to-right. The transition from zn,t (n ∈ [1, N ]) from t = 1 to
t = 2 is influenced by the auxiliary context variable θt. At time t, the action representations xt are
generated by zt as represented by the downward arrows at the bottom. The sequence-level action
class y is predicted from z. Figure 2b demonstrates that modeling distribution disparities using
causal representation can lead to a more efficient and effective adaptation to novel data.
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Figure 2: (a) The temporal causal process underlying the data
generation for t ∈ {1, 2}. (b) The top-1 accuracy obtained by
our proposal versus a baseline model (TCMT-FT) in which
all parts of the model are updated on the novel data, demon-
strating that TCMT is able to achieve better outcomes with
fewer training epochs.

Figure 1 showcases a motivating example
of a few-shot action recognition task on
the Sth-Else dataset (Materzynska et al.,
2020) with TCMT. The Sth-Else dataset
is marked by large distribution dispari-
ties between the base and novel data, as
seen in Figure 1a, making few-shot action
recognition task challenging. We learned
two causal mechanisms for comparisons
— one from the base data and the other
from the novel data. As indicated in Fig-
ure 1b, the near-perfect alignment was
found between the transitions of z from
the two causal mechanisms, thus validat-
ing our hypothesis that the transition func-
tion can remain invariant. Similarly, Fig-
ure 1c validates our assumption that the
mixing function can remain fixed, as ev-
idenced by the overlap of the learned mix-
ing functions on the base and novel data. Lastly, Figure 2b highlights the efficiency and effectiveness
of TCMT at handling the distributional disparities on Sth-Else.

Contributions. (1) We improve on existing methods for few-shot action recognition by using a
generative model based on causal representation learning. (2) Our approach, Temporal Causal
Mechanism Transfer (TCMT), centers on learning a temporal causal mechanism. The mechanism’s
transition function that governs changes to the latent causal variables and it’s mixing function that
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generates action representations do not need to be updated during adaptation, so that only the aux-
iliary context variable that captures the distribution shifts between the base and novel data and the
classifier need to be updated. (3) We validate TCMT through experimental results and comprehen-
sive ablation studies, showing that TCMT can achieve accuracy comparable to or better than leading
benchmarks with less parameter updating.

2 METHODOLOGY

A typical few-shot setting has two disjoint sets of data; base and novel. Let D = (vi,yi)
I
i=1 denote

the base data used for initial training, where vi is the i-th video sequence and yi ∈ Cbase is the
corresponding action label in the class of base labels. The novel data is comprised of two parts, the
support set used for updating the model S = (vj ,yj)

J
j=1 where yj ∈ Cnovel, and the query set used

for inference Q = (vj′ ,yj′)
J′

j′=1 where yj′ ∈ Cnovel. Notably, there only exist limited samples for
S, e.g., J = 5, and Cbase ∩ Cnovel = ∅. The goal of few-shot action recognition is to correctly
identify yj′ for the samples in Q using a model initially trained on D and further updated on S.

2.1 GENERATIVE MODEL

The generative model of our temporal causal process, as shown in Fig. 2, is assumed the action
representations and action labels are each generated from a set of latent causal variables z. Let
z = {zt}Tt=1 denote the latent causal variables at time steps t = 1 . . . T and let x = {xt}Tt=1 denote
the action representations. We assume that the action representations are generated by a non-linear,
invertible mixing function over the latent variables:

xt = g(zt) (1)
and the action label predictions are causally determined by the latent variables via a classifier:

y = e(z) (2)

In our model there are N causal variables. For n ≤ N the value of latent variable zn,t ∈ zt at time
t is determined by the values of its time-delayed parents Pa(zn,t) ⊆ zt−1 at the previous time step
(i.e., the set of latent factors that directly cause zn,t) as well as auxiliary variable θt and the noise
term ϵn,t:

zn,t = fn(Pa(zn,t),θt, ϵn,t) (3)
Here f is referred to as the transition function and is assumed to be invertible. Note that Pa(zn,t),
θt, and ϵn,t are mutually independent, and we assume that zn,t and zn′,t are conditionally indepen-
dent conditioned on zt−1 for all such pairs of latent causal variables.

Looking ahead, during the adaptation phase for learning on the support set S, we learn a new se-
quence of the auxiliary context variables θ and updated weights for classifier e while the mixing
function g and transition function f will be held fixed (not updated). This reflects our hypothe-
sis that certain aspects of the temporal causal process will be invariant across the base and novel
datasets.

2.2 NETWORK

Given base data D and support data S with action representations x, we can learn a model for
action recognition based on the temporal causal process by extending the framework of Conditional
Variational Auto-Encoders (CVAE) (Sohn et al., 2015). See Table 14 in the appendix for details on
our network architecture.

Temporal Prior Estimation by Prior Network. First, observe that we can express the proba-
bility distribution of zt in terms of conditional transition priors p(zn,t|zn,t−1,θt). However, we
do not have an explicit form for p(zt|zt−1,θt) and it must be learned. Since the transition func-
tion f is invertible, we can estimate the inverse transition function such that the distribution of
f̂−1
n (ẑn,t,Pa(ẑn,t),θt) matches an assumed noise distribution p(ϵn,t|θt). We can then use the in-

verse transition function to estimate the priors:

p(ẑn,t|ẑn,t−1,θt) = p
(
f̂n

−1
(ẑn,t,Pa(ẑn,t),θt)

)
|∂f̂n

−1

∂ẑn,t
| (4)
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Given that zn,t and zn′,t are conditionally independent conditioned on zt−1 for all latent causal
variables n and n′, we can construct an estimate for zt by:

p(ẑt|ẑt−1,θt) =

N∏
n=1

p(ϵ̂n,t|θt)|
∂f̂n

−1

∂ẑn,t
| (5)

For a detailed derivation please refer to Appendix A.1.

Temporal Posterior Estimation by Encoder. We express the posterior using q(ẑt|xt). We as-
sume zt is conditionally independent of all zt′ for t′ ̸= t conditioned on x,and therefore we can

decompose the joint probability distribution of the posterior by q(ẑ|x) =
T∏

t=1
q(ẑt|xt). We choose

to approximate q by an isotropic Gaussian characterized by mean µt and covariance σt. We use the
encoder portion of our CVAE to learn the posterior by an MLP followed by leaky ReLU activation:

ẑt ∼ N (µt, σt) where µt, σt = LReLU(MLP(xt)) (6)
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Figure 3: Overall framework of TCMT. The arrows indicate in-
formation flow. During the training on D, we first learn the poste-
rior ẑ through the encoder given the action representations x from
a video sequence v. The prior network then outputs an estimate
of the noise model to estimate the temporal prior. The sequence
of context variables θ serves as input for the prior network along
with ẑ. The decoder reconstructs the action representation x̂ and
the classifier predicts the action class ŷ based on the latent vari-
ables. Note that only θ and the classifier network are updated dur-
ing adaptation on S while the rest of the model remains fixed. Dur-
ing inference, we sample ẑ from the encoder and predict the action
class ŷ using our classifier e(ẑ).

Action Representation Reconstruc-
tion by Decoder. The decoder por-
tion of our CVAE models the mixing
function g as it reconstructs an esti-
mate of the action representations x̂t

from the estimated latent causal vari-
ables ẑt sampled from the estimated
posterior. We implement the decoder
using a stacked MLP followed by
leaky ReLU activation.

x̂t = LReLU(MLP(ẑt)) (7)

Classifier. We train a classifier for
each video from the sequence of la-
tent variables. Our classifier consists
of an MLP:

ŷ = MLP(Concat(ẑ)) (8)

where Concat(ẑ) concatenates
z1, . . . , zT along the time dimension.

Context Network for θ modeling.
Since θ is not directly observable
from the real-world videos, we use
a two-layer ConvLSTM (Shi et al.,
2015) that takes x as input to model
θ. At time t we define θt as:

θt = ConvLSTM(xt,θt−1) (9)

2.3 LEARNING AND INFERENCE

Loss Functions. Our overall loss function for action recognition combines the classification loss
and evidence lower bound (ELBO):

L = LELBO + Lcls (10)

The ELBO loss combines the reconstruction loss from using our decoder to estimate xt with the
KL-divergence between the temporal posterior and temporal prior.

LELBO =

T∑
t=1

(
LRecon(xt, x̂t)− β

N∑
n=1

LKLD
)

(11)
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where the KL divergence is

LKLD = Eẑn,t∼q log q (ẑn,t|xt)− log p(ẑn,t|ẑn,t−1,θt) (12)

Here, LRecon measures the discrepancy between xt and x̂t using binary cross-entropy, and β acts as
a hyperparameter that balances the reconstruction loss and KL-divergence.

For the classification loss, we examine both the cross-entropy loss using a one-hot encoding of y as
well as the contrastive loss using a text embedding of y. With cross-entropy loss,

Lcls = −Eŷ

(
one-hot(y) · log(softmax(ŷ))

)
(13)

and with NCE loss (Gutmann & Hyvärinen, 2010) with a temperature parameter τ ,

Lcls = −
∑
i

log
exp(sim(ŷi, embed(yi))/τ)∑

m
exp(sim(ŷi, embed(ym))/τ)

(14)

where sim(·, ·) is the cosine similarity between the text embedding of the action label and our
prediction for the ith video sequence. When we use cross-entropy for classification loss we denote
our model by TCMTH , and use TCMTC when using NCE loss.

Adaptation. After training on the base data D, we freeze the weights of the encoder, decoder, and
prior network so that the learned functions f and g remain fixed. When updating by training on
the novel data in S only the weights associated with the context network and classifier network are
updated.

Inference. To perform inference we sample ẑ according to Eq. 6 using our encoder, and we either
choose the maximum value (highest probability) from the prediction ŷ or choose the label whose
text embedding maximizes cosine similarity.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We carry out two types of few-shot learning experiments; all-way-k-shot and 5-way-k-shot. In all-
way-k-shot we try to classify all action classes in the class for the novel dataset (Cnovel), while in
5-way-k-shot learning we only try to estimate 5 label classes at a time in a series of trials. The
number of shots (k) refers to the number of training samples in S available for each action label.
Once we partition our data into base set D and novel set S ∪Q, the number k determines how many
samples for each action class we choose for S and the rest is used for the query set Q.

Datasets. For the experiments that perform training and testing on the Sth-Else dataset, we use
the official split of data (Materzynska et al., 2020; Herzig et al., 2022; Ben Avraham et al., 2022).
Similarly, for experiments using other datasets, we split the data into D, S, and Q in accordance with
the prior work we use as benchmarks, as described late. The other datasets we use for novel data are
SSv2 (Goyal et al., 2017), SSv2-small (Zhu & Yang, 2018), HMDB-51 (Kuehne et al., 2011), and
UCF-101 (Soomro et al., 2012).

Performance Measure. In all experiments we compare the Top-1 accuracy, i.e., the maximum
accuracy on any action class, of TCMT against leading benchmarks for few-shot action recognition.
The results of the top-performing model are given in bold, and second-best are underlined.

Implementation Details. In each experiment there is a backbone used to extract the action rep-
resentations xt used for training, and in all experiments the backbone is either ResNet-50 (He
et al., 2016) or ViT-B/16 (Radford et al., 2021) trained on the base data set D, where the choice
of backbone matches what was used in the benchmark experiments. We use the AdamW optimizer
Loshchilov & Hutter (2019) and cosine annealing to train our network with a learning rate initial-
ized at 0.002 and weight decay of 10−2. For all video sequences we use T = 8 uniformly selected
frames and to compute the ELBO loss we choose β = 0.02 to balance the reconstruction loss and
KL-divergence. Also we set τ = 0.07 for the NCE loss. For a detailed summary of our network
architectures see Table 14 in the appendix. Our models are implemented using PyTorch, and exper-
iments are conducted on four Nvidia GeForce 2080Ti graphics cards, supplied with 44 GB memory
in total.
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3.2 BENCHMARK RESULTS

Sth-Else Experiments. Table 1 shows two experiments against benchmarks for all-way-k-shot
learning using the ViT-B/16 backbone for the Sth-Else dataset. In the first experiment (top) we
compare TCMTH to leading benchmarks on Sth-Else that use cross-entropy loss, ORViT and
SViT (Herzig et al., 2022; Ben Avraham et al., 2022). In the second experiment (bottom) we com-
pare TCMTC to the state-of-the-art methods with vision-language learning, ViFi-CLIP and VL-
Prompting (Rasheed et al., 2023). Observe that TCMTC and TCMTH had the highest accuracy in
both experiments. TCMT outperforms all four leading benchmarks by amounts ranging from 1.4
to 3.6 percentage points. For this dataset we see the greatest improvement for k = 5, improving
from 34.4 to 37.6 and from 44.9 to 48.5 over the leading benchmarks, with smaller but significant
improvements for k = 10. Also, Fig. 4 further shows that TCMT requires a smaller number of
parameters to be updated during transfer.

Sth-Else
Backbone 5-shot 10-shot

ORViT ViT-B/16 33.3 40.2
SViT ViT-B/16 34.4 42.6
TCMTH ViT-B/16 37.6 44.0
ViFi-CLIP ViT-B/16 44.5 54.0
VL Prompting ViT-B/16 44.9 58.2
TCMTC ViT-B/16 48.5 59.9

Table 1: Comparing TCMT to benchmarks for all-way-k-
shot learning on the Sth-Else dataset.
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Figure 4: Comparing model performance for all-way-
k-shot learning with k = 5 on the Sth-Else dataset
versus number of parameters updated during adapta-
tion.
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Figure 5: Comparing performance of TCMTC against VL-Prompting across all action classes on the Sth-Else
dataset.
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Label: Dropping something behind something                   Prediction: Dropping something behind something

t = 1 t = 3 t = 6 t = 8

t = 1 t = 3 t = 6 t = 8t = 1 t = 3 t = 6 t = 8
Label: Pulling two ends of sth but nothing happens      Prediction: Pulling two ends of sth but nothing happens

t = 1 t = 3 t = 6 t = 8
Label: Plugging sth into sth as you remove your hand Plugging sth into sth as you remove your hand

t = 1 t = 3 t = 6 t = 8
Label: Lifting a surface with something on it Prediction: Moving a part of something

t = 1 t = 3 t = 6 t = 8t = 1 t = 3 t = 6 t = 8
Label: Burying something in something                   Prediction: Moving a part of something

Figure 6: TCMT predictions on six example videos from the Sth-Else dataset.
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Fig. 5 shows that TCMT outperforms VL-Prompting on the majority of action classes. Notably,
TCMT exceeds the VL prompt in 72 out of 86 action classes, such as “plugging something into
something” and “spinning so it continues spinning.” We also note significant improvements in other
categories, including “approaching something with something” and “pulling two ends of something
but nothing happens”. However, TCMT does have some limitations. Specifically, VL-Prompting
surpasses our method in label classes like “burying something in something” and “lifting a surface
with something on it”.

Fig. 6 shows several examples in which TCMTC correctly predicts the four actions but misclassifies
two videos of “lifting a surface with something on it”, and “Burying something in something” as
“Moving a part of something”.

All-way-k-shot Experiments. Table 2 and Table 3 show the experimental results using the
ViT-B/16 backbone comparing TCMTC to leading benchmarks for all-way-k-shot learning for
k ∈ {2, 4, 8, 16}. For all-way-k-shot learning, our benchmarks are: ActionCLIP (Wang et al.,
2021), XCLIP and XFLORENCE (Ni et al., 2022), VideoPrompt (Ju et al., 2022), VL Prompting
and ViFi-CLIP (Rasheed et al., 2023), and VicTR (Kahatapitiya et al., 2023).

Table 2: Comparing TCMTC to benchmarks for all-way-k-shot on the HMDB-51 and UCF-101 datasets.

HMDB-51 UCF-101
Backbone 2-shot 4-shot 8-shot 16-shot 2-shot 4-shot 8-shot 16-shot

ActionCLIP ViT-B/16 47.5 57.9 57.3 59.1 70.6 71.5 73.0 91.4
XCLIP ViT-B/16 53.0 57.3 62.8 64.0 70.6 71.5 73.0 91.4
VideoPrompt ViT-B/16 39.7 50.7 56.0 62.4 71.4 79.9 85.7 89.9
ViFi-CLIP ViT-B/16 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7
VL Prompting ViT-B/16 63.0 65.1 69.6 72.0 91.0 93.7 95.0 96.4
VicTR ViT-B/16 60.0 63.2 66.6 70.7 87.7 92.3 93.6 95.8
TCMTC ViT-B/16 65.8 70.2 72.5 75.7 90.6 94.7 96.2 98.5

Table 3: Comparing TCMTC to benchmarks for all-way-k-shot on the SSv2 dataset.

SSv2
Backbone 2-shot 4-shot 8-shot 16-shot

ActionCLIP ViT-B/16 4.1 5.8 8.4 11.1
XCLIP ViT-B/16 3.9 4.5 6.8 10.0
XFLORENCE ViT-B/16 4.2 6.1 7.9 10.4
VideoPrompt ViT-B/16 4.4 5.1 6.1 9.7
ViFi-CLIP ViT-B/16 6.2 7.4 8.5 12.4
VL Prompting ViT-B/16 6.7 7.9 10.2 13.5
TCMTC ViT-B/16 7.5 9.6 11.8 15.5

We follow Wang et al. (2021); Ni et al. (2022); Ju et al. (2022); Rasheed et al. (2023) in using
Kinetics-400 (K-400) from (Carreira & Zisserman, 2017) as the base dataset D and repeat the ex-
periment using novel data from the SSV2, HMDB-51, and UCF-101 datasets. Observe that TCMTC

had the highest accuracy in 10 out of 11 of these experiments, and had the second highest accuracy
in the remaining experiment trailing by only 0.4.

5-way-k-shot Experiments. Table 6 shows the results of experiments comparing TCMTH to lead-
ing benchmarks for 5-way-k-shot learning. All models are trained on K-400 as the base data using
the ResNet-50 backbone. In each trial, we select 5 action classes at random and update our model
using only k samples for each of those classes to form S, and the remaining novel data compose Q.
To ensure the statistical significance, we conduct 10000 trials with random samplings for selecting
the action classes in each trial by following (Wang et al., 2023e), and report the mean accuracy as
the final result. Our leading benchmarks are: OTAM (Cao et al., 2020), TRX (Perrett et al., 2021),
STRM (Thatipelli et al., 2022), DYDIS (Islam et al., 2021), STARTUP (Phoo & Hariharan, 2021),
and SEEN (Wang et al., 2023e). Observe that TCMTH has the highest accuracy in 7 out of 8 exper-
iments, by a margin ranging from 1.2 to 5.3, and has the second highest accuracy on the remaining
experiment, trailing by only 0.1.
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Table 4: Comparing TCMTH to benchmarks for 5-way-k-shot learning.

1-shot 5-shot
Backbone UCF-101 HMDB-51 SSv2 SSv2-small UCF-101 HMDB-51 SSv2 SSv2-small

OTAM ResNet-50 50.2 34.4 24.0 22.4 61.7 41.5 27.1 25.8
TRX ResNet-50 47.1 32.0 23.2 22.9 66.7 43.9 27.9 26.0
STRM ResNet-50 49.2 33.0 23.6 22.8 67.0 45.2 28.7 26.4
DYDIS ResNet-50 63.4 35.2 25.3 24.8 77.5 50.8 29.3 27.2
STARTUP ResNet-50 65.4 35.5 25.1 25.0 79.5 50.4 31.3 28.7
SEEN ResNet-50 64.8 35.7 26.1 25.3 79.8 51.1 34.4 29.3
TCMTH ResNet-50 66.0 37.6 31.4 28.5 79.7 54.4 37.0 32.8

3.3 ABLATION STUDY

We run an ablation study to select the hyperparameters of our model. We compare TCMTC with
the different numbers of latent causal variables (N ∈ {4, 8, 12, 16}) using the ViT-B/16 backbone
for all-way-5-shot and all-way-10-shot learning on the Sth-Else data. We can see that performance
is increasing in N , verifying that the latent causal variables facilitate few-shot action recognition.
Based on the results in Table 5 we choose N = 12 because beyond this point the performance gain
becomes marginal and the computational cost spikes.

Once N = 12 was selected, we proceeded by comparing our TCMT model to four simpler models;
one non-causal, one non-temporal, one without auxiliary context variables θ, and one with fixed
ConvLSTM on both D and S , all with N = 12. In the non-causal model the time-delayed causal
transitions between latent variables (red arrows in Fig. 3) are removed so that x and y are no longer
independent conditioned on z, and the temporal posterior is regularized by KL-divergence with
the standard normal distribution without using our prior network. In the non-temporal model the
latent variables do not change over time (zt = zt+1∀t), but it is still a causal model so x and
y are independent conditioned on z. As with the full TCMT model, in the non-temporal model
the posterior is regularized by KL-divergence with the prior output by the prior network. The last
second line in Table 5 gives a comparison to a model without any auxiliary context variables. We also
assess the efficacy of fixing the transition and mixing functions versus fine-tuning them (TCMT-FT).
The observation that TCMT significantly outperforms these three baselines motivates our temporal
causal mechanism with updating auxiliary context variables on Q.

Table 5: Ablation study for selecting hyperparameters
on the Sth-Else dataset.

Backbone 5-shot 10-shot
N = 4 ViT-B/16 44.2 49.0
N = 8 ViT-B/16 46.0 55.7
N = 12 ViT-B/16 48.5 59.9
N = 16 ViT-B/16 48.9 60.1
Non-causal ViT-B/16 41.0 44.3
TCMT-FT ViT-B/16 44.8 55.3
Non-temporal ViT-B/16 45.1 54.4
Without θ ViT-B/16 46.8 57.6

Notice that the accuracies of 46.8 achieved
by TCMTC without θ and 45.1 by the non-
temporal model for all-way-5-shot learning in
our ablation study are already better than the
44.5 and 44.9 achieved by ViFi-CLIP and VL-
prompting, respectively (Rasheed et al., 2023)
(Table 1). This demonstrates the transportabil-
ity of the causal mechanism. Moreover, our
temporal causal model performs even better be-
cause it captures the temporal relations of the
latent causal variables, and θ helps capture the
distribution shift across data sets.

4 RELATED WORK

Few-shot Action Recognition. Few-shot learning has become an important research area in com-
puter vision because we often want to identify classes with only a small number of labeled samples
available Chen et al. (2019); Tseng et al. (2020); Luo et al. (2023). Metric-based techniques are
popular for many few-shot classification problems. These metric-based methods use an encoder to
map visual data into an embedding space and learn a similarity (or distance) function, e.g. cosine
distance Vinyals et al. (2016). For example, ProtoNet (Snell et al., 2017) learns a feature extractor
to transform all samples into a common feature space and treats the mean features of support im-
ages as prototypes for matching. The key assumption here is generally that the embedding space is
common to the base and novel datasets. Gradient optimization techniques such as MAML are also
common Finn et al. (2017).
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Compared to images, video data adds a temporal dimension rich with spatio-temporal information
and variation Poppe (2010). Some of our benchmarks use metric-based approaches for few-shot ac-
tion recognition on video data. OTAM offers a differentiable dynamic time warping algorithm Cao
et al. (2020), TRX uses an attention mechanism Perrett et al. (2021), and STRM introduces a joint
patio-temporal modeling technique Thatipelli et al. (2022). A few studies try to use meta-learning
to deal with the temporal nature of action recognition (Finn et al., 2017). For instance, STRM
(Thatipelli et al., 2022) introduces a spatio-temporal enrichment module to look at visual and tem-
poral context at the patch and frame level. HyRSM (Wang et al., 2022b) uses a hybrid relation
model to learn relations within and across videos in a given few-shot episode. However, recent work
has shown that these methods do not generalize well when the base and novel data have significant
distribution disparities (Wang et al., 2023e; Samarasinghe et al., 2023).

The recent success of cross-modal vision-language learning has inspired works like ActionCLIP
(Wang et al., 2021), XCLIP and XFLORENCE (Ni et al., 2022), VideoPrompt (Ju et al., 2022), VL
Prompting and ViFi-CLIP (Rasheed et al., 2023). All of these methods apply transfer learning by
adopting the pre-trained CLIP and adapting it for few-shot action recognition tasks. These meth-
ods utilize the rich generalized representations of CLIP and fuse them with additional components
for temporal modeling. Nevertheless, if the CLIP model is pre-trained on a base dataset that is
too dissimilar from the novel data, the issues from distribution disparity persist. Unlike previous
work, TCMT approaches few-shot action recognition by leveraging causal representation learning
to develop generative models of temporal causal processes, which our experiments show provide an
advantage for handling distribution disparities.

Causal Representation Learning. TCMT is based on causal representation learning (Khemakhem
et al., 2020). Several recent works have extended the theory of causal representation learning to
different fields, such as domain adaption (Teshima et al., 2020; Kong et al., 2022), domain general-
ization (Xie et al., 2023) and medical image analysis (Wang et al., 2023a). Additionally, some works
try to model temporal causal representations for time series data. For instance, the authors of (Huang
et al., 2022; Feng et al., 2022) introduce causal representation to Markov decision processes (MDP).
(Yao et al., 2022b;a) provides the theoretical proof of the identifiability of causal representations
from time-series data. Based on these identifiability results, TCMT applies causal representation
learning to time series data in the context of few-shot action recognition.

We also mention a line of work based on causal inference (Pearl et al., 2009; Rubin, 2019). This
line of work also tries to learn invariant features, but usually relies on the assumption that the causal
graph structure is known beforehand, and leverages the potential outcome framework, grounded
on this assumed causal graph, for causal effect estimation (Wang et al., 2020; Yue et al., 2020;
Niu et al., 2021; Chen et al., 2023). Also, the authors of (Wang et al., 2022a;c; Liu et al., 2021;
Lin et al., 2022; Yi et al., 2022) implicitly assume the invariant features to solve the invariant risk
minimization problem. By contrast, our method endeavors to uncover the true causal structure,
anchoring our TCMT framework in the domain of causal representation learning.

5 CONCLUSION

We propose Temporal Causal Mechanism Transfer (TCMT) for few-shot action recognition, which
relies on variational inference to learn a temporal causal mechanism from base data that can be
efficiently and effectively adapted to novel data by few-shot learning. We demonstrate that our
approach is able to achieve accuracy comparable to or better than leading benchmarks on a variety
of standard video sequence with fewer parameter updates during the adaptation to novel data.

We note that TCMT has two major limitations. First, the transitions between latent causal variables
are assumed to be strictly time-delayed with no instantaneous causal relations. While this corre-
sponds to our intuitive notions of causality, this assumption will be violated in time series data if the
observed time frequency is low. Second, it is difficult to infer the auxiliary context variables θ from
the real-world video sequence, and we provide only a coarse way to model it. A better model of θ
could improve the performance of TCMT. Extending TCMT to address instantaneous causal rela-
tions and providing a better model of the auxiliary context variables are clear directions for future
work. Lastly, we mention that exploring the merits of temporal causal mechanisms for LLM agents
is an interesting direction (Yao et al., 2023; Wang et al., 2023b).
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A APPENDIX

A.1 TRANSITION PRIOR LIKELIHOOD DERIVATION

Consider a paradigmatic instance of latent causal processes. In this case, we are concerned with
two time-delayed latent variables, namely, zt = [z1,t, z2,t]. Crucially, there is no inclusion of θ.
The maximum time lag is defined as 1. This implies that each latent variable, zn,t, is formulated as
zn,t = fn(zt−1, ϵn,t), where the noise terms, ϵn,t , are mutually independent. To represent this latent
process more succinctly, we introduce a transformation map, denoted as f . It’s worth noting that
in this context, we employ an overloaded notation; specifically, the symbol f serves dual purposes,
representing both transition functions and the transformation map.

z1,t−1

z2,t−1

z1,t
z2,t

 = f


z1,t−1

z2,t−1

ϵ1,t
ϵ2,t


 . (15)

By leveraging the change of variables formula on the map f , we can evaluate the joint distribution
of the latent variables p(z1,t−1, z2,t−1, z1,t, z2,t) as:

p(z1,t−1, z2,t−1, z1,t, z2,t) = p(z1,t−1, z2,t−1, ϵ1,t, ϵ2,t)/ |detJf | , (16)

where Jf is the Jacobian matrix of the map f , which is naturally a low-triangular matrix:

Jf =


1 0 0 0
0 1 0 0

∂z1,t

∂z1,t−1

∂z1,t

∂z2,t−1

∂z1,t

∂ϵ1,t
0

∂z2,t

∂z1,t−1

∂z2,t

∂z2,t−1
0

∂z2,t

∂ϵ2,t

 .

Given that this Jacobian is triangular, we can efficiently compute its determinant as
∏

n
∂zn,t

∂ϵn,t
. Fur-

thermore, because the noise terms are mutually independent, and hence ϵn,t ⊥ ϵl,t for m ̸= n and
ϵt ⊥ zt−1, we can write Eq. 16 as:

p(z1,t−1, z2,t−1, z1,t, z2,t) = p(z1,t−1, z2,t−1)× p(ϵ1,t, ϵ2,t)/ |detJf | (because ϵt ⊥ zt−1)

= p(z1,t−1, z2,t−1)×
∏
n

p(ϵn,t)/ |detJf | (because ϵ1,t ⊥ ϵ2,t)

(17)

By eliminating the marginals of the lagged latent variable p(z1,t−1, z2,t−1) on both sides, we derive
the transition prior likelihood as:

p(z1,t, z2,t|z1,t−1, z2,t−1) =
∏
n

p(ϵn,t)/ |detJf | =
∏
n

p(ϵn,t)×
∣∣detJ−1

f

∣∣ . (18)

Let {f−1
n }n=1,2,3... be a set of learned inverse dynamics transition functions that take the estimated

latent causal variables in the fixed dynamics subspace and lagged latent variables, and output the
noise terms, i.e., ϵ̂n,t = f−1

n (ẑn,t,Pa(ẑn,t)).

The differences of our model from Eq. 18 are that the learned inversedynamics transition func-
tions take θ as input arguments to out the noise terms, i.e, ϵ̂n,t = f−1

n (ẑn,t,Pa(ẑn,t),θt) =
f−1
n (ẑn,t,Pa(ẑn,t),θt).

log p (ẑt|ẑt−1,θt) =

N∑
n=1

log p(ϵ̂n,t|θt) +
N∑

n=1

log
∣∣∣∂f−1

n

∂ẑn,t

∣∣∣ (19)
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A.2 ADDITIONAL EXPERIMENTS

Dataset details. In this paper, we detail experiments conducted on five datasets:: 1. Something-
Something v2 (SSv2) is a dataset containing 174 action categories of common human-object inter-
actions; 2. Something-Else (Sth-Else) exploits the compositional structure of SSv2, where a com-
bination of a verb and a noun defines an action; 3. HMDB-51 contains 7k videos of 51 categories;
4. UCF-101 covers 13k videos spanning 101 categories; 5. Kinetics covers around 230k 10-second
video clips sourced from YouTube.

Additonal experiments. In this section, we focus on comparisons with state-of-the-art metric-based
methods, including MoLo (Wang et al., 2023d), HySRM (Wang et al., 2022b), HCL (Zheng et al.,
2022), OTAM (Cao et al., 2020), TRX (Perrett et al., 2021) and STRM (Thatipelli et al., 2022).
For a fair evaluation, we perform experiments across the SSv2, UCF-101, HMDB-51, and Kinetics
datasets. In the SSv2-Full and SSv2-Small datasets, we randomly selected 64 classes for D and 24
for S and Q. The main difference between SSv2-Full and SSv2-Small is the dataset size, with SSv2-
Full containing all samples per category and SSv2-Small including only 100 samples per category.
For HMDB-51, we chose 31 action categories for D and 10 for S and Q, while for UCF-101, the
selection was 70 and 21 categories, respectively. For Kinect, we used 64 action categories for D
and 24 for S and Q. To maintain statistical significance, we executed 200 trials, each involving
random samplings across categories. After training on D, we used k video sequences from each
action category to form S for model updates. The inference phase utilized the remaining data from
Q.

Table 6 and Table 7 show additional experiments for 5-way-k-shot learning where the base and novel
data are taken from the same original dataset. Between the two tables we osberve that TCMTH

achieves the highest Top-1 accuracy in 11 out of 12 experiments, coming in second by only 0.4 with
k = 5 on the UCF-101 dataset.

Table 6: Comparing TCMTH to benchmarks for 5-way-k-shot learning on the SSv2 and SSv2-small

SSv2 SSv2-small
Backbone 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

OTAM ResNet-50 42.8 51.5 52.3 36.4 45.9 48.0
TRX ResNet-50 42.0 57.6 62.6 36.0 51.9 56.7
STRM ResNet-50 42.0 59.1 68.1 37.1 49.2 55.3
HyRSM ResNet-50 54.3 65.1 69.0 40.6 52.3 56.1
HCL ResNet-50 47.3 59.0 64.9 38.7 49.1 55.4
MoLo ResNet-50 56.6 67.0 70.6 42.7 52.9 56.4
TCMTH ResNet-50 60.0 68.3 71.9 45.8 53.6 58.0

Table 7: Comparing TCMTH to benchmarks for 5-way-k-shot learning on the UCF-101, HMDB-51, and
Kinectics datasets.

UCF-101 HMDB-51 Kinects
Backbone 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

OTAM ResNet-50 79.9 88.9 54.5 68.0 79.9 88.9
TRX ResNet-50 78.2 96.1 53.1 75.6 78.2 96.2
STRM ResNet-50 80.5 96.9 52.3 77.3 80.5 96.9
HyRSM ResNet-50 83.9 94.7 60.3 76.0 83.9 94.7
HCL ResNet-50 82.8 93.3 59.1 76.3 73.7 85.8
MoLo ResNet-50 86.0 95.5 60.8 77.4 86.0 95.5
TCMTH ResNet-50 87.3 96.5 61.9 80.5 86.1 98.0
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A.3 COMPARISONS TO AUGMENTED MODELS

We further assess if adding θ to other methods would further improve the results in Table 8. The
results indicate marginal improvements over the original methods. Again, our TCMT obtains the
highest accuracy among these methods.

Table 8: Additional comparisons by augmenting existing methods on the Sth-Else dataset. +θ means the
method updates the Context Network when adapting instead of fine-tuning. Since VL Prompting uses VPT (Jia
et al., 2022) within the ViFi-CLIP framework, we only test ViFi-CLIP+θ.

Sth-Else
Backbone 5-shot 10-shot

ORViT ViT-B/16 33.3 40.2
ORViT + θ ViT-B/16 33.9 41.8
SViT ViT-B/16 34.4 42.6
SViT + θ ViT-B/16 35.2 44.0
TCMTH ViT-B/16 37.6 44.0
ViFi-CLIP ViT-B/16 44.5 54.0
VL Prompting ViT-B/16 44.9 58.2
ViFi-CLIP + θ ViT-B/16 45.2 58.0
TCMTC ViT-B/16 48.5 59.9

A.4 ADDITIONAL ABLATION EXPERIMENTS

We validate the performance of TCMTC compared to TCMT-FT on the SSv2, HMDB-51, and
UCF-101 datasets under all-way-k-shot settings. Tables 9 and 10 show that by maintaining fixed
transition and mixing functions, TCMTC attains superior scores. This outcome underscores the
generalizability of our assumption regarding the temporal causal mechanism transfer.

Table 9: Comparing TCMTC to TCMT-FT for all-way-k-shot on the SSv2 dataset.

SSv2
Backbone 2-shot 4-shot 8-shot 16-shot

TCMT-FT ViT-B/16 6.1 7.9 10.4 14.1
TCMTC ViT-B/16 7.5 9.6 11.8 15.5

Table 10: Comparing TCMTC to TCMT-FT for all-way-k-shot on the HMDB-51 and UCF-101 datasets.

HMDB-51 UCF-101
Backbone 2-shot 4-shot 8-shot 16-shot 2-shot 4-shot 8-shot 16-shot

TCMT-FT ViT-B/16 61.5 64.8 70.0 72.9 87.7 93.7 95.1 96.4
TCMTC ViT-B/16 65.8 70.2 72.5 75.7 90.6 94.7 96.2 98.5

For each data sample we must select a number of frames to use from a video sequence. We extend
our ablation study for selecting the number of frames. In Table 11 we find that 8 frames per video is
sufficient, with marginal improvement for larger numbers of frames.

In our main experiments, the parents of each latent causal variable are only in the previous time step.
Table 12 reports that we allow the parents to be further back in time, allowing causal relationships
between non-consecutive time steps, and show that there is a negligible improvement in accuracy.

In Table 13, we compare our method with an alternative method that first trains the auto-encoder
and context network and then the classifier separately. We observe no significant difference in
performance on the Sth-Else dataset.

A.5 MOTIVATING EXAMPLES FOR OTHER DATASETS

Figure 7, Figure 8 and Figure 9 showcase the similar motivating examples of a few-shot action
recognition task with TCMT in using SSv2, HMDB-51 and UCF-101 as novel data, while the K-
400 serves as base data. Please see the caption for the detailed explanations.
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Table 11: Ablation study for selecting the different length of input on the Sth-Else dataset.

input frames Backbone 5-shot 10-shot
4 ViT-B/16 43.3 51.0
8 ViT-B/16 48.5 59.9
16 ViT-B/16 50.8 61.2

Table 12: Ablation study allowing parents of z to be in zt−1 through zt−τ for τ ∈ 1, 2, 3.

Backbone 5-shot 10-shot
τ = 1 ViT-B/16 48.5 59.9
τ = 2 ViT-B/16 48.5 60.0
τ = 3 ViT-B/16 48.8 60.2

A.6 NETWORK ARCHITEXTURES

Tab. 14 illustrates the details of our implementation on TCMTC .

A.7 CODE

Our code will be released upon the acceptance.
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Table 13: Ablation study for separate training vs. joint training.

5-shot 10-shot
Joint training 48.5 59.9

Separate training 48.5 60.0

(a) (b) (c)

Figure 7: Motivating example of Temporal Causal Mechanism Transfer (TCMT) for few-shot action recogni-
tion in using Kinetics-400 as the base dataset D and SSV2 as novel data (The original PDF files for this Figure
are available in zip of supplementary, providing additional and clearer illustration): (a) shows the UMap visu-
alization of the action feature embeddings obtained by a fixed ViT-B/16 backbone (Radford et al., 2021) on the
base data (red) and novel data (blue). The obvious distribution disparities demonstrate the difficulty of few-shot
learning for action recognition; (b) shows an example of pairplot of the values of latent causal variables from
the transition functions of two trained models, one trained only on the base data (red) and the other only on the
novel data (blue). (c) shows a pairplot of UMap projections for action feature embeddings x and latent vari-
ables z from two models: one trained on base data (red) and the other on novel data (blue). The near-perfect
alignment in (b) and (c) supports our hypothesis of invariant transition and mixing functions across base and
novel data.

(a) (b) (c)

Figure 8: Motivating example of Temporal Causal Mechanism Transfer (TCMT) for few-shot action recogni-
tion in using K-400 as base data and HMDB-51 as novel data (blue) (The original PDF files for this Figure
are available in zip of supplementary, providing additional and clearer illustration): (a) shows the UMap vi-
sualization of the action feature embeddings obtained by a fixed ViT-B/16 backbone (Radford et al., 2021) on
the base data (red) and novel data (blue). The distribution disparities demonstrate the difficulty of few-shot
learning for action recognition; (b) shows an example of pairplot of the values of latent causal variables from
two trained models, one trained only on the base data (red) and the other only on the novel data (blue). (c)
shows a pairplot of UMap projections for action feature embeddings x and latent variables z from two models:
one trained on base data (red) and the other on novel data (blue). The near-perfect alignment in (b) and (c)
supports our hypothesis of invariant transition and mixing functions across base and novel data.
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(a) (b) (c)

Figure 9: Motivating example of Temporal Causal Mechanism Transfer (TCMT) for few-shot action recogni-
tion in using Kinetics-400 as the base dataset D and the UCF-101 as the novel data (The original PDF files
for this Figure are available in zip of supplementary, providing additional and clearer illustration): (a) shows
the UMap visualization of the action feature embeddings obtained by a fixed ViT-B/16 backbone (Radford
et al., 2021) on the base data (red) and novel data (blue). The distribution alignment is consistent with the
high accuracy obtained in Table 2. (b) shows an example of pairplot of the values of latent causal variables
of the transition functions from two trained models, one trained only on the base data (red) and the other only
on the novel data (blue). (c) shows a pairplot of UMap projections for action feature embeddings x and latent
variables z from two models: one trained on base data (red) and the other on novel data (blue). The near-perfect
alignment in (b) and (c) supports our hypothesis of invariant transition and mixing functions across base and
novel data.

Table 14: The details of our network architectures for TCMTC , where BS means batch size.

Configuration Description Output dimensions

Encoder
Input: concat(x1:T ,θ1:T ) BS × T × (1024 + 128)
Dense 256 neurons, LeakyReLU BS × T × 256
Dense 256 neurons, LeakyReLU BS × T × 256
Dense Temporal embeddings BS × T × 2N
Bottleneck Compute mean and variance of posterior µ, σ
Reparameterization Sequential sampling ẑ1:T

Decoder
Input: ẑ1:T BS × T ×N
Dense 256 neurons, LeakyReLU BS × T × 256
Dense 256 neurons, LeakyReLU BS × T × 256
Dense input embeddings BS × T × 1024

Prior
Input ẑ1:T BS × T ×N
InverseTransition ϵt BS × T ×N
JacobianCompute log det|J | BS

Classifier
Input: Concat(ẑ1:T ) BS × T ×N
Dense 256 neurons, LeakyReLU BS × T × 256
Dense 256 neurons, LeakyReLU BS × T × 256
Dense output embeddings BS × T × 1024
Context network
Input: x1:T BS × T × 1024
Convolutional LSTM ConvLSTM BS × T × 128
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