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Abstract001

The increasing length of context windows in002
Large Language Models (LLMs) puts signif-003
icant pressure on key-value (KV) cache stor-004
age, making efficient inference more challeng-005
ing. Existing compression techniques, which006
operate at the token, layer, and head levels, of-007
ten risk discarding valuable information and008
lack comprehensive adaptability. To over-009
come these limitations, this paper introduces010
DiliLazyKV, a novel two-stage approach that011
utilizes finer-grained functional adaptability012
based on the proposed Inference Score at the013
head-layer level. DiliLazyKV achieves greater014
compression while maintaining better perfor-015
mance across various tasks and longer contexts016
with β=1.351 in low resources (KV Size =64 &017
128), providing a robust KV cache compression018
strategy. The code is available at https://019
github.com/DiliLazyKV/DiliLazyKV.020

1 Introduction021

Transformer-based large language models (LLMs)022

(Vaswani et al., 2017) have demonstrated remark-023

able performance in language understanding and024

generation, driving their adoption across a wide025

range of applications. With the emergence of ad-026

vanced prompting techniques, the lengths of input027

context windows have gradually increased. For028

instance, OpenAI’s o3 and o4-mini models (Ope-029

nAI, 2025) support up to 128K tokens, Claude 3.7030

Sonnet (Anthropic, 2025) uses 200K tokens, and031

Gemini 2.5 Pro (DeepMind, 2025) can handle up to032

1M tokens. However, the increase in context length033

has created a critical bottleneck in key-value (KV)034

cache. As KV cache memory usage scales pro-035

portionally with sequence length, longer inputs set036

stronger pressure on GPU memory (Fu, 2024). This037

constraint limits the maximum sequence length038

to process, degrades inference speed, and raises039

the risk of out-of-memory errors, particularly in040

resource-constrained environments.041

To alleviate the KV cache bottleneck, various 042

compression techniques have been proposed at dif- 043

ferent granularities. Token-level methods (Li et al., 044

2024; Zhang et al., 2023; Ribar et al., 2024; Liu 045

et al., 2024, 2023; Wang et al., 2025; Xiao et al., 046

2024a,c; Jiang et al., 2023) aim to reduce cache 047

size by identifying and discarding the KV pairs of 048

tokens that are deemed unimportant. Layer-level 049

approaches (Zhong et al., 2025; Brandon et al., 050

2024; Cai et al., 2024; Nawrot et al., 2024) com- 051

press the KV cache dynamically across different 052

layers, and head-level schemes (Fu et al., 2024; 053

Feng et al., 2024; Tang et al., 2024; Xiao et al., 054

2024b) utilize the importance of different attention 055

heads. Although the prior studies have made signif- 056

icant progress in reducing the memory footprint of 057

the KV cache, they pose inherent limitations. They 058

generally rely on a fixed set of importance evalu- 059

ation criteria, which can result in the aggressive 060

discarding of information that may still be valuable. 061

Globally unimportant tokens, layers, or heads can 062

still have a positive impact on inference in specific 063

local contexts or reasoning tasks. Thus, a single, 064

fixed perspective is insufficient to account for the 065

diversity of inputs. While the overall effectiveness 066

of these methods may be evident, the considerable 067

overhead required to ascertain their validity makes 068

them impractical for LLM deployment. To over- 069

come these limitations, this paper aims to address 070

the following key questions: 071

• How to define the validity of KV-cached history 072

and enhance traditional importance scores? 073

• How to design a finer-grained, adaptive mech- 074

anism to identify the information defined, and 075

how to leverage more comprehensive context 076

(beyond just token, layer, or head level) to guide 077

KV cache compression? 078

• How to devise a robust compression strategy that 079

remains effective under real-world deployment 080

constraints? 081
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Question: Which year did Tom start high school?

Answer:       Tom  was     born in 2005, so  he starts high    school in     2020.

… middle of    sky.    Tom    was born   in 2005. He starts       high  school  15     years after   he was  born.       Happy  time  is    not…
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Figure 1: Our proposed DiliLazyKV method comprises two steps: (1) Diligent Head and Lazy Head Identification
(Part a). We employ a Needle-in-a-Haystack (Kamradt, 2023) test to identify heads crucial for different capabilities.
DiliScore and LazyScore jointly constitute the Inference Score (InfScore). (2) Collaborative Layer-Head KV Cache
Budget Allocation (Part b). During the prefill stage, we allocate the KV cache budget for each head based on the
inter-layer aggregation and intra-layer distribution of InfScore variance across heads.

This paper examines the Diligent-Lazy head082

effect on KV cache compression, referred to as083

DiliLazyKV. In response to above questions, we084

outline our contributions as follows.085

• Greater fine-grained adaptability to define086

the validity of information As shown in Fig-087

ure 1 (a), our approach identifies different088

functional heads. Diligent heads capture task-089

specific information, while lazy heads capture090

long-range dependencies via their distracted,091

subconscious, and diffuse peripheral attention.092

• Improved credibility with the layer-head level093

In Figure 1(b), three Inference Score matrices 094

show the process of layer-level distribution from 095

the head level. The low score of early layer 1 096

highlights the limitations of rigid early, middle, 097

and late segmentation, suggesting the need for a 098

more nuanced layer-head influence. 099

• Enhanced robustness for deployment Experi- 100

ments on benchmark using Llama-3-8B-Instruct 101

model (Grattafiori et al., 2024) consistently 102

demonstrate that our DiliLazyKV method gen- 103

erally delivers more robust performance than 104

prior works and even outperforms FullKV on 105
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long-context datasets.106

2 Related Work107

2.1 Attention Mechanism108

Multi-Head Attention (MHA) is a founda-109

tional component of the Transformer architecture110

(Vaswani et al., 2017). Multi-query attention111

(MQA)(Shazeer, 2019) allows multiple attention112

heads to share a single set of key-value pairs. This113

mechanism has been embraced by models such114

as PaLM (Chowdhery et al., 2023), StarCoder115

(Li et al., 2023b), and Gemini (Google, 2023).116

As a middle ground, Grouped-Query Attention117

(GQA)(Ainslie et al., 2023) aims to balance effi-118

ciency and expressiveness. It is integrated into mod-119

els such as LLAMA2-70B (Touvron et al., 2023),120

the entire LLAMA3 series (Grattafiori et al., 2024),121

and ChatGLM (GLM, 2024). FlashAttention (Dao,122

2024) optimizes the process of attention matrix123

calculation, improving computational efficiency.124

In comparison, DiliLazyKV introduces a mecha-125

nism for adapting KV cache utilization, leading to126

enhanced reasoning capabilities in LLMs.127

2.2 KV Cache Compression128

KV cache compression methods can be categorized129

into three granularities: token-level, layer-level,130

and head-level approaches. The following is an131

overview of representative methods at each level.132

Token Level SnapKV (Li et al., 2024), H2O133

(Zhang et al., 2023), SparQ Attention (Ribar et al.,134

2024), IntactKV (Liu et al., 2024), and Scis-135

sorhands (Liu et al., 2023) focus primarily on iden-136

tifying and discarding unimportant tokens. Simi-137

larly, Self-Attention Guided Eviction (SAGE-KV)138

(Wang et al., 2025) conducts a one-time top-k se-139

lection at the token and head levels. Other methods140

aim to manage long-range context to efficiently ac-141

cess non-recent information, including Infllm (Xiao142

et al., 2024a), StreamingLLM (Xiao et al., 2024c),143

and LLMLingua (Jiang et al., 2023).144

Layer Level ZigZagKV (Zhong et al., 2025)145

evaluates the uncertainty of each layer. Cross-146

Layer Attention (CLA) (Brandon et al., 2024) im-147

proves information coordination between different148

layers by sharing key-value headers between adja-149

cent layers. Additionally, PyramidKV (Cai et al.,150

2024) and Dynamic Multi-Compression (DMC)151

(Nawrot et al., 2024) employ different cache allo-152

cation strategies for upper and lower layers.153

Head Level Leveraging attention head impor- 154

tance has become a key strategy for KV cache op- 155

timization. Based on retrieval heads (Wu et al., 156

2024), HeadKV-R2 (Fu et al., 2024) evaluates the 157

importance of each attention head by integrating 158

text retrieval and reasoning capabilities. In con- 159

trast, Ada-KV (Feng et al., 2024) is constrained 160

by a fixed layer budget. RazorAttention (Tang 161

et al., 2024) maintains a complete cache for key 162

retrieval heads and discards remote tags in non- 163

retrieval heads. DuoAttention (Xiao et al., 2024b) 164

categorizes attention heads into retrieval heads and 165

streaming heads. While retrieval heads examine 166

all relevant information in the sequence, streaming 167

heads focus primarily on the most recent tokens, al- 168

lowing for the use of smaller and even compressed 169

KV caches. 170

While these approaches reduce KV cache us- 171

age and boost inference performance, their single- 172

perspective design fails to leverage complementary 173

insights from other levels. DiliLazyKV addresses 174

this through a two-stage process. First, it com- 175

putes head-level diligent and lazy scores and com- 176

bines them into a single inference score that cap- 177

tures each head’s global and local attention. Sec- 178

ond, inspired by trends in the layer-level distribu- 179

tion, DiliLazyKV aggregates these inference scores 180

across the heads in each layer to guide KV cache 181

allocation. The approach ensures that both global 182

importance and local task-relevant dependencies 183

are maintained. 184

3 Diligent-Lazy Head Effect 185

This section introduces the diligent-lazy head effect 186

on KV cache compression. We define diligent and 187

lazy head (3.1) and propose the Inference Attention 188

Score (InfScore) (3.2) indicator to integrate their 189

characteristics. Then We explore Diligengt-Lazy 190

head effect to compress KV cache (3.3). 191

3.1 Definition of Diligent and Lazy Heads 192

In attention mechanism, both the diligent head 193

and lazy head are indispensable. With Needle-in- 194

a-Haystack (Kamradt, 2023) test, diligent heads 195

guarantee excellent reasoning ability for target to- 196

kens, lazy heads ensure the capacity to capture 197

long-range contextual relationships. 198

Diligent Head An attention head is regarded 199

diligent when it focuses on a high-scoring token 200

in the needle that belongs to the correct answer. 201

Unlike simply counting in HeadKV-R2 (Fu et al., 202
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Figure 2: LazyScore-DiliScore Curve exhibits four key
characteristics: (1) Data points are widely distributed,
indicating that different attention heads have different
combinations of diligent and lazy patterns. (2) Few
data points with low DiliScore at low LazyScore pay
less attention to global context information and task-
specific information. (3) Data points that combine a high
LazyScore with a broad DiliScore indicate a stronger
focus on global contextual information at the expense of
task-specific details, resulting in a conclusion that global
vision is the basis for task focus, but not a sufficient
condition. (4) Few data points with high DiliScore
at high LazyScore balance task relevance and global
context understanding.

2024), we use the attention score value to prevent203

it from hitting only once and then never paying204

attention to the needle again. Diligent Attention205

Score (DiliScore) is defined as the number of nee-206

dle tokens that are successfully ranked among the207

model’s top-k predictions, formally expressed as208

DiliScore =
∣∣T ∩ N ∣∣ where T ⊆ {1, 2, . . . , C}209

represents the top-k token set reasoned by the at-210

tention head, N ⊆ {1, 2, . . . , C} represents the211

ground-truth needle token set, C is the context212

length, and |N | = N is the total number of positive213

samples.214

Lazy Head Lazy attention head tends to al-215

ternate between attending to needle tokens and216

overlooking them. They seem to wander indis-217

criminately, but in reality, they perform systematic218

and comprehensive exploration of the extensive219

haystack context with no bias. The global attention220

allows them to capture subtle yet potentially im-221

portant patterns, enhancing robustness in semantic222

understanding and long-context inference. Lazy223

Attention Score (LazyScore) quantifies the behav-224

ior performed when the model’s attention fails to225

effectively focus on the target token in needle. The226

indicator can be divided into three attentions. Dis-227

tracted Attention refers to the model’s mistaken228

focus on non-needle tokens within the top-k predic-229

tions. Subconscious Attention describes the case230

where the model fails to include tokens that actu-231

ally belong to N in the top-k but still assigns them232

non-negligible attention weights. Diffuse Periph-233

eral Attention refers to the model’s low-intensity 234

attention distribution over non-needle areas out- 235

side the top-k range. We define the distraction 236

term as Dist = |T | − |T ∩ N |, the subconscious 237

term as Sco = |N \ T |, and the diffuse term as 238

Dffu = C − |N | − (|T | − |T ∩ N |). As a result, 239

LazyScore is formulated as the weighted sum of 240

the three components. 241

Diligent head tends to focus on task-relevant in- 242

formation and is assigned a high DiliScore. Lazy 243

heads, on the other hand, focus on global informa- 244

tion and are assigned a high LazyScore. By combin- 245

ing these two types of heads, DiliLazyKV enables 246

a more granular allocation of the KV cache budget, 247

maintaining core reasoning capabilities while mini- 248

mizing the impact on overall performance. Figure 2 249

shows the distribution of DiliScore and LazyScore 250

experiments on Meta-Llama-3-8B-Instruct model. 251

It is no obvious linear or simple nonlinear trend 252

indicating a strong positive or negative correlation. 253

Algorithm 1 DiliLazyKV Algorithm

1: Input:
Total budget bc
Allocation ratio β
Number of layers in a model L
Number of heads in one layer H
InfScore of jth head(i, j) in the ith layer Hj,inf

2: Output: Capacity of head(i, j) Ci, j
3: Fixed budget bfixed = bc

(
1− 1

β

)
4: Global dynamic budget pool Btotal =

bc
β LH

5: for i = 0 to L− 1 do
6: Initialize layer-level InfScore Li,α ← 0
7: for j = 0 to H − 1 do
8: Li,α ← Li,α +Hj,inf

9: end for
10: end for
11: Initialize all layer-levle InfScore Ls ← 0
12: for i = 0 to L− 1 do
13: Ls ← Ls + Li,α

14: Compute relative importance Sj,h =
Hj,inf

Li,α

15: end for
16: Compute relative importance of the ith layer

Li,h in the model Li,h =
Li,α

Ls

17: Compute head (i, j) dynamic allocation
bdyni,j = Btotal · (0.01 + Li,h) · Sj,h

18: Compute total KV cache budget of head(i, j)
bi,j = bfixed + bdyni,j

19: return Ci,j =
⌊
max(0, bi,j) + 0.5

⌋
4



Figure 3: Dili-Lazy attention distribution of representative heads shows two characteristics: (1) Each head plays
a dual role, exhibiting both precise (Diligent) and broad (Lazy) patterns simultaneously. Diffuse Peripheral
Attention dominates, typically exceeding 95%, indicating a wide-scope, low-intensity scan of non-critical tokens.
Subconscious Attention and Distracted Attention each account for less than 1%, reflecting semi-focused or off-target
activations. Diligent Attention comprises only about 0.1–0.3%, marking a high-intensity focus on answer-relevant
tokens. (2) Different heads work together on downstream tasks. Head 17–24 (top-left) ranks first in both DiliScore
and InfScore and has the largest Diligent Attention slice, demonstrating the greatest precision in locating key
information. Head 0–31 (bottom-left) leads in LazyScore, highlighting its role in global scanning of long-range
context. The other four heads (22–29, 3–14, 14–31, and 20–9) fall between these two examples. Each balances
Diligent and Lazy patterns in different proportions to fulfill diverse global versus local information-capturing roles.

3.2 Inference Attention Score (InfScore)254

In order to refer to the diligent head’s concentration255

on specific task features (i.e., DiliScore) and lazy256

head’s perception on long-distance contextual de-257

pendencies (i.e., LazyScore), we propose Inference258

Attention Score (InfScore) as the harmonic mean259

of DiliScore and LazyScore in Equation (1). We260

expect the metric to take a high value only when261

both the DiliScore and LazyScore are high, and262

take a low value when one or both are low. For the263

sake of simplicity in mathematical expression, we264

simplify DiliScore to D and LazyScore to L.265

InfScore =
2 · D · L
D + L

(1)266

Figure 3 highlights six representative attention267

heads across diligent–lazy attention modes. Fig-268

ures 4 and 5 offer complementary perspectives on269

how layer-level insights emerge from head-level be-270

havior, providing a solid foundation for KV cache271

compression. In particular, Figure 6 clearly illus-272

trates the distinct roles of Layer 0 and 1.273

3.3 KV Cache Allocation 274

Algorithm 1 outlines the main approach for 275

DiliLazyKV method. Almost every attention head 276

exhibits meaningful behavior in terms of either 277

LazyScore or DiliScore, contributing to model’s 278

inference quality in at least one dimension. There- 279

fore, a minimum allocation for every head is war- 280

ranted. The KV cache space assigned to each head 281

is allocated by a combination of a fixed base and a 282

dynamic budget referring to InfScore. If the current 283

sequence length does not exceed the capacity limit, 284

all KV states will be fully retained. Once com- 285

pression is required, we refer to previous work (Li 286

et al., 2024; Cai et al., 2024; Feng et al., 2024) 287

to obtain contextual content, and use the attention 288

score to evaluate the importance of historical KV 289

states. In order to ensure generation coherence, the 290

KV state within a fixed-size window of the query 291

sequence is always fully retained. Key-value items 292

with higher attention score that are more relevant 293

to the current query will be preserved, maintaining 294

as much critical contextual information as possible. 295

As a result, DiliLazyKV manages KV cache ef- 296
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Figure 4: Dili–Lazy attention visualization curves are accompanied by zoomed-in bar charts of the top 20 layer–head
IDs, sorted in descending order. These combined views reveal three key characteristics: (1) A skewed distribution is
observed across all three metrics: LazyScore, DiliScore, and InfScore. The majority of Layer-Head IDs exhibit
relatively low scores, while a small subset possesses significantly higher values. (2) The distribution of the three
scores varies considerably among different Layer-Head IDs. Not all attention heads play the same role in the model’s
diverse capabilities. (3) LazyScore exhibits a more apparent skew compared to the other two scores. Compared to
the specialized skill of a small set of heads that consistently and accurately pinpoint the “needle,” the majority of
attention heads often fail to include it among the top-k predictions.

Figure 5: Dili-Lazy attention heatmap visualization on layer-head level shows three characters: (1) The attention
heads in the early layers ensure that global information is not missed (high LazyScore). However, their focus is
not precise enough (low DiliScore). (2) Layer 1 shows low InfScore. It does not indicate functional uselessness.
Instead, a high score in layer 2 reflects the critical role of layer 1. Therefore, the metric should not be evaluated in
isolation, but rather in the view of inter-layer dependencies. (3) DiliScore and LazyScore in mid- and late-stage
layers (such as Layer 14, 16, 17, 20) show a suitable trade-off for detailed tasks. They can accurately locate and
utilize effective contextual information for reasoning, association, and decision-making.

① This novel tells a story about friendship and growth.
② The protagonists of the story are two boys who grew up

together and share each other's secrets and dreams.
③ In the midsummer, the sun shines on the back mountain

they often go to, the cicadas chirp one after another, and
the breeze blows through the leaves, rustling.

④ They often play there and explore the unknown world.
⑤ The cats in Grandma Wang's house next door always like

to bask in the sun in the yard, making lazy purring
sounds.

⑥ One day, they found an abandoned cabin in the back
mountain, which was full of old books and some strange
tools.

⑦ It is said that this cabin once belonged to a mysterious
painter who lived in seclusion here for many years and
created many unknown paintings.

⑧ Their adventure began in this cabin, and they decided to
explore the secrets of this mysterious painter together.

① Directly pointing out the theme of the story.
② Introducing the core characters and their 

relationship.
③ Describing the environment, but has a weak 

direct connection with the core themes of 
growth and adventure.

④ Describing protagonists personality for future 
plot.

⑤ A detail that almost irrelevant to the main plot.
⑥ Initializing adventure and setting for plot 

advancement 
⑦ The relevance of the painter and protagonists is 

not clear, and maybe regarded as a potential 
interference information because it may distract 
from the protagonist and theme.

⑧ Leading to the main plot of the story.

A story about adventure How layer 0 and layer 1 work

Figure 6: How layer 0 and 1 work for reasoning shows three characteristics. (1) Layer 0 captures the most salient
global information positively correlated with downstream tasks (e.g., keywords or key phrases), quickly highlighting
core contextual elements and contributing to a higher InfScore. (2) Layer 1 focuses on more subtle long-distance
content that might be weakly correlated or even interfere with the global theme, resulting in a lower InfScore. (3)
Layer 2, as a slightly deeper layer, begins to differentiate between the helpful information from Layer 0 and the
ambiguous disturbance from Layer 1. It learns to filter and integrate truly useful contextual cues for reasoning,
achieving a better Diligent–Lazy pattern balance and higher InfScore.
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Table 1: DiliLazyKV’s more robust performance with fair β=1.351 on baseline reported on (Fu et al., 2024). The
β value for previous work (Fu et al., 2024) is not a fixed constant value (e.g., 2, 1.2, 1.5,1.01) but varies with the
KV cache size, requiring adjustments based on specific resource constraints and indicating a lack of robustness. In
contrast, the DiliLazyKV method balances performance more stably, giving an advantage in practical deployment.

Method Single-Doc QA Multi-Doc QA Avg. Long Dependency QA Avg. β

NartQA Qasper MF-en HotpotQA 2WikiMQA Musique DocQA Info. Retrieval Timeline Computation

Llama-3-8B-Instruct, KV Size = Full
FullKV 25.56 32.07 39.71 43.57 35.28 21.18 32.90 8.73 11.21 0.67 7.43 7.01 -

Llama-3-8B-Instruct, KV Size = 64
SnapKV 20.51 12.80 31.69 37.02 25.91 17.02 24.16 8.84 9.43 0.66 6.18 6.28 -
PyramidKV 21.17 13.66 29.34 34.86 23.46 15.88 23.06 8.27 9.31 0.63 6.86 6.27 -
Ada-SKV 22.26 17.30 33.37 39.82 27.86 17.85 26.41 9.08 9.86 0.55 6.82 6.58 -
HeadKV-R 22.67 23.54 37.51 37.45 29.76 19.01 28.32 8.80 10.51 0.58 6.68 6.64 2
HeadKV-R2 23.21 25.33 38.71 40.64 31.33 19.35 29.76 9.46 10.66 0.61 6.92 6.91 1.2
DiliLazyKV 26.22 26.30 38.05 43.89 31.06 20.75 31.05 9.23 10.67 0.63 7.42 6.99 1.351

Llama-3-8B-Instruct, KV Size = 128
SnapKV 22.11 15.79 31.01 41.12 29.20 19.35 26.43 8.36 9.46 0.79 6.56 6.29 -
PyramidKV 22.01 17.05 31.52 39.27 28.99 18.34 26.20 8.89 9.63 0.61 6.72 6.46 -
Ada-SKV 22.99 19.95 34.22 42.97 30.82 20.15 28.52 9.07 10.30 0.54 6.59 6.63 -
HeadKV-R 23.49 25.39 38.15 42.45 32.84 19.95 30.38 8.87 10.35 0.78 7.52 6.88 1.5
HeadKV-R2 21.80 29.19 41.89 43.73 35.01 20.40 32.00 9.60 11.13 0.67 7.22 7.16 1.01
DiliLazyKV 25.47 29.95 38.02 44.67 34.28 20.66 32.18 9.20 11.32 0.62 7.83 7.24 1.351

fectively and ensures model inference performance,297

supporting longer and longer sequence generation.298

4 Experiments and Analysis299

This section will conduct a series of exper-300

iments with 8K-context-window Llama-3-8B-301

Instruct (Grattafiori et al., 2024) to verify the Dili-302

Lazy head effect for KV cache compression. The303

baseline results comes from prior work (Fu et al.,304

2024), including token-level SnapKV (Li et al.,305

2024), layer-level PyramidKV (Cai et al., 2024),306

and head-level approaches, namely HeadKV-R(Fu307

et al., 2024) and HeadKV-R2 (Fu et al., 2024). The308

results show that our method can significantly im-309

prove the performance of long-context reasoning310

while maintaining inference performance (4.1). In311

addition, this section provides a comprehensive312

comparison of the ablation study (4.2).313

4.1 Main Results314

Table 1 presents the evaluation results of the315

DiliLazyKV method in comparison with baseline316

methods on the LongBench (Bai et al., 2024) and317

LooGLE (Li et al., 2023a) benchmark. The base-318

line results are referenced from (Fu et al., 2024).319

Figure 7 shows bar-form comparison. We ob-320

serve that discovering the distribution of layer-level321

from head-level and combining the two levels is a322

very effective method for KV Cache compression.323

It is worth noting that the DiliLazyKV method324

shows robust characteristics with stable β, provid- 325

ing reliable credibility for deployment. 326

4.2 Ablation Study 327

Table 2 shows ablation results for the diligent-lazy 328

head effect. Figure 8 shows the influence of dif- 329

Figure 7: DiliLazyKV’s superior performance across
various datasets reveals two key characteristics: (1) The
relative performance of the different methods varies de-
pending on the dataset. (2) No single baseline method
consistently outperforms all others, highlighting the
complexity of KV cache compression and the need for
adaptive or task-aware approaches.
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Table 2: Ablation study for DiliLazy head effect under β=1.351. On QA tasks, DiliLazyKV demonstrates the
highest average performance with a score of 31.05, outperforming DiliHead’s average of 29.71 and LazyHead’s
average of 28.81. The numerical difference of over 1.3 points compared to DiliHead and over 2.2 points compared
to LazyHead strongly suggests that the coordinated approach implemented in DiliLazyKV is significantly more
effective than relying solely on either diligent or lazy attention heads. Without effective coordination of lazy heads,
diligent heads may expend excessive effort on seemingly relevant tokens, resulting in insufficient computation and
not optimal overall performance.

Method Single-Doc QA Multi-Doc QA Avg. Long Dependency QA Avg.

NartQA Qasper MF-en HotpotQA 2WikiMQA Musique DocQA Info. Retrieval Timeline Computation

Llama-3-8B-Instruct, KV Size = 64
DiliHead 25.94 23.93 35.79 41.57 29.93 21.07 29.71 8.61 10.91 0.60 7.11 6.81
LazyHead 23.97 14.55 34.74 42.96 35.44 21.19 28.81 9.18 10.33 0.54 6.57 6.67
DiliLazyKV 26.22 26.30 38.05 43.89 31.06 20.75 31.05 9.23 10.67 0.63 7.42 6.99

Llama-3-8B-Instruct, KV Size = 128
DiliHead 25.92 28.71 36.82 44.46 32.28 20.85 31.52 9.04 11.16 0.62 7.40 7.06
LazyHead 26.14 26.92 37.46 43.74 36.56 20.40 31.87 9.58 11.06 0.45 7.58 7.17
DiliLazyKV 25.47 29.95 38.02 44.67 34.28 20.66 32.18 9.20 11.32 0.62 7.83 7.24

ferent components. Both diligent heads and lazy330

heads contribute distinct benefits, and their com-331

bination in DiliLazyKV yields the best average332

performance. The component does not always syn-333

ergize positively across all tasks. When the KV334

size is configured to 64, LazyHead performs best335

on the 2WikiMQA dataset (from the LongBench336

benchmark (Bai et al., 2024)), whereas Diligent-337

Head achieves its excellence on the Info. Retrieval338

dataset (from the LooGLE benchmark (Li et al.,339

Figure 8: Ablation results on benchmark show two char-
acteristics: (1) DiliLazyKV outperforms the individual
Diligent Head and Lazy Head methods on most datasets,
effectively combining their strengths. (2) The perfor-
mance of Diligent Head and Lazy Head individually
varies, depending on the specific dataset.

2023a)). When the KV Size increases to 128, lazy 340

heads contribute more than diligent heads for the 341

whole performance. The combining effects be- 342

tween components are complex and may be closely 343

related to other factors such as model architecture, 344

hyperparameter settings, attention head count, and 345

downstream task characteristics, all of which can 346

modulate the balance between local precision and 347

global context coverage. 348

5 Conclusion and Future Work 349

In the paper, we propose DiliLazyKV, a layer-head 350

level KV cache compression method. We first 351

identify diligent and lazy attention heads, along 352

with their corresponding DiliScore and LazyScore. 353

Furthermore, we introduce the InfScore metric to 354

quantify how both diligent and lazy attention heads 355

contribute to inference. By coordinating at the 356

layer-head level, we allocate varying KV cache 357

budgets to attention heads according to their Inf- 358

Score. Across multiple benchmarks, DiliLazyKV 359

not only balances KV cache compression and per- 360

formance but also exhibits enhanced robustness, 361

making it highly beneficial for real-world deploy- 362

ment. 363

We hope that the paper can bring more inspira- 364

tion to attention heads to promote the interpretabil- 365

ity of LLM and the reduction of hallucinations. KV 366

cache is not only a challenge in the algorithmic do- 367

main but also a significant bottleneck concerning 368

memory problems in real-world deployment scenar- 369

ios. We also hope that the Diligent-Lazy head effect 370

can bring useful insights into software-hardware 371

co-optimization for KV cache research. 372
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6 Limitations373

While DiliLazyKV combines layer-level and head-374

level information, effectively leveraging layer-level375

insights to guide KV cache allocation may require376

more in-depth research, as simple layer-wise statis-377

tics might not fully exploit the complex dependen-378

cies between different layers. The collaborative379

relationships between layers and heads still need380

extensive investigation to discover more optimized381

KV Cache compression methods.382
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A Needle Example558

1. Question: “What are good ways to spend time559

in campus?”560

Needle: “The good ways to spend time in cam-561

pus include relax and do nothing.”562

Answer: “Relax and do nothing.”563

2. Question: “What habits are beneficial for564

health during Ph.D. career?”565

Needle: “The beneficial habits during Ph.D. ca-566

reer contain exercise and healthy diet.”567

Answer: “Exercise and healthy diet.”568

3. Question: “Which year did Tom start high569

school?”570

Needle: “Tom was born in 2005. Tom started571

high school fifteen years after he was born.”572

Answer: “Tom started high school in 2020.”573

B Dataset Details574

The work uses the same datasets as previous575

work (Fu et al., 2024). Table 3 shows the de-576

tails of the six question-answering datasets from577

LongBench (Bai et al., 2024) and the four question-578

answering datasets from LooGLE (Li et al., 2023a).579

They are all English datasets and use F1 score as580

evaluation metric.581

Table 3: Details of Datasets (Label, Task and Average
Length).

Label Task Avg Len

NrtvQA NarrativeQA 18,409
Qasper Qasper 3,619
MF-en MultiFieldQA-EN 4,559
HotpotQA HotpotQA 9,151
2WikiMultiHopQA 2WikiMultiHopQA 4,887
Musique Musique 11,214

Doc.QA Comprehension & reasoning 15,498
Info.Retrieval Multiple information retrieval 14,808
Timeline Timeline reorder 15,425
Computation Computation 17,001

C TOP 10 Heads in LazyScore, DiliScore,582

and InfScore Metric Respectively583

Table 4, Table 5 and Table 6 list representative584

scores from diligent and lazy head.585

Table 4: Top 10 Heads by LazyScore.

Layer–Head ID LazyScore

0–31 1.0
0–30 0.9983710690153388
0–29 0.9983553861104881
2–30 0.9979897022090343
2–12 0.9974390687495067
2–31 0.99742711187279
2–9 0.9970726671242299
2–11 0.9968930120652112
2–8 0.9968449894025974
2–28 0.9964799377628338

Table 5: Top 10 Heads by DiliScore.

Layer–Head ID DiliScore

17–24 0.8377500583283318
20–14 0.7966464731600884
17–29 0.7769381458858717
18–20 0.7353739569464377
14–31 0.7222048680531286
24–27 0.7033271446398407
16–1 0.6728415614392841
19–9 0.6568146203877396
19–3 0.6402092661234061
22–8 0.6120521144671319

Table 6: Top 10 Heads by InfScore.

Layer–Head ID InfScore

17–24 0.8914607342709882
20–14 0.8590445781510154
17–29 0.8426021128243087
14–31 0.8222214106683441
18–20 0.8093112523053374
24–27 0.8051997416416302
16–1 0.7725543106433685
19–9 0.7478591136516957
19–3 0.7333235532693692
22–8 0.7047732219595361
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