ML4CO-Bench-101: Benchmark Machine Learning for Classic Combinatorial Problems on Graphs

Jiale Ma¹², Wenzheng Pan¹, Yang Li¹², Junchi Yan^{12*}

¹Sch. of Computer Science & Sch. of Artificial Intelligence, Shanghai Jiao Tong University ²Shanghai Innovation Institute.

{heatingma,pwz1121,yanglily,yanjunchi}@sjtu.edu.cn

Abstract

Combinatorial problems on graphs have attracted extensive efforts from the machine learning community over the past decade. Despite notable progress in this area under the umbrella of ML4CO, a comprehensive categorization, unified reproducibility, and transparent evaluation protocols are still lacking for the emerging and immense pool of neural CO solvers. In this paper, we establish a modular and streamlined framework benchmarking prevalent neural CO methods, dissecting their design choices via a tri-leveled "paradigm-model-learning" taxonomy to better characterize different approaches. Further, we integrate their shared features and respective strengths to form 3 unified solvers representing global prediction (GP), local construction (LC), and adaptive expansion (AE) mannered neural solvers. We also collate a total of 65 datasets for 7 mainstream CO problems (including both edge-oriented tasks: TSP, ATSP, CVRP, as well as node-oriented: MIS, MCl, MVC, MCut) across scales to facilitate more comparable results among literature. Extensive experiments upon our benchmark reveal a fair and exact performance exhibition indicative of the raw contribution of the learning components in each method, rethinking and insisting that pre- and post-inference heuristic tricks are not supposed to compensate for sub-par capability of the data-driven counterparts. Under this unified benchmark, an up-to-date replication of typical ML4CO methods is maintained, hoping to provide convenient reference and insightful guidelines for both engineering development and academic exploration of the ML4CO community in the future. Code is available at https://github.com/Thinklab-SJTU/ML4CO-Bench-101, and the dataset is at https://huggingface.co/datasets/ML4CO/ML4CO-Bench-101-SL.

1 Introduction

Combinatorial optimization (often in the form of edge- or node-oriented tasks on graphs) plays a pivotal role in operations research, with wide-ranging applications in logistics systems [1], transportation planning [2], supply chain management [3], and network design [4], where discrete decision-making is essential for optimizing operations and reducing costs. Traditional approaches typically rely on mathematical programming [5] or heuristic methods [6, 7] to obtain exact or approximate solutions. Recently, machine learning (ML) has emerged as a powerful paradigm for tackling combinatorial optimization problems (COPs), offering data-driven efficiency and near-optimal solutions [8, 9, 10, 11, 12, 13], which has fostered the growth of *Machine Learning for Combinatorial Optimization* (ML4CO) as a distinct research community [14, 15]. Despite the promising advancements, the ML4CO community faces critical challenges regarding model design, reproducibility, inconsistent datasets, heterogeneous evaluation and reporting protocols, thus highlighting the pressing need for a comprehensive, standardized, and user-friendly benchmark.

^{*}Correspondence to: Junchi Yan. This work was partly supported by NSFC (92370201).

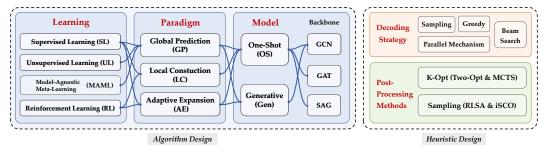


Figure 1: Overview of our proposed ML4CO-Bench-101.

Specifically, major issues lie in the following aspects. 1) Methodological fragmentation. Existing works lack a unified taxonomy, with baselines inconsistently categorized, e.g., by learning type (SL: supervised learning, RL: reinforcement learning, UL: unsupervised learning, MAML: Model-Agnostic Meta-Learning, etc.), construction method [16] (AR: autoregressive, NAR: nonautoregressive), or backbone architecture [17] (GCN, GAT, SAG, etc.). This obscures comparative insights and impedes systematic advancements. 2) Implementation Inconsistency. Reproducibility is hampered by ad-hoc implementations. For instance, training and testing datasets vary in format (TSPLIB file, pickle file, txt file, etc.) or framework (PyG objects, DGL objects, raw Py-Torch tensors, etc.), creating redundant overhead for replication and extension. Also, a number of works [18, 19, 20, 21] incorporate complicated environment dependencies or intricately nested code modules, which hinder the applicability of transferring the approaches to new tasks. Moreover, the decoding heuristics, as simple as the greedy algorithm, evolve and vary from one work to another, however, an easy reuse of the notations (e.g., "SL+Grdy") is not supposed to conceal inherent performance variation from readers. 3) Evaluation irregularity. A standardized protocol for evaluating CO problems remains absent, and current results suffer from: i) Dataset heterogeneity. Beyond formatting discrepancies, some works often use arbitrary problem settings and self-generated synthetic data. For instance, [22] experimented on BA [23] graphs for MVC and MCut, [24] merely tested MCl and MIS on real-world datasets; [19, 20, 25, 26] all conducted tests on RB [27] graphs but for different tasks and with different settings of node ranges. This makes it nearly infeasible to ensure model-to-model fair comparison. ii) Post-processing abuse. Techniques like MCTS are widely adopted to further improve the solution quality for TSP [18, 28, 29]. While effective, these methods are under inconsistent settings (e.g., varying time limits) across literature and often mask raw model performance, i.e., leading distinct models to level off w.r.t the optimality gap and possibly skewing their conclusions. iii) Uncontrolled randomness. Many sequential methods inherently exploit multisampling to improve diversity of solution [10, 30, 31] or selectively reports "the best trial among 8 seeds" [20]. Scant attention has been paid to these subtle tricks in literature, leaving ambiguity and unfairness in comparing time and solving quality. iv) Pipeline discrepancy. Inconsistent evaluation protocols, e.g., storing heatmaps offline for subsequent searching [18] v.s. generating heatmaps and decoding for each instance sequentially (widely employed), further undermine comparability. More delicately, different pre-processing techniques can have been operated (often without explicit introduction), e.g. generating Dirac delta distributions for graph tasks [20], re-permuting vertex indices [32, 33] and instance-level re-normalization [34, 35] of distance matrices for TSP, etc.

To address the aforementioned shortcomings, we have provided a systematic review of existing ML4CO work, and then developed a modular code framework with a new benchmark in the hope of advocating for a standardized assessment that embraces methodological diversity while ensuring evaluation transparency. Our contributions in this work can be summarized as follows:

- We provide a comprehensive retrospective of existing ML4CO literature, and introduce a benchmark suite, which encompasses standard datasets as well as our completed, refined and concentrated implementation of neural solvers for COPs, on the basis of existing methods under our categorization.
- Extensive experiments upon the benchmarking toolkit provide insights into critical research questions: 1) For edge-oriented tasks (TSP, ATSP and CVRP), SL usually outperforms UL and MAML, especially as the scale increases. 2) For node-oriented tasks (MCl, MCut, MIS and MVC), which can be reformulated as energy minimization problems [19, 26], making them particularly suitable for UL. Furthermore, MAML exhibits strong generalization capabilities on these problems.
- We reproduce a wide range of decoding strategies as well as post-processing methods, and we report the best-performing ML4CO approaches for each benchmark dataset in Table 8. Notably,

ML4CO methods outperform traditional solvers on several benchmark datasets, with the most neural-based approaches demonstrating significant advantages in speed. To support future research in the community, we also release, for the first time, a comprehensive ML4CO dataset with full solution results covering all benchmark datasets (provided in the data link in the abstract).

2 Benchmarking Existing ML4CO Methods

Problem Definition. The combinatorial optimization problems (COPs) studied in this paper can be consistently represented using the graph structure, i.e., $G = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, \cdots, N\}$ denotes the node set and \mathcal{E} the edge set. Following previous works [16, 36, 37], we define the decision variables $\mathbf{x} = \{0, 1\}^M$ to represent the solution of a given COP. For MCI, MIS, and MVC, we have M = N and \mathbf{x}_i indicates whether the node i is selected. For MCut, M = N and \mathbf{x}_i indicates which subset the node i belongs to. For TSP, ATSP and CVRP, $M = N^2$ and $\mathbf{x}_{i \cdot N + j}$ indicates whether the edge (i, j) is selected. Mathematically, the goal is to find optimal solution $\mathbf{x}^* = \underset{\mathbf{x} \in \Omega}{\operatorname{argmin}} c(\mathbf{x}, G)$,

where Ω denotes the feasible set of x that satisfy the constraints and $c(\cdot, \cdot)$ is the objective cost function of corresponding problems. For better readability of our principal line, we defer the formal definitions of the seven COPs (TSP, ATSP, CVRP, MIS, MCl, MVC, and MCut) to Appendix A.

In this section, we provide a detailed analysis of existing methods of ML4CO from three perspectives: a) *algorithm design*, b) *decoding strategy*, and c) *post-processing optimization*, as depicted in Fig. 1.

2.1 Algorithm Designs

Over the past decade, substantial efforts have been dedicated to exploring the potential of data-driven learning for CO, resulting in a rich yet slightly disarrayed body of literature. Hence, we first draw a categorized summary of existing solvers along with three dimensions: *paradigm*, *model*, and *learning*.

Paradigm. Following COExpander [37], we regard the solving of COPs as *Variable Determination Process* VDP(N,k), where N denotes the number of decision variables and k denotes the number of iterations required to obtain the complete solution. Based on N and k, the existing NCO solvers can be categorized into three paradigms: 1) k=1: **Global Prediction (GP)** solvers [16, 36, 38, 39, 29, 18, 20, 28, 40, 33, 19, 21] leverage neural networks to globally predict the likelihood of each node or edge being selected and then decode the probability heatmaps using heuristic methods (such as simple greedy algorithms) to obtain solutions. 2) k=N: **Local Construction (LC)** solvers [41, 31, 33, 42] use neural networks to iteratively predict the best next-step action (e.g., the next node to select) based on the current state until a complete solution is constructed. 3) $k \in (1, N)$: **Adaptive Expansion (AE)** solvers [43, 37, 34] lie in the between of GP and LC. In each iteration, AE solvers utilize neural networks to globally predict probability heatmaps based on the current state, and then determine an adaptive set of decision variables (e.g., until violation of constraints) according to the heatmaps.

Model. Whereas the paradigm is a higher-level concept agnostic to model implementation, the model denotes the specific neural approach employed to undertake the data-driven learning. We categorize existing neural models into two primary classes: 1) One-Shot (OS) models achieve results via a single inference pass. This category encompasses models such as Graph Convolution Network (GCN) models [38, 39] and Graph Attention (GAT) models [41, 31, 33]. GCN employs convolutional operations on graphs to aggregate information from neighboring nodes and utilizes node embeddings to capture structural dependencies, while GAT leverages attention mechanisms to dynamically weight node interactions and enable adaptive feature aggregation. These models enhance graph-based learning by capturing complex dependencies and are highly effective for combinatorial optimization and structured decision-making tasks. 2) Generative (Gen) models [47, 48, 49] generate results through a progressive denoising process starting from random noise. This category includes Diffusion models [16, 36, 19, 50] and Consistency models [51, 40, 37]. Diffusion models consist of a sequential noising process that transforms feasible solutions into noised vectors and a learnable reverse denoising process, while consistency models converge different noise trajectories of the same graph to the same initial solution, thus significantly reducing the number of denoising steps required. These models leverage the strong expressive power of generative models with the iterative noise addition and removal processes, which significantly improve the prediction quality compared to OS models.

Learning. The learning methods of models have long been a central focus of research. A substantial body of works [16, 39, 40] supervised learning (SL), where models are trained on large collections

Table 1: Categorization of methods: Global Prediction (GP), Local Construction (LC), Adaptive Expansion (AE), Unsupervised/Supervised Learning (U/SL). Model-Agnostic Meta-Learning (MAML).

ID	Метнор	AL	GORITHM DE	SIGN			Involv	VED PR	OBLEMS		
110	METHOD	PARADIGM	Model	LEARNING	TSP	ATSP	CVRP	MIS	MCL	MVC	MCUT
1	Intel [38]	GP	One-Shot	SL	_	-	-	~	-	-	-
2	GCN [39]	GP	One-Shot	SL	/	-	-	-	-	-	-
3	Att-GCN [29]	GP	One-Shot	SL	✓	-	-	-	-	-	-
4	GNNGLS [44]	GP	One-Shot	SL	/	-	-	-	-	-	-
*	GP4CO (Ours)	GP	One-Shot	SL	✓	/	-	/	/	/	/
5	DIMES [18]	GP	One-Shot	MAML (RL)	~			1		_	_
6	Meta-EGN [20]	GP	One-Shot	MAML (UL)	-	-	-	-	/	~	-
*	GP4CO (Ours)	GP	One-Shot	MAML	/	-	-	/	/	/	/
7	UTSP [28]	GP	One-Shot	UL	1						
8	VAG-CO [26]	GP	One-Shot	UL	-	-	_	~	~	/	✓
*	GP4CO (Ours)	GP	One-Shot	UL	/	-	-	~	/	/	/
9	DIFUSCO [16]	GP	Generative	SL	~			~			
10	T2T [36] & Fast-T2T [40]	GP	Generative	SL	/	_	_	/	_	_	_
11	UniCO-MatDIFFNet [33]	GP	Generative	SL	✓	~	_	_	_	/	_
*	GP4CO (Ours)	GP	Generative	SL	/	/	/	/	~	/	/
12	DiffUCO [19]	GP	Generative	UL	_			~	7	_	7
13	SDDS [21]	GP	Generative	UL	-	-	_	~	~	_	✓
*	GP4CO (Ours)	GP	Generative	UL	-	-	-	/	/	-	/
14	RL4CO [41, 45, 30, 42]	LC	One-Shot	RL	~	-	~	_	-	-	-
15	MatNet [31]	LC	One-Shot	RL	-	/	-	-	-	-	-
16	UniCO-MatPOENet [33]	LC	One-Shot	RL	/	/	-	-	-	-	-
*	LC4CO (Ours)	LC	One-Shot	RL	/	1	/	-	-	-	-
17	BQ-NCO [46]	LC	One-Shot	SL	~	~	/				
18	GOAL [32]	LC	One-Shot	SL	-	1	1	/	_	~	-
*	LC4CO (Ours)	LC	One-Shot	SL	/	/	~	/	/	/	-
19	LwD [43]	AE	One-Shot	RL	-	-	-	~	_	-	_
*	AE4CO (Ours)	AE	One-Shot	RL	-	-	-	/	-	-	-
20	COExpander [37]	AE	Generative	SL	1	/	~~	1	~	~	1
*	AE4CO (Ours)	AE	Generative	SL	/	1	1	/	~	/	~

of labeled data to learn underlying patterns and relationships. However, due to the high cost of obtaining supervised labels for combinatorial optimization problems, several studies [31, 20, 28] explore alternative approaches such as meta-learning (e.g., Model-Agnostic Meta-Learning, MAML), unsupervised learning (UL), and reinforcement learning (RL) to reduce reliance on labeled data.

Benchmark. To establish a comprehensive benchmark, we first compile a collection of representative papers from the past decade that apply machine learning techniques to the seven related COPs. Each paper is then carefully classified and annotated based on both the underlying algorithmic design and the specific COPs it addresses. To better structure and communicate the diversity of methodologies, we further group these approaches into three overarching categories according to their solving paradigms, namely *GP4CO*, *LC4CO* and *AE4CO* (these are categories, not new methods). During our reproduction and evaluation process, we discover that the applicability of some methods can be extended beyond the problem domains originally claimed in the primary publications. While a full exploration of such extension is beyond the scope of this work, we selectively broaden the evaluation of some promising methods whose cross-domain potential merits further investigation, as delineated in Table 1 for quick references.

2.2 Decoding Strategies

We define the *decoding strategy* as the way to determine the decision variables, which mainly includes *greedy decoding, sampling decoding, beam search* and *parallel mechanisms*.

Greedy Decoding. We begin by evaluating the scores s for each decision variable \mathbf{x} , based on the prediction output y (probablized) from the neural model. In most cases discussed in this paper, we set s=y. However, for MVC, we define s=-y, and for MCut, we use s=|y-0.5|. Variables with higher scores are then prioritized (as long as feasible) to constitute the final solution.

Sampling Decoding. Instead of always selecting the highest-scoring variable, it samples decision variables according to a probability distribution. Specifically, the probability of selecting variable \mathbf{x}_i is $P(\mathbf{x}_i) = s_i / \sum_{i=1}^N s_i$. This approach promotes diversity and may yield better overall solutions.

Beam Search. This strategy strikes a balance between efficiency and solution quality. It maintains a set of candidate sequences, with a fixed size k (16 in this paper). At each step, the algorithm expands these candidate sequences by considering all possible extensions and then retains only the top-k sequences with the highest scores. This method allows for a more comprehensive exploration of the solution space compared to greedy decoding, while still keeping the computational cost manageable.

Parallel Mechanism. It involves solving the same problem multiple times in parallel and selecting the best answer from the results. This approach is particularly relevant in generative models, where the process of Bernoulli sampling is inherently stochastic. By running the model multiple times, parallel mechanisms can leverage the randomness to generate a variety of potential solutions and ultimately choose the most optimal one. This method can improve the robustness and reliability of the final solution, although it requires more computational resources.

2.3 Post-Processing Techniques

Beyond the aforementioned methods of obtaining solutions, there has been a substantial amount of research that predominantly concentrates on leveraging diverse euristic methods (without offline training) to optimize the initial solutions generated by neural networks. We mainly categorize these methods into two types: *K-Opt* for edge-oriented problems and *Sampling* for node-oriented problems. See Appendix B for visualizations, algorithmic details and parameters of the post-processing means.

K-Opt Optimization. The core idea is to reduce the total cost by repeatedly swapping certain edges. Following COExpander [37] and ML4TSPBench [17], we adopt **Two-Opt** for TSP and ATSP, **Monte Carlo Tree Search (MCTS)** for TSP, and **Classic-LS** for CVRP as the post-processing operations.

Sampling Optimization. Sampling methods [52, 53] based on energy functions and gradient descent have demonstrate strong performance and generalization in solving COPs with simple-constraint. We adopt **RLSA** [53] as a representative post-processor for the node-oriented problems.

3 Related Work and Further Discussion

Related Works. RL4CO [41] is an early attempt towards providing a unified implementation and evaluation of CO problems, yet only RL-based models are incorporated without delving into deeper analyses of learning paradigms or proposing new methods. PredictiveCO [54] proposes a modular framework to benchmark predictive CO approaches. Besides, there are also some benchmarking works dedicated to specific problems: 1) [55] proposes to benchmark the maximum independent set problem. 2) the recent effort namely ML4TSPBench [17] endeavors to rethink existing methodologies in ML4TSP while concurrently advancing the development of new techniques, through a highly modularized implementation framework. However, existing benchmarking efforts often focus merely on a single problem type or a specific learning paradigm. The lack of a systematic categorization and transparent evaluation of existing methods impedes the possibility of generating generic insights from a more macroscopic perspective. In this work, we primarily focus on three classic edge-oriented (i.e. routing) problems and four types of node-oriented problems.

Statement on Topics not Discussed. We primarily focus on the methods which obtain solutions to COPs using purely machine learning approach, along with relevant post-processing optimization techniques. Therefore, the following three will not be discussed: 1) Divide-and-Conquer Solving and Optimization. GLOP [56] and UDC [57] propose a hierarchical framework that uses a non-autoregressive model to perform coarse-grained decomposition of the problem, and employs corresponding solvers to address the decomposed subproblems. [58] proposes a learning-augmented local search framework for solving large-scale Vehicle Routing Problems (VRPs), which iteratively improves solutions by identifying promising subproblems using a transformer-based subproblem selector and delegating their improvement to a black-box subsolver. 2) Learning to Search. These methods [59, 60, 61, 62] start from an initial solution and use neural networks to guide how to search for appropriate actions (such as edges swap) to optimize the solution. NeuOpt [63] incorporates the idea of tabu search and proposes Guided Infeasible Region Exploration (GIRE), which significantly enhances the solving effect. 3) Machine Learning-assisted Traditional Solvers. VSRLKH [64] combines reinforcement learning with the Lin-Kernighan-Helsgaun (LKH) algorithm, which uses Q-learning, Sarsa, and Monte Carlo methods to dynamically select optimal moves. NeuroLKH [65] utilizes a sparse graph neural network to learn edge scores and node penalties to guide LKH. 4)

Hypergraphs. In this paper, the graphs involved do not include hypergraphs [66], that is, an edge connects exactly two nodes. In addition, the weights of nodes and edges are not considered.

4 Experiments

In this section, we continue the empirical analysis of existing ML4CO methods along the same three dimensions as specified in Sec. 2. Due to space limitations, the experimental analysis below only presents results from a selection of benchmark datasets. The complete experimental results with standard deviations of the performance drop reported are presented in Appendix D.

4.1 Experimental Setup

4.1.1 Datasets and Metrics

Synthetic Datasets. Following the SOTA COExpander [37] and its protocol, we adopt RB [27], ER [67], and BA [23] graphs for node-oriented problems, and use uniform graphs for the edge-oriented routing problem. Specifically, we set the edge connection probability of ER graph to 0.15, the number of connecting nodes for BA graphs to 4. Besides, for RB and BA graphs, we categorize them into three scales: *SMALL* (200-300), *LARGE* (800-1200), and *GIANT* (2000-3000), based on the number of nodes. For CVRP, the demands of clients are randomly generated from the interval [1, 10], and the vehicle capacity is set to 40, 50, 80, 100 for *CVRP-50*, *CVRP-100*, *CVRP-200* and *CVRP-500*. We also conduct experiments on SATLIB² for MIS by transforming SAT into MIS.

Real-World Datasets. Following previous work [37, 63], we use TSPLIB³ for TSP, CVRPLIB⁴ for CVRP. Specifically, for TSPLIB, we select 49 2D-Euclidean distances with the number of nodes ranging from 51 to 1002; for CVRPLIB, we adopt 70 instances from the benchmark [68] (corresponding to folder X), with the number of nodes ranging from 101 to 513. As for the node-oriented problem, we adopt two social network datasets: Twitter [69] and COLLAB [70].

Cross-distribution Generalization Datasets. In addition to the real-world dataset, we have referred to previous work [55, 33] and reorganized the cross-distribution datasets to conduct further generalization tests. Specifically, for ATSP, we reduce both Hamiltonian Cycle Problem (HCP) and 3-SAT to ATSP and treat them as two distinct distribution classes. For TSP, we adopt Cluster and Gaussian distributions. For the node-oriented tasks, we employ the Holme-Kim (HK) [71] and Watts-Strogatz (WS) [72]. For more details on instance generation, please refer to Appendix C.3.

Metrics. Following COExpander [37], we use three metrics to evaluate the performance of the model: **1) Objective.** The average objective of the solutions w.r.t. the corresponding instances. **2) Drop.** The relative performance drop w.r.t. the objective compared to the solutions obtained by the baseline exact solver or heuristic solver. **3) Time.** The average computational time per instance. Unless otherwise specified, all experiments were conducted with a batch size set to 1 or in single-thread mode.

4.1.2 Evaluated Methods and Model Settings

Learning-free Baseline Solvers. We adopt six baseline traditional solvers without learning: Gurobi-11.0.3 [5] for node-oriented problems; While for edge-oriented routing tasks, we turn to the tailored strong solvers: LKH-3.0.7 [6] for TSP and ATSP; Concorde [73] for TSP; GA-EAX [74] for TSP; HGS [75] for CVRP; KaMIS [76] for MIS.

Generative Model Settings. 1) Sampling Number S: the number of heatmaps sampled from $p_{\theta}(x_0|s)$ with different random seeds. 2) Determination Step $\mathbf{D_s}$: the maximum number of determination in AE paradigm. 3) Inference Step $\mathbf{I_s}$: the number of time-steps in the inference phase.

Training Settings. Typically, the learning rate is set to 0.002. Regarding the network backbone and number of layers, we prioritize consistency with the original paper. The detailed experimental environment and training parameters are presented in Appendix C.

²https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html

³http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

⁴http://vrp.atd-lab.inf.puc-rio.br/media/com_vrp/instances

Table 2: Comparison of different paradigms on performance and efficiency (GP vs LC vs AE).

Метнор	Түре	TSP-500				TSP-1K			ATSP-500		
METHOD	1112	Овј.↓	Drop↓	TIME↓	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓	
GP4CO	GP-OS-SL	18.148	9.683%	0.047s	26.124	13.001%	0.195s	1.729	9.880%	0.157s	
LC4CO	LC-OS-SL	18.006	8.825%	3.964s	25.380	9.789%	7.995s	1.655	5.201%	6.328s	
GP4CO (I _s =5)	GP-Gen-SL	17.473	5.603%	0.099s	25.021	8.229%	0.289s	1.641	4.294%	0.558s	
AE4CO (D_s =3, I_s =5)	AE-Gen-SL	17.119	3.466%	0.231s	24.698	6.834%	0.691s	1.623	3.128%	1.669s	
Метнор	Түре	MI	S-RB-LAR	GE	MC	L-RB-LAR	RGE	MV	C-RB-LAF	RGE	
Метнор	Түре	ОВЈ.↑	S-RB-LAR Drop↓	TIME↓	ОВЈ.↑	L-RB-LAF Drop↓	RGE TIME↓	Овј.↓	C-RB-LAF Drop↓	RGE TIME↓	
METHOD GP4CO	TYPE GP-OS-SL										
		Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓	
GP4CO	GP-OS-SL	Овј.↑ 36.060	Drop↓ 16.036%	TIME↓ 0.048s	OBJ.↑ 38.622	DROP↓ 4.331%	TIME↓ 0.042s	OBJ.↓ 976.112	Drop↓ 0.817%	TIME↓ 0.068s	

Table 3: Comparison between one-shot (OS) and generative (Gen) *models*.

Метнор	Түре		TSP-100			ATSP-100		I	ATSP-200	
	1112	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	TIME↓	Овј.↓	Drop↓	Тіме↓
GP4CO	GP-OS-SL	7.937	2.334%	0.007s	1.666	6.408%	0.008s	1.671	6.777%	0.053s
GP4CO (I _s =1) GP4CO (I _s =5)	GP-Gen-SL GP-Gen-SL	7.941 7.774	2.381% 0.230 %	0.009s 0.031s	1.665 1.628	6.329% 3.935 %	0.008s 0.033s	1.678 1.638	7.280% 4.677 %	0.037s 0.162s
Метнор	Түре	MI	S-RB-LAR	GE	MIS	S-ER-700-8	800	M	IS-SATLIE	3
	1112	Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	TIME↓	Овј.↑	Drop↓	Тіме↓
GP4CO	GP-OS-SL	36.060	16.036%	0.048s	35.852	20.267%	0.039s	421.056	1.154%	0.019s
GP4CO (I _s =1) GP4CO (I _s =20)	GP-Gen-SL GP-Gen-SL	36.394 38.936	15.219% 9.388 %	0.044s 0.714s	35.711 40.195	20.580% 10.618%	0.039s 0.641s	421.578 424.556	1.031% 0.329%	0.016s 0.190s
Метнор	Түре	MC	L-RB-LAF	RGE	MV	C-RB-LAR	.GE	MCU	T-BA-LAR	GE
	1112	Овј.↑	Drop↓	Тіме↓	Овј.↓	Drop↓	TIME↓	Овј.↑	Drop↓	Тіме↓
GP4CO	GP-OS-SL	38.622	4.331%	0.042s	976.112	0.817%	0.068s	2827.480	3.744%	0.016s
GP4CO (I _s =1) GP4CO (I _s =20)	GP-Gen-SL GP-Gen-SL	36.402 35.384	9.809% 12.672%	0.042s 0.708s	974.950 972.608	0.696% 0.453 %	0.044s 0.718s	2783.834 2948.112	5.231% -0.369%	0.016s 0.194s

4.2 Experimental Results and Analysis

4.2.1 Analysis of Different Algorithm Designs

To avoid the influence of decoding strategies and post-processing methods on the results, we adopt *greedy decoding*, the most fundamental strategy, to analyze the differences in performance and efficiency resulting from various algorithm designs. Corresponding to Sec. 2, we conduct analyses from the three dimensions of algorithm design. For *paradigm*, we use *GP-OS-SL* vs *LC-OS-SL* and *GP-Gen-SL* vs *AE-Gen-SL* to perform comparative experiments. For *model*, we conduct a comparison between *GP-OS-SL* vs *GP-Gen-SL*. As for *learning*, we use *GP-OS-UL* vs *GP-OS-MAML* vs *GP-OS-SL*; *GP-Gen-UL* vs *GP-Gen-SL*; as well as *LC-OS-RL* vs *LC-Gen-SL*. We have conducted these comparative experiments across various COPs and have drawn the following analytical conclusions.

- *Paradigm Efficiency Analysis*. Due to the different numbers of iterations k required by the three paradigms to construct a complete solution, there is an inherent order in their solving speeds under the same settings, with GP > AE > LC, as proven in Table 2.
- *Paradigm Performance*. The performance is mainly influenced by the model and the training method. However, as shown in the data from Table 2, the performance of LC and AE is slightly better than that of GP when other settings are the same, which may be related to the *prediction conflicts* [37] existing in the GP paradigm.
- *Model Efficiency*. The single-step inference time of generative models and one-shot models is comparable. Therefore, when I_s is set to 1, the two models are consistent in terms of efficiency see Table 3. Besides, as I_s increases, the solution time of the generative model increases accordingly.
- *Model Performance.* When $I_s=1$, the performance of the two models is similar. As I_s increases, the more fine-grained noise addition and reduction process typically allows the generative model to demonstrate superior performance. Nevertheless, it can be observed that the result of MCl in Table 3 does not follow this pattern.
- Learning Analysis for Edge Problems. For the global prediction paradigm, increasing the amount of training data can enhance the solution performance, i.e., SL > MAML > UL. This is because the constraints of the edge-oriented routing problem are relatively complex, making it difficult to

Table 4: Comparison of different training methods for edge problems (UL vs SL vs RL vs MAML).

Метнор	Түре		TSP-50			TSP-100			TSP-500	
	1112	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓
GP4CO	GP-OS-UL	7.097	24.808%	0.007s	9.377	20.909%	0.009s	19.761	19.435	0.059s
GP4CO	GP-OS-MAML	6.325	11.233%	0.003s	8.757	12.918%	0.005s	18.888	14.155%	0.273s
GP4CO	GP-OS-SL	5.718	0.520%	0.006s	7.937	2.334%	0.007s	18.148	9.683%	0.047s
LC4CO	LC-OS-RL	5.702	0.258%	0.050s	7.872	1.491%	0.767s	21.105	27.561%	0.460s
LC4CO	LC-OS-SL	5.742	0.965%	0.393s	7.905	1.920%	0.762s	18.006	8.825%	3.964s
Метнор	Түре		ATSP-50			ATSP-100			CVRP-50	
METHOD	1112	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓
LC4CO	LC-OS-RL	1.576	1.373%	0.032s	1.620	3.456%	0.053s	10.769	3.891%	0.087s
LC4CO	LC-OS-SL	1.595	2.567%	0.395s	1.644	5.010%	0.723s	10.906	5.193%	0.504s
Метнор	Түре		CVRP-100)		CVRP-200	1		CVRP-500	1
		Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓
LC4CO	LC-OS-RL	16.220	4.241%	0.166s	20.662	5.274%	0.320s	40.382	8.723%	0.769s
LC4CO	LC-OS-SL	16.342	5.005%	0.962s	21.439	9.263%	1.978s	38.846	4.587%	7.095s

Table 5: Comparison of different training methods for node problems (UL vs SL vs MAML).

Метнор	Түре	MIS	-RB-SMA	LL	MIS	-RB-LARC	ЗE	MIS-RB-GIANT			
11111100	1112	Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	TIME↓	Овј.↑	Drop↓	TIME↓	
GP4CO GP4CO GP4CO	GP-OS-UL GP-OS-MAML GP-OS-SL	17.308 17.692 18.170	13.709% 11.778% 9.413%	0.016s 0.084s 0.014s	34.002 34.670 36.060	20.779% 19.259% 16.036 %	0.029s 0.127s 0.048s	37.260 38.840 38.760	24.195% 21.039% 21.224%	0.151s 0.739s 0.240s	
GP4CO GP4CO	GP-Gen-UL GP-Gen-SL	19.200 19.330	4.369% 3.710%	0.470s 0.192s	38.490 38.936	10.428% 9.388%	4.712s 0.714s	40.480 38.380	17.722% 21.995%	45.680s 8.980s	
Метнор	TYPE	MCı	L-RB-SMA	LL	MCI	-RB-LAR	ЗE	MC	L-RB-GIA	NT	
		Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	Тіме↓	
GP4CO GP4CO GP4CO	GP-OS-UL GP-OS-MAML GP-OS-SL	15.084 17.856 18.084	20.720% 6.400% 5.782%	0.016s 0.065s 0.014s	29.052 34.802 38.622	26.604% 13.180% 4.331%	0.029s 0.103s 0.042s	55.580 77.160 58.440	29.171% 1.613% 26.568%	0.148s 0.683s 0.220s	
Метнор	Түре	MV	C-RB-SMA	LL	MVC	C-RB-LAR	GE	MV	C-RB-GIA	NT	
METHOD	THE	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	TIME↓	Овј.↓	Drop↓	Тіме↓	
GP4CO GP4CO GP4CO	GP-OS-SL GP-OS-UL GP-OS-MAML	207.554 208.982 208.814	0.871% 1.569% 1.486%	0.014s 0.013s 0.065s	976.112 977.186 976.672	0.817% 0.928% 0.876%	0.068s 0.037s 0.097s	2407.940 2408.320 2406.360	0.465% 0.482% 0.402%	0.365s 0.221s 0.555s	
Метнор	Түре	MCu	T-BA-SM	ALL	MCu	T-BA-LAR	GE	MCt	JT-BA-GIA	NT	
METHOD	THE	Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	TIME↓	Овј.↑	Drop↓	Тіме↓	
GP4CO GP4CO GP4CO	GP-OS-MAML GP-OS-SL GP-OS-UL GP-Gen-SL	672.748 705.330 700.972 725.624	7.563% 3.102% 3.706% -0.319%	0.063s 0.014s 0.017s -0.172s	2748.310 2827.480 - 2884.086 - 2948.112	6.425% 3.744% 1.815% -0.369%	0.090s 0.016s 0.019s 0.194s	6712.120 6979.260 7124.880 7308.260	6.994% 3.291% 1.287 % -1.258%	0.535s 0.060s 0.059s - 0.700s	
GP4CO-FT GP4CO	GP-Gen-SL GP-Gen-UL	726.538 726.900	0.319% 0.195% 0.146 %	0.172s 0.172s 0.197s	2980.508 2986.932	-1.467% -1.688%	0.194s 0.196s 0.654s	7372.100 7384.020	-2.134% -2.306%	0.700s 0.720s 2.480s	

obtain high-quality global heatmaps through unsupervised methods. For the local construction paradigm, when the scale is small, RL outperforms SL, as shown in Table 4. However, as the scale increases, the performance of RL methods falls behind that of SL methods due to the rapid expansion of the state space and the sparsity of rewards.

• Learning Analysis for Node Problems. Compared with the edge-oriented problems, UL performs relatively better on the node-oriented problems, and even outperforms SL on MCut, as shown in Table 5. These may because: 1) the quality of supervised data. When obtaining training labels, the solvers (Gurobi, KaMIS) used for the node-oriented problems has relatively weaker performance than the solvers (Concorde, LKH, HGS) used for the edge-oriented problems. 2) the uniqueness of the solution. The solutions to edge-oriented problems are often unique, whereas solutions to node-oriented problems typically have many possibilities. 3) the design of the loss function. The node-oriented problems can be readily transformed into their corresponding energy equations [19], as detailed in Appendix A. This transformation makes it natural to leverage these energy equations as the loss functions for unsupervised training. Particularly in the case of MCut, there are even no constraint terms, allowing the loss function to consistently decrease in a single direction. However, in the edge-oriented problems, the number of decision variables is quadratically related to the problem size, which significantly increases the complexity. Moreover, due to more intricate constraint relationships, designing the loss function for edge-oriented problems often requires optimizing multiple objectives, which may also lead to poor training outcomes. Additionally, our experiments also validate the generalization ability of MAML as proposed in [18, 20].

Table 6: Research on the performance improvement of beam search.

Метнор	Түре	ВЕАМ-16		TSP-500		ATSP-500				CVRP-500		
			Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓	
LC4CO	LC-OS-SL	X	18.006	8.825%	3.964s	1.655	5.201%	6.328s	38.846	4.587%	7.095s	
LC4CO	LC-OS-SL	✓	17.279	4.433%	4.940s	1.639	4.190%	63.388s	38.279	3.051%	64.431s	
Метнор	Түре	ВЕАМ-16	MC	L-RB-SM	ALL	MO	CL-RB-LAI	RGE	MO	CL-RB-GIA	ANT	
			Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	TIME↓	
GP4CO	GP-OS-UL	X	15.084	20.720%	0.016s	29.052	26.604%	0.029s	55.580	29.171%	0.148s	
GP4CO	GP-OS-UL	✓	17.086	10.572%	0.017s	35.098	12.318%	0.091s	76.360	4.433%	0.333s	
GP4CO	GP-OS-SL	×	18.084	5.782%	0.014s	38.622	4.331%	0.042s	58.440	26.568%	0.220s	
GP4CO	GP-OS-SL	✓	18.592	2.950%	0.023s	39.540	1.857%	0.104s	77.460	3.119%	0.406s	
GP4CO (I _s =1)	GP-Gen-SL	×	18.258	4.870%	0.016s	36.402	9.809%	0.042s	60.860	22.902%	0.240s	
GP4CO (I _s =1)	GP-Gen-SL	✓	18.664	2.510%	0.022s	38.754	3.798%	0.104s	77.340	2.732%	0.420s	

Table 7: Research on the performance improvement of parallel mechanism.

МЕТНОО	Түре	PARALLEL		TSP-500			TSP-1K			ATSP-500	
		***************************************	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓
GP4CO (I _s =5)	GP-Gen-SL	×	17.473	5.603%	0.099s	25.021	8.229%	0.289s	1.641	4.294%	0.558s
GP4CO (I _s =5)	GP-Gen-SL	/	17.012	2.817%	0.289s	24.371	5.419%	1.188s	1.614	2.543%	2.144s
AE4CO (D _s =3, I _s =5)	AE-Gen-SL	×	17.119	3.466%	0.231s	24.698	6.834%	0.691s	1.623	3.128%	1.669s
AE4CO (D_s =3, I_s =5)	AE-Gen-SL	/	16.776	1.395%	0.650s	24.081	4.165%	2.412s	1.604	1.965%	6.267s
Метнор	Түре	PARALLEL	MIS	S-RB-SM	ALL	MI	S-RB-LAF	GE	MIS	S-ER-700-8	800
			Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	Тіме↓
GP4CO (I _s =20)	GP-Gen-SL	Х	19.330	3.710%	0.192s	38.936	9.388%	0.714s	40.195	10.618%	0.641s
GP4CO (I _s =20)	GP-Gen-SL	/	19.742	1.690%	0.332s	40.066	6.742%	2.398s	41.430	7.867%	2.094s
AE4CO (D _s =20, I _s =1)	AE-Gen-SL	×	19.662	2.088%	0.112s	41.234	4.060%	0.624s	42.383	5.746%	0.469s
AE4CO (D_s =20, I_s =1)	AE-Gen-SL	/	19.706	1.880%	0.120s	41.438	3.582%	1.298s	42.563	5.343%	0.703s
Метнор	Түре	PARALLEL	MC	L-RB-SM.	ALL	MC	L-RB-LAI	RGE	MV	C-RB-LAR	RGE
			Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓
GP4CO (I _s =20)	GP-Gen-SL	×	18.608	2.850%	0.200s	35.384	12.672%	0.708s	972.608	0.453%	0.718s
GP4CO (I _s =20)	GP-Gen-SL	/	18.982	0.607%	0.328s	38.706	4.197%	2.386s	971.420	0.330%	2.412s
AE4CO (D _s =20, I _s =1)	AE-Gen-SL	×	18.766	1.892%	0.046s	36.752	8.817%	0.150s	969.922	0.176%	0.522s
AE4CO (D _s =20, I _s =1)	AE-Gen-SL	✓	18.922	1.018%	0.056s	39.170	2.722%	0.414s	969.806	0.163%	0.626s

Table 8: ML4CO-101 vs baseline solvers: a summarized comparaison. Rd denotes random.

TSP	PROBLEM	DATASET			Learning-based M	ETHODS				
TSP	I KODELIII	2521	Метнор	Овј.	Тіме↓	METHOD TYPE	SETTINGS	Овј.	Drop↓	Тіме↓
TSP	TSP	TSP-50	Concorde [73]	5.688	0.059s	GP-OS-SL	Rd-16 + MCTS (0.05s)	5.688	0.001%	0.031s
TSP	TSP	TSP-100	Concorde [73]	7.756	0.238s	GP-OS-SL	Rd-16 + MCTS (0.05s)	7.756	0.005%	0.119s
TSP	TSP	TSP-500	Concorde [73]	16.546	18.672s	AE-Gen-SL	4×Greedy + Two-Opt	16.588	0.257%	0.695s
TSP	TSP	TSP-1K	Concorde [73]	23.118	84.413s	AE-Gen-SL	4×Greedy + Two-Opt	23.271	0.662%	2.609s
ATSP ATSP-50 LKH (1K) [6] 1.554 0.097s AE-Gen-SL 4×Greedy + Two-Opt 1.557 0.171% 0.103 ATSP ATSP-100 LKH (1K) [6] 1.566 0.238s AE-Gen-SL 4×Greedy + Two-Opt 1.581 0.946% 0.516 ATSP ATSP-200 LKH (1K) [6] 1.566 0.724s AE-Gen-SL 4×Greedy + Two-Opt 1.588 1.501% 1.097 ATSP ATSP-500 LKH (1K) [6] 1.573 4.376s AE-Gen-SL 4×Greedy + Two-Opt 1.588 1.501% 1.097 ATSP ATSP-500 LKH (1K) [6] 1.573 4.376s AE-Gen-SL 4×Greedy + Two-Opt 1.588 1.501% 1.097 CVRP CVRP-50 HGS [75] 10.366 1.005s LC-OS-RL N×Sampling + Classic-LS 10.489 1.179% 0.154 CVRP CVRP-100 HGS [75] 15.563 20.027s LC-OS-RL N×Sampling + Classic-LS 15.822 1.663% 0.202 CVRP CVRP-200 HGS [75] 19.630 60.024s LC-OS-RL N×Sampling + Classic-LS 15.822 1.663% 0.202 CVRP CVRP-500 HGS [75] 37.154 360.376s LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 CVRP CVRP-500 HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 CVRP CVRPLIB HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 48.263 5.469% -	TSP	TSP-10K	LKH(500) [6]	71.755	332.758s	AE-Gen-SL	Greedy + Two-Opt	72.832	1.450%	33.485s
ATSP ATSP-100	TSP	TSPLIB	Concorde [73]	8.062	-	-		8.095	0.356%	-
ATSP										0.103s
ATSP										0.516s
CVRP CVRP-50 HGS [75] 10.366 1.005s LC-OS-RL N×Sampling + Classic-LS 10.489 1.179% 0.154 CVRP CVRP-100 HGS [75] 15.563 20.027s LC-OS-RL N×Sampling + Classic-LS 15.822 1.663% 0.202 CVRP CVRP-200 HGS [75] 19.630 60.024s LC-OS-RL N×Sampling + Classic-LS 20.091 2.359% 0.439 CVRP CVRP-500 HGS [75] 37.154 360.376s LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 CVRP CVRPLIB HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 CVRP CVRPLIB HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 CVRP CVRPLIB HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 37.901 2.043% 64.586 MIS RB-SAMAL Gurobi [5] 40.900										1.097s
CVRP CVRP-100 HGS [75] 15.563 20.027s LC-OS-RL N×Sampling + Classic-LS 15.822 1.663% 0.202 CVRP CVRP-200 HGS [75] 19.630 60.024s LC-OS-RL N×Sampling + Classic-LS 20.091 2.359% 0.439 CVRP CVRP-500 HGS [75] 37.154 360.376s LC-OS-SL Beam-16 + Classic-LS 37.901 2.031% 64.588 CVRP CVRPLIB HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 CVRP CVRPLIB HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 CVRP CVRPLIB HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 WS ampling + Classic-LS 48.263 5.469% - - LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 MIS RAH AB-GAR AB-GER-SL </td <td>ATSP</td> <td>ATSP-500</td> <td>LKH (1K) [6]</td> <td>1.573</td> <td>4.376s</td> <td>AE-Gen-SL</td> <td>4×Greedy + Two-Opt</td> <td>1.598</td> <td>1.568%</td> <td>6.597s</td>	ATSP	ATSP-500	LKH (1K) [6]	1.573	4.376s	AE-Gen-SL	4×Greedy + Two-Opt	1.598	1.568%	6.597s
CVRP CVRP-200 HGS [75] 19,630 60,024s LC-OS-RL N×Sampling + Classic-LS 20,091 2.359% 0.439 CVRP CVRP-500 HGS [75] 37,154 360,376s LC-OS-RL N×Sampling + Classic-LS 37,901 2.031% 64,588 CVRP CVRPLIB HGS [75] 45,183 - LC-OS-RL N×Sampling + Classic-LS 38,091 2.031% 64,588 MIS RB-SMALL Gurobi [5] 20,090 0.538s AE-Gen-SL Greedy + RLSA 42,000 1.366% 1.816 MIS RB-LARGE KaMIS [76] 43,004 56,974s AE-Gen-SL Greedy + RLSA 42,000 1.366% 1.816 MIS SATLIB KaMIS [76] 425,954 24,368s AE-Gen-SL Greedy + RLSA 44,984 -0.041% 1.396 MIS RE-1400-1600 KaMIS [76] 49,260 60,960s AE-Gen-SL Greedy + RLSA 40,251 0.151% 1.775 MIS RB-GHANT KaMIS [76] 49,260										0.154s
CVRP CVRP-500 HGS [75] 37,154 360.376s LC-OS-SL Beam ⁻ 16 + Classic-LS 37.901 2.031% 64.588 CVRP CVRPLIB HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 37.901 2.031% 64.588 MIS RB-SMALL Gurobi [5] 20.090 0.538s AE-Gen-SL Greedy + RLSA 20.070 0.093% 0.471 MIS RB-LARGE KaMIS [76] 43.004 56.974s AE-Gen-SL Greedy + RLSA 42.00 1.366% 1.816 MIS ER-700-800 KaMIS [76] 44.969 60.753s AE-Gen-SL Greedy + RLSA 42.940 1.366% 1.816 MIS SATLIB KaMIS [76] 425.954 24.368s AE-Gen-SL Greedy + RLSA 425.316 0.151% 1.379 MIS ER-1400-1600 KaMIS [76] 49.260 60.960s AE-Gen-SL Greedy + RLSA 45.5316 0.151% 4.179 MIS RB-GIANT KaMIS [76] 49.260 60.9										0.202s
CVRP CVRPLIB HGS [75] 45.183 - LC-OS-RL N×Sampling + Classic-LS 48.263 5.469% - MIS RB-SMALL Gurobi [5] 20.090 0.538s AE-Gen-SL Greedy + RLSA 20.070 0.093% 0.471 MIS RB-LARGE KaMIS [76] 43.004 56.974s AE-Gen-SL Greedy + RLSA 42.400 1.366% 1.816 MIS ER-700-800 KaMIS [76] 44.969 60.7553 AE-Gen-SL Greedy + RLSA 42.040 1.366% 1.816 MIS SATLIB KaMIS [76] 425.954 24.368s AE-Gen-SL Greedy + RLSA 425.316 0.151% 1.775 MIS ER-1400-1600 KaMIS [76] 50.938 60.824s AE-Gen-SL Greedy + RLSA 425.316 0.151% 1.775 MIS RB-GIANT KaMIS [76] 49.260 60.960s AE-Gen-SL Greedy + RLSA 425.316 0.151% 1.775 MCI RB-SMALL Gurobi [5] 40.182 276.657s										
MIS RB-SMALL Gurobi [5] 20.090 0.538s AE-Gen-SL Greedy + RLSA 20.070 0.093% 0.471 MIS RB-LARGE KAMIS [76] 43.004 56.974s AE-Gen-SL Greedy + RLSA 42.400 1.366% 1.816 MIS ER-700-800 KAMIS [76] 44.969 60.753s AE-Gen-SL Greedy + RLSA 44.984 -0.041% 1.390 MIS SATLIB KAMIS [76] 425.954 24.368s AE-Gen-SL Greedy + RLSA 42.5316 0.151% 1.775 MIS ER-1400-1600 KAMIS [76] 50.938 60.824s AE-Gen-SL Greedy + RLSA 50.719 0.418% 4.102 MIS RB-GIANT KAMIS [76] 49.260 60.960s AE-Gen-SL Greedy + RLSA 47.880 2.741% 9.490 MCI RB-SMALL Gurobi [5] 19.082 0.900s GP-OS-SL Beam-16 + RLSA 40.256 -0.275% 0.171 MCI RB-LARGE Gurobi [5] 40.182 276.657s GP-OS-SL Beam-16 + RLSA 40.256 -0.2755% 0.171 MCI TWITTER Gurobi [5] 14.210 0.276s GP-OS-SL Beam-16 + RLSA 14.210 0.000% 0.044 MCI COLLAB Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MCI RB-GIANT Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 21.113 0.000% 0.024 MCI RB-LARGE Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MCI RB-LARGE Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MCI RB-GIANT Gurobi [5] 968.228 290.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592 MVC RB-SMALL Gurobi [5] 968.228 290.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592 MVC TWITTER Gurobi [5] 65.086 0.058s AE-Gen-SL Greedy + RLSA 2397.360 0.000% 0.158 MVC COLLAB Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 2994.118 1-3932% 0.999					360.376s					64.589s
MIS RB-LARGE KaMIS [76] 43.004 56.974s AE-Gen-SL Greedy + RLSA 42.400 1.366% 1.816 MIS ER-700-800 KaMIS [76] 44.969 60.753s AE-Gen-SL Greedy + RLSA 44.984 -0.041% 1.390 MIS SATLIB KaMIS [76] 425.954 24.368s AE-Gen-SL Greedy + RLSA 425.316 0.151% 1.775 MIS ER-1400-1600 KaMIS [76] 50.938 60.824s AE-Gen-SL Greedy + RLSA 50.719 0.418% 4.102 MIS RB-GIANT KaMIS [76] 49.260 60.960s AE-Gen-SL Greedy + RLSA 50.719 0.418% 4.102 MCI RB-SMALL Gurobi [5] 19.082 0.900s GP-OS-SL Beam-16 + RLSA 40.256 -0.275% 0.171 MCI TWITTER Gurobi [5] 14.210 0.276s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.044 MCI RB-GIANT Gurobi [5] 42.113 0.063s	CVRP	CVRPLIB	HGS [75]	45.183	-	LC-OS-RL	N×Sampling + Classic-LS	48.263	5.469%	-
MIS ER-700-800 KaMIS [76] 44,969 60.753s AE-Gen-SL Greedý + RLSA 44,984 -0.041% 1,390 MIS SATLIB KaMIS [76] 425,954 24,368s AE-Gen-SL Greedy + RLSA 425,316 0.151% 1.775 MIS ER-1400-1600 KaMIS [76] 50,938 60.824s AE-Gen-SL Greedy + RLSA 50,719 0.418% 4.102 MIS RB-GIANT KaMIS [76] 49,260 60,960s AE-Gen-SL Greedy + RLSA 47,880 2.7419 9,490 MCI RB-SMALL Gurobi [5] 49,260 60,960s AE-Gen-SL Beam-16 + RLSA 47,880 2.7419 9,490 MCI RB-SMALL Gurobi [5] 40,182 276,657s GP-OS-SL Beam-16 + RLSA 19,082 0,000% 0.044 MCI TWITTER Gurobi [5] 42,113 0,063s GP-OS-SL Beam-16 + RLSA 14,210 0,000% 0.044 MCI RB-GIANT Gurobi [5] 42,113 0,063s										0.471s
MIS SATLIB KaMIS [76] 425,954 24,368s AE-Gen-SL Greedy + RLSA 425,316 0.151% 1.775 MIS ER-1400-1600 KaMIS [76] 425,0938 60.824s AE-Gen-SL Greedy + RLSA 50.719 0.418% 4.102 MIS RB-GIANT KaMIS [76] 49,260 60.960s AE-Gen-SL Greedy + RLSA 47.880 2.741% 9,490 MCI RB-SMALL Gurobi [5] 40.182 276,657s GP-OS-SL Beam-16 + RLSA 40.256 -0.275% 0.171 MCI TWITTER Gurobi [5] 14.210 0.276s GP-OS-SL Beam-16 + RLSA 40.256 -0.275% 0.171 MCI COLLAB Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MCI RB-GIANT Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MVC RB-SMALL Gurobi [5] 205,764 3.340s										1.816s
MIS ER-1400-1600 KaMIS [76] 50.938 60.824s AE-Gen-SL Greedy + RLSA 50.719 0.418% 4.102 MIS RB-GIANT KaMIS [76] 49.260 60.960s AE-Gen-SL Greedy + RLSA 47.880 2.741% 9.490 MCI RB-SMALL Gurobi [5] 19.082 0.900s GP-OS-SL Beam-16 + RLSA 19.082 0.000% 0.041 MCI RB-LARGE Gurobi [5] 14.210 0.276s GP-OS-SL Beam-16 + RLSA 40.256 -0.275% 0.171 MCI TWITTER Gurobi [5] 14.210 0.276s GP-OS-SL Beam-16 + RLSA 14.210 0.000% 0.044 MCI RB-GIANT Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.044 MVC RB-SMALL Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MVC RB-SMALL Gurobi [5] 205.764 3.340s										1.390s
MIS RB-GIANT KaMIS [76] 49.260 60.960s AE-Gen-SL Greedy + RLSA 47.880 2.741% 9.490 MCI RB-SMALL Gurobi [5] 19.082 0.900s GP-OS-SL Beam-16 + RLSA 19.082 0.000% 0.041 MCI RB-LARGE Gurobi [5] 40.182 276.657s GP-OS-SL Beam-16 + RLSA 40.256 -0.275% 0.174 MCI TWITTER Gurobi [5] 14.210 0.276s GP-OS-SL Beam-16 + RLSA 41.210 0.000% 0.044 MCI COLLAB Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MCI RB-GIANT Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MVC RB-SMALL Gurobi [5] 205.764 3.340s AE-Gen-SL Greedy + RLSA 205.772 0.004% 0.612 MVC RB-LARGE Gurobi [5] 968.228 290.227s										1.775s
MCI RB-SMALL Gurobi [5] 19.082 0.900s GP-OS-SL Beam-16 + RLSA 19.082 0.000% 0.041 MCI RB-LARGE Gurobi [5] 40.182 276.657s GP-OS-SL Beam-16 + RLSA 40.256 -0.275% 0.171 MCI TWITTER Gurobi [5] 14.210 0.276s GP-OS-SL Beam-16 + RLSA 42.110 0.000% 0.044 MCI COLLAB Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MCI RB-GIANT Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MVC RB-SMALL Gurobi [5] 205.764 3.340s AE-Gen-SL Greedy + RLSA 205.772 0.004% 0.612 MVC RB-LARGE Gurobi [5] 968.228 290.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592 MVC TWITTER Gurobi [5] 85.251 0.133s										4.102s
MCI RB-LARGE Gurobi [5] 40.182 276.657s GP-OS-SL Beam-16 + RLSA 40.256 -0.275% 0.171 MCI TVITTER Gurobi [5] 14.210 0.276s GP-OS-SL Beam-16 + RLSA 14.210 0.000% 0.044 MCI COLLAB Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MCI RB-GIANT Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 85.380 -7.912% 4.342 MVC RB-SMALL Gurobi [5] 205.764 3.340s AE-Gen-SL Greedy + RLSA 205.772 0.004% 0.612 MVC RB-LARGE Gurobi [5] 968.228 209.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592 MVC TWITTER Gurobi [5] 85.251 0.133s AE-Gen-SL Greedy + RLSA 85.251 0.000% 0.115 MVC COLLAB Gurobi [5] 65.086 0.058s	MIS	RB-GIANT	KaMIS [76]	49.260	60.960s	AE-Gen-SL	Greedy + RLSA	47.880	2.741%	9.490s
MCI TWITTER Gurobi [5] 14,210 0.276s GP-OS-SL Beam-16 + RLSA 14,210 0.000% 0.044 MCI COLLAB Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MCI RB-GIANT Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 85.380 -7.912% 4.342 MVC RB-SMALL Gurobi [5] 205.764 3.340s AE-Gen-SL Greedy + RLSA 205.772 0.004% 0.612 MVC RB-LARGE Gurobi [5] 968.228 290.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592 MVC TVITTER Gurobi [5] 85.251 0.133s AE-Gen-SL Greedy + RLSA 85.251 0.000% 0.158 MVC COLLAB Gurobi [5] 65.086 0.058s AE-Gen-SL Greedy + RLSA 2397.360 0.026% 8.590 MCut BA-SMALL Gurobi [5] 2936.886 300.214s										0.041s
MCI COLLAB Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024 MCI RB-GIANT Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 85.380 -7.912% 4.342 MVC RB-SMALL Gurobi [5] 205.764 3.340s AE-Gen-SL Greedy + RLSA 205.772 0.004% 0.612 MVC RB-LARGE Gurobi [5] 968.228 290.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592 MVC TWITTER Gurobi [5] 85.251 0.133s AE-Gen-SL Greedy + RLSA 85.251 0.000% 0.115 MVC COLLAB Gurobi [5] 65.086 0.058s AE-Gen-SL Greedy + RLSA 65.086 0.000% 0.158 MVC RB-GIANT Gurobi [5] 2396.780 60.612s AE-Gen-SL Greedy + RLSA 2397.360 0.026% 8.590 MCut BA-SMALL Gurobi [5] 2936.886 300.214s										0.171s
MCI RB-GIANT Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 85.380 -7.912% 4.342 MVC RB-SMALL Gurobi [5] 205.764 3.340s AE-Gen-SL Greedy + RLSA 205.772 0.004% 0.612 MVC RB-LARGE Gurobi [5] 968.228 290.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592 MVC TWITTER Gurobi [5] 85.251 0.133s AE-Gen-SL Greedy + RLSA 85.251 0.000% 0.115 MVC COLLAB Gurobi [5] 65.086 0.088s AE-Gen-SL Greedy + RLSA 65.086 0.000% 0.158 MVC RB-GIANT Gurobi [5] 2396.780 60.612s AE-Gen-SL Greedy + RLSA 2397.360 0.026% 8.590 MCut BA-SMALL Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 729.706 -0.240% 0.727 MCut BA-LARGE Gurobi [5] 2936.886 300.2										0.044s
MVC RB-SMALL Gurobi [5] 205.764 3.340s AE-Gen-SL Greedy + RLSA 205.772 0.004% 0.612 MVC RB-LARGE Gurobi [5] 968.228 290.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592 MVC TWITTER Gurobi [5] 85.251 0.133s AE-Gen-SL Greedy + RLSA 85.251 0.000% 0.115 MVC COLLAB Gurobi [5] 2396.780 60.058s AE-Gen-SL Greedy + RLSA 65.086 0.000% 0.158 MVC RB-GIANT Gurobi [5] 2396.780 60.612s AE-Gen-SL Greedy + RLSA 2397.360 0.026% 8.590 MCut BA-SMALL Gurobi [5] 727.844 60.612s AE-Gen-SL Greedy + RLSA 729.706 -0.240% 0.727 MCut BA-LARGE Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 2994.118 -1.932% 0.999										0.024s
MVC RB-LARGE Gurobi [5] 968.228 290.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592 MVC TWITTER Gurobi [5] 85.251 0.133s AE-Gen-SL Greedy + RLSA 85.251 0.000% 0.115 MVC COLLAB Gurobi [5] 65.086 0.058s AE-Gen-SL Greedy + RLSA 65.086 0.000% 0.158 MVC RB-GIANT Gurobi [5] 2396.780 60.612s AE-Gen-SL Greedy + RLSA 2397.360 0.026% 8.590 MCut BA-SMALL Gurobi [5] 727.844 60.612s AE-Gen-SL Greedy + RLSA 729.706 -0.240% 0.727 MCut BA-LARGE Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 2994.118 -1.932% 0.999	MCl	RB-GIANT	Gurobi [5]	81.520	3606.201s	GP-OS-SL	Beam-16 + RLSA	85.380	-7.912%	4.342s
MVC TWITTER Gurobi [5] 85.251 0.133s AE-Gen-SL Greedy + RLSA 85.251 0.000% 0.115 MVC COLLAB Gurobi [5] 65.086 0.058s AE-Gen-SL Greedy + RLSA 65.086 0.000% 0.158 MVC RB-GIANT Gurobi [5] 2396.780 60.612s AE-Gen-SL Greedy + RLSA 2397.360 0.026% 8.590 MCut BA-SMALL Gurobi [5] 727.844 60.612s AE-Gen-SL Greedy + RLSA 729.706 -0.240% 0.727 MCut BA-LARGE Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 2994.118 -1.932% 0.999										0.612s
MVC COLLAB Gurobi [5] 65.086 0.058s AE-Gen-SL Greedy + RLSA 65.086 0.000% 0.158 MVC RB-GIANT Gurobi [5] 2396.780 60.612s AE-Gen-SL Greedy + RLSA 2397.360 0.026% 8.590 MCut BA-SMALL Gurobi [5] 727.844 60.612s AE-Gen-SL Greedy + RLSA 729.706 -0.240% 0.727 MCut BA-LARGE Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 2994.118 -1.932% 0.999										1.592s
MVC RB-GIANT Gurobi [5] 2396.780 60.612s AE-Gen-SL Greedy + RLSA 2397.360 0.026% 8.590 MCut BA-SMALL Gurobi [5] 727.844 60.612s AE-Gen-SL Greedy + RLSA 729.706 -0.240% 0.727 MCut BA-LARGE Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 2994.118 -1.932% 0.999										0.115s
MCut BA-SMALL Gurobi [5] 727.844 60.612s AE-Gen-SL Greedy + RLSA 729.706 -0.240% 0.727 MCut BA-LARGE Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 2994.118 -1.932% 0.999										0.158s
MCut BA-LARGE Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 2994.118 -1.932% 0.999	MVC	RB-GIANT	Gurobi [5]	2396.780	60.612s	AE-Gen-SL	Greedy + RLSA	2397.360	0.026%	8.590s
										0.727s
MCut BA-GIANT Gurobi [5] 7217.900 3601.342s GP-Gen-SL Greedy + RLSA 7389.300 -2.383% 2.228										0.999s
The state of the s	MCut	BA-GIANT	Gurobi [5]	7217.900	3601.342s	GP-Gen-SL	Greedy + RLSA	7389.300	-2.383%	2.228s

Table 9: Generalization Study on Cross-distribution Datasets.

PROBLEM	DATASET	LEARNING	FREE BASI	ELINE		LEARNING-BASED !	METHODS		
I KODELIII	2.11.102.1	МЕТНОО	Овј.	TIME↓	METHOD TYPE	SETTINGS	Овј.	Drop↓	TIME↓
TSP	Cluster-50	Concorde [73]	3.730	0.140s	GP-OS-SL	Rd-16 + MCTS (0.05s)	3.730	0.001%	0.098s
TSP	Cluster-100	Concorde [73]	5.526	0.290s	GP-OS-SL	Rd-16 + MCTS (0.05s)	5.527	0.011%	0.604s
TSP	Cluster-500	Concorde [73]	10.723	5.073s	AE-Gen-SL	4×Greedy + Two-Opt	10.937	1.998%	1.250s
TSP	Gaussian-50	Concorde [73]	23.840	0.166s	GP-OS-SL	Rd-16 + MCTS (0.05s)	23.841	0.005%	0.256s
TSP	Gaussian-100	Concorde [73]	34.031	0.438s	GP-OS-SL	Rd-16 + MCTS (0.05s)	34.044	0.037%	0.604s
TSP	Gaussian-500	Concorde [73]	77.521	19.952s	AE-Gen-SL	$4 \times$ Greedy + Two-Opt	78.122	0.774%	1.169s
ATSP	HCP-50	LKH (1K) [6]	0.000	0.107s	AE-Gen-SL	Greedy + Two-Opt	1.468	-	0.075s
ATSP	HCP-100	LKH (1K) [6]	0.000	0.211s	AE-Gen-SL	Greedy + Two-Opt	1.380	_	0.109s
ATSP	HCP-200	LKH (1K) [6]	0.000	0.355s	AE-Gen-SL	Greedy + Two-Opt	1.050	_	2.508s
ATSP	HCP-500	LKH (1K) [6]	0.000	1.410s	AE-Gen-SL	Greedy + Two-Opt	0.880	-	3.219s
ATSP	SAT-50	LKH (1K) [6]	0.151	0.079s	AE-Gen-SL	Greedy + Two-Opt	5.018	-	0.076s
ATSP	SAT-100	LKH (1K) [6]	0.079	0.128s	AE-Gen-SL	Greedy + Two-Opt	12.717	-	0.107s
ATSP	SAT-200	LKH (1K) [6]	0.130	0.192s	AE-Gen-SL	Greedy + Two-Opt	21.470	-	1.768s
ATSP	SAT-500	LKH (1K) [6]	0.430	0.781s	AE-Gen-SL	Greedy + Two-Opt	2.340	_	3.222s
MIS	HK-SMALL	KaMIS [76]	79.372	54.174s	AE-Gen-SL	Greedy + RLSA	79.358	0.017%	0.353s
MIS	HK-LARGE	KaMIS [76]	330.946	67.272s	AE-Gen-SL	Greedy + RLSA	330.422	0.154%	1.600s
MIS	WS-SMALL	KaMIS [76]	76.904	51.490s	AE-Gen-SL	Greedy + RLSA	76.894	0.013%	0.357s
MIS	WS-LARGE	KaMIS [76]	262.570	37.792s	AE-Gen-SL	Greedy + RLSA	260.114	0.926%	1.502s
MCl	HK-SMALL	Gurobi [5]	6.792	1.838s	GP-OS-SL	Beam-16 + RLSA	6.792	0.000%	0.039s
MCl	HK-LARGE	Gurobi [5]	6.774	46.502s	GP-OS-SL	Beam-16 + RLSA	6.774	0.000%	0.169s
MCl	WS-SMALL	Gurobi [5]	7.164	1.589s	GP-OS-SL	Beam-16 + RLSA	7.164	0.000%	0.040s
MCl	WS-LARGE	Gurobi [5]	5.978	27.051s	GP-OS-SL	Beam-16 + RLSA	5.976	0.033%	0.172s
MVC	HK-SMALL	Gurobi [5]	142.506	0.382s	AE-Gen-SL	Greedy + RLSA	142.506	0.000%	0.353s
MVC	WS-SMALL	Gurobi [5]	154.618	1.596s	AE-Gen-SL	Greedy + RLSA	154.610	-0.005%	0.317s
MCut	HK-SMALL	Gurobi [5]	1540.608	60.089s	AE-Gen-SL	Greedy + RLSA	1542.810	-0.141%	0.382s
MCut	HK-LARGE	Gurobi [5]	6401.320	300.357s	GP-Gen-SL	Greedy + RLSA	6454.100	-0.766%	0.991s
MCut	WS-SMALL	Gurobi [5]	872.116	60.357s	AE-Gen-SL	Greedy + RLSA	874.372	-0.250%	0.338s
MCut	WS-LARGE	Gurobi [5]	3454.176	300.247s	GP-Gen-SL	Greedy + RLSA	3489.304	-1.007%	0.668s

4.2.2 Enhancement from Decoding Strategies and Post-Processing Methods

Decoding Strategy. As shown in Table 6 and Table 7, compared with greedy decoding, beam search and parallel mechanisms ($\times 4$) bring about performance improvements of approximately 67% and 42%, respectively. A larger number of candidates k in beam search and a bigger number of parallelism in parallel mechanisms can lead to better results. However, this comes at the cost of increased time consumption. A trade-off between performance and time needs to be made in practice.

Post-Processing Methods. Intuitively, we find the incorporation of post-processing greatly enhances the quality of the solutions. For a clearer principal line, we defer the complete results of various integration of post-processing methods with the neural counterparts to Appendix D, while leaving the best method composition for each benchmark (both time and performance considered) in Table 8.

4.2.3 Generalization Study on Cross-distribution Datasets

We further conducted a generalization study on cross-distribution datasets, with the results presented in Table 9. The model selection and solving parameters remain consistent with those used in Table 8. For the ATSP, several clarifications are necessary: 1) Owing to the inherent properties of the HCP and SAT problems, the derived ATSP instances have an optimal solution of zero by construction, making it infeasible to compute performance drop values. 2) Since the solution is determined during instance generation, the result from the LKH(1K) solver merely serves as a benchmark to demonstrate the performance of a traditional solver, rather than a reference solution. 3) To accelerate the solving process, we employ a Greedy + Two-Opt approach for the ATSP, instead of the $4 \times Greedy + Two-Opt$ used elsewhere. As shown by the generalization results, the proposed model achieves strong generalization on most problem types, with the exception of the SAT distribution in ATSP.

5 Conclusion and Outlook

We have developed a benchmark for 7 classic CO problems on graphs. We categorize existing works under a *paradigm-model-learning* criteria with three major schemes: *GP4CO*, *LC4CO*, and *AE4CO*. We also provide 34 benchmark datasets across the COPs with extensive experiments on representative methods. In the future, we will extend our benchmark to encompass more real-world CO problems, such as TSPTW, CVRPTW, and JSSP. We hope our work can ultimately advance the research on more practical CO problems, in analogy to the role of ImageNet [77] for vision, i.e., from classic object detection in static images to more open-environment applications like autonomous driving.

References

- [1] Q. Wang and C. Tang, "Deep reinforcement learning for transportation network combinatorial optimization: A survey," *Knowledge-Based Systems*, vol. 233, p. 107526, 2021.
- [2] L. Baty, K. Jungel, P. S. Klein, A. Parmentier, and M. Schiffer, "Combinatorial optimization-enriched machine learning to solve the dynamic vehicle routing problem with time windows," *Transportation Science*, 2024.
- [3] G. Singh and M. Rizwanullah, "Combinatorial optimization of supply chain networks: A retrospective & literature review," *Materials today: proceedings*, vol. 62, pp. 1636–1642, 2022.
- [4] V. T. Paschos, Applications of combinatorial optimization. John Wiley & Sons, 2014.
- [5] L. Gurobi Optimization, "Gurobi optimizer reference manual (2020)," 2023.
- [6] K. Helsgaun, "An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems," *Roskilde: Roskilde University*, vol. 12, 2017.
- [7] Y. Nagata and S. Kobayashi, "A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem," *INFORMS Journal on Computing*, vol. 25, no. 2, pp. 346–363, 2013.
- [8] Y. Bengio, A. Lodi, and A. Prouvost, "Machine learning for combinatorial optimization: a methodological tour dâĂŹhorizon," *European Journal of Operational Research*, vol. 290, no. 2, pp. 405–421, 2021.
- [9] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veličković, "Combinatorial optimization and reasoning with graph neural networks," *Journal of Machine Learning Research*, vol. 24, no. 130, pp. 1–61, 2023.
- [10] W. Kool, H. Van Hoof, and M. Welling, "Attention, learn to solve routing problems!" *arXiv* preprint arXiv:1803.08475, 2018.
- [11] Y. Li, X. Chen, W. Guo, X. Li, W. Luo, J. Huang, H.-L. Zhen, M. Yuan, and J. Yan, "Hardsatgen: Understanding the difficulty of hard sat formula generation and a strong structure-hardness-aware baseline," in *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2023, pp. 4414–4425.
- [12] X. Chen, Y. Li, R. Wang, and J. Yan, "Mixsatgen: Learning graph mixing for sat instance generation," in *The Twelfth International Conference on Learning Representations*, 2024.
- [13] R. Wang, Z. Guo, W. Pan, J. Ma, Y. Zhang, N. Yang, Q. Liu, L. Wei, H. Zhang, C. Liu, Z. Jiang, X. Yang, and J. Yan, "Pygmtools: A python graph matching toolkit," *Journal of Machine Learning Research*, vol. 25, no. 33, pp. 1–7, 2024.
- [14] Y. Bengio, A. Lodi, and A. Prouvost, "Machine learning for combinatorial optimization: a methodological tour dâĂŹhorizon," *European Journal of Operational Research*, 2021.
- [15] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Veličković, "Combinatorial optimization and reasoning with graph neural networks," arXiv preprint arXiv:2102.09544, 2021.
- [16] Z. Sun and Y. Yang, "DIFUSCO: Graph-based diffusion solvers for combinatorial optimization," in *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [17] Y. Li, J. Ma, W. Pan, R. Wang, H. Geng, N. Yang, and J. Yan, "Unify ml4tsp: Drawing methodological principles for tsp and beyond from streamlined design space of learning and search," in *The Thirteenth International Conference on Learning Representations*, 2025.
- [18] R. Qiu, Z. Sun, and Y. Yang, "DIMES: A differentiable meta solver for combinatorial optimization problems," in *Advances in Neural Information Processing Systems 35*, 2022.
- [19] S. Sanokowski, S. Hochreiter, and S. Lehner, "A diffusion model framework for unsupervised neural combinatorial optimization," in *Forty-first International Conference on Machine Learning*, 2024.
- [20] H. P. Wang and P. Li, "Unsupervised learning for combinatorial optimization needs meta learning," in *The Eleventh International Conference on Learning Representations*, 2023.
- [21] S. Sanokowski, W. F. Berghammer, H. P. Wang, M. Ennemoser, S. Hochreiter, and S. Lehner, "Scalable discrete diffusion samplers: Combinatorial optimization and statistical physics," in *The Thirteenth International Conference on Learning Representations*, 2025.

- [22] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, "Learning combinatorial optimization algorithms over graphs," in *Advances in Neural Information Processing Systems*, 2018.
- [23] A.-L. Barabási and R. Albert, "Emergence of scaling in random networks," science, vol. 286, no. 5439, pp. 509–512, 1999.
- [24] N. Karalias, J. D. Robinson, A. Loukas, and S. Jegelka, "Neural set function extensions: Learning with discrete functions in high dimensions," in *Advances in Neural Information Processing Systems*, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available: https://openreview.net/forum?id=39XK7VJ0sKG
- [25] D. Zhang, H. Dai, N. Malkin, A. C. Courville, Y. Bengio, and L. Pan, "Let the flows tell: Solving graph combinatorial problems with gflownets," in *Advances in Neural Information Processing Systems*, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36. Curran Associates, Inc., 2023, pp. 11 952–11 969.
- [26] S. Sanokowski, W. Berghammer, S. Hochreiter, and S. Lehner, "Variational annealing on graphs for combinatorial optimization," *Advances in Neural Information Processing Systems*, vol. 36, pp. 63 907–63 930, 2023.
- [27] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre, "A simple model to generate hard satisfiable instances," *arXiv preprint cs/0509032*, 2005.
- [28] Y. Min, Y. Bai, and C. P. Gomes, "Unsupervised learning for solving the travelling salesman problem," in *Advances in Neural Information Processing Systems*, 2023.
- [29] Z.-H. Fu, K.-B. Qiu, and H. Zha, "Generalize a small pre-trained model to arbitrarily large tsp instances," in *Proceedings of the AAAI conference on artificial intelligence*, vol. 35, 2021, pp. 7474–7482.
- [30] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, "Pomo: Policy optimization with multiple optima for reinforcement learning," *Advances in Neural Information Processing Systems*, vol. 33, pp. 21 188–21 198, 2020.
- [31] Y.-D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and Y. Gwon, "Matrix encoding networks for neural combinatorial optimization," *Advances in Neural Information Processing Systems*, vol. 34, pp. 5138–5149, 2021.
- [32] D. Drakulic, S. Michel, and J.-M. Andreoli, "GOAL: A generalist combinatorial optimization agent learner," in *The Thirteenth International Conference on Learning Representations*, 2025.
- [33] W. Pan, H. Xiong, J. Ma, W. Zhao, Y. Li, and J. Yan, "UniCO: On unified combinatorial optimization via problem reduction to matrix-encoded general TSP," in *The Thirteenth International Conference on Learning Representations*, 2025.
- [34] S. Zhou, Y. Ding, C. Zhang, Z. Cao, and Y. Jin, "Dualopt: A dual divide-and-optimize algorithm for the large-scale traveling salesman problem," in *Proceedings of the AAAI Conference on Artificial Intelligence*, February 2025.
- [35] A. Lischka, J. Wu, M. H. Chehreghani, and B. KulcsAar, "A great architecture for edge-based graph problems like tsp," 2024.
- [36] Y. Li, J. Guo, R. Wang, and J. Yan, "From distribution learning in training to gradient search in testing for combinatorial optimization," in *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [37] J. Ma, W. Pan, Y. Li, and J. Yan, "Coexpander: Adaptive solution expansion for combinatorial optimization," in *Forty-second International Conference on Machine Learning*, 2025.
- [38] Z. Li, Q. Chen, and V. Koltun, "Combinatorial optimization with graph convolutional networks and guided tree search," *Advances in neural information processing systems*, vol. 31, 2018.
- [39] C. K. Joshi, T. Laurent, and X. Bresson, "An efficient graph convolutional network technique for the travelling salesman problem," *arXiv preprint arXiv:1906.01227*, 2019.
- [40] Y. Li, J. Guo, R. Wang, H. Zha, and J. Yan, "Fast t2t: Optimization consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization," in *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [41] F. Berto, C. Hua, J. Park, M. Kim, H. Kim, J. Son, H. Kim, J. Kim, and J. Park, "RL4CO: a unified reinforcement learning for combinatorial optimization library," in *Neural Information Processing Systems 2023, Workshop: New Frontiers in Graph Learning*, 2023.

- [42] M. Kim, J. Park, and J. Park, "Sym-nco: Leveraging symmetricity for neural combinatorial optimization," *Advances in Neural Information Processing Systems*, vol. 35, pp. 1936–1949, 2022.
- [43] S. Ahn, Y. Seo, and J. Shin, "Learning what to defer for maximum independent sets," in *International Conference on Machine Learning*. PMLR, 2020.
- [44] B. Hudson, Q. Li, M. Malencia, and A. Prorok, "Graph neural network guided local search for the traveling salesperson problem," in *International Conference on Learning Representations*, 2022.
- [45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," *Advances in neural information processing systems*, vol. 30, 2017.
- [46] D. Drakulic, S. Michel, F. Mai, A. Sors, and J.-M. Andreoli, "Bq-nco: Bisimulation quotienting for efficient neural combinatorial optimization," in *Advances in Neural Information Processing* Systems, 2023.
- [47] J. Ho, A. Jain, and P. Abbeel, "Denoising diffusion probabilistic models," *Advances in neural information processing systems*, vol. 33, pp. 6840–6851, 2020.
- [48] Y. Li, J. Ma, Y. Yang, Q. Wu, H. Zha, and J. Yan, "Generative modeling reinvents supervised learning: Label repurposing with predictive consistency learning," in *Forty-second International Conference on Machine Learning*.
- [49] Y. Li, Y. Mo, L. Shi, and J. Yan, "Improving generative adversarial networks via adversarial learning in latent space," *Advances in neural information processing systems*, vol. 35, pp. 8868–8881, 2022.
- [50] Y. Li, L. Chen, H. Wang, R. Wang, and J. Yan, "Generation as search operator for test-time scaling of diffusion-based combinatorial optimization," in *Advances in Neural Information Processing Systems*, 2025.
- [51] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, "Consistency models," in *International Conference on Machine Learning*, 2023.
- [52] H. Sun, K. Goshvadi, A. Nova, D. Schuurmans, and H. Dai, "Revisiting sampling for combinatorial optimization," in *International Conference on Machine Learning*. PMLR, 2023, pp. 32 859–32 874.
- [53] S. Feng and Y. Yang, "Regularized langevin dynamics for combinatorial optimization," *arXiv* preprint arXiv:2502.00277, 2025.
- [54] H. Geng, H. Ruan, R. Wang, Y. Li, Y. Wang, L. Chen, and J. Yan, "Benchmarking pto and pno methods in the predictive combinatorial optimization regime," *Advances in Neural Information Processing Systems*, vol. 37, pp. 65 944–65 971, 2024.
- [55] M. BÃűther, O. Kiçig, M. Taraz, S. Cohen, K. Seidel, and T. Friedrich, "What's wrong with deep learning in tree search for combinatorial optimization," in *Proceedings of the International Conference on Learning Representations (ICLR)*, 2022.
- [56] H. Ye, J. Wang, H. Liang, Z. Cao, Y. Li, and F. Li, "Glop: Learning global partition and local construction for solving large-scale routing problems in real-time," in *Proceedings of the AAAI Conference on Artificial Intelligence*, 2024.
- [57] Z. Zheng, C. Zhou, T. Xialiang, M. Yuan, and Z. Wang, "Udc: A unified neural divide-and-conquer framework for large-scale combinatorial optimization problems," in *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [58] S. Li, Z. Yan, and C. Wu, "Learning to delegate for large-scale vehicle routing," *Advances in Neural Information Processing Systems*, vol. 34, pp. 26198–26211, 2021.
- [59] X. Chen and Y. Tian, "Learning to perform local rewriting for combinatorial optimization," Advances in neural information processing systems, vol. 32, 2019.
- [60] H. Lu, X. Zhang, and S. Yang, "A learning-based iterative method for solving vehicle routing problems," in *International conference on learning representations*, 2019.
- [61] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, "Learning improvement heuristics for solving routing problems," *IEEE transactions on neural networks and learning systems*, vol. 33, no. 9, pp. 5057–5069, 2021.

- [62] G. D. Konstantakopoulos, S. P. Gayialis, and E. P. Kechagias, "Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification," *Operational research*, vol. 22, no. 3, pp. 2033–2062, 2022.
- [63] Y. Ma, Z. Cao, and Y. M. Chee, "Learning to search feasible and infeasible regions of routing problems with flexible neural k-opt," in *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [64] J. Zheng, K. He, J. Zhou, Y. Jin, and C.-M. Li, "Combining reinforcement learning with lin-kernighan-helsgaun algorithm for the traveling salesman problem," *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 35, no. 14, pp. 12445–12452, May 2021. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/17476
- [65] L. Xin, W. Song, Z. Cao, and J. Zhang, "Neurolkh: Combining deep learning model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem," in *Advances in Neural Information Processing Systems*, vol. 34, 2021.
- [66] Y. Feng, C. Yang, X. Hou, S. Du, S. Ying, Z. Wu, and Y. Gao, "Beyond graphs: Can large language models comprehend hypergraphs?" *arXiv preprint arXiv:2410.10083*, 2024.
- [67] P. Erd6s and A. Rényi, "On the evolution of random graphs," *Publ. Math. Inst. Hungar. Acad. Sci*, vol. 5, pp. 17–61, 1960.
- [68] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian, "New benchmark instances for the capacitated vehicle routing problem," *European Journal of Operational Research*, vol. 257, no. 3, pp. 845–858, 2017.
- [69] L. Jure, "Snap datasets: Stanford large network dataset collection," *Retrieved December 2021 from http://snap. stanford. edu/data*, 2014.
- [70] P. Yanardag and S. Vishwanathan, "Deep graph kernels," in *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*, 2015, pp. 1365–1374.
- [71] P. Holme and B. J. Kim, "Growing scale-free networks with tunable clustering," *Physical review E*, vol. 65, no. 2, p. 026107, 2002.
- [72] D. J. Watts and S. H. Strogatz, "Collective dynamics of âĂŸsmall-worldâĂŹnetworks," *nature*, vol. 393, no. 6684, pp. 440–442, 1998.
- [73] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, "Concorde tsp solver," 2006.
- [74] Y. Nagata and S. Kobayashi, "A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem," *INFORMS Journal on Computing*, vol. 25, no. 2, pp. 346–363, 2013
- [75] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei, "A hybrid genetic algorithm for multidepot and periodic vehicle routing problems," *Operations Research*, vol. 60, no. 3, pp. 611–624, 2012.
- [76] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck, "Finding near-optimal independent sets at scale," in 2016 Proceedings of the eighteenth workshop on algorithm engineering and experiments (ALENEX). SIAM, 2016, pp. 138–150.
- [77] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.
- [78] A. Lucas, "Ising formulations of many np problems," Frontiers in physics, vol. 2, p. 5, 2014.

Appendix

A Formal Problem Definitions

Traveling Salesman Problem (TSP). Given G and a cost matrix $\mathbf{C} \in \mathbb{R}^{N \times N}$, where \mathbf{C}_{ij} denotes the cost of edge (i,j), the objective is to find a tour $\tau = (i_1, \cdots, i_N)$ that minimizes the total cost: $\sum_{k=1}^{N-1} \mathbf{C}_{i_k i_{k+1}} + \mathbf{C}_{i_N i_1}$.

Asymmetric Traveling Salesman Problem (ATSP). ATSP is a variant of TSP where the cost matrix C is not necessarily symmetric, i.e., $C_{ij} = C_{ji}$ does not always hold for all $i, j \in \mathcal{V}$. In this paper, we follow [32, 31, 33, 37] to study the metric ATSP, where the triangle inequality holds: $C_{ij} + C_{jk} \ge C_{ik}$ for any distinct nodes i, j, and k.

Capacitated Vehicle Routing Problem (CVRP). Given G, a depot node $v_0 \in \mathcal{V}$, a cost matrix $\mathbf{C} \in \mathbb{R}^{N \times N}$, a demand vector $\mathbf{d} \in \mathbb{R}^N_+$, and a vehicle capacity Q > 0, the goal is to plan a set of routes \mathcal{R} , each route $r \in \mathcal{R}$ starting and ending at the depot v_0 , such that each customer node is visited exactly once and the total demand on each route does not exceed Q, i.e., $\sum_{i \in r} \mathbf{d}_i \leq Q$. The objective is to minimize the total cost of all routes: $\min_{\mathcal{R}} \sum_{r \in \mathcal{R}} \sum_{(i,j) \in r} \mathbf{C}_{ij}$.

Maximum Independent Set (MIS). Given G, an *independent set* $S \subseteq \mathcal{V}$ is a subset of nodes such that no two nodes in S are adjacent. The goal is to maximize |S| s.t. $\forall i, j \in S$, $(i, j) \notin \mathcal{E}$.

Maximum Clique (MCl). Given G, a *clique* $K \subseteq \mathcal{V}$ is a subset of nodes in which every pair is connected by an edge. It aims to maximize |K| s.t. $\forall i, j \in K$, $(i, j) \in \mathcal{E}$.

Minimum Vertex Cover (MVC). Given G, a vertex cover $C \subseteq \mathcal{V}$ is a subset of nodes such that every edge $(i,j) \in \mathcal{E}$, at least one of i or j is in C. Mathematically, the goal is to minimize |C| s.t. $\forall (i,j) \in \mathcal{E}, i \in C$ or $j \in C$.

Maximum Cut (MCut). Given G, a $cut\ C=(S,\overline{S})$ partitions the node set $\mathcal V$ into two disjoint subsets. The objective is to maximize $\sum_{i\in S,j\in\overline{S}}\mathbf C_{ij}$, where $\mathbf C$ is the adjacency matrix of G.

Energy functions. Following previous works [19, 26, 78], the energy function formulations for the four node-oriented problems are defined as follows, where β is the constraint penalty coefficient.

- MIS. $H(x) = -\sum_{i=1}^{N} x_i + \beta \cdot \sum_{(i,j) \in \mathcal{E}} x_i x_j$
- MCl. $H(x) = -\sum_{i=1}^{N} x_i + \beta \cdot \sum_{(i,j) \notin \mathcal{E}} x_i x_j$
- MVC. $H(x) = \sum_{i=1}^{N} x_i + \beta \cdot \sum_{(i,j) \in \mathcal{E}} (1 x_i) \cdot (1 x_j)$
- MCut. $H(x) = \sum_{(i,j) \in \mathcal{E}} (2x_i 1) \cdot (2x_j 1)$

B Discussion of Post-Processing Methods

B.1 K-Opt Optimization

Overview. K-Opt is a classic post-processing method for routing problems, which includes an iterative process. In each iteration, the algorithm attempts to select a subset of nodes and swap the edges between them. If such an operation is found to yield benefits, such as reducing the total distance of the route, it will be executed. The iteration terminates when either no further improvements can be made or the maximum number of iterations (default: 5000) is reached.

Two-Opt for TSP. Given an initial tour $\mathbf{x}_1,...,\mathbf{x}_p,\mathbf{x}_{p+1},...,\mathbf{x}_{q-1},\mathbf{x}_q,\mathbf{x}_{q+1},...$ and distance matrix D, two nodes \mathbf{x}_p and \mathbf{x}_q are selected to perform the Two-Opt operation, i.e., connecting the two nodes and swapping the subsequence between them and resulting a new path $\mathbf{x}_1,...,\mathbf{x}_p,\mathbf{x}_q,\mathbf{x}_{q-1}...,\mathbf{x}_{p+1},\mathbf{x}_{q+1}$. The reward $r=\mathrm{D}_{p,p+1}+\mathrm{D}_{q,q+1}-\mathrm{D}_{p,q}-\mathrm{D}_{p+1,q+1}$ denotes the improvement after the swap.

Two-Opt for ATSP. Given an initial tour $\mathbf{x}_1,...,\mathbf{x}_p,\mathbf{x}_{p+1},...,\mathbf{x}_{q-1},\mathbf{x}_q,\mathbf{x}_{q+1},...$, Two-Opt performing on nodes \mathbf{x}_p and \mathbf{x}_q results in a new path $\mathbf{x}_1,...,\mathbf{x}_p,\mathbf{x}_q,\mathbf{x}_{q+1},...,\mathbf{x}_{q-1},\mathbf{x}_{q+1}$ with reward $r=D_{p,p+1}+D_{q-1,q}+D_{q,q+1}-D_{p,q}-D_{q,p+1}-D_{q-1,q+1}$.

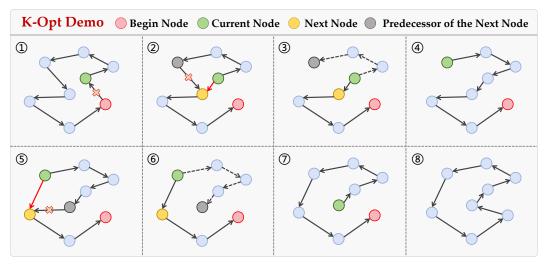


Figure 2: Demonstration of the K-Opt (K=3) post-processing method for TSP.

K-Opt for TSP. Given an initial tour $\mathbf{x}_1,...,\mathbf{x}_p,\mathbf{x}_{p+1},...,\mathbf{x}_{q-1},\mathbf{x}_q,\mathbf{x}_{q+1},...$, we start with breaking the edge between x_p (begin node) and x_{p+1} and designate x_{p+1} as the *current node*, which has only successor node but no predecessor node. Then, the K-Opt (we take K=3 as an example, as shown in Fig. 2) process will be carried out. In each iteration, the algorithm needs to first select the next node to connect to the current node x_{q+1} , which we refer to as *next node*. Since the new edge is from x_{p+1} to x_{q+1} , we need to disconnect the edge between x_{q+1} and its predecessor node x_q . After that, the algorithm will reverse all of the edges between x_{p+1} and x_{q+1} . At this point, the first iteration is completed, and the current node has been updated from x_{p+1} to x_{q+1} . When all the iterations are completed, it is only necessary to connect the *begin node* with the *current node* to re-form a valid path. The most crucial part of K-Opt is the selection of the *next node*, and the most famous method is MCTS [29], using the probability heatmap predicted by a neural network as guidance.

Parameter Selection for MCTS. We follow ML4TSP-Bench [17] to set the maximum depth K to 10 and the maximum number of iterations to 5000. As for the time limit, we take into account a comprehensive set of factors, including: 1) recommendations for ML4TSP-Bench [17], 2) our experimental environment (see Appendix C), 3) the solving time of the baseline solver, and 4) the proportion of post-processing time compared to the overall time. We set the time limits for TSP-50, TSP-100, TSP-500, and TSP-1000 to be 0.05s, 0.05s, 1s, and 1s, respectively.

B.2 Sampling Optimization

Sampling optimization refers to a class of methods based on random sampling, where the core idea is to draw samples from a target distribution to gradually approximate the optimal solution. In recent years, the incorporation of gradient information and parallel computing has significantly enhanced both the efficiency and solution quality of these methods.

iSCO [52] is a sampling-based optimization method built upon enhanced Langevin dynamics. It improves sampling efficiency through parallel neighborhood exploration and efficient gradient computation. Moreover, iSCO dynamically balances exploration and exploitation by adapting temperature parameters and sampling step sizes throughout the optimization process.

RLSA [53] integrates regularized Langevin dynamics with simulated annealing. To effectively escape local optima, RLSA enforces a desired distance between the sampled solution and the current state during the sampling process. Its core mechanism involves using regularization to control the update step size, thereby enabling more efficient exploration of the solution space in discrete domains. The RLSA framework combines the temperature annealing schedule of simulated annealing with the gradient-guided sampling of Langevin dynamics, gradually approximating the target distribution as the temperature decreases. Algorithm 1 illustrates how RLSA works, where τ_0 denotes the initial temperature; d represents the regularization term, where the d-th largest gradient value is used to

control the overall flipping probability; k indicates the number of parallel runs, which must be greater than d; t represents the total number of iterations.

In this paper, we follow COExpander [37] to use RLSA as a representative sampling method to serve as a post-processor for node-oriented problems, as shown in Algorithm 2, where α_2 denotes the noise factor. The RLSA-related parameters used for each problem are presented in Table 10.

Table 10: RLSA	Parameters add	pted for o	different problems

PROBLEM	DATASET		RI	LSA PA	RAMETI	ERS			
		$ au_0$	d	k	t	β	α_2		
MIS	RB-SMALL	0.01	5	1000	500	1.02	0.3		
MIS	RB-LARGE	0.01	5	1000	1000	1.02	0.3		
MIS	ER-700-800	0.2	10	1000	1000	1.001	0.3		
MIS	SATLIB	0.01	2	1000	1000	1.02	0.3		
MIS	ER-1400-1600	0.2	10	1000	1000	1.001	0.3		
MIS	RB-GIANT	0.01	5	1000	1000	1.02	0.3		
MCl	RB-SMAL	0.01	2	200	50	1.02	0.3		
MCl	RB-LARGE	0.01	2	200	200	1.02	0.3		
MCl	TWITTER	0.01	2	200	50	4.0	0.3		
MCl	COLLAB	0.01	2	200	20	1.001	0.3		
MCl	RB-GIANT	0.01	2	1000	1000	1.02	0.3		
MVC	RB-SMALL	0.01	2	1000	1000	1.02	0.3		
MVC	RB-LARGE	0.01	2	1000	1000	1.02	0.3		
MVC	TWITTER	0.01	2	1000	200	4.0	0.3		
MVC	COLLAB	0.01	2	1000	300	1.02	0.3		
MVC	RB-GIANT	0.01	2	1000	1000	1.02	0.3		
MCut	BA-SMALL	1	20	1000	1000	_	0.3		
MCut	BA-LARGE	1	50	1000	1000	_	0.3		
MCut	BA-GIANT	1	100	1000	1000	-	0.3		

Algorithm 1 Original RLSA.

$\begin{array}{l} \textbf{Input:} \ \text{Graph } G, \ \text{Energy Function } H(\cdot), \ \text{hyperparameter } (\tau_0, d, k, t). \\ \text{Parallel } k: \\ \mathbf{x} \leftarrow \text{Bern}(p = 0.5) \\ \textbf{for } s = 1 \ \text{to } t \ \textbf{do} \\ \tau \leftarrow \tau_0 (1 - \frac{s-1}{t}) \\ \Delta \leftarrow (2\mathbf{x} - 1) \odot \nabla H(\mathbf{x}) \\ \textbf{for } i = 1 \ \text{to } N \ \textbf{do} \\ p \leftarrow \text{Sigmoid} \left((\Delta_i - \Delta_{(d)})/(2\tau) \right) \\ c \sim \text{Bern}(p) \\ \mathbf{x}_i \leftarrow \mathbf{x}_i \cdot (1 - c) + (1 - \mathbf{x}_i) \cdot c \\ \textbf{end for} \\ \textbf{if } H(\mathbf{x}) < H(\mathbf{x}^*) \ \textbf{then} \\ \mathbf{x}^* \leftarrow \mathbf{x} \\ \textbf{end if} \\ \textbf{end for} \end{array}$

Algorithm 2 RLSA as Local Search.

```
Input: Graph G, Energy Function H(\cdot), hyperpa-
rameter (\tau_0, d, k, t, \alpha_2), Initial Solution \mathbf{x}_0.
Parallel k:
\mathbf{x} \leftarrow \text{Bern}((1 - \alpha_2) \cdot \mathbf{x}_0 + \alpha_2 \cdot \text{Bern}(p = 0.5))
for s=1 to t do
     \tau \leftarrow \tau_0 (1 - \frac{s-1}{t}) 
 \Delta \leftarrow (2\mathbf{x} - 1) \odot \nabla H(\mathbf{x})
      for i=1 to N do
            p \leftarrow \text{Sigmoid}\left((\Delta_i - \Delta_{(d)})/(2\tau)\right)
             c \sim \mathrm{Bern}(p)
             \mathbf{x}_i \leftarrow \mathbf{x}_i \cdot (1-c) + (1-\mathbf{x}_i) \cdot c
      end for
      if H(\mathbf{x}) < H(\mathbf{x}^*) then
            \mathbf{x}^* \leftarrow \mathbf{x}
      end if
end for
Output: Solution x
```

C Model Settings and Benchmark Datasets

C.1 Hardware.

Output: Solution x

All models are trained and tested using NVIDIA H800 (80G) GPUs and an Intel(R) Xeon(R) Platinum 8558 96-Core Processor CPU. For all test evaluations, a single GPU is utilized, and the batch size is set to 1 to ensure a fair comparison of the solving time across different models.

C.2 Training Settings and Hyper-parameters.

In principle, the network hyperparameters for each method are adopted according to their original publications, and efforts are made to keep the training hyperparameters and dataset sizes as consistent as possible. Typically, for neural solvers such as *GP-OS-SL*, *GP-OS-UL*, *GP-Gen-SL*, *AE-Gen-SL*, their model architecture and training settings (such as learning rate and training epochs) are strictly aligned with those of COExpander [37], and below are other cases that deviate from the general setting.

- *GP-OS-UL* solver for TSP. Following UTSP [28], we adopt SAG as the backbone, consisting of three layers with a hidden dimension of 64.
- *GP-OS-MAML* solver for TSP. Following DIMES [18], a three-layer network is employed. The hidden dimension is set to 32 for sparse problems and 64 for dense problems.
- *GP-OS-MAML* solver for node-oriented problems. Following Meta-EGN [20], We adopt a 4-layer convolutional network (specifically, 6 layers for MIS), with a hidden dimension of 64.
- GP-Gen-UL solver. We use the open-source code ⁵ and pre-trained checkpoints of DiffUCO [19].
- *LC-OS-RL* solver for TSP and CVRP. Following RL4CO [41] and ML4TSP-Bench [17], we adopt a 3-layer GAT with a hidden dimension of 128 and 8 attention heads.
- *LC-OS-RL* solver for ATSP. Following MatNet [31], we adopt a 5-layer GAT with a hidden dimension of 256 and 16 attention heads.
- LC-OS-SL solver. Following GOAL [32], we adopt a 9-layer GAT with a hidden dimension of 128 and 8 attention heads.
- AE-OS-RL solver for MIS. Following LwD [43], We adopt a 4-layer convolutional network, with a hidden dimension of 128.

C.3 Cross-distribution Generalization Datasets.

ATSP. We reduce both the Hamiltonian Cycle Problem (HCP) and 3-SAT to ATSP, treating them as two distinct distributions. For HCP, we consider four scales: HCP-50, HCP-100, HCP-200, and HCP-500. For 3-SAT, given a formula with N_v variables and N_c clauses, we transform it into an ATSP instance containing $(2N_vN_c+N_c)$ nodes. Specifically, we set $N_v \in \{4,8,12,19\}$ and $N_c \in \{6,6,8,13\}$, resulting in SAT-54, SAT-102, SAT-200, SAT-507, respectively.

TSP. We adopt Cluster and Gaussian distributions as generalization datasets. The Cluster TSP simulates scenarios where nodes are grouped into distinct spatial regions. Specifically, C cluster centers are uniformly sampled within the unit square $[0,1]^2$, and nodes are then drawn from Gaussian distributions centered at these locations, with a cluster-level standard deviation σ_c (we use 0.03) as a hyperparameter. We generate *Cluster-50*, *Cluster-100*, *Cluster-200*, *Cluster-500* with corresponding C values of 10, 20, 20, and 25. The Gaussian TSP models real-world settings where locations concentrate around a central hub, such as delivery points near a warehouse or demand centers in dense urban areas. Node coordinates are sampled from a 2D Gaussian distribution $\mathcal{N}((\mu_x, \mu_y), \sigma^2 I)$, where (μ_x, μ_y) is the mean and σ controls the spatial spread, with I denoting the identity matrix. We set $\mu_x = 0$, $\mu_y = 0$, $\sigma = 1$ for *Gaussian-50*, *Gaussian-100*, *Gaussian-200*, and *Gaussian-500*.

Node-oriented Tasks. We adopt the HK [71] and WS [72] graph models. The HK graph starts from a small fully connected core, where each new node attaches to N_d existing nodes via preferential attachment and, with probability p, additionally connects to one of their neighbors, forming triangles. This mechanism produces networks with power-law degree distributions and high clustering, suitable for representing social or biological systems. The WS graph captures small-world properties by balancing high clustering and short path lengths. It begins with a regular ring lattice where each node is connected to its N_k nearest neighbors, and with probability p, each edge is rewired to a random node while maintaining connectivity. The resulting structure combines local cohesion with global efficiency, mirroring many real-world networks. We set $N_d = 10$, $N_k = 10$, and p = 0.3 for both graph types, and generate four datasets: HK-SMALL, HK-LARGE, WS-SMALL, and WS-LARGE. Consistent with RB graphs, SMALL denotes instances with 200 to 300 nodes, and LARGE denotes instances with 800 to 1200 nodes.

⁵https://github.com/ml-jku/DIffUCO

C.4 Benchmark Datasets.

We provide open-source datasets for each benchmark, including 24 training datasets and 65 test datasets, as shown in Table 11.

D Supplementary Experiments

We present the complete results of TSP in Table 12, ATSP in Table 13, CVRP in Table 14, MIS in Table 15, MCl in Table 16, MVC in Table 17, MCut in Table 18 respectively.

E Limitations and Broader Impacts

E.1 Limitations

Solving methods. As stated in the "Statement on Topics *not* Discussed" part of Section. 3, our benchmarking work is currently limited to the solution approach that first obtains solutions using machine learning methods and then optimize them with heuristic algorithms. We have not yet included other solution approaches, such as D&C and learning to search.

Problem types. Currently, more than 30 types of COPs have been systematically studied and organized⁶. In this paper, we only discuss seven of them (TSP, ATSP, CVRP, MIS, MCl, MVC, MCut), and we plan to extend our benchmarking work to include other problems (such as TSPTW, CVRPTW, JSSP) in the future.

E.2 Broader Impacts

Our work systematically organizes ML4CO using an "paradigm-model-learning" framework, covering seven major problem types. To our best knowledge, it is the first in the ML4CO field to openly release as many as 34 datasets (over 100GB) in a structured and comprehensive manner. We believe that our work can bring standardized evaluation and facilitate future development for ML4CO.

⁶https://github.com/Thinklab-SJTU/awesome-ml4co

Table 11: Overview of our benchmark datasets for the seven COPs. The "MODEL" column indicates the dataset on which the model is trained. I.e., datasets with the same "TYPE" and "MODEL" is suggested for i.i.d. training-testing, whereas datasets with different "TYPE" and "MODEL" (with "testing" part only) are designed for evaluating the o.o.d. generalization performance of models trained on the corresponding (smaller-scaled, differently distributed, etc.) data. The parentheses indicate the solver parameters used: the maximum solution time for Gurobi, KaMIS and HGS; the maximum trials for LKH. Blue: Cross-distribution Generalization Dataset.

1D 1	PROBLEM	TYPE	MODEL	D.m. Cran		-			
1				Data Size	SOLVER	STORAGE	Data Size	SOLVER	OBJ.
	TSP	Uniform-50	Uniform-50	1,280,000	Concorde	2.48GB	1280	Concorde	5.688
2	TSP	Uniform-100	Uniform-100	1,280,000	Concorde	4.95GB	1280	Concorde	7.756
3 4	TSP TSP	Uniform-200 Uniform-500	Uniform-200 Uniform-500	128,000 64,000	Concorde Concorde	1.05GB 1.26GB	128 128	Concorde Concorde	10.719 16.546
5	TSP	Uniform-1K	Uniform-1K	64,000	LKH(1000)	2.53GB	128	Concorde	23.118
6	TSP	Uniform-10K	Uniform-10K	6,400	LKH(500)	2.59GB	16	LKH(500)	71.755
7	TSP	TSPLIB	Mixed	_	_	_	49	Concorde	8.062
8	TSP	Cluster-50	Uniform-50				1280	Concorde	3.730
9	TSP	Cluster-100	Uniform-100	-	-	-	1280	Concorde	5.526
10	TSP	Cluster-200	Uniform-200	-	-	-	128	Concorde	6.912
11	TSP	Cluster-500	Uniform-500				128	Concorde	10.723
12	TSP	Gaussian-50	Uniform-50	-	-	-	1280	Concorde	23.840
13 14	TSP TSP	Gaussian-100 Gaussian-200	Uniform-100 Uniform-200	_	_	_	1280 128	Concorde Concorde	34.031 48.127
15	TSP	Gaussian-200 Gaussian-500	Uniform-500	_	_	_	128	Concorde	77.521
16	ATSP	Uniform-50	Uniform-50	640,000	LKH(500)	14.72GB	2500	LKH(1000)	1.5545
17	ATSP	Uniform-100	Uniform-100	128,000	LKH(500)	11.78GB	2500	LKH(1000)	1.5660
18	ATSP	Uniform-200	Uniform-200	32,000	LKH(1000)	11.76GB	100	LKH(1000)	1.5647
19	ATSP	Uniform-500	Uniform-500	6,400	LKH(1000)	14.70GB	100	LKH(1000)	1.5734
20	ATSP	HCP-50	Uniform-50				2500	_	0.0000
21	ATSP	HCP-100	Uniform-100	-	-	-	2500	-	0.0000
22	ATSP	HCP-200	Uniform-200	-	-	-	100	-	0.0000
23	ATSP	HCP-500	Uniform-500				100		0.0000
24	ATSP	SAT-54	Uniform-50	-	-	-	2500	-	0.0000
25 26	ATSP ATSP	SAT-102 SAT-200	Uniform-100 Uniform-200	_	_	_	2500 100	_	0.0000
27	ATSP	SAY-507	Uniform-500	_	_	_	100	_	0.0000
28	CVRP	Uniform-50	Uniform-50	1,280,000	HGS(1s)	2.83GB	10,000	HGS(1s)	10.366
29	CVRP	Uniform-100	Uniform-100	640,000	HGS(20s)	1.11GB	10,000	HGS(20s)	15.563
30	CVRP	Uniform-200	Uniform-200	128,000	HGS(60s)	1.11GB	100	HGS(60s)	19.630
31	CVRP	Uniform-500	Uniform-500	12,800	HGS(360s)	285MB	100	HGS(360s)	37.154
32	CVRP	CVRPLIB	Mixed	-	_	_	70	_	45.183
33	MIS	RB-SMALL	RB-SMALL	64,000	KaMIS(10s)	3.52GB	500	KaMIS(60s)	20.090
34	MIS	RB-LARGE	RB-LARGE	6,400	KaMIS(60s)	4.74GB	500	KaMIS(60s)	43.004
35 36	MIS MIS	RB-GIANT ER-700-800	RB-LARGE ER-700-800	12,800	KaMIS(60s)	7.83GB	50 128	KaMIS(60s) KaMIS(60s)	49.260 44.969
37	MIS	ER-1400-1600	ER-700-800	12,800	- Kalvii3(00s)	7.85GB -	128	KaMIS(60s)	50.938
38	MIS	SATLIB	SATLIB	39,500	KaMIS(60s)	3.75GB	500	KaMIS(60s)	425.954
39	MIS	HK-SMALL	ER-700-800				500	KaMIS(60s)	79.372
40	MIS	HK-LARGE	ER-700-800	_	-	-	500	KaMIS(60s)	330.946
41	MIS	WS-SMALL	ER-700-800	-	-	-	500	KaMIS(60s)	76.904
42	MIS	WS-LARGE	ER-700-800			_	500	KaMIS(60s)	262.570
43	MCl	RB-SMALL	RB-SMALL	64,000	Gurobi(60s)	3.42GB	500	Gurobi(60s)	19.082
44	MCl	Twitter	RB-SMALL	_	-	-	195	Gurobi(60s)	14.210
45 46	MCl MCl	COLLAB RB-LARGE	RB-SMALL RB-LARGE	- 6,400	- Gurobi(300s)	- 4.74GB	1000 500	Gurobi(60s) Gurobi(300s)	42.113 40.182
47	MCl	RB-GIANT	RB-LARGE	-	-	- -	50	Gurobi(3600s)	81.520
48	MCl	HK-SMALL	RB-SMALL				500	Gurobi(60s)	6.792
49	MCl	HK-LARGE	RB-LARGE	_	_	_	500	Gurobi(300s)	6.774
50	MCl	WS-SMALL	RB-SMALL	_	-	-	500	Gurobi(60s)	7.164
51	MCl	WS-LARGE	RB-LARGE	-	-	-	500	Gurobi(300s)	5.978
52	MVC	RB-SMALL	RB-SMALL	128,000	Gurobi(60s)	7.01GB	500	Gurobi(60s)	205.764
53	MVC	Twitter	RB-SMALL	_	- '	-	195	Gurobi(60s)	85.251
54	MVC	COLLAB	RB-SMALL	- 6 400	- Curch:(200)	- 4.74CD	1000	Gurobi(60s)	65.086
55 56	MVC MVC	RB-LARGE RB-GIANT	RB-LARGE RB-LARGE	6,400	Gurobi(300s)	4.74GB -	500 50	Gurobi(300s) Gurobi(300s)	968.228 2398.480
57	MVC	HK-SMALL	RB-SMALL				500	Gurobi(60s)	142.506
58	MVC	WS-SMALL	RB-SMALL RB-SMALL	_		_	500	Gurobi(60s)	154.618
		BA-SMALL			Curabi(60-)				
59 60	MCut MCut	BA-SMALL BA-LARGE	BA-SMALL BA-LARGE	128,000 128,000	Gurobi(60s) Gurobi(300s)	1.78GB 8.08GB	500 500	Gurobi(60s) Gurobi(300s)	727.844 2936.886
61	MCut	BA-GIANT	BA-LARGE	-	- -	- -	50	Gurobi(300s)	7217.900
		HK-SMALL	BA-SMALL				500	Gurobi(60s)	1540.608
62	MCnt								
62 63	MCut MCut	HK-LARGE	BA-LARGE	_	-	-	500	Gurobi(300s)	6401.320
				-	_	-			

Table 12: Complete results on TSP.

Метнор	Түре	Solvino	G STAGE		TSP-50			TSP-100	
METHOD	TIPE	INITIALIZATION	OPTIMIZATION	Овј.↓	Drop↓	TIME↓	Овј.↓	Drop↓	TIME↓
Concorde [73]	Exact	-	-	5.688*	$0.000{\pm}0.000\%$	0.059s	7.756*	$0.000 \pm 0.000\%$	0.238s
LKH (500) [6] GA-EAX [74]	Heuristics Heuristics	Random Random	K-Opt K-Opt + EAX	5.688 5.688	$0.001\pm0.014\%$ $0.000\pm0.001\%$	0.058s 0.101s	7.756 7.756	$0.001\pm0.014\%$ $0.000\pm0.004\%$	0.176s 1.862s
GP4CO [39]	GP-OS-SL	Greedy	K-Opt + EAX	5.718	0.520±1.918%	0.006s	7.730	2.334±4.140%	0.007s
GP4CO [39]	GP-OS-SL	Greedy	Two-Opt	5.691	0.066±0.316%	0.000s 0.007s	7.775	0.243±0.546%	0.007s
GP4CO [39]	GP-OS-SL	Greedy	MCTS (0.05s)	5.688	$0.012 \pm 0.068\%$	0.007s	7.762	$0.073 \pm 0.224\%$	0.013s
GP4CO [39] GP4CO [39]	GP-OS-SL GP-OS-SL	Sampling Random-16	MCTS (0.05s) MCTS (0.05s)	5.688 5.688	0.004±0.031% 0.001±0.010%	0.057s 0.031s	7.758 7.756	0.022±0.083% 0.005±0.025%	0.058s 0.119s
GP4CO [18]	GP-OS-MAML(RL)	Greedy		6.325	11.233±4.503%	0.003s	8.757	12.918±3.761%	0.005s
GP4CO [18]	GP-OS-MAML(RL)	Greedy	Two-Opt	5.891	3.578±2.361%	0.003s	8.108	4.543±1.838%	0.003s
GP4CO [18]	GP-OS-MAML(RL)	Greedy	MCTS (0.05s)	5.755	1.188±1.420%	0.008s	7.897	1.819±1.234%	0.025s
GP4CO [18] GP4CO [18]	GP-OS-MAML(RL) GP-OS-MAML(RL)	Sampling Random-16	MCTS (0.05s) MCTS (0.05s)	5.696 5.690	$0.153\pm0.389\%$ $0.034\pm0.145\%$	0.054s 0.111s	7.853 7.783	$1.254\pm0.933\%$ $0.348\pm0.386\%$	0.059s 0.571s
GP4CO [28]	GP-OS-UL	Greedy		7.097	24.808±7.728%	0.007s	9.377	20.909±5.049%	0.009s
GP4CO [28]	GP-OS-UL	Greedy	Two-Opt	5.976	5.080±3.065%	0.012s	8.161	$5.215\pm2.140\%$	0.017s
GP4CO [28]	GP-OS-UL GP-OS-UL	Greedy	MCTS (0.05s)	5.862 5.818	3.078±2.395%	0.028s 0.062s	8.052 8.270	3.817±1.852%	0.065s 0.067s
GP4CO [28] GP4CO (I _s =1) [40]	GP-Gen-SL	Sampling	MCTS (0.05s)	5.723	2.295±1.809% 0.612±2.389%	0.002s 0.007s	7.941	6.630±2.376% 2.381±4.385%	0.007s 0.009s
GP4CO (I _s =1) [40] GP4CO (I _s =1) [40]	GP-Gen-SL GP-Gen-SL	Greedy Greedy	Two-Opt	5.691	0.065±0.344%	0.007s 0.007s	7.773	0.223±0.529%	0.009s 0.009s
GP4CO (I _s =5) [40]	GP-Gen-SL	Greedy		5.691	$0.061 \pm 0.119\%$	0.030s	7.774	$0.230 \pm 0.888\%$	0.031s
GP4CO (I _s =5) [40] GP4CO (I _s =5) [40]	GP-Gen-SL GP-Gen-SL	Greedy 4×Greedy	Two-Opt	5.689 5.688	$0.029\pm0.119\%$ $0.008\pm0.041\%$	0.030s 0.031s	7.762 7.758	$0.078\pm0.197\%$ $0.029\pm0.085\%$	0.031s 0.064s
GP4CO (I _s =5) [40] GP4CO (I _s =5) [40]	GP-Gen-SL GP-Gen-SL	4×Greedy 4×Greedy	Two-Opt	5.688	0.008±0.041% 0.006±0.031%	0.031s 0.031s	7.757	0.029±0.085% 0.017±0.053%	0.064s 0.065s
LC4CO [41]	LC-OS-RL	Greedy		5.702	0.258±0.374%	0.050s	7.872	1.491±0.767%	0.098s
LC4CO [41]	LC-OS-RL	Greedy	Two-Opt	5.699	$0.197 \pm 0.339\%$	0.051s	7.840	$1.087 \pm 0.714\%$	0.100s
LC4CO [41] LC4CO [41]	LC-OS-RL LC-OS-RL	N×Greedy N×Greedy	Two-Opt	5.697 5.694	$0.165\pm0.300\%$ $0.119\pm0.239\%$	0.056s 0.057s	7.851 7.824	1.222±0.625% 0.881±0.604%	0.110s 0.111s
LC4CO [41]	LC-OS-RL	N×Sampling		5.697	$0.164 \pm 0.281\%$	0.061s	7.853	$1.252 \pm 0.634\%$	0.111s 0.120s
LC4CO [41]	LC-OS-RL	N×Sampling	Two-Opt	5.694	0.113±0.231%	0.061s	7.823	0.860±0.587%	0.121s
LC4CO [32]	LC-OS-SL	Greedy		5.742	0.965±1.224%	0.393s	7.905	1.920±2.182%	0.762s
LC4CO [32] LC4CO [32]	LC-OS-SL LC-OS-SL	Greedy Beam-16	Two-Opt	5.735 5.701	$0.824\pm1.022\%$ $0.233\pm0.442\%$	0.394s 0.462s	7.862 7.787	1.369±1.139% 0.398±0.421%	0.764s 0.995s
LC4CO [32]	LC-OS-SL	Beam-16	Two-Opt	5.697	0.171±0.362%	0.463s	7.784	0.358±0.404%	0.995s
AE4CO (D _s =3, I _s =1) [37]	AE-Gen-SL	Greedy		5.702	0.244±1.205%	0.018s	7.846	1.164±2.924%	0.020s
AE4CO (D _s =3, I _s =1) [37]	AE-Gen-SL	Greedy	Two-Opt	5.689	0.029±0.145%	0.018s	7.765	0.124±0.361%	0.021s
AE4CO (D _s =3, I _s =5) [37] AE4CO (D _s =3, I _s =5) [37]	AE-Gen-SL AE-Gen-SL	Greedy Greedy	Two-Opt	5.689 5.689	$0.031\pm0.111\%$ $0.025\pm0.081\%$	0.096s 0.096s	7.761 7.760	$0.073\pm0.191\%$ $0.058\pm0.121\%$	0.102s 0.102s
AE4CO (D_s =3, I_s =5) [37]	AE-Gen-SL	4×Greedy		5.688	$0.005 \pm 0.029\%$	0.101s	7.757	$0.015 \pm 0.045\%$	0.187s
AE4CO (D _s =3, I _s =5) [37]	AE-Gen-SL	4×Greedy	Two-Opt	5.688	0.004±0.028%	0.101s	7.757	0.013±0.043%	0.191s
МЕТНОО	TYPE	Solvino			TSP-500			TSP-1K	
		INITIALIZATION	OPTIMIZATION	Овј.↓	Drop↓	TIME↓	Овј.↓	Drop↓	TIME↓
Concorde [73]	Exact	_ D d	_ 	16.546*	0.000±0.000%	18.672s	23.118*	0.000±0.000%	84.413s
LKH (500) [6] GA-EAX [74]	Heuristics Heuristics	Random Random	K-Opt K-Opt + EAX	16.546 16.546	$0.002\pm0.010\%$ $0.001\pm0.004\%$	1.848s 1.857s	23.119 23.118	$0.005\pm0.011\%$ $0.000\pm0.001\%$	4.641s 17.544s
GP4CO [39]	GP-OS-SL	Greedy	-	18.148	9.683±3.880%	0.047s	26.124	13.001±2.698%	0.195s
GP4CO [39]	GP-OS-SL	Greedy	Two-Opt	16.769	$1.348 \pm 0.589\%$	0.063s	23.527	$1.769 \pm 0.434\%$	0.227s
GP4CO [39]	GP-OS-SL	Greedy	MCTS (1s)	16.658	0.676±0.429%	0.367s	23.380	1.131±0.355%	1.594s
GP4CO [39] GP4CO [39]	GP-OS-SL GP-OS-SL	Sampling Random-16	MCTS (1s) MCTS (1s)	16.673 16.648	$0.768\pm0.437\%$ $0.617\pm0.286\%$	1.063s 7.094s	23.621 23.444	2.176±0.828% 1.412±0.250%	1.219s 21.844s
GP4CO [18]	GP-OS-MAML(RL)	Greedy		18.888	14.155±1.532%	0.273s	26.421	14.291±1.063%	0.546s
GP4CO [18]	GP-OS-MAML(RL)	Greedy	Two-Opt	17.655	$6.707 \pm 1.121\%$	0.314s	24.906	$7.735{\pm0.823\%}$	0.662s
GP4CO [18] GP4CO [18]	GP-OS-MAML(RL) GP-OS-MAML(RL)	Greedy Sampling	MCTS (1s) MCTS (1s)	17.776 17.735	$7.435\pm1.128\%$ $7.189\pm1.219\%$	0.833s 0.917s	25.032 24.947	8.279±0.787% 7.912±0.744%	3.870s 4.210s
GP4CO [18]	GP-OS-MAML(RL)	Random-16	MCTS (1s)	18.024	8.932±0.778%	30.610s	25.477	10.204±0.586%	168.103s
GP4CO [28]	GP-OS-UL	Greedy		19.761	19.435±1.925%	0.059s	27.644	19.580±1.645%	0.223s
GP4CO [28]	GP-OS-UL	Greedy	Two-Opt	17.710	7.033±1.059%	0.090s	24.765	7.122±0.775%	0.290s
GP4CO [28] GP4CO [28]	GP-OS-UL GP-OS-UL	Greedy Sampling	MCTS (1s) MCTS (1s)	17.913 18.500	8.261±1.130% 11.811±1.388%	1.574s 1.535s	25.069 25.961	8.440±0.874% 12.999±0.903%	2.231s 2.403s
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy		18.176	9.840±4.093%	0.050s	26.039	12.632±3.301%	0.203s
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy	Two-Opt	16.750	$1.233{\pm}0.687\%$	0.055s	23.481	$1.571 \pm 0.412\%$	0.211s
GP4CO (I _s =5) [40] GP4CO (I _s =5) [40]	GP-Gen-SL GP-Gen-SL	Greedy Greedy	Two-Opt	17.473 16.690	5.603±3.311% 0.869±0.528%	0.099s 0.102s	25.021 23.423	8.229±2.728% 1.319±0.387%	0.289s 0.328s
GP4CO (I _s =5) [40] GP4CO (I _s =5) [40]	GP-Gen-SL	4×Greedy	-	17.012	2.817±1.976%	0.102s 0.289s	24.371	5.419±1.620%	1.188s
GP4CO (I _s =5) [40]	GP-Gen-SL	4×Greedy	Two-Opt	16.627	0.490±0.294%	0.320s	23.339	0.954±0.214%	1.141s
LC4CO [32]	LC-OS-SL	Greedy		18.006	8.825±3.847%	3.964s	25.380	9.789±3.224%	7.995s
LC4CO [32] LC4CO [32]	LC-OS-SL LC-OS-SL	Greedy Beam-16	Two-Opt	17.047 17.279	3.027±0.840% 4.433±2.576%	4.057s 4.940s	23.806 24.558	2.974±0.581% 5.494±1.812%	8.065s 17.260s
LC4CO [32]	LC-OS-SL	Beam-16	Two-Opt	16.923	2.278±0.720%	4.960s	23.681	2.434±0.466%	17.465s
AE4CO (D _s =3, I _s =1) [37]	AE-Gen-SL	Greedy		17.634	6.574±3.456%	0.062s	25.408	9.904±3.096%	0.261s
AE4CO (D _s =3, I _s =1) [37] AE4CO (D _s =3, I _s =5) [37]	AE-Gen-SL AE-Gen-SL	Greedy Greedy	Two-Opt	16.684 17.119	0.837±0.512% 3.466±3.012%	0.070s 0.231s	23.421 24.698	$1.309\pm0.387\%$ $6.834\pm2.617\%$	0.273s 0.691s
AE4CO ($D_s=3$, $I_s=5$) [37] AE4CO ($D_s=3$, $I_s=5$) [37]	AE-Gen-SL	Greedy	Two-Opt	16.626	$0.487 \pm 0.388\%$	0.242s	23.337	$0.946 \pm 0.409\%$	0.703s
AE4CO (D_s =3, I_s =5) [37]	AE-Gen-SL	4×Greedy	-	16.776	$1.395{\pm}1.851\%$	0.650s	24.081	$4.165\pm1.902\%$	2.412s
AE4CO (D_s =3, I_s =5) [37]	AE-Gen-SL	4×Greedy	Two-Opt	16.588	0.257±0.206%	0.695s	23.271	0.662±0.238%	2.609s
МЕТНОО	TYPE	SOLVING			TSP-10K		-		
		INITIALIZATION	OPTIMIZATION	Овј.↓	Drop↓	TIME↓			
LKH (500) [6]	Heuristics	Random	K-Opt	71.755*	0.000±0.000%	332.758s			
GP4CO [39]	GP-OS-SL	Greedy	Tura Oct	107.645	50.018±3.885%	26.409s			
GP4CO [39] GP4CO (I _s =5) [40]	GP-OS-SL GP-Gen-SL	Greedy	Two-Opt	73.019	1.761±0.166% 43.504±3.717%	28.294s 26.984s			
GP4CO (I _s =5) [40] GP4CO (I _s =5) [40]	GP-Gen-SL GP-Gen-SL	Greedy Greedy	Two-Opt	72.982	43.504±3.717% 1.710±0.120%	26.984s 28.313s			
LC4CO [32]	LC-OS-SL	Greedy		82.249	14.627±1.910%	95.579s			
LC4CO [32]	LC-OS-SL	Greedy	Two-Opt	74.595	3.958±0.231%	102.369s			
AE4CO (D _s =3, I _s =5) [37]	AE-Gen-SL	Greedy		97.423	35.772±3.908%	28.288s			
AE4CO (D_s =3, I_s =5) [37]	AE-Gen-SL	Greedy	Two-Opt	72.832	1.501±0.126%	33.485s			

Table 13: Complete results on ATSP.

Метнор	Түре	Solvino	STAGE		ATSP-50			ATSP-100	
METHOD	TILL	INITIALIZATION	OPTIMIZATION	Овј.↓	Drop↓	TIME↓	Овј.↓	Drop↓	TIME↓
LKH (1000) [6]	Heuristics	Random	K-Opt	1.554	0.000±0.000%	0.097s	1.566	0.000±0.000%	0.238s
GP4CO [39]	GP-OS-SL	Greedy	-	1.667	7.261±5.299%	0.007s	1.666	6.408±3.498%	0.008s
GP4CO [39]	GP-OS-SL	Greedy	Two-Opt	1.613	3.795±2.881%	0.008s	1.629	4.004±2.095%	0.011s
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy	-	1.662	6.948±5.164%	0.006s	1.665	6.329±3.377%	0.008s
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy	Two-Opt	1.614	3.805±2.915%	0.007s	1.630	4.104±2.143%	0.009s
GP4CO (I _s =5) [40]	GP-Gen-SL	Greedy	— —	1.602	3.043±4.021%	0.029s	1.628	3.935±2.374%	0.033s
GP4CO (I _s =5) [40] GP4CO (I _s =5) [40]	GP-Gen-SL GP-Gen-SL	Greedy 4×Greedy	Two-Opt	1.580 1.562	1.616±2.294% 0.485±1.412%	0.029s 0.033s	1.608 1.595	2.665±1.687% 1.827±1.650%	0.034s 0.161s
GP4CO (I _s =5) [40]	GP-Gen-SL	4×Greedy	Two-Opt	1.558	0.241±0.714%	0.033s 0.034s	1.584	1.160±1.119%	0.167s
LC4CO [31]	LC-OS-RL	Greedy		1.576	1.373±1.108%	0.032s	1.620	3.456±1.291%	0.053s
LC4CO [31]	LC-OS-RL	Greedy	Two-Opt	1.574	1.256±1.050%	0.032s	1.616	3.199±1.225%	0.057s
LC4CO [31]	LC-OS-RL	Beam-16	- *	1.560	$0.334 \pm 0.456\%$	0.038s	1.592	$1.653 \pm 0.758\%$	0.055s
LC4CO [31]	LC-OS-RL	Beam-16	Two-Opt	1.559	$0.319 \pm 0.444\%$	0.038s	1.591	$1.586 \pm 0.747\%$	0.061s
LC4CO [32]	LC-OS-SL	Greedy		1.595	2.567±2.715%	0.395s	1.644	5.010±2.098%	0.723s
LC4CO [32]	LC-OS-SL	Greedy	Two-Opt	1.587	$2.079\pm2.058\%$	0.396s	1.632	4.195±1.736%	0.724s
LC4CO [32]	LC-OS-SL	Beam-16		1.588	2.164±2.009%	0.397s	1.619	3.362±1.701%	0.961s
LC4CO [32]	LC-OS-SL	Beam-16	Two-Opt	1.581	1.695±1.564%	0.400s	1.610	2.801±1.360%	0.962s
AE4CO (D _s =3, I _s =1) [37]	AE-Gen-SL	Greedy	-	1.637	5.304±4.226%	0.019s	1.646	5.086±3.145%	0.023s
AE4CO (D_s =3, I_s =1) [37]	AE-Gen-SL	Greedy	Two-Opt	1.601	3.029±2.543%	0.019s	1.619	3.361±1.996%	0.024s
AE4CO (D _s =3, I _s =5) [37]	AE-Gen-SL	Greedy	-	1.582	1.790±2.964%	0.086s	1.617	3.233±2.191%	0.099s
AE4CO (D _s =3, I _s =5) [37]	AE-Gen-SL AE-Gen-SL	Greedy	Two-Opt	1.572 1.559	1.125±1.866% 0.269±1.023%	0.086s 0.101s	1.601 1.588	2.258±1.563% 1.393±1.494%	0.099s 0.511s
AE4CO (D_s =3, I_s =5) [37] AE4CO (D_s =3, I_s =5) [37]	AE-Gen-SL	4×Greedy 4×Greedy	Two-Opt	1.557	0.171±0.611%	0.101s 0.103s	1.581	0.946±1.034%	0.511s
112100 (B ₈ -3, I ₈ -3) [31]	The Gen de	Solvino		11007	ATSP-200	0.1033	11001	ATSP-500	0.0100
Метнор	TYPE	INITIALIZATION	OPTIMIZATION	ОВЈ.Д	OBJ.↓ DROP↓ TIME↓		Овј.↓		
LKH (1000) [6]	Heuristics	Random	K-Opt	1.565	0.000±0.000%	0.724s	1.573	0.000±0.000%	TIME↓ 4.376s
GP4CO [39]	GP-OS-SL	Greedy		1.671	6.777±3.155%	0.053s	1.729	9.880±1.887%	0.157s
GP4CO [39]	GP-OS-SL	Greedy	Two-Opt	1.634	4.391±1.822%	0.070s	1.696	7.774±1.152%	0.313s
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy		1.678	7.280±2.475%	0.037s	1.675	6.443±1.454%	0.127s
GP4CO ($I_s=1$) [40]	GP-Gen-SL	Greedy	Two-Opt	1.652	$5.608 \pm 1.958\%$	0.046s	1.653	$5.088 \pm 1.098\%$	0.231s
GP4CO (I _s =5) [40]	GP-Gen-SL	Greedy		1.638	4.677±2.066%	0.162s	1.641	4.294±1.663%	0.558s
GP4CO (I _s =5) [40]	GP-Gen-SL	Greedy	Two-Opt	1.615	$3.252{\pm}1.456\%$	0.168s	1.622	$3.078 \pm 1.009\%$	0.648s
GP4CO (I _s =5) [40]	GP-Gen-SL	4×Greedy	_ =_	1.608	2.772±1.060%	0.360s	1.614	$2.543 \pm 0.829\%$	2.144s
GP4CO (I _s =5) [40]	GP-Gen-SL	4×Greedy	Two-Opt	1.597	2.094±0.842%	0.391s	1.605	1.980±0.611%	2.484s
LC4CO [32]	LC-OS-SL	Greedy	-	1.642	4.956±1.514%	1.563s	1.655	$5.201 \pm 0.953\%$	6.328s
LC4CO [32]	LC-OS-SL	Greedy	Two-Opt	1.634	4.413±1.183%	1.565s	1.649	4.813±0.811%	6.514s
LC4CO [32] LC4CO [32]	LC-OS-SL LC-OS-SL	Beam-16 Beam-16	Two-Opt	1.614 1.610	3.172±1.154% 2.917±0.938%	4.704s 4.748s	1.639 1.636	4.190±0.629% 3.954±0.760%	63.388s 63.571s
				1.628					0.403s
AE4CO (D _s =3, I _s =1) [37] AE4CO (D _s =3, I _s =1) [37]	AE-Gen-SL AE-Gen-SL	Greedy Greedy	Two-Opt	1.628	4.078±2.054% 3.293±1.526%	0.099s 0.111s	1.646 1.630	$4.634\pm1.708\%$ $3.592\pm1.390\%$	0.403s 0.478s
AE4CO (D_s =3, I_s =5) [37] AE4CO (D_s =3, I_s =5) [37]	AE-Gen-SL AE-Gen-SL	Greedy Greedy	- Two-Opt	1.615 1.605	3.200±1.461% 2.563±1.158%	0.547s 0.517s	1.623 1.611	3.128±1.402% 2.408±0.888%	1.669s 1.766s
AE4CO (D _s =3, I _s =5) [37] AE4CO (D _s =3, I _s =5) [37]	AE-Gen-SL	4×Greedy	- Two-Opt	1.593	1.790±0.953%	1.073s	1.604	1.965±0.660%	6.267s
AE4CO ($D_s=3$, $I_s=5$) [37]	AE-Gen-SL	4×Greedy	Two-Opt	1.588	1.501±0.805%	1.097s	1.598	1.568±0.487%	6.597s

Table 14: Complete results on CVRP.

Метнор	Түре	Solvino	STAGE		CVRP-50			CVRP-100	
	****	INITIALIZATION	OPTIMIZATION	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓
HGS [75]	Heuristics	-	=	10.366*	0.000±0.000%	1.005s	15.563*	$0.000 \pm 0.000\%$	20.027s
GP4CO (I _s =1) [40] GP4CO (I _s =1) [40]	GP-Gen-SL GP-Gen-SL	Greedy Greedy	- Classic-LS	12.640 10.871	21.835±6.535% 4.836±5.552%	0.009s 0.013s	19.202 16.294	23.333±5.155% 4.698±3.120%	0.010s 0.018s
LC4CO [41] LC4CO [41] LC4CO [41] LC4CO [41] LC4CO [41] LC4CO [41]	LC-OS-RL LC-OS-RL LC-OS-RL LC-OS-RL LC-OS-RL LC-OS-RL LC-OS-RL	Greedy Greedy N×Greedy N×Greedy N×Sampling N×Sampling	Classic-LS Classic-LS Classic-LS Classic-LS	10.769 10.565 10.642 10.498 10.638 10.489	3.891±1.640% 1.910±1.435% 2.658±1.123% 1.267±1.015% 2.617±1.080% 1.179±0.976%	0.087s 0.168s 0.145s 0.147s 0.152s 0.154s	16.220 15.933 16.062 15.838 16.063 15.822	4.241±1.131% 2.379±1.001% 3.214±0.796% 1.767±0.773% 3.220±0.767% 1.663±0.743%	0.166s 0.173s 0.192s 0.198s 0.195s 0.202s
LC4CO [32] LC4CO [32] LC4CO [32] LC4CO [32]	LC-OS-SL LC-OS-SL LC-OS-SL LC-OS-SL	Greedy Greedy Beam-16 Beam-16	Classic-LS Classic-LS	10.906 10.628 10.622 10.525	5.193±2.962% 2.519±2.058% 2.444±1.654% 1.513±1.325%	0.504s 0.507s 0.549s 0.552s	16.342 15.959 15.991 15.837	5.005±2.224% 2.548±1.248% 2.743±1.310% 1.757±0.945%	0.962s 0.969s 1.278s 1.286s
AE4CO (D_s =3, I_s =1) [37] AE4CO (D_s =3, I_s =1) [37]	AE-Gen-SL AE-Gen-SL	Greedy Greedy	Classic-LS	11.979 10.773	15.407±6.898% 3.903±4.052%	0.033s 0.037s	17.497 16.224	12.343±5.459% 4.253±1.991%	0.047s 0.055s
Метнор	Түре	SOLVING STAGE			CVRP-200			CVRP-500	
METHOD	1112	INITIALIZATION	OPTIMIZATION	Овј.↓	Drop↓	TIME↓	Овј.↓	Drop↓	TIME↓
HGS [75]	Heuristics	-	-	19.630*	$0.000 \pm 0.000\%$	60.024s	37.154*	$0.000 \pm 0.000\%$	360.376s
GP4CO (I _s =1) [40] GP4CO (I _s =1) [40]	GP-Gen-SL GP-Gen-SL	Greedy Greedy	Classic-LS	25.064 20.662	27.616±5.095% 5.290±1.471%	0.059s 0.063s	47.749 39.195	28.509±2.920% 5.530±0.937%	0.091s 0.215s
LC4CO [41] LC4CO [41] LC4CO [41] LC4CO [41] LC4CO [41] LC4CO [41]	LC-OS-RL LC-OS-RL LC-OS-RL LC-OS-RL LC-OS-RL LC-OS-RL LC-OS-RL	Greedy Greedy N×Greedy N×Greedy N×Greedy N×Sampling N×Sampling	Classic-LS Classic-LS Classic-LS	20.662 20.193 20.507 20.097 20.556 20.091	5.274±0.926% 2.880±0.854% 4.474±0.740% 2.383±0.645% 4.734±0.741% 2.359±0.701%	0.320s 0.341s 0.379s 0.400s 0.405s 0.439s	40.382 38.700 40.051 38.559 40.437 38.560	8.723±0.810% 4.173±0.606% 7.821±0.596% 3.793±0.627% 8.862±0.680% 3.794±0.580%	0.769s 0.883s 0.925s 1.034s 1.024s 1.132s
LC4CO [32] LC4CO [32] LC4CO [32] LC4CO [32]	LC-OS-SL LC-OS-SL LC-OS-SL LC-OS-SL	Greedy Greedy Beam-16 Beam-16	Classic-LS	21.439 20.396 20.665 20.195	9.263±2.504% 3.936±1.492% 5.272±1.396% 2.882±0.888%	1.978s 2.037s 5.067s 5.104s	38.846 38.118 38.279 37.901	4.587±1.159% 2.620±0.609% 3.051±0.694% 2.031±0.543%	7.095s 7.312s 64.431s 64.589s
AE4CO (D _s =3, I _s =1) [37] AE4CO (D _s =3, I _s =1) [37]	AE-Gen-SL AE-Gen-SL	Greedy Greedy	Classic-LS	22.402 20.587	13.977±4.072% 4.893±1.344%	0.145s 0.153s	43.901 39.121	18.199±2.834% 5.337±0.938%	0.554s 0.605s

Table 15: Complete results on MIS.

		oic 13. Comp		RB-SMALL			RB-LARGE	
МЕТНОО	TYPE	SOLVING STAGE	Овј.↑	Drop↓	TIME↓	Овј.↑	Drop↓	TIME↓
KaMIS [76] Gurobi [5]	Heuristics Heuristics	_ _ _	20.090 20.090	0.000±0.000% 0.000±0.000%	45.809s 0.538s	43.004 42.192	0.000±0.000% 1.829±2.942%	56.974s 33.843s
GP4CO [39] GP4CO [20] GP4CO [26]	GP-OS-SL GP-OS-MAML(UL) GP-OS-UL	Greedy Greedy Greedy	18.170 17.692 17.308	9.413±6.644% 11.778±5.346% 13.709±7.679%	0.014s 0.084s 0.016s	36.060 34.670 34.002	16.036±6.206% 19.259±4.084% 20.779±6.753%	0.048s 0.127s 0.029s
GP4CO (I _s =1) [40] GP4CO (I _s =20) [40] GP4CO (I _s =20) [40]	GP-Gen-SL GP-Gen-SL GP-Gen-SL	Greedy Greedy 4×Greedy	18.400 19.330 19.742	8.305±6.381% 3.710±3.952% 1.690±2.467%	0.014s 0.192s 0.332s	36.394 38.936 40.066	15.219±6.259% 9.388±4.740% 6.742±3.971%	0.044s 0.714s 2.398s
GP4CO [19] GP4CO [19]	GP-Gen-UL GP-Gen-UL	Greedy 4×Greedy	19.200 19.380	4.369±3.965% 3.464±3.388%	0.470s 1.587s	38.490 39.546	10.428±3.552% 7.944±3.171%	4.712s 25.479s
LC4CO [32] AE4CO (D _s =5, I _s =20) [37] AE4CO (D _s =20, I _s =1) [37] AE4CO (D _s =20, I _s =1) [37]	LC-OS-SL AE-Gen-SL AE-Gen-SL AE-Gen-SL	Greedy Greedy 4×Greedy	18.268 19.604 19.662 19.706	8.959±5.419% 2.375±3.003% 2.088±2.891% 1.880±2.691%	0.182s 	37.596 40.590 41.234 41.438	12.476±4.125% 5.559±3.334% 4.060±2.822% 3.582±2.379%	3.962s 3.562s 0.624s 1.298s
AE4CO (D _s =20, I _s =1) [37] METHOD	AE-Gen-SL Type	Greedy + RLSA SOLVING STAGE	20.070	0.093±0.655% ER-700-800	0.471s	42.400	1.366±1.493% SATLIB	1.816s
-			Овј.↑	Drop↓	TIME↓	Овј.↑	Drop↓	Тіме↓
KaMIS [76] Gurobi [5]	Heuristics Heuristics	<u>-</u>	44.969 38.781	0.000±0.000% 13.749±3.017%	60.753s 60.489s	425.954 425.924	0.000±0.000% 0.007±0.074%	24.368s 3.953s
GP4CO [39] GP4CO [20] GP4CO [26]	GP-OS-SL GP-OS-MAML(UL) GP-OS-UL	Greedy Greedy Greedy	35.852 33.148 33.813	20.267±4.449% 26.280±2.551% 24.804±4.235%	0.039s 0.117s 0.029s	421.056 412.122 -	1.154±0.528% 3.250±0.613% —	0.019s 0.240s -
GP4CO (I _s =1) [40] GP4CO (I _s =20) [40] GP4CO (I _s =20) [40]	GP-Gen-SL GP-Gen-SL GP-Gen-SL	Greedy Greedy 4×Greedy	35.711 40.195 41.430	20.580±4.169% 10.618±3.117% 7.867±2.460%	0.039s 0.641s 2.094s	421.578 424.556 425.276	1.031±0.508% 0.329±0.247% 0.160 ± 0.161 %	0.016s 0.190s 0.428s
LC4CO [32]	LC-OS-SL	Greedy	40.477	9.986±2.784%	2.296s	421.882	0.957±0.374%	49.842s
AE4CO [43] AE4CO [43]	AE-OS-RL AE-OS-RL	Greedy 4×Greedy	37.289 39.211	17.068±5.254% 12.799±2.660%	0.589s 0.611s	- -	- - 	-
AE4CO (D _s =5, I _s =20) [37] AE4CO (D _s =20, I _s =1) [37] AE4CO (D _s =20, I _s =1) [37] AE4CO (D _s =20, I _s =1) [37]	AE-Gen-SL AE-Gen-SL AE-Gen-SL AE-Gen-SL	Greedy Greedy 4×Greedy Greedy + RLSA	41.992 42.383 42.563 44.984	6.610±2.577% 5.746±2.639% 5.343±2.229% -0.041±1.389%	3.188s 0.469s 0.703s 1.390s	424.734 425.046 424.776 425.316	0.287±0.228% 0.215±0.235% 0.278±0.245% 0.151 ± 0.173%	1.034s 0.228s 0.268s 1.775s
Метнор	Түре	SOLVING STAGE		ER-1400-1600			RB-GIANT	21,100
KaMIS [76] Gurobi [5]	Heuristics Heuristics		Овј.↑ 50.938 44.813	DROP↓ 0.000±0.000% 12.015±2.736%	TIME↓ 60.824s 3602.519s	OBJ.↑ 49.260 48.560	DROP↓ 0.000±0.000% 1.377±2.452%	TIME↓ 60.960s 3426.207s
GP4CO [39] GP4CO [20] GP4CO [26]	GP-OS-SL GP-OS-MAML(UL) GP-OS-UL	Greedy Greedy Greedy	37.680 37.555 36.914	26.021±3.738% 26.262±2.578%	0.117s 0.267s 0.069s	38.760 38.840 37.260	21.224±5.395% 21.039±3.670% 24.195±5.781%	0.240s 0.739s 0.151s
GP4CO [19] GP4CO [19]	GP-Gen-UL GP-Gen-UL	Greedy 4×Greedy	-	 - -	- - -	40.480 42.120	17.722±5.765% 14.352±4.582%	45.680s 339.010s
GP4CO (I _s =1) [40] GP4CO (I _s =50) [40] GP4CO (I _s =50) [40]	GP-Gen-SL GP-Gen-SL GP-Gen-SL	Greedy Greedy 4×Greedy	37.859 44.094 46.117	25.670±3.368% 13.430±3.135% 9.446±2.654%	0.117s 5.117s 23.781s	38.200 38.380 40.260	22.316±6.721% 21.995±6.499% 18.120±6.109%	0.220s 8.980s 43.760s
LC4CO [32] AE4CO [43]	LC-OS-SL AE-OS-RL	Greedy	45.594 39.523	10.485±2.822% 22.400±6.333%	9.966s 1.468s	42.640	13.304±3.839%	24.499s
AE4CO [43] AE4CO (D _s =50, I _s =1) [37] AE4CO (D _s =50, I _s =1) [37] AE4CO (D _s =50, I _s =1) [37]	AE-Gen-SL AE-Gen-SL AE-Gen-SL AE-Gen-SL	4×Greedy Greedy 4×Greedy Greedy + RLSA	42.477 48.164 48.429 50.719	16.601±3.340% 5.432±2.188% 4.911±2.107% 0.418±1.489%	1.482s - 2.211s 4.516s 4.102s	45.840 46.640 47.880	6.856±3.531% 5.221±2.970% 2.741 ±2.001%	5.340s 14.660s 9.490s

Table 16: Complete results on MCl.

МЕТНОО	Түре	SOLVING STAGE		RB-SMALL			RB-LARGE	
METHOD	THE	DOLVING DIAGE	Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	TIME↓
Gurobi [5]	Heuristics	-	19.082	$0.000 \pm 0.000\%$	0.900s	40.182	$0.000 \pm 0.000\%$	276.657s
GP4CO [39]	GP-OS-SL	Greedy	18.084	5.782±10.970%	0.014s	38.622	4.331±10.697%	0.042s
GP4CO [39]	GP-OS-SL	Beam-16 Beam-16 + RLSA	18.592 19.082	2.950±6.595% 0.000±0.000%	0.023s 0.041s	39.540 40.256	1.857±5.579% -0.275±1.721%	0.104s 0.171s
GP4CO [39]	GP-OS-SL	Greedy	17.856	6.400±10.924%	0.0418 0.065s	34.802	13.180±17.643%	0.171s 0.103s
GP4CO [20] GP4CO [26]	GP-OS-MAML(UL) GP-OS-UL	Greedy	15.084	20.720±18.362%	0.003s 0.016s	29.052	26.604±21.115%	0.103s 0.029s
GP4CO [26]	GP-OS-UL GP-OS-UL	Beam-16	17.086	10.572±12.309%	0.016s 0.017s	35.098	12.318±16.956%	0.0298 0.091s
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy	18.258	4.870±10.775%	0.016s	36.402	9.809±16.700%	0.042s
GP4CO (I _s =1) [40]	GP-Gen-SL	Beam-16	18.664	$2.510{\pm}6.024\%$	0.022s	38.754	$3.798 \pm 9.039\%$	0.104s
GP4CO (I _s =20) [40]	GP-Gen-SL	Greedy	18.608	2.850±6.945%	0.200s	35.384	12.672±19.874%	0.708s
GP4CO (I _s =20) [40]	GP-Gen-SL	4×Greedy	18.982	0.607±2.521%	0.328s	38.706	4.197±11.586%	2.386s
GP4CO [19] GP4CO [19]	GP-Gen-UL GP-Gen-UL	Greedy 4×Greedy	15.142 16.206	18.245±18.185% 12.527±18.723%	0.559s 1.412s	_	_	_
LC4CO [32]	LC-OS-SL	Greedy	15.682	17.628±17.431%	0.171s	29.382	26.156±21.529%	3.148s
AE4CO (D _s =5, I _s =20) [37]	AE-Gen-SL	Greedy	18.686	2.374±5.831%	0.516s	36.176	10.159±16.850%	1.660s
AE4CO (D _s =20, I _s =1) [37]	AE-Gen-SL	Greedy	18.766	1.892±4.479%	0.046s	36.752	8.817±15.326%	0.150s
AE4CO (D_s =20, I_s =1) [37]	AE-Gen-SL	4×Greedy	18.922	$1.018\pm3.009\%$	0.056s	39.170	$2.722{\pm}7.875\%$	0.414s
Метнор	Түре	SOLVING STAGE		TWITTER			COLLAB	
			Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	TIME↓
Gurobi [5]	Heuristics	-	14.210	$0.000{\pm}0.000\%$	0.276s	42.113	$0.000{\pm}0.000\%$	0.063s
GP4CO [39]	GP-OS-SL	Greedy	12.897	$12.002 \pm 16.094\%$	0.013s	41.474	$5.330{\pm}14.850\%$	0.012s
GP4CO [39] GP4CO [39]	GP-OS-SL GP-OS-SL	Beam-16 Beam-16 + RLSA	13.210 14.210	7.931±9.718% 0.000±0.000%	0.020s 0.044s	41.660 42.113	3.219±8.523% 0.000±0.000%	0.012s 0.024s
GP4CO [20]	GP-OS-MAML(UL)	Greedy	13.815	2.714±5.375%	0.063s	41.024	2.094±10.665%	0.065s
GP4CO [26]	GP-OS-MAML(UL)	'	11.985	2.714±5.375% 17.077±17.597%	0.003s 0.009s	39.461	13.802±22.431%	0.003s 0.007s
GP4CO [26]	GP-OS-UL GP-OS-UL	Greedy Beam-16	12.369	17.077±17.597% 12.953±12.775%	0.009s 0.015s	40.732	7.354±12.027%	0.007s 0.008s
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy	13.051	9.536±13.448%	0.015s	41.593	2.496±9.210%	0.013s
GP4CO (I _s =1) [40]	GP-Gen-SL	Beam-16	13.303	$6.504 \pm 8.451\%$	0.021s	41.772	1.695±5.767%	0.014s
GP4CO (I _s =20) [40]	GP-Gen-SL	Greedy	12.236	16.961±24.014%	0.195s	39.501	14.496±26.836%	0.222s
GP4CO (I _s =20) [40]	GP-Gen-SL	4×Greedy	13.349	8.596±18.106%	0.297s	41.051	5.974±17.730%	0.314s
LC4CO [32]	LC-OS-SL	Greedy	13.262	7.124± 9.726%	0.141s	41.775	2.189±6.839%	0.408s
AE4CO (D_s =20, I_s =1) [37] AE4CO (D_s =20, I_s =1) [37]	AE-Gen-SL AE-Gen-SL	Greedy 4×Greedy	13.528 13.805	6.154±11.888% 3.997±10.243%	0.067s 0.082s	41.874 42.040	1.808±8.092% 0.841±6.363%	0.139s 0.092s
			15.005	RB-GIANT	0.0025	12.010	0.01110.00070	0.0720
METHOD	TYPE	TYPE	Овј.↑	Drop↓	TIME↓			
Gurobi [5]	Heuristics	_	81.520	0.000±0.000%	3606.201s			
GP4CO [39]	GP-OS-SL	Greedy	58,440	26.568±27.047%	0.220s			
GP4CO [39]	GP-OS-SL	Beam-16	77.460	3.119±22.916%	0.406s			
GP4CO [39]	GP-OS-SL	Beam-16 + RLSA	85.380	-7.912±25.418%	4.342s			
GP4CO [20]	GP-OS-MAML(UL)	Greedy	77.160	1.613±30.471%	0.683s			
GP4CO [26]	GP-OS-UL	Greedy	55.580	29.171±24.586%	0.148s			
GP4CO [26]	GP-OS-UL	Beam-16	76.360	4.433±20.950%	0.333s			
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy	60.860	22.902±29.840%	0.240s			
GP4CO (I _s =1) [40] GP4CO (I _e =1) [40]	GP-Gen-SL GP-Gen-SL	4×Greedy Beam-16	77.860 77.340	2.145±25.410% 2.732±24.924%	0.820s 0.420s			
GP4CO (I _s =1) [40]	GP-Gen-SL	4×Beam-16	84.120	-6.424±26.720%	1.520s			
LC4CO [32]	LC-OS-SL	Greedy	57.120	27.719± 24.330%	32.680s			
AE4CO (D _s =50, I _s =1) [37]	AE-Gen-SL	Greedy	64.640	19.005±22.747%	1.062s			
AE4CO (D_s =50, I_s =1) [37]	AE-Gen-SL	4×Greedy	74.920	$5.339\pm26.102\%$	3.386s			

Table 17: Complete results on MVC.

Метнор	Түре	SOLVING STAGE		RB-SMALL			RB-LARGE	-
METHOD	1112	BOLVING BIAGE	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	TIME↓
Gurobi [5]	Heuristics	=	205.764	$0.000 \pm 0.000\%$	3.340s	968.228	$0.000 \pm 0.000\%$	290.227s
GP4CO [39] GP4CO [20] GP4CO [26]	GP-OS-SL GP-OS-MAML(UL) GP-OS-UL	Greedy Greedy Greedy	207.554 208.126 208.982	0.871±0.653% 1.149±0.514% 1.569±0.736%	0.014s 0.065s 0.013s	976.112 977.914 977.186	0.817±0.292% 1.002±0.193% 0.928±0.271%	0.068s 0.097s 0.037s
GP4CO (I _s =1) [40] GP4CO (I _s =20) [40] GP4CO (I _s =20) [40]	GP-Gen-SL GP-Gen-SL GP-Gen-SL	Greedy Greedy 4×Greedy	207.460 207.778 207.060	0.827±0.575% 0.984±0.577% 0.633±0.462%	0.016s 0.186s 0.322s	974.950 972.608 971.420	0.696±0.276% 0.453±0.195% 0.330±0.163%	0.044s 0.718s 2.412s
LC4CO [32]	LC-OS-SL	Greedy	207.260	$0.728 \pm 0.482\%$	0.182s	972.532	0.447±0.174%	3.950s
AE4CO (D _s =20, I _s =1) [37] AE4CO (D _s =20, I _s =1) [37] AE4CO (D _s =20, I _s =1) [37]	AE-Gen-SL AE-Gen-SL AE-Gen-SL	Greedy 4×Greedy Greedy + RLSA	206.576 206.360 205.772	0.398±0.381% 0.290±0.332% 0.004 ± 0.042 %	0.108s 0.086s 0.612s	969.922 969.806 968.398	0.176±0.128% 0.163±0.118% 0.018 ± 0.103 %	0.522s 0.626s 1.592s
Метнор	Түре	SOLVING STAGE		TWITTER			COLLAB	
METHOD	TIFE	SOLVING STAGE	Овј.↓	Drop↓	Тіме↓	Овј.↓	Drop↓	Тіме↓
Gurobi [5]	Heuristics	=	85.251	$0.000 \pm 0.000\%$	0.133s	65.086	$0.000 \pm 0.000\%$	0.058s
GP4CO [39] GP4CO [20] GP4CO [26] GP4CO [26]	GP-OS-SL GP-OS-MAML(UL) GP-OS-UL GP-OS-UL	Greedy Greedy Greedy Greedy + RLSA	86.369 92.518 86.677 85.251	1.222±1.419% 8.262±3.709% 1.575±1.612% 0.000±0.000%	0.009s 0.064s 0.008s 0.115s	65.178 66.172 65.182 65.086	0.141±0.566% 2.170±2.834% 0.183±0.696% 0.000±0.000%	0.009s 0.061s 0.006s 0.158s
GP4CO (I _s =20) [40] GP4CO (I _s =20) [40]	GP-Gen-SL GP-Gen-SL	Greedy 4×Greedy	86.231 85.585	1.071±1.383% 0.332±0.599%	0.198s 0.233s	65.131 65.091	0.093±0.519% 0.010±0.145%	0.206s 0.267s
LC4CO [32]	LC-OS-SL	Greedy	86.841	2.695±7.401%	0.425s	65.396	0.667±1.550%	0.088s
AE4CO (D _s =20, I _s =1) [37] AE4CO (D _s =20, I _s =1) [37]	AE-Gen-SL AE-Gen-SL	Greedy 4×Greedy	85.574 85.446	0.326±0.574% 0.204±0.481%	0.138s 0.062s	65.121 65.107	0.047±0.303% 0.028±0.227%	0.056s 0.038s
Метнор	Түре	SOLVING STAGE	Овј.↓	RB-GIANT Drop↓	Тіме↓			
Gurobi [5]	Heuristics	-	2396.780	$0.000 \pm 0.000\%$	1813.786s			
GP4CO [39] GP4CO [20] GP4CO [26]	GP-OS-SL GP-OS-MAML(UL) GP-OS-UL	Greedy Greedy Greedy	2407.940 2406.360 2408.320	$\begin{array}{c} 0.465{\pm}0.105\% \\ 0.402{\pm}0.083\% \\ 0.482{\pm}0.102\% \end{array}$	0.365s 0.555s 0.221s			
GP4CO (I _s =1) [40] GP4CO (I _s =50) [40] GP4CO (I _s =50) [40] LC4CO [32]	GP-Gen-SL GP-Gen-SL GP-Gen-SL LC-OS-SL	Greedy Greedy 4×Greedy Greedy	2407.540 2405.060 2403.580 2401.740	0.450±0.110% 0.346±0.096% 0.284±0.078% 0.208±0.083%	0.240s 9.008s 37.506s 24.956s			
AE4CO (D _s =50, I _s =1) [37] AE4CO (D _s =50, I _s =1) [37] AE4CO (D _s =50, I _s =1) [37]	AE-Gen-SL AE-Gen-SL AE-Gen-SL	Greedy 4×Greedy Greedy + RLSA	2400.600 2400.360 2397.360	0.160±0.061% 0.149±0.052% 0.026±0.079 %	4.360s 8.200s 8.590s			

Table 18: Complete results on MCut.

Метнор	Түре	SOLVING STAGE		BA-SMALL			BA-LARGE	
Marinob	****	BOLVING BINGE	Овј.↑	Drop↓	Тіме↓	Овј.↑	Drop↓	TIME↓
Gurobi [5]	Heuristics	-	727.844	$0.000 \pm 0.000\%$	60.612s	2936.886	$0.000 \pm 0.000\%$	300.214s
GP4CO [39]	GP-OS-SL	Greedy	705.330	3.102±1.370%	0.014s	2827.480	3.744±0.851%	0.016s
GP4CO [20]	GP-OS-MAML(UL)	Greedy	672.748	$7.563\pm1.760\%$	0.063s	2748.310	6.425±0.965%	0.090s
GP4CO [26]	GP-OS-UL	Greedy	700.972	3.706±1.198%	0.017s	2884.086	1.815±0.716%	0.019s
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy	702.376	$3.504\pm1.841\%$	0.014s	2783.834	5.231±1.156%	0.016s
GP4CO (I _s =20) [40]	GP-Gen-SL	Greedy	725.624	0.319±0.557%	0.172s	2948.112	-0.369±0.580%	0.194s
GP4CO (I _s =20) [40]	GP-Gen-SL	4×Greedy	728.316	-0.049±0.371%	0.202s	2960.664	-0.797±0.494%	0.362s
GP4CO (FT) (I _s =1) [40]	GP-Gen-SL	Greedy	718.592	1.281±0.765%	0.014s	2941.740	-0.153±0.583%	0.016s
GP4CO (FT) (I _s =20) [40]	GP-Gen-SL GP-Gen-SL	Greedy 4×Greedy	726.538 728.272	0.195±0.476%	0.172s 0.196s	2980.508 2987.142	-1.467±0.513% -1.693±0.474%	0.196s 0.364s
GP4CO (FT) (I _s =20) [40] GP4CO (FT) (I _s =20) [40]	GP-Gen-SL GP-Gen-SL	Greedy + RLSA	128.212	-0.043±0.386%	0.1908	2987.142 2994.118	-1.932±0.449%	0.364s 0.999s
GP4CO [19]	GP-Gen-UL	Greedy	726,900	0.146±0.483%	0.197s	2986,932	-1.688±0.480%	0.654s
GP4CO [19] GP4CO [19]	GP-Gen-UL	4×Greedy	720.500	0.140±0.483% 0.061±0.462%	0.197s 0.610s	2989.458	-1.773±0.466%	2.701s
AE4CO (D _s =20, I _s =1) [37]	AE-Gen-SL	Greedy	727.526	0.058±0.419%	0.182s	2978,200	-1.387±0.517%	0.204s
AE4CO (D _s =20, I _s =1) [37] AE4CO (D _s =20, I _s =1) [37]	AE-Gen-SL AE-Gen-SL	4×Greedy	726,798	0.058±0.419% 0.159±0.442%	0.182s 0.064s	29/8.200	-0.821±0.544%	0.204s 0.114s
AE4CO ($D_s=20$, $I_s=1$) [37] AE4CO ($D_s=20$, $I_s=1$) [37]	AE-Gen-SL	Greedy + RLSA	729.706	0.240±0.313%	0.727s	2901.300	-0.821±0.344 /0	0.1148
AE4CO (FT) (D _e =20, I _e =1) [37]	AE-Gen-SL	Greedy	726.382	0.219±0.455%	0.184s	2975,712	-1.304±0.511%	0,202s
AE4CO (FT) (D _s =20, I _s =1) [37] AE4CO (FT) (D _s =20, I _s =1) [37]	AE-Gen-SL	4×Greedy	726.232	0.238±0.467%	0.164s	2980.652	-1.475±0.477%	0.202s 0.114s
				BA-GIANT				
МЕТНОО	TYPE	SOLVING STAGE	Овј.↑	Drop↓	TIME↓			
Gurobi [5]	Heuristics	_	7217.900	0.000±0.000%	3601.342s			
	GP-OS-SL		6979,260	3.291±0.613%	0.060s			
GP4CO [39] GP4CO [20]	GP-OS-SL GP-OS-MAML(UL)	Greedy Greedy	6712.120	5.291±0.613% 6.994±1.473%	0.060s 0.535s			
GP4CO [26]	GP-OS-UL	Greedy	7124.880	1.287±0.425%	0.059s			
GP4CO (I _s =1) [40]	GP-Gen-SL	Greedy	6860.220	4.935±0.841%	0.060s			
GP4CO (I _s =1) [40] GP4CO (I _s =50) [40]	GP-Gen-SL	Greedy	7308.260	-1.258±0.403%	0.700s			
GP4CO (I _s =50) [40]	GP-Gen-SL	4×Greedy	7329.420	-1.553±0.339%	1.760s			
GP4CO (FT) (I _s =1) [40]	GP-Gen-SL	Greedy	7264,660	-0.656±0.448%	0.060s			
GP4CO (FT) (I _s =50) [40]	GP-Gen-SL	Greedy	7372.100	-2.134±0.330%	0.720s			
GP4CO (FT) (I _s =50) [40]	GP-Gen-SL	4×Greedy	7381.920	-2.276±0.327%	1.760s			
GP4CO (FT) (I _s =50) [40]	GP-Gen-SL	Greedy + RLSA	7389.300	-2.383±0.310%	2.228s			
GP4CO [19]	GP-Gen-UL	Greedy	7384.020	-2.306±0.326%	2.480s			
GP4CO [19]	GP-Gen-UL	4×Greedy	7387.760	$-2.358 \pm 0.325\%$	10.760s			
AE4CO (D _s =20, I _s =1) [37]	AE-Gen-SL	Greedy	7369.980	-2.111±0.330%	0.720s			
AE4CO (FT) (D _s =20, I _s =1) [37]	AE-Gen-SL	Greedy	7361.800	$-1.997 \pm 0.318\%$	0.740s			

Table 19: TSPLIB

INSTANCE	SCALE	EXACT	GP-OS-SL		GP-G	GP-GEN-SL		AE-GEN-SL		BEST	
INSTANCE	SCALE	LAACI	Овј.↓	Drop↓	Овј.↓	Drop↓	Овј.↓	Drop↓	Овј.↓	Drop↓	
eil51	TSP-100	6.701	6.703	0.026%	6.711	0.143%	6.701	0.000%	6.701	0.000%	
berlin52	TSP-100	4.348	4.348	0.000%	4.349	0.004%	4.349	0.004%	4.349	0.004%	
st70	TSP-100	6.839	6.840	0.000%	6.840	0.000%	6.840	0.000%	6.840	0.000%	
eil76	TSP-100	7.561	7.668	1.414%	7.561	0.000%	7.561	0.000%	7.561	0.000%	
pr76	TSP-100	5.518	5.606	1.582%	5.518	0.000%	5.518	0.000%	5.518	0.000%	
rat99	TSP-100	5.671	5.671	0.000%	5.675	0.079%	5.675	0.079%	5.671	0.000%	
kroA100	TSP-100	5.408	5.408	0.000%	5.408	0.000%	5.408	0.000%	5.408	0.000%	
kroB100	TSP-100	5.626	5.668	0.742%	5.668	0.742%	5.668	0.742%	5.668	0.742%	
kroC100	TSP-100	5.276	5.276	0.000%	5.452	3.330%	5.452	3.330%	5.276	0.000%	
kroD100	TSP-100	5.431	5.431	0.000%	5.431	0.000%	5.431	0.000%	5.431	0.000%	
kroE100	TSP-100	5.557	5.641	1.495%	5.567	0.178%	5.570	0.232%	5.567	0.178%	
rd100	TSP-100	8.065	8.065	0.000%	8.065	0.000%	8.065	0.000%	8.065	0.000%	
eil101	TSP-100	8.536	8.536	0.000%	8.536	0.000%	8.536	0.000%	8.536	0.000%	
lin105	TSP-100	4.756	4.756	0.000%	4.793	0.779%	4.756	0.000%	4.756	0.000%	
pr107	TSP-100	3.778	3.778	0.000%	3.865	2.292%	3.816	1.005%	3.778	0.000%	
pr124	TSP-100	5.009	5.013	0.075%	5.009	0.000%	5.009	0.000%	5.009	0.000%	
bier127	TSP-100	6.106	6.165	0.953%	6.176	1.140%	6.215	1.771%	6.106	0.953%	
ch130	TSP-100	8.751	8.771	0.235%	8.751	0.000%	8.751	0.000%	8.751	0.000%	
pr136	TSP-100	7.767	7.875	1.391%	7.767	0.010%	7.767	0.010%	7.767	0.010%	
pr144	TSP-100	4.538	4.591	1.175%	4.557	0.417%	4.555	0.386%	4.555	0.386%	
ch150	TSP-100	9.342	9.429	0.939%	9.342	0.000%	9.342	0.000%	9.342	0.000%	
kroA150	TSP-100	6.693	6.723	0.444%	6.775	1.230%	6.733	0.595%	6.723	0.444%	
kroB150	TSP-100	6.635	6.667	0.482%	6.647	0.188%	6.647	0.189%	6.647	0.189%	
pr152	TSP-500	5.234	5.391	2.997%	5.291	1.097%	5.244	0.191%	5.244	0.191%	
u159	TSP-500	6.574	6.574	0.000%	6.574	0.000%	6.574	0.000%	6.574	0.000%	
rat195	TSP-500	7.993	8.049	0.705%	8.026	0.419%	8.049	0.706%	8.026	0.419%	
d198	TSP-500	3.924	3.998	1.884%	3.950	0.649%	3.944	0.488%	3.944	0.488%	
kroA200	TSP-500	7.437	7.475	0.513%	7.491	0.723%	7.441	0.056%	7.441	0.056%	
kroB200	TSP-500	7.467	7.481	0.197%	7.573	1.421%	7.569	1.373%	7.569	1.373%	
ts225	TSP-500	10.554	10.740	1.759%	10.754	1.893%	10.675	1.150%	10.675	1.150%	
tsp225	TSP-500	7.895	7.989	1.191%	7.911	0.200%	7.960	0.822%	7.911	0.200%	
pr226	TSP-500	5.279	5.288	0.169%	5.308	0.551%	5.315	0.683%	5.308	0.551%	
gil262	TSP-500	12.050	12.166	0.963%	12.075	0.215%	12.070	0.166%	12.070	0.166%	
pr264	TSP-500	6.200	6.245	0.731%	6.200	0.000%	6.200	0.000%	6.200	0.000%	
a280	TSP-500	9.238	9.412	1.883%	9.247	0.096%	9.238	0.000%	9.238	0.000%	
pr299	TSP-500	6.638	6.743	1.569%	6.729	1.367%	6.725	1.306%	6.725	1.306%	
lin318	TSP-500	10.170	10.305	1.327%	10.209	0.386%	10.244	0.727%	10.209	0.386%	
rd400	TSP-500	15.344	15.492	0.964%	15.407	0.412%	15.359	0.100%	15.359	0.100%	
fl417	TSP-500	6.286	6.355	1.112%	6.413	2.033%	6.354	1.095%	6.354	1.095%	
pr439	TSP-500	8.991	9.255	2.936%	9.065	0.822%	9.123	1.475%	9.065	0.822%	
pcb442	TSP-500	13.364	13.543	1.337%	13.450	0.645%	13.441	0.576%	13.441	0.576%	
d493	TSP-500	9.350	9.509	1.696%	9.510	1.706%	9.469	1.265%	9.469	1.265%	
u574	TSP-500	12.023	12.097	0.613%	12.149	1.706%	12.092	0.577%	12.092	0.577%	
rat575	TSP-500	13.619	13.694	0.551%	13.791	1.260%	13.671	0.382%	13.671	0.382%	
p654	TSP-1000	7.196	7.516	4.454%	7.240	0.624%	7.240	0.621%	7.240	0.621%	
d657	TSP-1000	12.212	12.323	0.911%	12.334	1.003%	12.288	0.620%	12.288	0.620%	
u724	TSP-1000	14.437	14.598	1.119%	14.593	1.087%	14.582	1.009%	14.582	1.009%	
rat783	TSP-1000	15.247	15.373	0.828%	15.342	0.625%	15.418	1.127%	15.342	0.625%	
pr1002	TSP-1000	16.397	16.645	1.517%	16.561	1.001%	16.490	0.571%	16.490	0.571%	
mean	-	8.062	8.140	0.916%	8.115	0.649%	8.105	0.519%	8.095	0.356%	

INSTANCE	EXACT	CVR	P-100	CVR	P-200	CVR	P-500	AVE	RAGE	Bi	EST
11.011.11.02	Dille I	Овј.↓	Drop↓								
X-n101-k25	27.905	30.625	9.744%	31.702	13.605%	30.563	9.524%	30.963	10.958%	30.563	9.524%
X-n106-k14	26.362	26.969	2.300%	26.802	1.668%	26.955	2.250%	26.909	2.073%	26.802	1.668%
X-n110-k13	14.979	15.097	0.784%	15.219	1.599%	15.523	3.629%	15.280	2.004%	15.097	0.784%
X-n115-k10	12.933	13.896	7.448%	14.112	9.115%	13.574	4.957%	13.860	7.173%	13.574	4.957%
X-n120-k6	13.437	13.611	1.296%	13.672	1.749%	13.908	3.509%	13.730	2.185%	13.611	1.296%
X-n125-k30	56.164	59.041	5.122%	62.810	11.833%	62.514	11.307%	61.455	9.420%	59.041	5.122%
X-n129-k18	29.005	29.476	1.625%	29.356 11.810	1.211%	29.777	2.662%	29.536	1.833%	29.356	1.211%
X-n134-k13 X-n139-k10	11.351 13.678	11.633 14.048	2.479% 2.708%	13.804	4.045% 0.920%	11.674 14.074	2.841% 2.894%	11.706 13.975	3.122% 2.174%	11.633 13.804	2.479% 0.920%
X-n143-k7	15.776	16.533	4.798%	16.602	5.239%	16.702	5.868%	16.612	5.301%	16.533	4.798%
X-n148-k46	43.671	53.319	22.092%	45.190	3.478%	55.014	25.973%	51.175	17.181%	45.190	3.478%
X-n153-k22	21.572	31.742	47.146%	36.105	67.371%	28.809	33.547%	32.219	49.354%	28.809	33.547%
X-n157-k13	17.572	17.708	0.775%	17.870	1.696%	17.811	1.365%	17.796	1.279%	17.708	0.775%
X-n162-k11	14.412	14.705	2.029%	14.707	2.044%	14.732	2.220%	14.715	2.098%	14.705	2.029%
X-n167-k10	20.766	21.244	2.303%	21.287	2.510%	21.684	4.421%	21.405	3.078%	21.244	2.303%
X-n172-k51	46.974	65.767	40.007%	79.562	69.372%	59.677	27.041%	68.335	45.473%	59.677	27.041%
X-n176-k26	47.816	51.999	8.748%	56.172	17.475%	52.487	9.770%	53.553	11.998%	51.999	8.748%
X-n181-k23	26.809	27.067	0.963%	27.092	1.057%	27.074	0.990%	27.078	1.003%	27.067	0.963%
X-n186-k15	24.251	24.720	1.933%	24.721	1.936%	25.753	6.193%	25.065	3.354%	24.720	1.933%
X-n190-k8	17.037	17.817	4.580%	17.418	2.238%	17.687	3.817%	17.641	3.545%	17.418	2.238%
X-n195-k51	44.274	45.772	3.385%	60.037	35.604%	50.881	14.924%	52.230	17.971%	45.772	3.385%
X-n200-k36	60.084	62.080	3.324%	61.860	2.957%	61.834	2.914%	61.925	3.065%	61.834 19.967	2.914%
X-n204-k19 X-n209-k16	19.588 30.691	20.166 31.481	2.951% 2.575%	20.034 31.107	2.279% 1.355%	19.967 31.561	1.936% 2.835%	20.056 31.383	2.389% 2.255%	31.107	1.936%
X-n214-k11	10.879	11.543	6.100%	11.278	3.665%	11.413	4.903%	11.411	4.889%	11.278	1.355% 3.665%
X-n219-k73	117.601	124.696	6.033%	126.506	7.572%	129.738	10.320%	126.980	7.975%	124.696	6.033%
X-n223-k34	40.478	41.308	2.051%	42.331	4.576%	41.637	2.862%	41.759	3.163%	41.308	2.051%
X-n228-k23	25.747	28.368	10.180%	27.065	5.119%	26.867	4.350%	27.433	6.550%	26.867	4.350%
X-n233-k16	19.297	19.822	2.721%	19.731	2.249%	20.114	4.235%	19.889	3.068%	19.731	2.249%
X-n237-k14	27.078	27.573	1.828%	27.397	1.178%	28.176	4.057%	27.715	2.354%	27.397	1.178%
X-n242-k48	82.757	84.827	2.502%	84.427	2.018%	84.730	2.384%	84.661	2.301%	84.427	2.018%
X-n247-k50	37.966	59.721	57.301%	63.388	66.958%	55.808	46.994%	59.639	57.084%	55.808	46.994%
X-n251-k28	38.885	39.904	2.621%	39.798	2.348%	40.056	3.011%	39.919	2.660%	39.798	2.348%
X-n256-k16	18.942	19.784	4.444%	19.379	2.306%	19.432	2.582%	19.532	3.111%	19.379	2.306%
X-n261-k13	26.591	29.077	9.348%	27.586	3.741%	27.591	3.759%	28.085	5.616%	27.586	3.741%
X-n266-k58	75.489	81.892	8.482%	78.439	3.908%	78.007	3.336%	79.446	5.242%	78.007	3.336%
X-n270-k35 X-n275-k28	35.432 22.924	37.837 24.085	6.786% 5.068%	36.133 23.488	1.978% 2.464%	37.645 23.829	6.244% 3.948%	37.205 23.801	5.003% 3.827%	36.133 23.488	1.978% 2.464%
X-n280-k17	33.503	34.597	3.265%	35.739	6.673%	36.544	9.074%	35.627	6.337%	34.597	3.265%
X-n284-k15	20.421	21.564	5.598%	21.252	4.071%	21.472	5.148%	21.429	4.939%	21.252	4.071%
X-n289-k60	95.351	103.478	8.523%	107.669	12.919%	105.407	10.546%	105.518	10.663%	103.478	8.523%
X-n294-k50	47.315	51.281	8.383%	48.783	3.102%	49.012	3.588%	49.692	5.025%	48.783	3.102%
X-n298-k31	34.247	35.659	4.122%	35.464	3.553%	35.698	4.236%	35.607	3.971%	35.464	3.553%
X-n303-k21	21.961	22.907	4.307%	22.659	3.179%	22.889	4.225%	22.818	3.903%	22.659	3.179%
X-n308-k13	25.980	27.164	4.556%	26.723	2.859%	26.891	3.505%	26.926	3.640%	26.723	2.859%
X-n313-k71	94.437	103.575	9.676%	110.157	16.646%	107.451	13.780%	107.061	13.367%	103.575	9.676%
X-n317-k53	78.456	86.456	10.198%	87.043	10.946%	93.404	19.053%	88.968	13.399%	86.456	10.198%
X-n322-k28	29.846	30.892	3.506%	30.590	2.492%	31.861	6.753%	31.114	4.250%	30.590	2.492%
X-n327-k20	27.681	28.768	3.928%	28.546	3.127%	28.733	3.799%	28.682 32.123	3.618%	28.546 31.993	3.127%
X-n331-k15 X-n336-k84	31.155 139.283	31.993 159.225	2.690% 14.318%	32.028 169.684	2.804% 21.827%	32.349 157.244	3.834% 12.896%	162.051	3.109% 16.347%	157.244	2.690% 12.896%
X-n344-k43	42.194	43.796	3.795%	43.225	2.442%	43.542	3.194%	43.521	3.144%	43.225	2.442%
X-n351-k40	25.948	27.200	4.822%	32.179	24.011%	27.259	5.051%	28.879	11.295%	27.200	4.822%
X-n359-k29	51.512	53.260	3.394%	52.817	2.535%	53.347	3.562%	53.141	3.164%	52.817	2.535%
X-n367-k17	24.741	25.836	4.426%	25.777	4.187%	25.711	3.920%	25.775	4.178%	25.711	3.920%
X-n376-k94	147.881	148.786	0.612%	149.060	0.797%	148.848	0.654%	148.898	0.688%	148.786	0.612%
X-n384-k52	66.086	67.866	2.693%	67.689	2.426%	68.387	3.482%	67.981	2.867%	67.689	2.426%
X-n393-k38	38.386	40.077	4.404%	39.938	4.043%	39.702	3.427%	39.906	3.958%	39.702	3.427%
X-n401-k29	66.204	67.696	2.253%	67.783	2.385%	68.101	2.865%	67.860	2.501%	67.696	2.253%
X-n411-k19	19.741	20.966	6.210%	21.030	6.534%	21.476	8.791%	21.158	7.178%	20.966	6.210%
X-n420-k130	108.137	134.019	23.935%	145.475	34.528%	152.736	41.243%	144.077	33.235%	134.019	23.935%
X-n429-k61	65.777	72.105	9.620%	67.992	3.368%	70.841	7.698%	70.313	6.895%	67.992	3.368%
X-n439-k37	36.484	41.280	13.146%	39.235	7.541%	38.941	6.735%	39.819	9.140%	38.941	6.735%
X-n449-k29	55.282	58.464	5.756%	56.635	2.447%	59.498	7.627%	58.199	5.277%	56.635	2.447%
X-n459-k26	25.279	27.058	7.035%	26.603	5.236%	26.814	6.070%	26.825	6.114%	26.603	5.236%
X-n469-k138 X-n480-k70	222.364 89.842	254.665 98.216	14.526% 9.321%	258.329 92.585	16.174% 3.053%	272.896 92.732	22.725% 3.217%	261.963 94.511	17.808% 5.197%	254.665 92.585	14.526% 3.053%
X-n480-k70 X-n491-k59	66.591	69.121	9.321% 3.799%	68.596	3.033%	71.887	7.952%	69.868	4.921%	68.596	3.055%
X-n502-k39	69.262	80.609	16.383%	86.878	25.433%	74.836	8.049%	80.774	16.622%	74.836	8.049%
X-n513-k21	24.273	25.612	5.513%	25.416	4.705%	25.259	4.061%	25.429	4.760%	25.259	4.061%
				49,994							
mean	45.183	49.159	7.590%	49.994	8.878%	49.672	7.730%	49.608	8.066%	48.263	5.469%

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction explicitly state the claims made, including the contributions made in the paper (Sec. 1). The claims match the experimental results in Sec. 4.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Appendix E.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical derivation of this paper has been given in Appendix B, and there are no additional theorems needed to be proved.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental details are in Sec. 4 and Appendix D. We have already made our source code publicly available.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We have open-sourced the code and dataset involved in this paper.

Code: https://github.com/Thinklab-SJTU/ML4CO-101;

Dataset: https://huggingface.co/datasets/ML4CO/ML4CO-101-SL.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so âĂIJNoâĂİ is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The experimental details are in Sec. 4 and Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have included the standard deviation of the data in the complete experimental tables in Appendix D.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide the computational environment required for the experiments in Appendix C. Further, for each experimental result, we also provide the time needed under the given environment.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Appendix E.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The original papers that introduce models and datasets used in the paper are cited in Sec. 4.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: First, we have released our code and dataset, introducing new assets. In addition, it should be noted that this submission follows the latest regulations and is a single-blind submission, so it has not been anonymized.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not incur such risks.

Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not involve any LLM.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.