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Abstract

Combinatorial problems on graphs have attracted extensive efforts from the ma-
chine learning community over the past decade. Despite notable progress in this
area under the umbrella of ML4CO, a comprehensive categorization, unified repro-
ducibility, and transparent evaluation protocols are still lacking for the emerging
and immense pool of neural CO solvers. In this paper, we establish a modular and
streamlined framework benchmarking prevalent neural CO methods, dissecting
their design choices via a tri-leveled “paradigm-model-learning” taxonomy to better
characterize different approaches. Further, we integrate their shared features and
respective strengths to form 3 unified solvers representing global prediction (GP),
local construction (LC), and adaptive expansion (AE) mannered neural solvers. We
also collate a total of 65 datasets for 7 mainstream CO problems (including both
edge-oriented tasks: TSP, ATSP, CVRP, as well as node-oriented: MIS, MCl, MVC,
MCut) across scales to facilitate more comparable results among literature. Exten-
sive experiments upon our benchmark reveal a fair and exact performance exhibition
indicative of the raw contribution of the learning components in each method, re-
thinking and insisting that pre- and post-inference heuristic tricks are not supposed
to compensate for sub-par capability of the data-driven counterparts. Under this uni-
fied benchmark, an up-to-date replication of typical ML4CO methods is maintained,
hoping to provide convenient reference and insightful guidelines for both engineer-
ing development and academic exploration of the ML4CO community in the future.
Code is available at https://github.com/Thinklab-SJTU/ML4CO-Bench-101, and
the dataset is at https://huggingface.co/datasets/ML4CO/ML4CO-Bench-101-SL.

1 Introduction

Combinatorial optimization (often in the form of edge- or node-oriented tasks on graphs) plays a
pivotal role in operations research, with wide-ranging applications in logistics systems [1], transporta-
tion planning [2], supply chain management [3], and network design [4], where discrete decision-
making is essential for optimizing operations and reducing costs. Traditional approaches typically
rely on mathematical programming [5] or heuristic methods [6, 7] to obtain exact or approximate
solutions. Recently, machine learning (ML) has emerged as a powerful paradigm for tackling
combinatorial optimization problems (COPs), offering data-driven efficiency and near-optimal solu-
tions [8, 9, 10, 11, 12, 13], which has fostered the growth of Machine Learning for Combinatorial
Optimization (ML4CO) as a distinct research community [14, 15]. Despite the promising advance-
ments, the ML4CO community faces critical challenges regarding model design, reproducibility,
inconsistent datasets, heterogeneous evaluation and reporting protocols, thus highlighting the pressing
need for a comprehensive, standardized, and user-friendly benchmark.
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Figure 1: Overview of our proposed ML4CO-Bench-101.

Specifically, major issues lie in the following aspects. 1) Methodological fragmentation. Ex-
isting works lack a unified taxonomy, with baselines inconsistently categorized, e.g., by learning
type (SL: supervised learning, RL: reinforcement learning, UL: unsupervised learning, MAML:
Model-Agnostic Meta-Learning, etc.), construction method [16] (AR: autoregressive, NAR: non-
autoregressive), or backbone architecture [17] (GCN, GAT, SAG, etc.). This obscures comparative
insights and impedes systematic advancements. 2) Implementation Inconsistency. Reproducibil-
ity is hampered by ad-hoc implementations. For instance, training and testing datasets vary in
format (TSPLIB file, pickle file, txt file, etc.) or framework (PyG objects, DGL objects, raw Py-
Torch tensors, etc.), creating redundant overhead for replication and extension. Also, a number
of works [18, 19, 20, 21] incorporate complicated environment dependencies or intricately nested
code modules, which hinder the applicability of transferring the approaches to new tasks. More-
over, the decoding heuristics, as simple as the greedy algorithm, evolve and vary from one work
to another, however, an easy reuse of the notations (e.g., “SL+Grdy”) is not supposed to conceal
inherent performance variation from readers. 3) Evaluation irregularity. A standardized protocol
for evaluating CO problems remains absent, and current results suffer from: i) Dataset heterogeneity.
Beyond formatting discrepancies, some works often use arbitrary problem settings and self-generated
synthetic data. For instance, [22] experimented on BA [23] graphs for MVC and MCut, [24] merely
tested MCl and MIS on real-world datasets; [19, 20, 25, 26] all conducted tests on RB [27] graphs but
for different tasks and with different settings of node ranges. This makes it nearly infeasible to ensure
model-to-model fair comparison. ii) Post-processing abuse. Techniques like MCTS are widely
adopted to further improve the solution quality for TSP [18, 28, 29]. While effective, these methods
are under inconsistent settings (e.g., varying time limits) across literature and often mask raw model
performance, i.e., leading distinct models to level off w.r.t the optimality gap and possibly skewing
their conclusions. iii) Uncontrolled randomness. Many sequential methods inherently exploit multi-
sampling to improve diversity of solution [10, 30, 31] or selectively reports “the best trial among 8
seeds” [20]. Scant attention has been paid to these subtle tricks in literature, leaving ambiguity and
unfairness in comparing time and solving quality. iv) Pipeline discrepancy. Inconsistent evaluation
protocols, e.g., storing heatmaps offline for subsequent searching [18] v.s. generating heatmaps
and decoding for each instance sequentially (widely employed), further undermine comparability.
More delicately, different pre-processing techniques can have been operated (often without explicit
introduction), e.g. generating Dirac delta distributions for graph tasks [20], re-permuting vertex
indices [32, 33] and instance-level re-normalization [34, 35] of distance matrices for TSP, etc.

To address the aforementioned shortcomings, we have provided a systematic review of existing
ML4CO work, and then developed a modular code framework with a new benchmark in the hope
of advocating for a standardized assessment that embraces methodological diversity while ensuring
evaluation transparency. Our contributions in this work can be summarized as follows:

• We provide a comprehensive retrospective of existing ML4CO literature, and introduce a benchmark
suite, which encompasses standard datasets as well as our completed, refined and concentrated im-
plementation of neural solvers for COPs, on the basis of existing methods under our categorization.

• Extensive experiments upon the benchmarking toolkit provide insights into critical research ques-
tions: 1) For edge-oriented tasks (TSP, ATSP and CVRP), SL usually outperforms UL and MAML,
especially as the scale increases. 2) For node-oriented tasks (MCl, MCut, MIS and MVC), which
can be reformulated as energy minimization problems [19, 26], making them particularly suitable
for UL. Furthermore, MAML exhibits strong generalization capabilities on these problems.

• We reproduce a wide range of decoding strategies as well as post-processing methods, and we
report the best-performing ML4CO approaches for each benchmark dataset in Table 8. Notably,
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ML4CO methods outperform traditional solvers on several benchmark datasets, with the most
neural-based approaches demonstrating significant advantages in speed. To support future research
in the community, we also release, for the first time, a comprehensive ML4CO dataset with full
solution results covering all benchmark datasets (provided in the data link in the abstract).

2 Benchmarking Existing ML4CO Methods

Problem Definition. The combinatorial optimization problems (COPs) studied in this paper can be
consistently represented using the graph structure, i.e., G = (V, E), where V = {1, · · · , N} denotes
the node set and E the edge set. Following previous works [16, 36, 37], we define the decision
variables x = {0, 1}M to represent the solution of a given COP. For MCl, MIS, and MVC, we have
M = N and xi indicates whether the node i is selected. For MCut, M = N and xi indicates which
subset the node i belongs to. For TSP, ATSP and CVRP, M = N2 and xi·N+j indicates whether
the edge (i, j) is selected. Mathematically, the goal is to find optimal solution x∗ = argmin

x∈Ω
c(x, G),

where Ω denotes the feasible set of x that satisfy the constraints and c(·, ·) is the objective cost
function of corresponding problems. For better readability of our principal line, we defer the formal
definitions of the seven COPs (TSP, ATSP, CVRP, MIS, MCl, MVC, and MCut) to Appendix A.

In this section, we provide a detailed analysis of existing methods of ML4CO from three perspectives:
a) algorithm design, b) decoding strategy, and c) post-processing optimization, as depicted in Fig. 1.

2.1 Algorithm Designs

Over the past decade, substantial efforts have been dedicated to exploring the potential of data-driven
learning for CO, resulting in a rich yet slightly disarrayed body of literature. Hence, we first draw a
categorized summary of existing solvers along with three dimensions: paradigm, model, and learning.

Paradigm. Following COExpander [37], we regard the solving of COPs as Variable Determination
Process VDP(N, k), where N denotes the number of decision variables and k denotes the number of
iterations required to obtain the complete solution. Based on N and k, the existing NCO solvers can
be categorized into three paradigms: 1) k = 1: Global Prediction (GP) solvers [16, 36, 38, 39, 29,
18, 20, 28, 40, 33, 19, 21] leverage neural networks to globally predict the likelihood of each node or
edge being selected and then decode the probability heatmaps using heuristic methods (such as simple
greedy algorithms) to obtain solutions. 2) k = N : Local Construction (LC) solvers [41, 31, 33, 42]
use neural networks to iteratively predict the best next-step action (e.g., the next node to select) based
on the current state until a complete solution is constructed. 3) k ∈ (1, N): Adaptive Expansion
(AE) solvers [43, 37, 34] lie in the between of GP and LC. In each iteration, AE solvers utilize neural
networks to globally predict probability heatmaps based on the current state, and then determine an
adaptive set of decision variables (e.g., until violation of constraints) according to the heatmaps.

Model. Whereas the paradigm is a higher-level concept agnostic to model implementation, the
model denotes the specific neural approach employed to undertake the data-driven learning. We
categorize existing neural models into two primary classes: 1) One-Shot (OS) models achieve results
via a single inference pass. This category encompasses models such as Graph Convolution Network
(GCN) models [38, 39] and Graph Attention (GAT) models [41, 31, 33]. GCN employs convolutional
operations on graphs to aggregate information from neighboring nodes and utilizes node embeddings
to capture structural dependencies, while GAT leverages attention mechanisms to dynamically weight
node interactions and enable adaptive feature aggregation. These models enhance graph-based
learning by capturing complex dependencies and are highly effective for combinatorial optimization
and structured decision-making tasks. 2) Generative (Gen) models [47, 48, 49] generate results
through a progressive denoising process starting from random noise. This category includes Diffusion
models [16, 36, 19, 50] and Consistency models [51, 40, 37]. Diffusion models consist of a sequential
noising process that transforms feasible solutions into noised vectors and a learnable reverse denoising
process, while consistency models converge different noise trajectories of the same graph to the
same initial solution, thus significantly reducing the number of denoising steps required. These
models leverage the strong expressive power of generative models with the iterative noise addition
and removal processes, which significantly improve the prediction quality compared to OS models.

Learning. The learning methods of models have long been a central focus of research. A substantial
body of works [16, 39, 40] supervised learning (SL), where models are trained on large collections
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Table 1: Categorization of methods: Global Prediction (GP), Local Construction (LC), Adaptive Ex-
pansion (AE), Unsupervised/Supervised Learning (U/SL). Model-Agnostic Meta-Learning (MAML).

ID METHOD
ALGORITHM DESIGN INVOLVED PROBLEMS

PARADIGM MODEL LEARNING TSP ATSP CVRP MIS MCL MVC MCUT

1 Intel [38] GP One-Shot SL – – – " – – –
2 GCN [39] GP One-Shot SL " – – – – – –
3 Att-GCN [29] GP One-Shot SL " – – – – – –
4 GNNGLS [44] GP One-Shot SL " – – – – – –
* GP4CO (Ours) GP One-Shot SL " " – " " " "

5 DIMES [18] GP One-Shot MAML (RL) " – – " – – –
6 Meta-EGN [20] GP One-Shot MAML (UL) – – – – " " –
* GP4CO (Ours) GP One-Shot MAML " – – " " " "

7 UTSP [28] GP One-Shot UL " – – – – – –
8 VAG-CO [26] GP One-Shot UL – – – " " " "

* GP4CO (Ours) GP One-Shot UL " – – " " " "

9 DIFUSCO [16] GP Generative SL " – – " – – –
10 T2T [36] & Fast-T2T [40] GP Generative SL " – – " – – –
11 UniCO-MatDIFFNet [33] GP Generative SL " " – – – " –
* GP4CO (Ours) GP Generative SL " " " " " " "

12 DiffUCO [19] GP Generative UL – – – " " – "

13 SDDS [21] GP Generative UL – – – " " – "

* GP4CO (Ours) GP Generative UL – – – " " – "

14 RL4CO [41, 45, 30, 42] LC One-Shot RL " – " – – – –
15 MatNet [31] LC One-Shot RL – " – – – – –
16 UniCO-MatPOENet [33] LC One-Shot RL " " – – – – –
* LC4CO (Ours) LC One-Shot RL " " " – – – –

17 BQ-NCO [46] LC One-Shot SL " " " – – – –
18 GOAL [32] LC One-Shot SL – " " " – " –
* LC4CO (Ours) LC One-Shot SL " " " " " " –

19 LwD [43] AE One-Shot RL – – – " – – –
* AE4CO (Ours) AE One-Shot RL – – – " – – –

20 COExpander [37] AE Generative SL " " " " " " "

* AE4CO (Ours) AE Generative SL " " " " " " "

of labeled data to learn underlying patterns and relationships. However, due to the high cost of
obtaining supervised labels for combinatorial optimization problems, several studies [31, 20, 28]
explore alternative approaches such as meta-learning (e.g., Model-Agnostic Meta-Learning, MAML),
unsupervised learning (UL), and reinforcement learning (RL) to reduce reliance on labeled data.

Benchmark. To establish a comprehensive benchmark, we first compile a collection of representative
papers from the past decade that apply machine learning techniques to the seven related COPs.
Each paper is then carefully classified and annotated based on both the underlying algorithmic
design and the specific COPs it addresses. To better structure and communicate the diversity of
methodologies, we further group these approaches into three overarching categories according to their
solving paradigms, namely GP4CO, LC4CO and AE4CO (these are categories, not new methods).
During our reproduction and evaluation process, we discover that the applicability of some methods
can be extended beyond the problem domains originally claimed in the primary publications. While
a full exploration of such extension is beyond the scope of this work, we selectively broaden the
evaluation of some promising methods whose cross-domain potential merits further investigation, as
delineated in Table 1 for quick references.

2.2 Decoding Strategies

We define the decoding strategy as the way to determine the decision variables, which mainly includes
greedy decoding, sampling decoding, beam search and parallel mechanisms.

Greedy Decoding. We begin by evaluating the scores s for each decision variable x, based on the
prediction output y (probablized) from the neural model. In most cases discussed in this paper, we
set s = y. However, for MVC, we define s = −y, and for MCut, we use s = |y − 0.5|. Variables
with higher scores are then prioritized (as long as feasible) to constitute the final solution.

Sampling Decoding. Instead of always selecting the highest-scoring variable, it samples decision
variables according to a probability distribution. Specifically, the probability of selecting variable xi

is P (xi) = si/
∑N

i=1 si. This approach promotes diversity and may yield better overall solutions.
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Beam Search. This strategy strikes a balance between efficiency and solution quality. It maintains a
set of candidate sequences, with a fixed size k (16 in this paper). At each step, the algorithm expands
these candidate sequences by considering all possible extensions and then retains only the top-k
sequences with the highest scores. This method allows for a more comprehensive exploration of the
solution space compared to greedy decoding, while still keeping the computational cost manageable.

Parallel Mechanism. It involves solving the same problem multiple times in parallel and selecting
the best answer from the results. This approach is particularly relevant in generative models, where
the process of Bernoulli sampling is inherently stochastic. By running the model multiple times,
parallel mechanisms can leverage the randomness to generate a variety of potential solutions and
ultimately choose the most optimal one. This method can improve the robustness and reliability of
the final solution, although it requires more computational resources.

2.3 Post-Processing Techniques

Beyond the aforementioned methods of obtaining solutions, there has been a substantial amount of
research that predominantly concentrates on leveraging diverse euristic methods (without offline
training) to optimize the initial solutions generated by neural networks. We mainly categorize these
methods into two types: K-Opt for edge-oriented problems and Sampling for node-oriented problems.
See Appendix B for visualizations, algorithmic details and parameters of the post-processing means.

K-Opt Optimization. The core idea is to reduce the total cost by repeatedly swapping certain edges.
Following COExpander [37] and ML4TSPBench [17], we adopt Two-Opt for TSP and ATSP, Monte
Carlo Tree Search (MCTS) for TSP, and Classic-LS for CVRP as the post-processing operations.

Sampling Optimization. Sampling methods [52, 53] based on energy functions and gradient descent
have demonstrate strong performance and generalization in solving COPs with simple-constraint. We
adopt RLSA [53] as a representative post-processor for the node-oriented problems.

3 Related Work and Further Discussion

Related Works. RL4CO [41] is an early attempt towards providing a unified implementation and
evaluation of CO problems, yet only RL-based models are incorporated without delving into deeper
analyses of learning paradigms or proposing new methods. PredictiveCO [54] proposes a modular
framework to benchmark predictive CO approaches. Besides, there are also some benchmarking
works dedicated to specific problems: 1) [55] proposes to benchmark the maximum independent set
problem. 2) the recent effort namely ML4TSPBench [17] endeavors to rethink existing methodologies
in ML4TSP while concurrently advancing the development of new techniques, through a highly
modularized implementation framework. However, existing benchmarking efforts often focus merely
on a single problem type or a specific learning paradigm. The lack of a systematic categorization
and transparent evaluation of existing methods impedes the possibility of generating generic insights
from a more macroscopic perspective. In this work, we primarily focus on three classic edge-oriented
(i.e. routing) problems and four types of node-oriented problems.

Statement on Topics not Discussed. We primarily focus on the methods which obtain solutions
to COPs using purely machine learning approach, along with relevant post-processing optimization
techniques. Therefore, the following three will not be discussed: 1) Divide-and-Conquer Solv-
ing and Optimization. GLOP [56] and UDC [57] propose a hierarchical framework that uses a
non-autoregressive model to perform coarse-grained decomposition of the problem, and employs
corresponding solvers to address the decomposed subproblems. [58] proposes a learning-augmented
local search framework for solving large-scale Vehicle Routing Problems (VRPs), which iteratively
improves solutions by identifying promising subproblems using a transformer-based subproblem
selector and delegating their improvement to a black-box subsolver. 2) Learning to Search. These
methods [59, 60, 61, 62] start from an initial solution and use neural networks to guide how to search
for appropriate actions (such as edges swap) to optimize the solution. NeuOpt [63] incorporates the
idea of tabu search and proposes Guided Infeasible Region Exploration (GIRE), which significantly
enhances the solving effect. 3) Machine Learning-assisted Traditional Solvers. VSRLKH [64]
combines reinforcement learning with the Lin-Kernighan-Helsgaun (LKH) algorithm, which uses
Q-learning, Sarsa, and Monte Carlo methods to dynamically select optimal moves. NeuroLKH [65]
utilizes a sparse graph neural network to learn edge scores and node penalties to guide LKH. 4)
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Hypergraphs. In this paper, the graphs involved do not include hypergraphs [66], that is, an edge
connects exactly two nodes. In addition, the weights of nodes and edges are not considered.

4 Experiments

In this section, we continue the empirical analysis of existing ML4CO methods along the same three
dimensions as specified in Sec. 2. Due to space limitations, the experimental analysis below only
presents results from a selection of benchmark datasets. The complete experimental results with
standard deviations of the performance drop reported are presented in Appendix D.

4.1 Experimental Setup

4.1.1 Datasets and Metrics

Synthetic Datasets. Following the SOTA COExpander [37] and its protocol, we adopt RB [27],
ER [67], and BA [23] graphs for node-oriented problems, and use uniform graphs for the edge-
oriented routing problem. Specifically, we set the edge connection probability of ER graph to 0.15,
the number of connecting nodes for BA graphs to 4. Besides, for RB and BA graphs, we categorize
them into three scales: SMALL (200-300), LARGE (800-1200), and GIANT (2000-3000), based on
the number of nodes. For CVRP, the demands of clients are randomly generated from the interval
[1, 10], and the vehicle capacity is set to 40, 50, 80, 100 for CVRP-50, CVRP-100, CVRP-200 and
CVRP-500. We also conduct experiments on SATLIB2 for MIS by transforming SAT into MIS.

Real-World Datasets. Following previous work [37, 63], we use TSPLIB3 for TSP, CVRPLIB4

for CVRP. Specifically, for TSPLIB, we select 49 2D-Euclidean distances with the number of
nodes ranging from 51 to 1002; for CVRPLIB, we adopt 70 instances from the benchmark [68]
(corresponding to folder X), with the number of nodes ranging from 101 to 513. As for the node-
oriented problem, we adopt two social network datasets: Twitter [69] and COLLAB [70].

Cross-distribution Generalization Datasets. In addition to the real-world dataset, we have referred
to previous work [55, 33] and reorganized the cross-distribution datasets to conduct further general-
ization tests. Specifically, for ATSP, we reduce both Hamiltonian Cycle Problem (HCP) and 3-SAT
to ATSP and treat them as two distinct distribution classes. For TSP, we adopt Cluster and Gaussian
distributions. For the node-oriented tasks, we employ the Holme-Kim (HK) [71] and Watts-Strogatz
(WS) [72]. For more details on instance generation, please refer to Appendix C.3.

Metrics. Following COExpander [37], we use three metrics to evaluate the performance of the model:
1) Objective. The average objective of the solutions w.r.t. the corresponding instances. 2) Drop. The
relative performance drop w.r.t. the objective compared to the solutions obtained by the baseline exact
solver or heuristic solver. 3) Time. The average computational time per instance. Unless otherwise
specified, all experiments were conducted with a batch size set to 1 or in single-thread mode.

4.1.2 Evaluated Methods and Model Settings

Learning-free Baseline Solvers. We adopt six baseline traditional solvers without learning: Gurobi-
11.0.3 [5] for node-oriented problems; While for edge-oriented routing tasks, we turn to the tailored
strong solvers: LKH-3.0.7 [6] for TSP and ATSP; Concorde [73] for TSP; GA-EAX [74] for TSP;
HGS [75] for CVRP; KaMIS [76] for MIS.

Generative Model Settings. 1) Sampling Number S: the number of heatmaps sampled from pθ(x0|s)
with different random seeds. 2) Determination Step Ds: the maximum number of determination in
AE paradigm. 3) Inference Step Is: the number of time-steps in the inference phase.

Training Settings. Typically, the learning rate is set to 0.002. Regarding the network backbone
and number of layers, we prioritize consistency with the original paper. The detailed experimental
environment and training parameters are presented in Appendix C.

2https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html
3http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
4http://vrp.atd-lab.inf.puc-rio.br/media/com_vrp/instances
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Table 2: Comparison of different paradigms on performance and efficiency (GP vs LC vs AE).

METHOD TYPE
TSP-500 TSP-1K ATSP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
GP4CO GP-OS-SL 18.148 9.683% 0.047s 26.124 13.001% 0.195s 1.729 9.880% 0.157s
LC4CO LC-OS-SL 18.006 8.825% 3.964s 25.380 9.789% 7.995s 1.655 5.201% 6.328s
GP4CO (Is=5) GP-Gen-SL 17.473 5.603% 0.099s 25.021 8.229% 0.289s 1.641 4.294% 0.558s
AE4CO (Ds=3, Is=5) AE-Gen-SL 17.119 3.466% 0.231s 24.698 6.834% 0.691s 1.623 3.128% 1.669s

METHOD TYPE
MIS-RB-LARGE MCL-RB-LARGE MVC-RB-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
GP4CO GP-OS-SL 36.060 16.036% 0.048s 38.622 4.331% 0.042s 976.112 0.817% 0.068s
LC4CO LC-OS-SL 37.596 12.476% 3.962s 29.382 26.156% 3.148s 972.532 0.447% 3.950s
GP4CO (Is=1) GP-Gen-SL 36.394 15.219% 0.044s 36.402 9.809% 0.042s 974.950 0.696% 0.044s
AE4CO (Ds=20, Is=1) AE-Gen-SL 41.234 4.060% 0.624s 36.752 8.817% 0.150s 969.922 0.176% 0.522s

Table 3: Comparison between one-shot (OS) and generative (Gen) models.

METHOD TYPE
TSP-100 ATSP-100 ATSP-200

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
GP4CO GP-OS-SL 7.937 2.334% 0.007s 1.666 6.408% 0.008s 1.671 6.777% 0.053s

GP4CO (Is=1) GP-Gen-SL 7.941 2.381% 0.009s 1.665 6.329% 0.008s 1.678 7.280% 0.037s
GP4CO (Is=5) GP-Gen-SL 7.774 0.230% 0.031s 1.628 3.935% 0.033s 1.638 4.677% 0.162s

METHOD TYPE
MIS-RB-LARGE MIS-ER-700-800 MIS-SATLIB

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
GP4CO GP-OS-SL 36.060 16.036% 0.048s 35.852 20.267% 0.039s 421.056 1.154% 0.019s

GP4CO (Is=1) GP-Gen-SL 36.394 15.219% 0.044s 35.711 20.580% 0.039s 421.578 1.031% 0.016s
GP4CO (Is=20) GP-Gen-SL 38.936 9.388% 0.714s 40.195 10.618% 0.641s 424.556 0.329% 0.190s

METHOD TYPE
MCL-RB-LARGE MVC-RB-LARGE MCUT-BA-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
GP4CO GP-OS-SL 38.622 4.331% 0.042s 976.112 0.817% 0.068s 2827.480 3.744% 0.016s

GP4CO (Is=1) GP-Gen-SL 36.402 9.809% 0.042s 974.950 0.696% 0.044s 2783.834 5.231% 0.016s
GP4CO (Is=20) GP-Gen-SL 35.384 12.672% 0.708s 972.608 0.453% 0.718s 2948.112 -0.369% 0.194s

4.2 Experimental Results and Analysis

4.2.1 Analysis of Different Algorithm Designs

To avoid the influence of decoding strategies and post-processing methods on the results, we adopt
greedy decoding, the most fundamental strategy, to analyze the differences in performance and
efficiency resulting from various algorithm designs. Corresponding to Sec. 2, we conduct analyses
from the three dimensions of algorithm design. For paradigm, we use GP-OS-SL vs LC-OS-SL and
GP-Gen-SL vs AE-Gen-SL to perform comparative experiments. For model, we conduct a comparison
between GP-OS-SL vs GP-Gen-SL. As for learning, we use GP-OS-UL vs GP-OS-MAML vs GP-
OS-SL; GP-Gen-UL vs GP-Gen-SL; as well as LC-OS-RL vs LC-Gen-SL. We have conducted these
comparative experiments across various COPs and have drawn the following analytical conclusions.

• Paradigm Efficiency Analysis. Due to the different numbers of iterations k required by the three
paradigms to construct a complete solution, there is an inherent order in their solving speeds under
the same settings, with GP > AE > LC, as proven in Table 2.

• Paradigm Performance. The performance is mainly influenced by the model and the training
method. However, as shown in the data from Table 2, the performance of LC and AE is slightly
better than that of GP when other settings are the same, which may be related to the prediction
conflicts [37] existing in the GP paradigm.

• Model Efficiency. The single-step inference time of generative models and one-shot models is
comparable. Therefore, when Is is set to 1, the two models are consistent in terms of efficiency - see
Table 3. Besides, as Is increases, the solution time of the generative model increases accordingly.

• Model Performance. When Is = 1, the performance of the two models is similar. As Is increases,
the more fine-grained noise addition and reduction process typically allows the generative model
to demonstrate superior performance. Nevertheless, it can be observed that the result of MCl in
Table 3 does not follow this pattern.

• Learning Analysis for Edge Problems. For the global prediction paradigm, increasing the amount
of training data can enhance the solution performance, i.e., SL > MAML > UL. This is because
the constraints of the edge-oriented routing problem are relatively complex, making it difficult to
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Table 4: Comparison of different training methods for edge problems (UL vs SL vs RL vs MAML).

METHOD TYPE
TSP-50 TSP-100 TSP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
GP4CO GP-OS-UL 7.097 24.808% 0.007s 9.377 20.909% 0.009s 19.761 19.435 0.059s
GP4CO GP-OS-MAML 6.325 11.233% 0.003s 8.757 12.918% 0.005s 18.888 14.155% 0.273s
GP4CO GP-OS-SL 5.718 0.520% 0.006s 7.937 2.334% 0.007s 18.148 9.683% 0.047s
LC4CO LC-OS-RL 5.702 0.258% 0.050s 7.872 1.491% 0.767s 21.105 27.561% 0.460s
LC4CO LC-OS-SL 5.742 0.965% 0.393s 7.905 1.920% 0.762s 18.006 8.825% 3.964s

METHOD TYPE
ATSP-50 ATSP-100 CVRP-50

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
LC4CO LC-OS-RL 1.576 1.373% 0.032s 1.620 3.456% 0.053s 10.769 3.891% 0.087s
LC4CO LC-OS-SL 1.595 2.567% 0.395s 1.644 5.010% 0.723s 10.906 5.193% 0.504s

METHOD TYPE
CVRP-100 CVRP-200 CVRP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
LC4CO LC-OS-RL 16.220 4.241% 0.166s 20.662 5.274% 0.320s 40.382 8.723% 0.769s
LC4CO LC-OS-SL 16.342 5.005% 0.962s 21.439 9.263% 1.978s 38.846 4.587% 7.095s

Table 5: Comparison of different training methods for node problems (UL vs SL vs MAML).

METHOD TYPE
MIS-RB-SMALL MIS-RB-LARGE MIS-RB-GIANT

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
GP4CO GP-OS-UL 17.308 13.709% 0.016s 34.002 20.779% 0.029s 37.260 24.195% 0.151s
GP4CO GP-OS-MAML 17.692 11.778% 0.084s 34.670 19.259% 0.127s 38.840 21.039% 0.739s
GP4CO GP-OS-SL 18.170 9.413% 0.014s 36.060 16.036% 0.048s 38.760 21.224% 0.240s
GP4CO GP-Gen-UL 19.200 4.369% 0.470s 38.490 10.428% 4.712s 40.480 17.722% 45.680s
GP4CO GP-Gen-SL 19.330 3.710% 0.192s 38.936 9.388% 0.714s 38.380 21.995% 8.980s

METHOD TYPE
MCL-RB-SMALL MCL-RB-LARGE MCL-RB-GIANT

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
GP4CO GP-OS-UL 15.084 20.720% 0.016s 29.052 26.604% 0.029s 55.580 29.171% 0.148s
GP4CO GP-OS-MAML 17.856 6.400% 0.065s 34.802 13.180% 0.103s 77.160 1.613% 0.683s
GP4CO GP-OS-SL 18.084 5.782% 0.014s 38.622 4.331% 0.042s 58.440 26.568% 0.220s

METHOD TYPE
MVC-RB-SMALL MVC-RB-LARGE MVC-RB-GIANT

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
GP4CO GP-OS-SL 207.554 0.871% 0.014s 976.112 0.817% 0.068s 2407.940 0.465% 0.365s
GP4CO GP-OS-UL 208.982 1.569% 0.013s 977.186 0.928% 0.037s 2408.320 0.482% 0.221s
GP4CO GP-OS-MAML 208.814 1.486% 0.065s 976.672 0.876% 0.097s 2406.360 0.402% 0.555s

METHOD TYPE
MCUT-BA-SMALL MCUT-BA-LARGE MCUT-BA-GIANT

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
GP4CO GP-OS-MAML 672.748 7.563% 0.063s 2748.310 6.425% 0.090s 6712.120 6.994% 0.535s
GP4CO GP-OS-SL 705.330 3.102% 0.014s 2827.480 3.744% 0.016s 6979.260 3.291% 0.060s
GP4CO GP-OS-UL 700.972 3.706% 0.017s 2884.086 1.815% 0.019s 7124.880 1.287% 0.059s
GP4CO GP-Gen-SL 725.624 0.319% 0.172s 2948.112 -0.369% 0.194s 7308.260 -1.258% 0.700s
GP4CO-FT GP-Gen-SL 726.538 0.195% 0.172s 2980.508 -1.467% 0.196s 7372.100 -2.134% 0.720s
GP4CO GP-Gen-UL 726.900 0.146% 0.197s 2986.932 -1.688% 0.654s 7384.020 -2.306% 2.480s

obtain high-quality global heatmaps through unsupervised methods. For the local construction
paradigm, when the scale is small, RL outperforms SL, as shown in Table 4. However, as the
scale increases, the performance of RL methods falls behind that of SL methods due to the rapid
expansion of the state space and the sparsity of rewards.

• Learning Analysis for Node Problems. Compared with the edge-oriented problems, UL performs
relatively better on the node-oriented problems, and even outperforms SL on MCut, as shown in
Table 5. These may because: 1) the quality of supervised data. When obtaining training labels, the
solvers (Gurobi, KaMIS) used for the node-oriented problems has relatively weaker performance
than the solvers (Concorde, LKH, HGS) used for the edge-oriented problems. 2) the uniqueness
of the solution. The solutions to edge-oriented problems are often unique, whereas solutions to
node-oriented problems typically have many possibilities. 3) the design of the loss function. The
node-oriented problems can be readily transformed into their corresponding energy equations [19],
as detailed in Appendix A. This transformation makes it natural to leverage these energy equations
as the loss functions for unsupervised training. Particularly in the case of MCut, there are even no
constraint terms, allowing the loss function to consistently decrease in a single direction. However,
in the edge-oriented problems, the number of decision variables is quadratically related to the
problem size, which significantly increases the complexity. Moreover, due to more intricate
constraint relationships, designing the loss function for edge-oriented problems often requires
optimizing multiple objectives, which may also lead to poor training outcomes. Additionally, our
experiments also validate the generalization ability of MAML as proposed in [18, 20].
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Table 6: Research on the performance improvement of beam search.

METHOD TYPE BEAM-16 TSP-500 ATSP-500 CVRP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓

LC4CO LC-OS-SL % 18.006 8.825% 3.964s 1.655 5.201% 6.328s 38.846 4.587% 7.095s
LC4CO LC-OS-SL " 17.279 4.433% 4.940s 1.639 4.190% 63.388s 38.279 3.051% 64.431s

METHOD TYPE BEAM-16 MCL-RB-SMALL MCL-RB-LARGE MCL-RB-GIANT

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓

GP4CO GP-OS-UL % 15.084 20.720% 0.016s 29.052 26.604% 0.029s 55.580 29.171% 0.148s
GP4CO GP-OS-UL " 17.086 10.572% 0.017s 35.098 12.318% 0.091s 76.360 4.433% 0.333s

GP4CO GP-OS-SL % 18.084 5.782% 0.014s 38.622 4.331% 0.042s 58.440 26.568% 0.220s
GP4CO GP-OS-SL " 18.592 2.950% 0.023s 39.540 1.857% 0.104s 77.460 3.119% 0.406s

GP4CO (Is=1) GP-Gen-SL % 18.258 4.870% 0.016s 36.402 9.809% 0.042s 60.860 22.902% 0.240s
GP4CO (Is=1) GP-Gen-SL " 18.664 2.510% 0.022s 38.754 3.798% 0.104s 77.340 2.732% 0.420s

Table 7: Research on the performance improvement of parallel mechanism.

METHOD TYPE PARALLEL
TSP-500 TSP-1K ATSP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓

GP4CO (Is=5) GP-Gen-SL % 17.473 5.603% 0.099s 25.021 8.229% 0.289s 1.641 4.294% 0.558s
GP4CO (Is=5) GP-Gen-SL " 17.012 2.817% 0.289s 24.371 5.419% 1.188s 1.614 2.543% 2.144s

AE4CO (Ds=3, Is=5) AE-Gen-SL % 17.119 3.466% 0.231s 24.698 6.834% 0.691s 1.623 3.128% 1.669s
AE4CO (Ds=3, Is=5) AE-Gen-SL " 16.776 1.395% 0.650s 24.081 4.165% 2.412s 1.604 1.965% 6.267s

METHOD TYPE PARALLEL
MIS-RB-SMALL MIS-RB-LARGE MIS-ER-700-800

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓

GP4CO (Is=20) GP-Gen-SL % 19.330 3.710% 0.192s 38.936 9.388% 0.714s 40.195 10.618% 0.641s
GP4CO (Is=20) GP-Gen-SL " 19.742 1.690% 0.332s 40.066 6.742% 2.398s 41.430 7.867% 2.094s

AE4CO (Ds=20, Is=1) AE-Gen-SL % 19.662 2.088% 0.112s 41.234 4.060% 0.624s 42.383 5.746% 0.469s
AE4CO (Ds=20, Is=1) AE-Gen-SL " 19.706 1.880% 0.120s 41.438 3.582% 1.298s 42.563 5.343% 0.703s

METHOD TYPE PARALLEL
MCL-RB-SMALL MCL-RB-LARGE MVC-RB-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓

GP4CO (Is=20) GP-Gen-SL % 18.608 2.850% 0.200s 35.384 12.672% 0.708s 972.608 0.453% 0.718s
GP4CO (Is=20) GP-Gen-SL " 18.982 0.607% 0.328s 38.706 4.197% 2.386s 971.420 0.330% 2.412s

AE4CO (Ds=20, Is=1) AE-Gen-SL % 18.766 1.892% 0.046s 36.752 8.817% 0.150s 969.922 0.176% 0.522s
AE4CO (Ds=20, Is=1) AE-Gen-SL " 18.922 1.018% 0.056s 39.170 2.722% 0.414s 969.806 0.163% 0.626s

Table 8: ML4CO-101 vs baseline solvers: a summarized comparaison. Rd denotes random.

PROBLEM DATASET
LEARNING-FREE BASELINE LEARNING-BASED METHODS

METHOD OBJ. TIME↓ METHOD TYPE SETTINGS OBJ. DROP↓ TIME↓
TSP TSP-50 Concorde [73] 5.688 0.059s GP-OS-SL Rd-16 + MCTS (0.05s) 5.688 0.001% 0.031s
TSP TSP-100 Concorde [73] 7.756 0.238s GP-OS-SL Rd-16 + MCTS (0.05s) 7.756 0.005% 0.119s
TSP TSP-500 Concorde [73] 16.546 18.672s AE-Gen-SL 4×Greedy + Two-Opt 16.588 0.257% 0.695s
TSP TSP-1K Concorde [73] 23.118 84.413s AE-Gen-SL 4×Greedy + Two-Opt 23.271 0.662% 2.609s
TSP TSP-10K LKH(500) [6] 71.755 332.758s AE-Gen-SL Greedy + Two-Opt 72.832 1.450% 33.485s
TSP TSPLIB Concorde [73] 8.062 – – – 8.095 0.356% –

ATSP ATSP-50 LKH (1K) [6] 1.554 0.097s AE-Gen-SL 4×Greedy + Two-Opt 1.557 0.171% 0.103s
ATSP ATSP-100 LKH (1K) [6] 1.566 0.238s AE-Gen-SL 4×Greedy + Two-Opt 1.581 0.946% 0.516s
ATSP ATSP-200 LKH (1K) [6] 1.565 0.724s AE-Gen-SL 4×Greedy + Two-Opt 1.588 1.501% 1.097s
ATSP ATSP-500 LKH (1K) [6] 1.573 4.376s AE-Gen-SL 4×Greedy + Two-Opt 1.598 1.568% 6.597s

CVRP CVRP-50 HGS [75] 10.366 1.005s LC-OS-RL N×Sampling + Classic-LS 10.489 1.179% 0.154s
CVRP CVRP-100 HGS [75] 15.563 20.027s LC-OS-RL N×Sampling + Classic-LS 15.822 1.663% 0.202s
CVRP CVRP-200 HGS [75] 19.630 60.024s LC-OS-RL N×Sampling + Classic-LS 20.091 2.359% 0.439s
CVRP CVRP-500 HGS [75] 37.154 360.376s LC-OS-SL Beam-16 + Classic-LS 37.901 2.031% 64.589s
CVRP CVRPLIB HGS [75] 45.183 – LC-OS-RL N×Sampling + Classic-LS 48.263 5.469% –

MIS RB-SMALL Gurobi [5] 20.090 0.538s AE-Gen-SL Greedy + RLSA 20.070 0.093% 0.471s
MIS RB-LARGE KaMIS [76] 43.004 56.974s AE-Gen-SL Greedy + RLSA 42.400 1.366% 1.816s
MIS ER-700-800 KaMIS [76] 44.969 60.753s AE-Gen-SL Greedy + RLSA 44.984 -0.041% 1.390s
MIS SATLIB KaMIS [76] 425.954 24.368s AE-Gen-SL Greedy + RLSA 425.316 0.151% 1.775s
MIS ER-1400-1600 KaMIS [76] 50.938 60.824s AE-Gen-SL Greedy + RLSA 50.719 0.418% 4.102s
MIS RB-GIANT KaMIS [76] 49.260 60.960s AE-Gen-SL Greedy + RLSA 47.880 2.741% 9.490s

MCl RB-SMALL Gurobi [5] 19.082 0.900s GP-OS-SL Beam-16 + RLSA 19.082 0.000% 0.041s
MCl RB-LARGE Gurobi [5] 40.182 276.657s GP-OS-SL Beam-16 + RLSA 40.256 -0.275% 0.171s
MCl TWITTER Gurobi [5] 14.210 0.276s GP-OS-SL Beam-16 + RLSA 14.210 0.000% 0.044s
MCl COLLAB Gurobi [5] 42.113 0.063s GP-OS-SL Beam-16 + RLSA 42.113 0.000% 0.024s
MCl RB-GIANT Gurobi [5] 81.520 3606.201s GP-OS-SL Beam-16 + RLSA 85.380 -7.912% 4.342s
MVC RB-SMALL Gurobi [5] 205.764 3.340s AE-Gen-SL Greedy + RLSA 205.772 0.004% 0.612s
MVC RB-LARGE Gurobi [5] 968.228 290.227s AE-Gen-SL Greedy + RLSA 968.398 0.018% 1.592s
MVC TWITTER Gurobi [5] 85.251 0.133s AE-Gen-SL Greedy + RLSA 85.251 0.000% 0.115s
MVC COLLAB Gurobi [5] 65.086 0.058s AE-Gen-SL Greedy + RLSA 65.086 0.000% 0.158s
MVC RB-GIANT Gurobi [5] 2396.780 60.612s AE-Gen-SL Greedy + RLSA 2397.360 0.026% 8.590s

MCut BA-SMALL Gurobi [5] 727.844 60.612s AE-Gen-SL Greedy + RLSA 729.706 -0.240% 0.727s
MCut BA-LARGE Gurobi [5] 2936.886 300.214s GP-Gen-SL Greedy + RLSA 2994.118 -1.932% 0.999s
MCut BA-GIANT Gurobi [5] 7217.900 3601.342s GP-Gen-SL Greedy + RLSA 7389.300 -2.383% 2.228s
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Table 9: Generalization Study on Cross-distribution Datasets.

PROBLEM DATASET
LEARNING-FREE BASELINE LEARNING-BASED METHODS

METHOD OBJ. TIME↓ METHOD TYPE SETTINGS OBJ. DROP↓ TIME↓
TSP Cluster-50 Concorde [73] 3.730 0.140s GP-OS-SL Rd-16 + MCTS (0.05s) 3.730 0.001% 0.098s
TSP Cluster-100 Concorde [73] 5.526 0.290s GP-OS-SL Rd-16 + MCTS (0.05s) 5.527 0.011% 0.604s
TSP Cluster-500 Concorde [73] 10.723 5.073s AE-Gen-SL 4×Greedy + Two-Opt 10.937 1.998% 1.250s
TSP Gaussian-50 Concorde [73] 23.840 0.166s GP-OS-SL Rd-16 + MCTS (0.05s) 23.841 0.005% 0.256s
TSP Gaussian-100 Concorde [73] 34.031 0.438s GP-OS-SL Rd-16 + MCTS (0.05s) 34.044 0.037% 0.604s
TSP Gaussian-500 Concorde [73] 77.521 19.952s AE-Gen-SL 4×Greedy + Two-Opt 78.122 0.774% 1.169s

ATSP HCP-50 LKH (1K) [6] 0.000 0.107s AE-Gen-SL Greedy + Two-Opt 1.468 – 0.075s
ATSP HCP-100 LKH (1K) [6] 0.000 0.211s AE-Gen-SL Greedy + Two-Opt 1.380 – 0.109s
ATSP HCP-200 LKH (1K) [6] 0.000 0.355s AE-Gen-SL Greedy + Two-Opt 1.050 – 2.508s
ATSP HCP-500 LKH (1K) [6] 0.000 1.410s AE-Gen-SL Greedy + Two-Opt 0.880 – 3.219s
ATSP SAT-50 LKH (1K) [6] 0.151 0.079s AE-Gen-SL Greedy + Two-Opt 5.018 – 0.076s
ATSP SAT-100 LKH (1K) [6] 0.079 0.128s AE-Gen-SL Greedy + Two-Opt 12.717 – 0.107s
ATSP SAT-200 LKH (1K) [6] 0.130 0.192s AE-Gen-SL Greedy + Two-Opt 21.470 – 1.768s
ATSP SAT-500 LKH (1K) [6] 0.430 0.781s AE-Gen-SL Greedy + Two-Opt 2.340 – 3.222s

MIS HK-SMALL KaMIS [76] 79.372 54.174s AE-Gen-SL Greedy + RLSA 79.358 0.017% 0.353s
MIS HK-LARGE KaMIS [76] 330.946 67.272s AE-Gen-SL Greedy + RLSA 330.422 0.154% 1.600s
MIS WS-SMALL KaMIS [76] 76.904 51.490s AE-Gen-SL Greedy + RLSA 76.894 0.013% 0.357s
MIS WS-LARGE KaMIS [76] 262.570 37.792s AE-Gen-SL Greedy + RLSA 260.114 0.926% 1.502s

MCl HK-SMALL Gurobi [5] 6.792 1.838s GP-OS-SL Beam-16 + RLSA 6.792 0.000% 0.039s
MCl HK-LARGE Gurobi [5] 6.774 46.502s GP-OS-SL Beam-16 + RLSA 6.774 0.000% 0.169s
MCl WS-SMALL Gurobi [5] 7.164 1.589s GP-OS-SL Beam-16 + RLSA 7.164 0.000% 0.040s
MCl WS-LARGE Gurobi [5] 5.978 27.051s GP-OS-SL Beam-16 + RLSA 5.976 0.033% 0.172s

MVC HK-SMALL Gurobi [5] 142.506 0.382s AE-Gen-SL Greedy + RLSA 142.506 0.000% 0.353s
MVC WS-SMALL Gurobi [5] 154.618 1.596s AE-Gen-SL Greedy + RLSA 154.610 -0.005% 0.317s
MCut HK-SMALL Gurobi [5] 1540.608 60.089s AE-Gen-SL Greedy + RLSA 1542.810 -0.141% 0.382s
MCut HK-LARGE Gurobi [5] 6401.320 300.357s GP-Gen-SL Greedy + RLSA 6454.100 -0.766% 0.991s
MCut WS-SMALL Gurobi [5] 872.116 60.357s AE-Gen-SL Greedy + RLSA 874.372 -0.250% 0.338s
MCut WS-LARGE Gurobi [5] 3454.176 300.247s GP-Gen-SL Greedy + RLSA 3489.304 -1.007% 0.668s

4.2.2 Enhancement from Decoding Strategies and Post-Processing Methods

Decoding Strategy. As shown in Table 6 and Table 7, compared with greedy decoding, beam search
and parallel mechanisms (×4) bring about performance improvements of approximately 67% and
42%, respectively. A larger number of candidates k in beam search and a bigger number of parallelism
in parallel mechanisms can lead to better results. However, this comes at the cost of increased time
consumption. A trade-off between performance and time needs to be made in practice.

Post-Processing Methods. Intuitively, we find the incorporation of post-processing greatly enhances
the quality of the solutions. For a clearer principal line, we defer the complete results of various
integration of post-processing methods with the neural counterparts to Appendix D, while leaving the
best method composition for each benchmark (both time and performance considered) in Table 8.

4.2.3 Generalization Study on Cross-distribution Datasets

We further conducted a generalization study on cross-distribution datasets, with the results presented
in Table 9. The model selection and solving parameters remain consistent with those used in Table 8.
For the ATSP, several clarifications are necessary: 1) Owing to the inherent properties of the HCP and
SAT problems, the derived ATSP instances have an optimal solution of zero by construction, making
it infeasible to compute performance drop values. 2) Since the solution is determined during instance
generation, the result from the LKH(1K) solver merely serves as a benchmark to demonstrate the
performance of a traditional solver, rather than a reference solution. 3) To accelerate the solving
process, we employ a Greedy + Two-Opt approach for the ATSP, instead of the 4×Greedy + Two-
Opt used elsewhere. As shown by the generalization results, the proposed model achieves strong
generalization on most problem types, with the exception of the SAT distribution in ATSP.

5 Conclusion and Outlook

We have developed a benchmark for 7 classic CO problems on graphs. We categorize existing works
under a paradigm-model-learning criteria with three major schemes: GP4CO, LC4CO, and AE4CO.
We also provide 34 benchmark datasets across the COPs with extensive experiments on representative
methods. In the future, we will extend our benchmark to encompass more real-world CO problems,
such as TSPTW, CVRPTW, and JSSP. We hope our work can ultimately advance the research on
more practical CO problems, in analogy to the role of ImageNet [77] for vision, i.e., from classic
object detection in static images to more open-environment applications like autonomous driving.
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Appendix

A Formal Problem Definitions

Traveling Salesman Problem (TSP). Given G and a cost matrix C ∈ RN×N , where Cij denotes
the cost of edge (i, j), the objective is to find a tour τ = (i1, · · · , iN ) that minimizes the total cost:∑N−1

k=1 Cikik+1
+CiN i1 .

Asymmetric Traveling Salesman Problem (ATSP). ATSP is a variant of TSP where the cost matrix
C is not necessarily symmetric, i.e., Cij = Cji does not always hold for all i, j ∈ V . In this
paper, we follow [32, 31, 33, 37] to study the metric ATSP, where the triangle inequality holds:
Cij +Cjk ≥ Cik for any distinct nodes i, j, and k.

Capacitated Vehicle Routing Problem (CVRP). Given G, a depot node v0 ∈ V , a cost matrix
C ∈ RN×N , a demand vector d ∈ RN

+ , and a vehicle capacity Q > 0, the goal is to plan a set of
routes R, each route r ∈ R starting and ending at the depot v0, such that each customer node is
visited exactly once and the total demand on each route does not exceed Q, i.e.,

∑
i∈r di ≤ Q. The

objective is to minimize the total cost of all routes: min
R

∑
r∈R

∑
(i,j)∈r

Cij .

Maximum Independent Set (MIS). Given G, an independent set S ⊆ V is a subset of nodes such
that no two nodes in S are adjacent. The goal is to maximize |S| s.t. ∀i, j ∈ S, (i, j) /∈ E .

Maximum Clique (MCl). Given G, a clique K ⊆ V is a subset of nodes in which every pair is
connected by an edge. It aims to maximize |K| s.t. ∀i, j ∈ K, (i, j) ∈ E .

Minimum Vertex Cover (MVC). Given G, a vertex cover C ⊆ V is a subset of nodes such that
every edge (i, j) ∈ E , at least one of i or j is in C. Mathematically, the goal is to minimize |C| s.t.
∀(i, j) ∈ E , i ∈ C or j ∈ C.

Maximum Cut (MCut). Given G, a cut C = (S, S) partitions the node set V into two disjoint
subsets. The objective is to maximize

∑
i∈S,j∈S Cij , where C is the adjacency matrix of G.

Energy functions. Following previous works [19, 26, 78], the energy function formulations for the
four node-oriented problems are defined as follows, where β is the constraint penalty coefficient.

• MIS. H(x) = −
∑N

i=1 xi + β ·
∑

(i,j)∈E xixj

• MCl. H(x) = −
∑N

i=1 xi + β ·
∑

(i,j)/∈E xixj

• MVC. H(x) =
∑N

i=1 xi + β ·
∑

(i,j)∈E (1− xi) · (1− xj)

• MCut. H(x) =
∑

(i,j)∈E (2xi − 1) · (2xj − 1)

B Discussion of Post-Processing Methods

B.1 K-Opt Optimization

Overview. K-Opt is a classic post-processing method for routing problems, which includes an
iterative process. In each iteration, the algorithm attempts to select a subset of nodes and swap the
edges between them. If such an operation is found to yield benefits, such as reducing the total distance
of the route, it will be executed. The iteration terminates when either no further improvements can be
made or the maximum number of iterations (default: 5000) is reached.

Two-Opt for TSP. Given an initial tour x1, ...,xp,xp+1, ...,xq−1,xq,xq+1, ... and distance matrix D,
two nodes xp and xq are selected to perform the Two-Opt operation, i.e., connecting the two nodes and
swapping the subsequence between them and resulting a new path x1, ...,xp,xq,xq−1...,xp+1,xq+1.
The reward r = Dp,p+1 +Dq,q+1 −Dp,q −Dp+1,q+1 denotes the improvement after the swap.

Two-Opt for ATSP. Given an initial tour x1, ...,xp,xp+1, ...,xq−1,xq,xq+1, ..., Two-Opt per-
forming on nodes xp and xq results in a new path x1, ...,xp,xq,xp+1...,xq−1,xq+1 with reward
r = Dp,p+1 +Dq−1,q +Dq,q+1 −Dp,q −Dq,p+1 −Dq−1,q+1.
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① ② ③ ④
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Begin Node Current Node Next Node Predecessor of the Next NodeK-Opt Demo

Figure 2: Demonstration of the K-Opt (K=3) post-processing method for TSP.

K-Opt for TSP. Given an initial tour x1, ...,xp,xp+1, ...,xq−1,xq,xq+1, ..., we start with breaking
the edge between xp (begin node) and xp+1 and designate xp+1 as the current node, which has only
successor node but no predecessor node. Then, the K-Opt (we take K = 3 as an example, as shown
in Fig. 2) process will be carried out. In each iteration, the algorithm needs to first select the next
node to connect to the current node xq+1, which we refer to as next node. Since the new edge is from
xp+1 to xq+1, we need to disconnect the edge between xq+1 and its predecessor node xq . After that,
the algorithm will reverse all of the edges between xp+1 and xq+1. At this point, the first iteration is
completed, and the current node has been updated from xp+1 to xq+1. When all the iterations are
completed, it is only necessary to connect the begin node with the current node to re-form a valid
path. The most crucial part of K-Opt is the selection of the next node, and the most famous method is
MCTS [29], using the probability heatmap predicted by a neural network as guidance.

Parameter Selection for MCTS. We follow ML4TSP-Bench [17] to set the maximum depth K
to 10 and the maximum number of iterations to 5000. As for the time limit, we take into account
a comprehensive set of factors, including: 1) recommendations for ML4TSP-Bench [17], 2) our
experimental environment (see Appendix C), 3) the solving time of the baseline solver, and 4) the
proportion of post-processing time compared to the overall time. We set the time limits for TSP-50,
TSP-100, TSP-500, and TSP-1000 to be 0.05s, 0.05s, 1s, and 1s, respectively.

B.2 Sampling Optimization

Sampling optimization refers to a class of methods based on random sampling, where the core idea is
to draw samples from a target distribution to gradually approximate the optimal solution. In recent
years, the incorporation of gradient information and parallel computing has significantly enhanced
both the efficiency and solution quality of these methods.

iSCO [52] is a sampling-based optimization method built upon enhanced Langevin dynamics. It
improves sampling efficiency through parallel neighborhood exploration and efficient gradient
computation. Moreover, iSCO dynamically balances exploration and exploitation by adapting
temperature parameters and sampling step sizes throughout the optimization process.

RLSA [53] integrates regularized Langevin dynamics with simulated annealing. To effectively escape
local optima, RLSA enforces a desired distance between the sampled solution and the current state
during the sampling process. Its core mechanism involves using regularization to control the update
step size, thereby enabling more efficient exploration of the solution space in discrete domains. The
RLSA framework combines the temperature annealing schedule of simulated annealing with the
gradient-guided sampling of Langevin dynamics, gradually approximating the target distribution as
the temperature decreases. Algorithm 1 illustrates how RLSA works, where τ0 denotes the initial
temperature; d represents the regularization term, where the d-th largest gradient value is used to
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control the overall flipping probability; k indicates the number of parallel runs, which must be greater
than d; t represents the total number of iterations.

In this paper, we follow COExpander [37] to use RLSA as a representative sampling method to serve
as a post-processor for node-oriented problems, as shown in Algorithm 2, where α2 denotes the noise
factor. The RLSA-related parameters used for each problem are presented in Table 10.

Table 10: RLSA Parameters adopted for different problems

PROBLEM DATASET
RLSA PARAMETERS

τ0 d k t β α2

MIS RB-SMALL 0.01 5 1000 500 1.02 0.3
MIS RB-LARGE 0.01 5 1000 1000 1.02 0.3
MIS ER-700-800 0.2 10 1000 1000 1.001 0.3
MIS SATLIB 0.01 2 1000 1000 1.02 0.3
MIS ER-1400-1600 0.2 10 1000 1000 1.001 0.3
MIS RB-GIANT 0.01 5 1000 1000 1.02 0.3

MCl RB-SMAL 0.01 2 200 50 1.02 0.3
MCl RB-LARGE 0.01 2 200 200 1.02 0.3
MCl TWITTER 0.01 2 200 50 4.0 0.3
MCl COLLAB 0.01 2 200 20 1.001 0.3
MCl RB-GIANT 0.01 2 1000 1000 1.02 0.3

MVC RB-SMALL 0.01 2 1000 1000 1.02 0.3
MVC RB-LARGE 0.01 2 1000 1000 1.02 0.3
MVC TWITTER 0.01 2 1000 200 4.0 0.3
MVC COLLAB 0.01 2 1000 300 1.02 0.3
MVC RB-GIANT 0.01 2 1000 1000 1.02 0.3

MCut BA-SMALL 1 20 1000 1000 – 0.3
MCut BA-LARGE 1 50 1000 1000 – 0.3
MCut BA-GIANT 1 100 1000 1000 – 0.3

Algorithm 1 Original RLSA.

Input: Graph G, Energy Function H(·), hyperpa-
rameter (τ0, d, k, t).
Parallel k:
x← Bern(p = 0.5)
for s = 1 to t do

τ ← τ0(1− s−1
t

)
∆← (2x− 1)⊙∇H(x)
for i = 1 to N do

p← Sigmoid
(
(∆i −∆(d))/(2τ)

)
c ∼ Bern(p)
xi ← xi · (1− c) + (1− xi) · c

end for
if H(x) < H(x∗) then

x∗ ← x
end if

end for
Output: Solution x

Algorithm 2 RLSA as Local Search.
Input: Graph G, Energy Function H(·), hyperpa-
rameter (τ0, d, k, t, α2), Initial Solution x0.
Parallel k:
x← Bern((1− α2) · x0 + α2 · Bern(p = 0.5))
for s = 1 to t do

τ ← τ0(1− s−1
t

)
∆← (2x− 1)⊙∇H(x)
for i = 1 to N do

p← Sigmoid
(
(∆i −∆(d))/(2τ)

)
c ∼ Bern(p)
xi ← xi · (1− c) + (1− xi) · c

end for
if H(x) < H(x∗) then

x∗ ← x
end if

end for
Output: Solution x

C Model Settings and Benchmark Datasets

C.1 Hardware.

All models are trained and tested using NVIDIA H800 (80G) GPUs and an Intel(R) Xeon(R) Platinum
8558 96-Core Processor CPU. For all test evaluations, a single GPU is utilized, and the batch size is
set to 1 to ensure a fair comparison of the solving time across different models.
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C.2 Training Settings and Hyper-parameters.

In principle, the network hyperparameters for each method are adopted according to their original
publications, and efforts are made to keep the training hyperparameters and dataset sizes as consistent
as possible. Typically, for neural solvers such as GP-OS-SL, GP-OS-UL, GP-Gen-SL, AE-Gen-SL,
their model architecture and training settings (such as learning rate and training epochs) are strictly
aligned with those of COExpander [37], and below are other cases that deviate from the general
setting.

• GP-OS-UL solver for TSP. Following UTSP [28], we adopt SAG as the backbone, consisting of
three layers with a hidden dimension of 64.

• GP-OS-MAML solver for TSP. Following DIMES [18], a three-layer network is employed. The
hidden dimension is set to 32 for sparse problems and 64 for dense problems.

• GP-OS-MAML solver for node-oriented problems. Following Meta-EGN [20], We adopt a 4-layer
convolutional network (specifically, 6 layers for MIS), with a hidden dimension of 64.

• GP-Gen-UL solver. We use the open-source code 5 and pre-trained checkpoints of DiffUCO [19].
• LC-OS-RL solver for TSP and CVRP. Following RL4CO [41] and ML4TSP-Bench [17], we adopt

a 3-layer GAT with a hidden dimension of 128 and 8 attention heads.
• LC-OS-RL solver for ATSP. Following MatNet [31], we adopt a 5-layer GAT with a hidden

dimension of 256 and 16 attention heads.
• LC-OS-SL solver. Following GOAL [32], we adopt a 9-layer GAT with a hidden dimension of 128

and 8 attention heads.
• AE-OS-RL solver for MIS. Following LwD [43], We adopt a 4-layer convolutional network, with a

hidden dimension of 128.

C.3 Cross-distribution Generalization Datasets.

ATSP. We reduce both the Hamiltonian Cycle Problem (HCP) and 3-SAT to ATSP, treating them
as two distinct distributions. For HCP, we consider four scales: HCP-50, HCP-100, HCP-200,
and HCP-500. For 3-SAT, given a formula with Nv variables and Nc clauses, we transform it into
an ATSP instance containing (2NvNc + Nc) nodes. Specifically, we set Nv ∈ {4, 8, 12, 19} and
Nc ∈ {6, 6, 8, 13}, resulting in SAT-54, SAT-102, SAT-200, SAT-507, respectively.

TSP. We adopt Cluster and Gaussian distributions as generalization datasets. The Cluster TSP
simulates scenarios where nodes are grouped into distinct spatial regions. Specifically, C cluster
centers are uniformly sampled within the unit square [0, 1]2, and nodes are then drawn from Gaussian
distributions centered at these locations, with a cluster-level standard deviation σc (we use 0.03) as a
hyperparameter. We generate Cluster-50, Cluster-100, Cluster-200, Cluster-500 with corresponding
C values of 10, 20, 20, and 25. The Gaussian TSP models real-world settings where locations
concentrate around a central hub, such as delivery points near a warehouse or demand centers in
dense urban areas. Node coordinates are sampled from a 2D Gaussian distribution N

(
(µx, µy), σ

2I
)
,

where (µx, µy) is the mean and σ controls the spatial spread, with I denoting the identity matrix. We
set µx = 0, µy = 0, σ = 1 for Gaussian-50, Gaussian-100, Gaussian-200, and Gaussian-500.

Node-oriented Tasks. We adopt the HK [71] and WS [72] graph models. The HK graph starts from
a small fully connected core, where each new node attaches to Nd existing nodes via preferential
attachment and, with probability p, additionally connects to one of their neighbors, forming triangles.
This mechanism produces networks with power-law degree distributions and high clustering, suitable
for representing social or biological systems. The WS graph captures small-world properties by
balancing high clustering and short path lengths. It begins with a regular ring lattice where each node
is connected to its Nk nearest neighbors, and with probability p, each edge is rewired to a random
node while maintaining connectivity. The resulting structure combines local cohesion with global
efficiency, mirroring many real-world networks. We set Nd = 10, Nk = 10, and p = 0.3 for both
graph types, and generate four datasets: HK-SMALL, HK-LARGE, WS-SMALL, and WS-LARGE.
Consistent with RB graphs, SMALL denotes instances with 200 to 300 nodes, and LARGE denotes
instances with 800 to 1200 nodes.

5https://github.com/ml-jku/DIffUCO
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C.4 Benchmark Datasets.

We provide open-source datasets for each benchmark, including 24 training datasets and 65 test
datasets, as shown in Table 11.

D Supplementary Experiments

We present the complete results of TSP in Table 12, ATSP in Table 13, CVRP in Table 14, MIS in
Tabel 15, MCl in Table 16, MVC in Table 17, MCut in Table 18 respectively.

E Limitations and Broader Impacts

E.1 Limitations

Solving methods. As stated in the "Statement on Topics not Discussed" part of Section. 3, our
benchmarking work is currently limited to the solution approach that first obtains solutions using
machine learning methods and then optimize them with heuristic algorithms. We have not yet
included other solution approaches, such as D&C and learning to search.

Problem types. Currently, more than 30 types of COPs have been systematically studied and
organized6. In this paper, we only discuss seven of them (TSP, ATSP, CVRP, MIS, MCl, MVC,
MCut), and we plan to extend our benchmarking work to include other problems (such as TSPTW,
CVRPTW, JSSP) in the future.

E.2 Broader Impacts

Our work systematically organizes ML4CO using an "paradigm-model-learning" framework, cover-
ing seven major problem types. To our best knowledge, it is the first in the ML4CO field to openly
release as many as 34 datasets (over 100GB) in a structured and comprehensive manner. We believe
that our work can bring standardized evaluation and facilitate future development for ML4CO.

6https://github.com/Thinklab-SJTU/awesome-ml4co
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Table 11: Overview of our benchmark datasets for the seven COPs. The “MODEL” column indicates
the dataset on which the model is trained. I.e., datasets with the same “TYPE” and “MODEL” is
suggested for i.i.d. training-testing, whereas datasets with different “TYPE” and “MODEL” (with
“testing” part only) are designed for evaluating the o.o.d. generalization performance of models
trained on the corresponding (smaller-scaled, differently distributed, etc.) data. The parentheses
indicate the solver parameters used: the maximum solution time for Gurobi, KaMIS and HGS; the
maximum trials for LKH. Blue: Cross-distribution Generalization Dataset.

ID PROBLEM TYPE MODEL
Training Testing

DATA SIZE SOLVER STORAGE DATA SIZE SOLVER OBJ.

1 TSP Uniform-50 Uniform-50 1,280,000 Concorde 2.48GB 1280 Concorde 5.688
2 TSP Uniform-100 Uniform-100 1,280,000 Concorde 4.95GB 1280 Concorde 7.756
3 TSP Uniform-200 Uniform-200 128,000 Concorde 1.05GB 128 Concorde 10.719
4 TSP Uniform-500 Uniform-500 64,000 Concorde 1.26GB 128 Concorde 16.546
5 TSP Uniform-1K Uniform-1K 64,000 LKH(1000) 2.53GB 128 Concorde 23.118
6 TSP Uniform-10K Uniform-10K 6,400 LKH(500) 2.59GB 16 LKH(500) 71.755
7 TSP TSPLIB Mixed – – – 49 Concorde 8.062

8 TSP Cluster-50 Uniform-50 – – – 1280 Concorde 3.730
9 TSP Cluster-100 Uniform-100 – – – 1280 Concorde 5.526

10 TSP Cluster-200 Uniform-200 – – – 128 Concorde 6.912
11 TSP Cluster-500 Uniform-500 – – – 128 Concorde 10.723

12 TSP Gaussian-50 Uniform-50 – – – 1280 Concorde 23.840
13 TSP Gaussian-100 Uniform-100 – – – 1280 Concorde 34.031
14 TSP Gaussian-200 Uniform-200 – – – 128 Concorde 48.127
15 TSP Gaussian-500 Uniform-500 – – – 128 Concorde 77.521

16 ATSP Uniform-50 Uniform-50 640,000 LKH(500) 14.72GB 2500 LKH(1000) 1.5545
17 ATSP Uniform-100 Uniform-100 128,000 LKH(500) 11.78GB 2500 LKH(1000) 1.5660
18 ATSP Uniform-200 Uniform-200 32,000 LKH(1000) 11.76GB 100 LKH(1000) 1.5647
19 ATSP Uniform-500 Uniform-500 6,400 LKH(1000) 14.70GB 100 LKH(1000) 1.5734

20 ATSP HCP-50 Uniform-50 – – – 2500 – 0.0000
21 ATSP HCP-100 Uniform-100 – – – 2500 – 0.0000
22 ATSP HCP-200 Uniform-200 – – – 100 – 0.0000
23 ATSP HCP-500 Uniform-500 – – – 100 – 0.0000

24 ATSP SAT-54 Uniform-50 – – – 2500 – 0.0000
25 ATSP SAT-102 Uniform-100 – – – 2500 – 0.0000
26 ATSP SAT-200 Uniform-200 – – – 100 – 0.0000
27 ATSP SAY-507 Uniform-500 – – – 100 – 0.0000

28 CVRP Uniform-50 Uniform-50 1,280,000 HGS(1s) 2.83GB 10,000 HGS(1s) 10.366
29 CVRP Uniform-100 Uniform-100 640,000 HGS(20s) 1.11GB 10,000 HGS(20s) 15.563
30 CVRP Uniform-200 Uniform-200 128,000 HGS(60s) 1.11GB 100 HGS(60s) 19.630
31 CVRP Uniform-500 Uniform-500 12,800 HGS(360s) 285MB 100 HGS(360s) 37.154
32 CVRP CVRPLIB Mixed – – – 70 – 45.183

33 MIS RB-SMALL RB-SMALL 64,000 KaMIS(10s) 3.52GB 500 KaMIS(60s) 20.090
34 MIS RB-LARGE RB-LARGE 6,400 KaMIS(60s) 4.74GB 500 KaMIS(60s) 43.004
35 MIS RB-GIANT RB-LARGE – – – 50 KaMIS(60s) 49.260
36 MIS ER-700-800 ER-700-800 12,800 KaMIS(60s) 7.83GB 128 KaMIS(60s) 44.969
37 MIS ER-1400-1600 ER-700-800 – – – 128 KaMIS(60s) 50.938
38 MIS SATLIB SATLIB 39,500 KaMIS(60s) 3.75GB 500 KaMIS(60s) 425.954

39 MIS HK-SMALL ER-700-800 – – – 500 KaMIS(60s) 79.372
40 MIS HK-LARGE ER-700-800 – – – 500 KaMIS(60s) 330.946
41 MIS WS-SMALL ER-700-800 – – – 500 KaMIS(60s) 76.904
42 MIS WS-LARGE ER-700-800 – – – 500 KaMIS(60s) 262.570

43 MCl RB-SMALL RB-SMALL 64,000 Gurobi(60s) 3.42GB 500 Gurobi(60s) 19.082
44 MCl Twitter RB-SMALL – – – 195 Gurobi(60s) 14.210
45 MCl COLLAB RB-SMALL – – – 1000 Gurobi(60s) 42.113
46 MCl RB-LARGE RB-LARGE 6,400 Gurobi(300s) 4.74GB 500 Gurobi(300s) 40.182
47 MCl RB-GIANT RB-LARGE – – – 50 Gurobi(3600s) 81.520

48 MCl HK-SMALL RB-SMALL – – – 500 Gurobi(60s) 6.792
49 MCl HK-LARGE RB-LARGE – – – 500 Gurobi(300s) 6.774
50 MCl WS-SMALL RB-SMALL – – – 500 Gurobi(60s) 7.164
51 MCl WS-LARGE RB-LARGE – – – 500 Gurobi(300s) 5.978

52 MVC RB-SMALL RB-SMALL 128,000 Gurobi(60s) 7.01GB 500 Gurobi(60s) 205.764
53 MVC Twitter RB-SMALL – – – 195 Gurobi(60s) 85.251
54 MVC COLLAB RB-SMALL – – – 1000 Gurobi(60s) 65.086
55 MVC RB-LARGE RB-LARGE 6,400 Gurobi(300s) 4.74GB 500 Gurobi(300s) 968.228
56 MVC RB-GIANT RB-LARGE – – – 50 Gurobi(300s) 2398.480

57 MVC HK-SMALL RB-SMALL – – – 500 Gurobi(60s) 142.506
58 MVC WS-SMALL RB-SMALL – – – 500 Gurobi(60s) 154.618

59 MCut BA-SMALL BA-SMALL 128,000 Gurobi(60s) 1.78GB 500 Gurobi(60s) 727.844
60 MCut BA-LARGE BA-LARGE 128,000 Gurobi(300s) 8.08GB 500 Gurobi(300s) 2936.886
61 MCut BA-GIANT BA-LARGE – – – 50 Gurobi(300s) 7217.900

62 MCut HK-SMALL BA-SMALL – – – 500 Gurobi(60s) 1540.608
63 MCut HK-LARGE BA-LARGE – – – 500 Gurobi(300s) 6401.320
64 MCut WS-SMALL BA-SMALL – – – 500 Gurobi(60s) 872.116
65 MCut WS-LARGE BA-LARGE – – – 500 Gurobi(300s) 3454.176
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Table 12: Complete results on TSP.

METHOD TYPE
SOLVING STAGE TSP-50 TSP-100

INITIALIZATION OPTIMIZATION OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Concorde [73] Exact – – 5.688∗ 0.000±0.000% 0.059s 7.756∗ 0.000±0.000% 0.238s
LKH (500) [6] Heuristics Random K-Opt 5.688 0.001±0.014% 0.058s 7.756 0.001±0.014% 0.176s
GA-EAX [74] Heuristics Random K-Opt + EAX 5.688 0.000±0.001% 0.101s 7.756 0.000±0.004% 1.862s

GP4CO [39] GP-OS-SL Greedy – 5.718 0.520±1.918% 0.006s 7.937 2.334±4.140% 0.007s
GP4CO [39] GP-OS-SL Greedy Two-Opt 5.691 0.066±0.316% 0.007s 7.775 0.243±0.546% 0.009s
GP4CO [39] GP-OS-SL Greedy MCTS (0.05s) 5.688 0.012±0.068% 0.007s 7.762 0.073±0.224% 0.013s
GP4CO [39] GP-OS-SL Sampling MCTS (0.05s) 5.688 0.004±0.031% 0.057s 7.758 0.022±0.083% 0.058s
GP4CO [39] GP-OS-SL Random-16 MCTS (0.05s) 5.688 0.001±0.010% 0.031s 7.756 0.005±0.025% 0.119s

GP4CO [18] GP-OS-MAML(RL) Greedy – 6.325 11.233±4.503% 0.003s 8.757 12.918±3.761% 0.005s
GP4CO [18] GP-OS-MAML(RL) Greedy Two-Opt 5.891 3.578±2.361% 0.007s 8.108 4.543±1.838% 0.012s
GP4CO [18] GP-OS-MAML(RL) Greedy MCTS (0.05s) 5.755 1.188±1.420% 0.008s 7.897 1.819±1.234% 0.025s
GP4CO [18] GP-OS-MAML(RL) Sampling MCTS (0.05s) 5.696 0.153±0.389% 0.054s 7.853 1.254±0.933% 0.059s
GP4CO [18] GP-OS-MAML(RL) Random-16 MCTS (0.05s) 5.690 0.034±0.145% 0.111s 7.783 0.348±0.386% 0.571s

GP4CO [28] GP-OS-UL Greedy – 7.097 24.808±7.728% 0.007s 9.377 20.909±5.049% 0.009s
GP4CO [28] GP-OS-UL Greedy Two-Opt 5.976 5.080±3.065% 0.012s 8.161 5.215±2.140% 0.017s
GP4CO [28] GP-OS-UL Greedy MCTS (0.05s) 5.862 3.078±2.395% 0.028s 8.052 3.817±1.852% 0.065s
GP4CO [28] GP-OS-UL Sampling MCTS (0.05s) 5.818 2.295±1.809% 0.062s 8.270 6.630±2.376% 0.067s

GP4CO (Is=1) [40] GP-Gen-SL Greedy – 5.723 0.612±2.389% 0.007s 7.941 2.381±4.385% 0.009s
GP4CO (Is=1) [40] GP-Gen-SL Greedy Two-Opt 5.691 0.065±0.344% 0.007s 7.773 0.223±0.529% 0.009s
GP4CO (Is=5) [40] GP-Gen-SL Greedy – 5.691 0.061±0.119% 0.030s 7.774 0.230±0.888% 0.031s
GP4CO (Is=5) [40] GP-Gen-SL Greedy Two-Opt 5.689 0.029±0.119% 0.030s 7.762 0.078±0.197% 0.031s
GP4CO (Is=5) [40] GP-Gen-SL 4×Greedy – 5.688 0.008±0.041% 0.031s 7.758 0.029±0.085% 0.064s
GP4CO (Is=5) [40] GP-Gen-SL 4×Greedy Two-Opt 5.688 0.006±0.031% 0.031s 7.757 0.017±0.053% 0.065s

LC4CO [41] LC-OS-RL Greedy – 5.702 0.258±0.374% 0.050s 7.872 1.491±0.767% 0.098s
LC4CO [41] LC-OS-RL Greedy Two-Opt 5.699 0.197±0.339% 0.051s 7.840 1.087±0.714% 0.100s
LC4CO [41] LC-OS-RL N×Greedy – 5.697 0.165±0.300% 0.056s 7.851 1.222±0.625% 0.110s
LC4CO [41] LC-OS-RL N×Greedy Two-Opt 5.694 0.119±0.239% 0.057s 7.824 0.881±0.604% 0.111s
LC4CO [41] LC-OS-RL N×Sampling – 5.697 0.164±0.281% 0.061s 7.853 1.252±0.634% 0.120s
LC4CO [41] LC-OS-RL N×Sampling Two-Opt 5.694 0.113±0.231% 0.061s 7.823 0.860±0.587% 0.121s

LC4CO [32] LC-OS-SL Greedy – 5.742 0.965±1.224% 0.393s 7.905 1.920±2.182% 0.762s
LC4CO [32] LC-OS-SL Greedy Two-Opt 5.735 0.824±1.022% 0.394s 7.862 1.369±1.139% 0.764s
LC4CO [32] LC-OS-SL Beam-16 – 5.701 0.233±0.442% 0.462s 7.787 0.398±0.421% 0.995s
LC4CO [32] LC-OS-SL Beam-16 Two-Opt 5.697 0.171±0.362% 0.463s 7.784 0.358±0.404% 0.995s

AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy – 5.702 0.244±1.205% 0.018s 7.846 1.164±2.924% 0.020s
AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy Two-Opt 5.689 0.029±0.145% 0.018s 7.765 0.124±0.361% 0.021s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy – 5.689 0.031±0.111% 0.096s 7.761 0.073±0.191% 0.102s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy Two-Opt 5.689 0.025±0.081% 0.096s 7.760 0.058±0.121% 0.102s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL 4×Greedy – 5.688 0.005±0.029% 0.101s 7.757 0.015±0.045% 0.187s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL 4×Greedy Two-Opt 5.688 0.004±0.028% 0.101s 7.757 0.013±0.043% 0.191s

METHOD TYPE
SOLVING STAGE TSP-500 TSP-1K

INITIALIZATION OPTIMIZATION OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Concorde [73] Exact – – 16.546∗ 0.000±0.000% 18.672s 23.118∗ 0.000±0.000% 84.413s
LKH (500) [6] Heuristics Random K-Opt 16.546 0.002±0.010% 1.848s 23.119 0.005±0.011% 4.641s
GA-EAX [74] Heuristics Random K-Opt + EAX 16.546 0.001±0.004% 1.857s 23.118 0.000±0.001% 17.544s

GP4CO [39] GP-OS-SL Greedy – 18.148 9.683±3.880% 0.047s 26.124 13.001±2.698% 0.195s
GP4CO [39] GP-OS-SL Greedy Two-Opt 16.769 1.348±0.589% 0.063s 23.527 1.769±0.434% 0.227s
GP4CO [39] GP-OS-SL Greedy MCTS (1s) 16.658 0.676±0.429% 0.367s 23.380 1.131±0.355% 1.594s
GP4CO [39] GP-OS-SL Sampling MCTS (1s) 16.673 0.768±0.437% 1.063s 23.621 2.176±0.828% 1.219s
GP4CO [39] GP-OS-SL Random-16 MCTS (1s) 16.648 0.617±0.286% 7.094s 23.444 1.412±0.250% 21.844s

GP4CO [18] GP-OS-MAML(RL) Greedy – 18.888 14.155±1.532% 0.273s 26.421 14.291±1.063% 0.546s
GP4CO [18] GP-OS-MAML(RL) Greedy Two-Opt 17.655 6.707±1.121% 0.314s 24.906 7.735±0.823% 0.662s
GP4CO [18] GP-OS-MAML(RL) Greedy MCTS (1s) 17.776 7.435±1.128% 0.833s 25.032 8.279±0.787% 3.870s
GP4CO [18] GP-OS-MAML(RL) Sampling MCTS (1s) 17.735 7.189±1.219% 0.917s 24.947 7.912±0.744% 4.210s
GP4CO [18] GP-OS-MAML(RL) Random-16 MCTS (1s) 18.024 8.932±0.778% 30.610s 25.477 10.204±0.586% 168.103s

GP4CO [28] GP-OS-UL Greedy – 19.761 19.435±1.925% 0.059s 27.644 19.580±1.645% 0.223s
GP4CO [28] GP-OS-UL Greedy Two-Opt 17.710 7.033±1.059% 0.090s 24.765 7.122±0.775% 0.290s
GP4CO [28] GP-OS-UL Greedy MCTS (1s) 17.913 8.261±1.130% 1.574s 25.069 8.440±0.874% 2.231s
GP4CO [28] GP-OS-UL Sampling MCTS (1s) 18.500 11.811±1.388% 1.535s 25.961 12.999±0.903% 2.403s

GP4CO (Is=1) [40] GP-Gen-SL Greedy – 18.176 9.840±4.093% 0.050s 26.039 12.632±3.301% 0.203s
GP4CO (Is=1) [40] GP-Gen-SL Greedy Two-Opt 16.750 1.233±0.687% 0.055s 23.481 1.571±0.412% 0.211s
GP4CO (Is=5) [40] GP-Gen-SL Greedy – 17.473 5.603±3.311% 0.099s 25.021 8.229±2.728% 0.289s
GP4CO (Is=5) [40] GP-Gen-SL Greedy Two-Opt 16.690 0.869±0.528% 0.102s 23.423 1.319±0.387% 0.328s
GP4CO (Is=5) [40] GP-Gen-SL 4×Greedy – 17.012 2.817±1.976% 0.289s 24.371 5.419±1.620% 1.188s
GP4CO (Is=5) [40] GP-Gen-SL 4×Greedy Two-Opt 16.627 0.490±0.294% 0.320s 23.339 0.954±0.214% 1.141s

LC4CO [32] LC-OS-SL Greedy – 18.006 8.825±3.847% 3.964s 25.380 9.789±3.224% 7.995s
LC4CO [32] LC-OS-SL Greedy Two-Opt 17.047 3.027±0.840% 4.057s 23.806 2.974±0.581% 8.065s
LC4CO [32] LC-OS-SL Beam-16 – 17.279 4.433±2.576% 4.940s 24.558 5.494±1.812% 17.260s
LC4CO [32] LC-OS-SL Beam-16 Two-Opt 16.923 2.278±0.720% 4.960s 23.681 2.434±0.466% 17.465s

AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy – 17.634 6.574±3.456% 0.062s 25.408 9.904±3.096% 0.261s
AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy Two-Opt 16.684 0.837±0.512% 0.070s 23.421 1.309±0.387% 0.273s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy – 17.119 3.466±3.012% 0.231s 24.698 6.834±2.617% 0.691s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy Two-Opt 16.626 0.487±0.388% 0.242s 23.337 0.946±0.409% 0.703s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL 4×Greedy – 16.776 1.395±1.851% 0.650s 24.081 4.165±1.902% 2.412s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL 4×Greedy Two-Opt 16.588 0.257±0.206% 0.695s 23.271 0.662±0.238% 2.609s

METHOD TYPE
SOLVING STAGE TSP-10K

INITIALIZATION OPTIMIZATION OBJ.↓ DROP↓ TIME↓
LKH (500) [6] Heuristics Random K-Opt 71.755∗ 0.000±0.000% 332.758s

GP4CO [39] GP-OS-SL Greedy – 107.645 50.018±3.885% 26.409s
GP4CO [39] GP-OS-SL Greedy Two-Opt 73.019 1.761±0.166% 28.294s

GP4CO (Is=5) [40] GP-Gen-SL Greedy – 102.972 43.504±3.717% 26.984s
GP4CO (Is=5) [40] GP-Gen-SL Greedy Two-Opt 72.982 1.710±0.120% 28.313s

LC4CO [32] LC-OS-SL Greedy – 82.249 14.627±1.910% 95.579s
LC4CO [32] LC-OS-SL Greedy Two-Opt 74.595 3.958±0.231% 102.369s

AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy – 97.423 35.772±3.908% 28.288s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy Two-Opt 72.832 1.501±0.126% 33.485s
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Table 13: Complete results on ATSP.

METHOD TYPE
SOLVING STAGE ATSP-50 ATSP-100

INITIALIZATION OPTIMIZATION OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
LKH (1000) [6] Heuristics Random K-Opt 1.554 0.000±0.000% 0.097s 1.566 0.000±0.000% 0.238s

GP4CO [39] GP-OS-SL Greedy – 1.667 7.261±5.299% 0.007s 1.666 6.408±3.498% 0.008s
GP4CO [39] GP-OS-SL Greedy Two-Opt 1.613 3.795±2.881% 0.008s 1.629 4.004±2.095% 0.011s

GP4CO (Is=1) [40] GP-Gen-SL Greedy – 1.662 6.948±5.164% 0.006s 1.665 6.329±3.377% 0.008s
GP4CO (Is=1) [40] GP-Gen-SL Greedy Two-Opt 1.614 3.805±2.915% 0.007s 1.630 4.104±2.143% 0.009s

GP4CO (Is=5) [40] GP-Gen-SL Greedy – 1.602 3.043±4.021% 0.029s 1.628 3.935±2.374% 0.033s
GP4CO (Is=5) [40] GP-Gen-SL Greedy Two-Opt 1.580 1.616±2.294% 0.029s 1.608 2.665±1.687% 0.034s
GP4CO (Is=5) [40] GP-Gen-SL 4×Greedy – 1.562 0.485±1.412% 0.033s 1.595 1.827±1.650% 0.161s
GP4CO (Is=5) [40] GP-Gen-SL 4×Greedy Two-Opt 1.558 0.241±0.714% 0.034s 1.584 1.160±1.119% 0.167s

LC4CO [31] LC-OS-RL Greedy – 1.576 1.373±1.108% 0.032s 1.620 3.456±1.291% 0.053s
LC4CO [31] LC-OS-RL Greedy Two-Opt 1.574 1.256±1.050% 0.032s 1.616 3.199±1.225% 0.057s
LC4CO [31] LC-OS-RL Beam-16 – 1.560 0.334±0.456% 0.038s 1.592 1.653±0.758% 0.055s
LC4CO [31] LC-OS-RL Beam-16 Two-Opt 1.559 0.319±0.444% 0.038s 1.591 1.586±0.747% 0.061s

LC4CO [32] LC-OS-SL Greedy – 1.595 2.567±2.715% 0.395s 1.644 5.010±2.098% 0.723s
LC4CO [32] LC-OS-SL Greedy Two-Opt 1.587 2.079±2.058% 0.396s 1.632 4.195±1.736% 0.724s
LC4CO [32] LC-OS-SL Beam-16 – 1.588 2.164±2.009% 0.397s 1.619 3.362±1.701% 0.961s
LC4CO [32] LC-OS-SL Beam-16 Two-Opt 1.581 1.695±1.564% 0.400s 1.610 2.801±1.360% 0.962s

AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy – 1.637 5.304±4.226% 0.019s 1.646 5.086±3.145% 0.023s
AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy Two-Opt 1.601 3.029±2.543% 0.019s 1.619 3.361±1.996% 0.024s

AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy – 1.582 1.790±2.964% 0.086s 1.617 3.233±2.191% 0.099s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy Two-Opt 1.572 1.125±1.866% 0.086s 1.601 2.258±1.563% 0.099s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL 4×Greedy – 1.559 0.269±1.023% 0.101s 1.588 1.393±1.494% 0.511s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL 4×Greedy Two-Opt 1.557 0.171±0.611% 0.103s 1.581 0.946±1.034% 0.516s

METHOD TYPE
SOLVING STAGE ATSP-200 ATSP-500

INITIALIZATION OPTIMIZATION OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
LKH (1000) [6] Heuristics Random K-Opt 1.565 0.000±0.000% 0.724s 1.573 0.000±0.000% 4.376s

GP4CO [39] GP-OS-SL Greedy – 1.671 6.777±3.155% 0.053s 1.729 9.880±1.887% 0.157s
GP4CO [39] GP-OS-SL Greedy Two-Opt 1.634 4.391±1.822% 0.070s 1.696 7.774±1.152% 0.313s

GP4CO (Is=1) [40] GP-Gen-SL Greedy – 1.678 7.280±2.475% 0.037s 1.675 6.443±1.454% 0.127s
GP4CO (Is=1) [40] GP-Gen-SL Greedy Two-Opt 1.652 5.608±1.958% 0.046s 1.653 5.088±1.098% 0.231s

GP4CO (Is=5) [40] GP-Gen-SL Greedy – 1.638 4.677±2.066% 0.162s 1.641 4.294±1.663% 0.558s
GP4CO (Is=5) [40] GP-Gen-SL Greedy Two-Opt 1.615 3.252±1.456% 0.168s 1.622 3.078±1.009% 0.648s
GP4CO (Is=5) [40] GP-Gen-SL 4×Greedy – 1.608 2.772±1.060% 0.360s 1.614 2.543±0.829% 2.144s
GP4CO (Is=5) [40] GP-Gen-SL 4×Greedy Two-Opt 1.597 2.094±0.842% 0.391s 1.605 1.980±0.611% 2.484s

LC4CO [32] LC-OS-SL Greedy – 1.642 4.956±1.514% 1.563s 1.655 5.201±0.953% 6.328s
LC4CO [32] LC-OS-SL Greedy Two-Opt 1.634 4.413±1.183% 1.565s 1.649 4.813±0.811% 6.514s
LC4CO [32] LC-OS-SL Beam-16 – 1.614 3.172±1.154% 4.704s 1.639 4.190±0.629% 63.388s
LC4CO [32] LC-OS-SL Beam-16 Two-Opt 1.610 2.917±0.938% 4.748s 1.636 3.954±0.760% 63.571s

AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy – 1.628 4.078±2.054% 0.099s 1.646 4.634±1.708% 0.403s
AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy Two-Opt 1.616 3.293±1.526% 0.111s 1.630 3.592±1.390% 0.478s

AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy – 1.615 3.200±1.461% 0.547s 1.623 3.128±1.402% 1.669s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL Greedy Two-Opt 1.605 2.563±1.158% 0.517s 1.611 2.408±0.888% 1.766s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL 4×Greedy – 1.593 1.790±0.953% 1.073s 1.604 1.965±0.660% 6.267s
AE4CO (Ds=3, Is=5) [37] AE-Gen-SL 4×Greedy Two-Opt 1.588 1.501±0.805% 1.097s 1.598 1.568±0.487% 6.597s
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Table 14: Complete results on CVRP.

METHOD TYPE
SOLVING STAGE CVRP-50 CVRP-100

INITIALIZATION OPTIMIZATION OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
HGS [75] Heuristics – – 10.366∗ 0.000±0.000% 1.005s 15.563∗ 0.000±0.000% 20.027s

GP4CO (Is=1) [40] GP-Gen-SL Greedy – 12.640 21.835±6.535% 0.009s 19.202 23.333±5.155% 0.010s
GP4CO (Is=1) [40] GP-Gen-SL Greedy Classic-LS 10.871 4.836±5.552% 0.013s 16.294 4.698±3.120% 0.018s

LC4CO [41] LC-OS-RL Greedy – 10.769 3.891±1.640% 0.087s 16.220 4.241±1.131% 0.166s
LC4CO [41] LC-OS-RL Greedy Classic-LS 10.565 1.910±1.435% 0.168s 15.933 2.379±1.001% 0.173s
LC4CO [41] LC-OS-RL N×Greedy – 10.642 2.658±1.123% 0.145s 16.062 3.214±0.796% 0.192s
LC4CO [41] LC-OS-RL N×Greedy Classic-LS 10.498 1.267±1.015% 0.147s 15.838 1.767±0.773% 0.198s
LC4CO [41] LC-OS-RL N×Sampling – 10.638 2.617±1.080% 0.152s 16.063 3.220±0.767% 0.195s
LC4CO [41] LC-OS-RL N×Sampling Classic-LS 10.489 1.179±0.976% 0.154s 15.822 1.663±0.743% 0.202s

LC4CO [32] LC-OS-SL Greedy – 10.906 5.193±2.962% 0.504s 16.342 5.005±2.224% 0.962s
LC4CO [32] LC-OS-SL Greedy Classic-LS 10.628 2.519±2.058% 0.507s 15.959 2.548±1.248% 0.969s
LC4CO [32] LC-OS-SL Beam-16 – 10.622 2.444±1.654% 0.549s 15.991 2.743±1.310% 1.278s
LC4CO [32] LC-OS-SL Beam-16 Classic-LS 10.525 1.513±1.325% 0.552s 15.837 1.757±0.945% 1.286s

AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy – 11.979 15.407±6.898% 0.033s 17.497 12.343±5.459% 0.047s
AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy Classic-LS 10.773 3.903±4.052% 0.037s 16.224 4.253±1.991% 0.055s

METHOD TYPE
SOLVING STAGE CVRP-200 CVRP-500

INITIALIZATION OPTIMIZATION OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
HGS [75] Heuristics – – 19.630∗ 0.000±0.000% 60.024s 37.154∗ 0.000±0.000% 360.376s

GP4CO (Is=1) [40] GP-Gen-SL Greedy – 25.064 27.616±5.095% 0.059s 47.749 28.509±2.920% 0.091s
GP4CO (Is=1) [40] GP-Gen-SL Greedy Classic-LS 20.662 5.290±1.471% 0.063s 39.195 5.530±0.937% 0.215s

LC4CO [41] LC-OS-RL Greedy – 20.662 5.274±0.926% 0.320s 40.382 8.723±0.810% 0.769s
LC4CO [41] LC-OS-RL Greedy Classic-LS 20.193 2.880±0.854% 0.341s 38.700 4.173±0.606% 0.883s
LC4CO [41] LC-OS-RL N×Greedy – 20.507 4.474±0.740% 0.379s 40.051 7.821±0.596% 0.925s
LC4CO [41] LC-OS-RL N×Greedy Classic-LS 20.097 2.383±0.645% 0.400s 38.559 3.793±0.627% 1.034s
LC4CO [41] LC-OS-RL N×Sampling – 20.556 4.734±0.741% 0.405s 40.437 8.862±0.680% 1.024s
LC4CO [41] LC-OS-RL N×Sampling Classic-LS 20.091 2.359±0.701% 0.439s 38.560 3.794±0.580% 1.132s

LC4CO [32] LC-OS-SL Greedy – 21.439 9.263±2.504% 1.978s 38.846 4.587±1.159% 7.095s
LC4CO [32] LC-OS-SL Greedy Classic-LS 20.396 3.936±1.492% 2.037s 38.118 2.620±0.609% 7.312s
LC4CO [32] LC-OS-SL Beam-16 – 20.665 5.272±1.396% 5.067s 38.279 3.051±0.694% 64.431s
LC4CO [32] LC-OS-SL Beam-16 Classic-LS 20.195 2.882±0.888% 5.104s 37.901 2.031±0.543% 64.589s

AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy – 22.402 13.977±4.072% 0.145s 43.901 18.199±2.834% 0.554s
AE4CO (Ds=3, Is=1) [37] AE-Gen-SL Greedy Classic-LS 20.587 4.893±1.344% 0.153s 39.121 5.337±0.938% 0.605s
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Table 15: Complete results on MIS.

METHOD TYPE SOLVING STAGE
RB-SMALL RB-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS [76] Heuristics – 20.090 0.000±0.000% 45.809s 43.004 0.000±0.000% 56.974s
Gurobi [5] Heuristics – 20.090 0.000±0.000% 0.538s 42.192 1.829±2.942% 33.843s

GP4CO [39] GP-OS-SL Greedy 18.170 9.413±6.644% 0.014s 36.060 16.036±6.206% 0.048s
GP4CO [20] GP-OS-MAML(UL) Greedy 17.692 11.778±5.346% 0.084s 34.670 19.259±4.084% 0.127s
GP4CO [26] GP-OS-UL Greedy 17.308 13.709±7.679% 0.016s 34.002 20.779±6.753% 0.029s

GP4CO (Is=1) [40] GP-Gen-SL Greedy 18.400 8.305±6.381% 0.014s 36.394 15.219±6.259% 0.044s
GP4CO (Is=20) [40] GP-Gen-SL Greedy 19.330 3.710±3.952% 0.192s 38.936 9.388±4.740% 0.714s
GP4CO (Is=20) [40] GP-Gen-SL 4×Greedy 19.742 1.690±2.467% 0.332s 40.066 6.742±3.971% 2.398s

GP4CO [19] GP-Gen-UL Greedy 19.200 4.369±3.965% 0.470s 38.490 10.428±3.552% 4.712s
GP4CO [19] GP-Gen-UL 4×Greedy 19.380 3.464±3.388% 1.587s 39.546 7.944±3.171% 25.479s

LC4CO [32] LC-OS-SL Greedy 18.268 8.959±5.419% 0.182s 37.596 12.476±4.125% 3.962s

AE4CO (Ds=5, Is=20) [37] AE-Gen-SL Greedy 19.604 2.375±3.003% 0.802s 40.590 5.559±3.334% 3.562s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy 19.662 2.088±2.891% 0.112s 41.234 4.060±2.822% 0.624s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL 4×Greedy 19.706 1.880±2.691% 0.120s 41.438 3.582±2.379% 1.298s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy + RLSA 20.070 0.093±0.655% 0.471s 42.400 1.366±1.493% 1.816s

METHOD TYPE SOLVING STAGE
ER-700-800 SATLIB

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS [76] Heuristics – 44.969 0.000±0.000% 60.753s 425.954 0.000±0.000% 24.368s
Gurobi [5] Heuristics – 38.781 13.749±3.017% 60.489s 425.924 0.007±0.074% 3.953s

GP4CO [39] GP-OS-SL Greedy 35.852 20.267±4.449% 0.039s 421.056 1.154±0.528% 0.019s
GP4CO [20] GP-OS-MAML(UL) Greedy 33.148 26.280±2.551% 0.117s 412.122 3.250±0.613% 0.240s
GP4CO [26] GP-OS-UL Greedy 33.813 24.804±4.235% 0.029s – – –

GP4CO (Is=1) [40] GP-Gen-SL Greedy 35.711 20.580±4.169% 0.039s 421.578 1.031±0.508% 0.016s
GP4CO (Is=20) [40] GP-Gen-SL Greedy 40.195 10.618±3.117% 0.641s 424.556 0.329±0.247% 0.190s
GP4CO (Is=20) [40] GP-Gen-SL 4×Greedy 41.430 7.867±2.460% 2.094s 425.276 0.160±0.161% 0.428s

LC4CO [32] LC-OS-SL Greedy 40.477 9.986±2.784% 2.296s 421.882 0.957±0.374% 49.842s

AE4CO [43] AE-OS-RL Greedy 37.289 17.068±5.254% 0.589s – – –
AE4CO [43] AE-OS-RL 4×Greedy 39.211 12.799±2.660% 0.611s – – –

AE4CO (Ds=5, Is=20) [37] AE-Gen-SL Greedy 41.992 6.610±2.577% 3.188s 424.734 0.287±0.228% 1.034s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy 42.383 5.746±2.639% 0.469s 425.046 0.215±0.235% 0.228s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL 4×Greedy 42.563 5.343±2.229% 0.703s 424.776 0.278±0.245% 0.268s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy + RLSA 44.984 -0.041±1.389% 1.390s 425.316 0.151±0.173% 1.775s

METHOD TYPE SOLVING STAGE
ER-1400-1600 RB-GIANT

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS [76] Heuristics – 50.938 0.000±0.000% 60.824s 49.260 0.000±0.000% 60.960s
Gurobi [5] Heuristics – 44.813 12.015±2.736% 3602.519s 48.560 1.377±2.452% 3426.207s

GP4CO [39] GP-OS-SL Greedy 37.680 26.021±3.738% 0.117s 38.760 21.224±5.395% 0.240s
GP4CO [20] GP-OS-MAML(UL) Greedy 37.555 26.262±2.578% 0.267s 38.840 21.039±3.670% 0.739s
GP4CO [26] GP-OS-UL Greedy 36.914 27.533±3.431% 0.069s 37.260 24.195±5.781% 0.151s

GP4CO [19] GP-Gen-UL Greedy – – – 40.480 17.722±5.765% 45.680s
GP4CO [19] GP-Gen-UL 4×Greedy – – – 42.120 14.352±4.582% 339.010s

GP4CO (Is=1) [40] GP-Gen-SL Greedy 37.859 25.670±3.368% 0.117s 38.200 22.316±6.721% 0.220s
GP4CO (Is=50) [40] GP-Gen-SL Greedy 44.094 13.430±3.135% 5.117s 38.380 21.995±6.499% 8.980s
GP4CO (Is=50) [40] GP-Gen-SL 4×Greedy 46.117 9.446±2.654% 23.781s 40.260 18.120±6.109% 43.760s

LC4CO [32] LC-OS-SL Greedy 45.594 10.485±2.822% 9.966s 42.640 13.304±3.839% 24.499s

AE4CO [43] AE-OS-RL Greedy 39.523 22.400±6.333% 1.468s – – –
AE4CO [43] AE-OS-RL 4×Greedy 42.477 16.601±3.340% 1.482s – – –

AE4CO (Ds=50, Is=1) [37] AE-Gen-SL Greedy 48.164 5.432±2.188% 2.211s 45.840 6.856±3.531% 5.340s
AE4CO (Ds=50, Is=1) [37] AE-Gen-SL 4×Greedy 48.429 4.911±2.107% 4.516s 46.640 5.221±2.970% 14.660s
AE4CO (Ds=50, Is=1) [37] AE-Gen-SL Greedy + RLSA 50.719 0.418±1.489% 4.102s 47.880 2.741±2.001% 9.490s
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Table 16: Complete results on MCl.

METHOD TYPE SOLVING STAGE
RB-SMALL RB-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
Gurobi [5] Heuristics – 19.082 0.000±0.000% 0.900s 40.182 0.000±0.000% 276.657s

GP4CO [39] GP-OS-SL Greedy 18.084 5.782±10.970% 0.014s 38.622 4.331±10.697% 0.042s
GP4CO [39] GP-OS-SL Beam-16 18.592 2.950±6.595% 0.023s 39.540 1.857±5.579% 0.104s
GP4CO [39] GP-OS-SL Beam-16 + RLSA 19.082 0.000±0.000% 0.041s 40.256 -0.275±1.721% 0.171s

GP4CO [20] GP-OS-MAML(UL) Greedy 17.856 6.400±10.924% 0.065s 34.802 13.180±17.643% 0.103s

GP4CO [26] GP-OS-UL Greedy 15.084 20.720±18.362% 0.016s 29.052 26.604±21.115% 0.029s
GP4CO [26] GP-OS-UL Beam-16 17.086 10.572±12.309% 0.017s 35.098 12.318±16.956% 0.091s

GP4CO (Is=1) [40] GP-Gen-SL Greedy 18.258 4.870±10.775% 0.016s 36.402 9.809±16.700% 0.042s
GP4CO (Is=1) [40] GP-Gen-SL Beam-16 18.664 2.510±6.024% 0.022s 38.754 3.798±9.039% 0.104s
GP4CO (Is=20) [40] GP-Gen-SL Greedy 18.608 2.850±6.945% 0.200s 35.384 12.672±19.874% 0.708s
GP4CO (Is=20) [40] GP-Gen-SL 4×Greedy 18.982 0.607±2.521% 0.328s 38.706 4.197±11.586% 2.386s

GP4CO [19] GP-Gen-UL Greedy 15.142 18.245±18.185% 0.559s – – –
GP4CO [19] GP-Gen-UL 4×Greedy 16.206 12.527±18.723% 1.412s – – –

LC4CO [32] LC-OS-SL Greedy 15.682 17.628±17.431% 0.171s 29.382 26.156±21.529% 3.148s

AE4CO (Ds=5, Is=20) [37] AE-Gen-SL Greedy 18.686 2.374±5.831% 0.516s 36.176 10.159±16.850% 1.660s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy 18.766 1.892±4.479% 0.046s 36.752 8.817±15.326% 0.150s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL 4×Greedy 18.922 1.018±3.009% 0.056s 39.170 2.722±7.875% 0.414s

METHOD TYPE SOLVING STAGE
TWITTER COLLAB

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
Gurobi [5] Heuristics – 14.210 0.000±0.000% 0.276s 42.113 0.000±0.000% 0.063s

GP4CO [39] GP-OS-SL Greedy 12.897 12.002±16.094% 0.013s 41.474 5.330±14.850% 0.012s
GP4CO [39] GP-OS-SL Beam-16 13.210 7.931±9.718% 0.020s 41.660 3.219±8.523% 0.012s
GP4CO [39] GP-OS-SL Beam-16 + RLSA 14.210 0.000±0.000% 0.044s 42.113 0.000±0.000% 0.024s

GP4CO [20] GP-OS-MAML(UL) Greedy 13.815 2.714±5.375% 0.063s 41.024 2.094±10.665% 0.065s

GP4CO [26] GP-OS-UL Greedy 11.985 17.077±17.597% 0.009s 39.461 13.802±22.431% 0.007s
GP4CO [26] GP-OS-UL Beam-16 12.369 12.953±12.775% 0.015s 40.732 7.354±12.027% 0.008s

GP4CO (Is=1) [40] GP-Gen-SL Greedy 13.051 9.536±13.448% 0.015s 41.593 2.496±9.210% 0.013s
GP4CO (Is=1) [40] GP-Gen-SL Beam-16 13.303 6.504±8.451% 0.021s 41.772 1.695±5.767% 0.014s
GP4CO (Is=20) [40] GP-Gen-SL Greedy 12.236 16.961±24.014% 0.195s 39.501 14.496±26.836% 0.222s
GP4CO (Is=20) [40] GP-Gen-SL 4×Greedy 13.349 8.596±18.106% 0.297s 41.051 5.974±17.730% 0.314s

LC4CO [32] LC-OS-SL Greedy 13.262 7.124± 9.726% 0.141s 41.775 2.189±6.839% 0.408s

AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy 13.528 6.154±11.888% 0.067s 41.874 1.808±8.092% 0.139s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL 4×Greedy 13.805 3.997±10.243% 0.082s 42.040 0.841±6.363% 0.092s

METHOD TYPE TYPE
RB-GIANT

OBJ.↑ DROP↓ TIME↓
Gurobi [5] Heuristics – 81.520 0.000±0.000% 3606.201s

GP4CO [39] GP-OS-SL Greedy 58.440 26.568±27.047% 0.220s
GP4CO [39] GP-OS-SL Beam-16 77.460 3.119±22.916% 0.406s
GP4CO [39] GP-OS-SL Beam-16 + RLSA 85.380 -7.912±25.418% 4.342s

GP4CO [20] GP-OS-MAML(UL) Greedy 77.160 1.613±30.471% 0.683s

GP4CO [26] GP-OS-UL Greedy 55.580 29.171±24.586% 0.148s
GP4CO [26] GP-OS-UL Beam-16 76.360 4.433±20.950% 0.333s

GP4CO (Is=1) [40] GP-Gen-SL Greedy 60.860 22.902±29.840% 0.240s
GP4CO (Is=1) [40] GP-Gen-SL 4×Greedy 77.860 2.145±25.410% 0.820s
GP4CO (Is=1) [40] GP-Gen-SL Beam-16 77.340 2.732±24.924% 0.420s
GP4CO (Is=1) [40] GP-Gen-SL 4×Beam-16 84.120 -6.424±26.720% 1.520s

LC4CO [32] LC-OS-SL Greedy 57.120 27.719± 24.330% 32.680s

AE4CO (Ds=50, Is=1) [37] AE-Gen-SL Greedy 64.640 19.005±22.747% 1.062s
AE4CO (Ds=50, Is=1) [37] AE-Gen-SL 4×Greedy 74.920 5.339±26.102% 3.386s
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Table 17: Complete results on MVC.

METHOD TYPE SOLVING STAGE
RB-SMALL RB-LARGE

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Gurobi [5] Heuristics – 205.764 0.000±0.000% 3.340s 968.228 0.000±0.000% 290.227s

GP4CO [39] GP-OS-SL Greedy 207.554 0.871±0.653% 0.014s 976.112 0.817±0.292% 0.068s
GP4CO [20] GP-OS-MAML(UL) Greedy 208.126 1.149±0.514% 0.065s 977.914 1.002±0.193% 0.097s
GP4CO [26] GP-OS-UL Greedy 208.982 1.569±0.736% 0.013s 977.186 0.928±0.271% 0.037s

GP4CO (Is=1) [40] GP-Gen-SL Greedy 207.460 0.827±0.575% 0.016s 974.950 0.696±0.276% 0.044s
GP4CO (Is=20) [40] GP-Gen-SL Greedy 207.778 0.984±0.577% 0.186s 972.608 0.453±0.195% 0.718s
GP4CO (Is=20) [40] GP-Gen-SL 4×Greedy 207.060 0.633±0.462% 0.322s 971.420 0.330±0.163% 2.412s

LC4CO [32] LC-OS-SL Greedy 207.260 0.728±0.482% 0.182s 972.532 0.447±0.174% 3.950s

AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy 206.576 0.398±0.381% 0.108s 969.922 0.176±0.128% 0.522s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL 4×Greedy 206.360 0.290±0.332% 0.086s 969.806 0.163±0.118% 0.626s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy + RLSA 205.772 0.004±0.042% 0.612s 968.398 0.018±0.103% 1.592s

METHOD TYPE SOLVING STAGE
TWITTER COLLAB

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Gurobi [5] Heuristics – 85.251 0.000±0.000% 0.133s 65.086 0.000±0.000% 0.058s

GP4CO [39] GP-OS-SL Greedy 86.369 1.222±1.419% 0.009s 65.178 0.141±0.566% 0.009s
GP4CO [20] GP-OS-MAML(UL) Greedy 92.518 8.262±3.709% 0.064s 66.172 2.170±2.834% 0.061s
GP4CO [26] GP-OS-UL Greedy 86.677 1.575±1.612% 0.008s 65.182 0.183±0.696% 0.006s
GP4CO [26] GP-OS-UL Greedy + RLSA 85.251 0.000±0.000% 0.115s 65.086 0.000±0.000% 0.158s

GP4CO (Is=20) [40] GP-Gen-SL Greedy 86.231 1.071±1.383% 0.198s 65.131 0.093±0.519% 0.206s
GP4CO (Is=20) [40] GP-Gen-SL 4×Greedy 85.585 0.332±0.599% 0.233s 65.091 0.010±0.145% 0.267s

LC4CO [32] LC-OS-SL Greedy 86.841 2.695±7.401% 0.425s 65.396 0.667±1.550% 0.088s

AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy 85.574 0.326±0.574% 0.138s 65.121 0.047±0.303% 0.056s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL 4×Greedy 85.446 0.204±0.481% 0.062s 65.107 0.028±0.227% 0.038s

METHOD TYPE SOLVING STAGE
RB-GIANT

OBJ.↓ DROP↓ TIME↓
Gurobi [5] Heuristics – 2396.780 0.000±0.000% 1813.786s

GP4CO [39] GP-OS-SL Greedy 2407.940 0.465±0.105% 0.365s
GP4CO [20] GP-OS-MAML(UL) Greedy 2406.360 0.402±0.083% 0.555s
GP4CO [26] GP-OS-UL Greedy 2408.320 0.482±0.102% 0.221s

GP4CO (Is=1) [40] GP-Gen-SL Greedy 2407.540 0.450±0.110% 0.240s
GP4CO (Is=50) [40] GP-Gen-SL Greedy 2405.060 0.346±0.096% 9.008s
GP4CO (Is=50) [40] GP-Gen-SL 4×Greedy 2403.580 0.284±0.078% 37.506s

LC4CO [32] LC-OS-SL Greedy 2401.740 0.208±0.083% 24.956s

AE4CO (Ds=50, Is=1) [37] AE-Gen-SL Greedy 2400.600 0.160±0.061% 4.360s
AE4CO (Ds=50, Is=1) [37] AE-Gen-SL 4×Greedy 2400.360 0.149±0.052% 8.200s
AE4CO (Ds=50, Is=1) [37] AE-Gen-SL Greedy + RLSA 2397.360 0.026±0.079% 8.590s

Table 18: Complete results on MCut.
METHOD TYPE SOLVING STAGE

BA-SMALL BA-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
Gurobi [5] Heuristics – 727.844 0.000±0.000% 60.612s 2936.886 0.000±0.000% 300.214s

GP4CO [39] GP-OS-SL Greedy 705.330 3.102±1.370% 0.014s 2827.480 3.744±0.851% 0.016s
GP4CO [20] GP-OS-MAML(UL) Greedy 672.748 7.563±1.760% 0.063s 2748.310 6.425±0.965% 0.090s
GP4CO [26] GP-OS-UL Greedy 700.972 3.706±1.198% 0.017s 2884.086 1.815±0.716% 0.019s

GP4CO (Is=1) [40] GP-Gen-SL Greedy 702.376 3.504±1.841% 0.014s 2783.834 5.231±1.156% 0.016s
GP4CO (Is=20) [40] GP-Gen-SL Greedy 725.624 0.319±0.557% 0.172s 2948.112 -0.369±0.580% 0.194s
GP4CO (Is=20) [40] GP-Gen-SL 4×Greedy 728.316 -0.049±0.371% 0.202s 2960.664 -0.797±0.494% 0.362s

GP4CO (FT) (Is=1) [40] GP-Gen-SL Greedy 718.592 1.281±0.765% 0.014s 2941.740 -0.153±0.583% 0.016s
GP4CO (FT) (Is=20) [40] GP-Gen-SL Greedy 726.538 0.195±0.476% 0.172s 2980.508 -1.467±0.513% 0.196s
GP4CO (FT) (Is=20) [40] GP-Gen-SL 4×Greedy 728.272 -0.043±0.386% 0.196s 2987.142 -1.693±0.474% 0.364s
GP4CO (FT) (Is=20) [40] GP-Gen-SL Greedy + RLSA – – – 2994.118 -1.932±0.449% 0.999s

GP4CO [19] GP-Gen-UL Greedy 726.900 0.146±0.483% 0.197s 2986.932 -1.688±0.480% 0.654s
GP4CO [19] GP-Gen-UL 4×Greedy 727.534 0.061±0.462% 0.610s 2989.458 -1.773±0.466% 2.701s

AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy 727.526 0.058±0.419% 0.182s 2978.200 -1.387±0.517% 0.204s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL 4×Greedy 726.798 0.159±0.442% 0.064s 2961.500 -0.821±0.544% 0.114s
AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy + RLSA 729.706 0.240±0.313% 0.727s – – –

AE4CO (FT) (Ds=20, Is=1) [37] AE-Gen-SL Greedy 726.382 0.219±0.455% 0.184s 2975.712 -1.304±0.511% 0.202s
AE4CO (FT) (Ds=20, Is=1) [37] AE-Gen-SL 4×Greedy 726.232 0.238±0.467% 0.064s 2980.652 -1.475±0.477% 0.114s

METHOD TYPE SOLVING STAGE
BA-GIANT

OBJ.↑ DROP↓ TIME↓
Gurobi [5] Heuristics – 7217.900 0.000±0.000% 3601.342s

GP4CO [39] GP-OS-SL Greedy 6979.260 3.291±0.613% 0.060s
GP4CO [20] GP-OS-MAML(UL) Greedy 6712.120 6.994±1.473% 0.535s
GP4CO [26] GP-OS-UL Greedy 7124.880 1.287±0.425% 0.059s

GP4CO (Is=1) [40] GP-Gen-SL Greedy 6860.220 4.935±0.841% 0.060s
GP4CO (Is=50) [40] GP-Gen-SL Greedy 7308.260 -1.258±0.403% 0.700s
GP4CO (Is=50) [40] GP-Gen-SL 4×Greedy 7329.420 -1.553±0.339% 1.760s

GP4CO (FT) (Is=1) [40] GP-Gen-SL Greedy 7264.660 -0.656±0.448% 0.060s
GP4CO (FT) (Is=50) [40] GP-Gen-SL Greedy 7372.100 -2.134±0.330% 0.720s
GP4CO (FT) (Is=50) [40] GP-Gen-SL 4×Greedy 7381.920 -2.276±0.327% 1.760s
GP4CO (FT) (Is=50) [40] GP-Gen-SL Greedy + RLSA 7389.300 -2.383±0.310% 2.228s

GP4CO [19] GP-Gen-UL Greedy 7384.020 -2.306±0.326% 2.480s
GP4CO [19] GP-Gen-UL 4×Greedy 7387.760 -2.358±0.325% 10.760s

AE4CO (Ds=20, Is=1) [37] AE-Gen-SL Greedy 7369.980 -2.111±0.330% 0.720s
AE4CO (FT) (Ds=20, Is=1) [37] AE-Gen-SL Greedy 7361.800 -1.997±0.318% 0.740s
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Table 19: TSPLIB

INSTANCE SCALE EXACT
GP-OS-SL GP-GEN-SL AE-GEN-SL BEST

OBJ.↓ DROP↓ OBJ.↓ DROP↓ OBJ.↓ DROP↓ OBJ.↓ DROP↓
eil51 TSP-100 6.701 6.703 0.026% 6.711 0.143% 6.701 0.000% 6.701 0.000%

berlin52 TSP-100 4.348 4.348 0.000% 4.349 0.004% 4.349 0.004% 4.349 0.004%
st70 TSP-100 6.839 6.840 0.000% 6.840 0.000% 6.840 0.000% 6.840 0.000%

eil76 TSP-100 7.561 7.668 1.414% 7.561 0.000% 7.561 0.000% 7.561 0.000%
pr76 TSP-100 5.518 5.606 1.582% 5.518 0.000% 5.518 0.000% 5.518 0.000%
rat99 TSP-100 5.671 5.671 0.000% 5.675 0.079% 5.675 0.079% 5.671 0.000%

kroA100 TSP-100 5.408 5.408 0.000% 5.408 0.000% 5.408 0.000% 5.408 0.000%
kroB100 TSP-100 5.626 5.668 0.742% 5.668 0.742% 5.668 0.742% 5.668 0.742%
kroC100 TSP-100 5.276 5.276 0.000% 5.452 3.330% 5.452 3.330% 5.276 0.000%
kroD100 TSP-100 5.431 5.431 0.000% 5.431 0.000% 5.431 0.000% 5.431 0.000%
kroE100 TSP-100 5.557 5.641 1.495% 5.567 0.178% 5.570 0.232% 5.567 0.178%

rd100 TSP-100 8.065 8.065 0.000% 8.065 0.000% 8.065 0.000% 8.065 0.000%
eil101 TSP-100 8.536 8.536 0.000% 8.536 0.000% 8.536 0.000% 8.536 0.000%
lin105 TSP-100 4.756 4.756 0.000% 4.793 0.779% 4.756 0.000% 4.756 0.000%
pr107 TSP-100 3.778 3.778 0.000% 3.865 2.292% 3.816 1.005% 3.778 0.000%
pr124 TSP-100 5.009 5.013 0.075% 5.009 0.000% 5.009 0.000% 5.009 0.000%

bier127 TSP-100 6.106 6.165 0.953% 6.176 1.140% 6.215 1.771% 6.106 0.953%
ch130 TSP-100 8.751 8.771 0.235% 8.751 0.000% 8.751 0.000% 8.751 0.000%
pr136 TSP-100 7.767 7.875 1.391% 7.767 0.010% 7.767 0.010% 7.767 0.010%
pr144 TSP-100 4.538 4.591 1.175% 4.557 0.417% 4.555 0.386% 4.555 0.386%
ch150 TSP-100 9.342 9.429 0.939% 9.342 0.000% 9.342 0.000% 9.342 0.000%

kroA150 TSP-100 6.693 6.723 0.444% 6.775 1.230% 6.733 0.595% 6.723 0.444%
kroB150 TSP-100 6.635 6.667 0.482% 6.647 0.188% 6.647 0.189% 6.647 0.189%

pr152 TSP-500 5.234 5.391 2.997% 5.291 1.097% 5.244 0.191% 5.244 0.191%
u159 TSP-500 6.574 6.574 0.000% 6.574 0.000% 6.574 0.000% 6.574 0.000%

rat195 TSP-500 7.993 8.049 0.705% 8.026 0.419% 8.049 0.706% 8.026 0.419%
d198 TSP-500 3.924 3.998 1.884% 3.950 0.649% 3.944 0.488% 3.944 0.488%

kroA200 TSP-500 7.437 7.475 0.513% 7.491 0.723% 7.441 0.056% 7.441 0.056%
kroB200 TSP-500 7.467 7.481 0.197% 7.573 1.421% 7.569 1.373% 7.569 1.373%

ts225 TSP-500 10.554 10.740 1.759% 10.754 1.893% 10.675 1.150% 10.675 1.150%
tsp225 TSP-500 7.895 7.989 1.191% 7.911 0.200% 7.960 0.822% 7.911 0.200%
pr226 TSP-500 5.279 5.288 0.169% 5.308 0.551% 5.315 0.683% 5.308 0.551%
gil262 TSP-500 12.050 12.166 0.963% 12.075 0.215% 12.070 0.166% 12.070 0.166%
pr264 TSP-500 6.200 6.245 0.731% 6.200 0.000% 6.200 0.000% 6.200 0.000%
a280 TSP-500 9.238 9.412 1.883% 9.247 0.096% 9.238 0.000% 9.238 0.000%

pr299 TSP-500 6.638 6.743 1.569% 6.729 1.367% 6.725 1.306% 6.725 1.306%
lin318 TSP-500 10.170 10.305 1.327% 10.209 0.386% 10.244 0.727% 10.209 0.386%
rd400 TSP-500 15.344 15.492 0.964% 15.407 0.412% 15.359 0.100% 15.359 0.100%
fl417 TSP-500 6.286 6.355 1.112% 6.413 2.033% 6.354 1.095% 6.354 1.095%

pr439 TSP-500 8.991 9.255 2.936% 9.065 0.822% 9.123 1.475% 9.065 0.822%
pcb442 TSP-500 13.364 13.543 1.337% 13.450 0.645% 13.441 0.576% 13.441 0.576%

d493 TSP-500 9.350 9.509 1.696% 9.510 1.706% 9.469 1.265% 9.469 1.265%
u574 TSP-500 12.023 12.097 0.613% 12.149 1.706% 12.092 0.577% 12.092 0.577%

rat575 TSP-500 13.619 13.694 0.551% 13.791 1.260% 13.671 0.382% 13.671 0.382%

p654 TSP-1000 7.196 7.516 4.454% 7.240 0.624% 7.240 0.621% 7.240 0.621%
d657 TSP-1000 12.212 12.323 0.911% 12.334 1.003% 12.288 0.620% 12.288 0.620%
u724 TSP-1000 14.437 14.598 1.119% 14.593 1.087% 14.582 1.009% 14.582 1.009%

rat783 TSP-1000 15.247 15.373 0.828% 15.342 0.625% 15.418 1.127% 15.342 0.625%
pr1002 TSP-1000 16.397 16.645 1.517% 16.561 1.001% 16.490 0.571% 16.490 0.571%

mean – 8.062 8.140 0.916% 8.115 0.649% 8.105 0.519% 8.095 0.356%
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Table 20: Generalization experiment of the LC-OS-RL solver on CVRPLIB. CVRP-X denotes the
model trained on instances of size X. Settings: N×Sampling + Classic-LS.

INSTANCE EXACT
CVRP-100 CVRP-200 CVRP-500 AVERAGE BEST

OBJ.↓ DROP↓ OBJ.↓ DROP↓ OBJ.↓ DROP↓ OBJ.↓ DROP↓ OBJ.↓ DROP↓
X-n101-k25 27.905 30.625 9.744% 31.702 13.605% 30.563 9.524% 30.963 10.958% 30.563 9.524%
X-n106-k14 26.362 26.969 2.300% 26.802 1.668% 26.955 2.250% 26.909 2.073% 26.802 1.668%
X-n110-k13 14.979 15.097 0.784% 15.219 1.599% 15.523 3.629% 15.280 2.004% 15.097 0.784%
X-n115-k10 12.933 13.896 7.448% 14.112 9.115% 13.574 4.957% 13.860 7.173% 13.574 4.957%
X-n120-k6 13.437 13.611 1.296% 13.672 1.749% 13.908 3.509% 13.730 2.185% 13.611 1.296%
X-n125-k30 56.164 59.041 5.122% 62.810 11.833% 62.514 11.307% 61.455 9.420% 59.041 5.122%
X-n129-k18 29.005 29.476 1.625% 29.356 1.211% 29.777 2.662% 29.536 1.833% 29.356 1.211%
X-n134-k13 11.351 11.633 2.479% 11.810 4.045% 11.674 2.841% 11.706 3.122% 11.633 2.479%
X-n139-k10 13.678 14.048 2.708% 13.804 0.920% 14.074 2.894% 13.975 2.174% 13.804 0.920%
X-n143-k7 15.776 16.533 4.798% 16.602 5.239% 16.702 5.868% 16.612 5.301% 16.533 4.798%
X-n148-k46 43.671 53.319 22.092% 45.190 3.478% 55.014 25.973% 51.175 17.181% 45.190 3.478%
X-n153-k22 21.572 31.742 47.146% 36.105 67.371% 28.809 33.547% 32.219 49.354% 28.809 33.547%
X-n157-k13 17.572 17.708 0.775% 17.870 1.696% 17.811 1.365% 17.796 1.279% 17.708 0.775%
X-n162-k11 14.412 14.705 2.029% 14.707 2.044% 14.732 2.220% 14.715 2.098% 14.705 2.029%
X-n167-k10 20.766 21.244 2.303% 21.287 2.510% 21.684 4.421% 21.405 3.078% 21.244 2.303%
X-n172-k51 46.974 65.767 40.007% 79.562 69.372% 59.677 27.041% 68.335 45.473% 59.677 27.041%
X-n176-k26 47.816 51.999 8.748% 56.172 17.475% 52.487 9.770% 53.553 11.998% 51.999 8.748%
X-n181-k23 26.809 27.067 0.963% 27.092 1.057% 27.074 0.990% 27.078 1.003% 27.067 0.963%
X-n186-k15 24.251 24.720 1.933% 24.721 1.936% 25.753 6.193% 25.065 3.354% 24.720 1.933%
X-n190-k8 17.037 17.817 4.580% 17.418 2.238% 17.687 3.817% 17.641 3.545% 17.418 2.238%
X-n195-k51 44.274 45.772 3.385% 60.037 35.604% 50.881 14.924% 52.230 17.971% 45.772 3.385%
X-n200-k36 60.084 62.080 3.324% 61.860 2.957% 61.834 2.914% 61.925 3.065% 61.834 2.914%
X-n204-k19 19.588 20.166 2.951% 20.034 2.279% 19.967 1.936% 20.056 2.389% 19.967 1.936%
X-n209-k16 30.691 31.481 2.575% 31.107 1.355% 31.561 2.835% 31.383 2.255% 31.107 1.355%
X-n214-k11 10.879 11.543 6.100% 11.278 3.665% 11.413 4.903% 11.411 4.889% 11.278 3.665%
X-n219-k73 117.601 124.696 6.033% 126.506 7.572% 129.738 10.320% 126.980 7.975% 124.696 6.033%
X-n223-k34 40.478 41.308 2.051% 42.331 4.576% 41.637 2.862% 41.759 3.163% 41.308 2.051%
X-n228-k23 25.747 28.368 10.180% 27.065 5.119% 26.867 4.350% 27.433 6.550% 26.867 4.350%
X-n233-k16 19.297 19.822 2.721% 19.731 2.249% 20.114 4.235% 19.889 3.068% 19.731 2.249%
X-n237-k14 27.078 27.573 1.828% 27.397 1.178% 28.176 4.057% 27.715 2.354% 27.397 1.178%
X-n242-k48 82.757 84.827 2.502% 84.427 2.018% 84.730 2.384% 84.661 2.301% 84.427 2.018%
X-n247-k50 37.966 59.721 57.301% 63.388 66.958% 55.808 46.994% 59.639 57.084% 55.808 46.994%
X-n251-k28 38.885 39.904 2.621% 39.798 2.348% 40.056 3.011% 39.919 2.660% 39.798 2.348%
X-n256-k16 18.942 19.784 4.444% 19.379 2.306% 19.432 2.582% 19.532 3.111% 19.379 2.306%
X-n261-k13 26.591 29.077 9.348% 27.586 3.741% 27.591 3.759% 28.085 5.616% 27.586 3.741%
X-n266-k58 75.489 81.892 8.482% 78.439 3.908% 78.007 3.336% 79.446 5.242% 78.007 3.336%
X-n270-k35 35.432 37.837 6.786% 36.133 1.978% 37.645 6.244% 37.205 5.003% 36.133 1.978%
X-n275-k28 22.924 24.085 5.068% 23.488 2.464% 23.829 3.948% 23.801 3.827% 23.488 2.464%
X-n280-k17 33.503 34.597 3.265% 35.739 6.673% 36.544 9.074% 35.627 6.337% 34.597 3.265%
X-n284-k15 20.421 21.564 5.598% 21.252 4.071% 21.472 5.148% 21.429 4.939% 21.252 4.071%
X-n289-k60 95.351 103.478 8.523% 107.669 12.919% 105.407 10.546% 105.518 10.663% 103.478 8.523%
X-n294-k50 47.315 51.281 8.383% 48.783 3.102% 49.012 3.588% 49.692 5.025% 48.783 3.102%
X-n298-k31 34.247 35.659 4.122% 35.464 3.553% 35.698 4.236% 35.607 3.971% 35.464 3.553%
X-n303-k21 21.961 22.907 4.307% 22.659 3.179% 22.889 4.225% 22.818 3.903% 22.659 3.179%
X-n308-k13 25.980 27.164 4.556% 26.723 2.859% 26.891 3.505% 26.926 3.640% 26.723 2.859%
X-n313-k71 94.437 103.575 9.676% 110.157 16.646% 107.451 13.780% 107.061 13.367% 103.575 9.676%
X-n317-k53 78.456 86.456 10.198% 87.043 10.946% 93.404 19.053% 88.968 13.399% 86.456 10.198%
X-n322-k28 29.846 30.892 3.506% 30.590 2.492% 31.861 6.753% 31.114 4.250% 30.590 2.492%
X-n327-k20 27.681 28.768 3.928% 28.546 3.127% 28.733 3.799% 28.682 3.618% 28.546 3.127%
X-n331-k15 31.155 31.993 2.690% 32.028 2.804% 32.349 3.834% 32.123 3.109% 31.993 2.690%
X-n336-k84 139.283 159.225 14.318% 169.684 21.827% 157.244 12.896% 162.051 16.347% 157.244 12.896%
X-n344-k43 42.194 43.796 3.795% 43.225 2.442% 43.542 3.194% 43.521 3.144% 43.225 2.442%
X-n351-k40 25.948 27.200 4.822% 32.179 24.011% 27.259 5.051% 28.879 11.295% 27.200 4.822%
X-n359-k29 51.512 53.260 3.394% 52.817 2.535% 53.347 3.562% 53.141 3.164% 52.817 2.535%
X-n367-k17 24.741 25.836 4.426% 25.777 4.187% 25.711 3.920% 25.775 4.178% 25.711 3.920%
X-n376-k94 147.881 148.786 0.612% 149.060 0.797% 148.848 0.654% 148.898 0.688% 148.786 0.612%
X-n384-k52 66.086 67.866 2.693% 67.689 2.426% 68.387 3.482% 67.981 2.867% 67.689 2.426%
X-n393-k38 38.386 40.077 4.404% 39.938 4.043% 39.702 3.427% 39.906 3.958% 39.702 3.427%
X-n401-k29 66.204 67.696 2.253% 67.783 2.385% 68.101 2.865% 67.860 2.501% 67.696 2.253%
X-n411-k19 19.741 20.966 6.210% 21.030 6.534% 21.476 8.791% 21.158 7.178% 20.966 6.210%
X-n420-k130 108.137 134.019 23.935% 145.475 34.528% 152.736 41.243% 144.077 33.235% 134.019 23.935%
X-n429-k61 65.777 72.105 9.620% 67.992 3.368% 70.841 7.698% 70.313 6.895% 67.992 3.368%
X-n439-k37 36.484 41.280 13.146% 39.235 7.541% 38.941 6.735% 39.819 9.140% 38.941 6.735%
X-n449-k29 55.282 58.464 5.756% 56.635 2.447% 59.498 7.627% 58.199 5.277% 56.635 2.447%
X-n459-k26 25.279 27.058 7.035% 26.603 5.236% 26.814 6.070% 26.825 6.114% 26.603 5.236%
X-n469-k138 222.364 254.665 14.526% 258.329 16.174% 272.896 22.725% 261.963 17.808% 254.665 14.526%
X-n480-k70 89.842 98.216 9.321% 92.585 3.053% 92.732 3.217% 94.511 5.197% 92.585 3.053%
X-n491-k59 66.591 69.121 3.799% 68.596 3.010% 71.887 7.952% 69.868 4.921% 68.596 3.010%
X-n502-k39 69.262 80.609 16.383% 86.878 25.433% 74.836 8.049% 80.774 16.622% 74.836 8.049%
X-n513-k21 24.273 25.612 5.513% 25.416 4.705% 25.259 4.061% 25.429 4.760% 25.259 4.061%

mean 45.183 49.159 7.590% 49.994 8.878% 49.672 7.730% 49.608 8.066% 48.263 5.469%
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly state the claims made, including the
contributions made in the paper (Sec. 1). The claims match the experimental results in
Sec. 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The theoretical derivation of this paper has been given in Appendix B, and
there are no additional theorems needed to be proved.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental details are in Sec. 4 and Appendix D. We have already made
our source code publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have open-sourced the code and dataset involved in this paper.
Code: https://github.com/Thinklab-SJTU/ML4CO-101;
Dataset: https://huggingface.co/datasets/ML4CO/ML4CO-101-SL.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so âĂIJNoâĂİ is an acceptable answer. Papers cannot be rejected simply for
not including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are in Sec. 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have included the standard deviation of the data in the complete experi-
mental tables in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computational environment required for the experiments in
Appendix C. Further, for each experimental result, we also provide the time needed under
the given environment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Appendix E.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers that introduce models and datasets used in the paper are
cited in Sec. 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: First, we have released our code and dataset, introducing new assets. In
addition, it should be noted that this submission follows the latest regulations and is a
single-blind submission, so it has not been anonymized.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not incur such risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve any LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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