
Ranking In Generalized Linear Bandits

Amitis Shidani
George Deligiannidis, Arnaud Doucet

Department of Statistics
University of Oxford

shidani, deligian, doucet@stats.ox.ac.uk

Abstract

We study the ranking problem in generalized linear bandits.
At each time, the learning agent selects an ordered list of
items and observes stochastic outcomes. In recommendation
systems, displaying an ordered list of the most attractive items
is not always optimal as both position and item dependencies
result in a complex reward function. A very naive example
is the lack of diversity when all the most attractive items are
from the same category. We model the position and item de-
pendencies in the ordered list and design UCB and Thompson
Sampling type algorithms for this problem. Our work gener-
alizes existing studies in several directions, including position
dependencies where position discount is a particular case, and
connecting the ranking problem to graph theory.

1 Introduction
The multi-armed bandit (MAB) problem is a sequential
decision-making problem in which there are K possible
choices called arms, each with an unknown reward distribu-
tion. At each time step t, the decision-maker can choose one
arm and see a reward sample drawn from its distribution.
The goal is to minimize the regret, which in the simplest
case is defined as the difference between the total expected
reward when playing the optimal action over time horizon
T and the total expected reward collected by the decision-
maker (Gittins 1979; Lattimore and Szepesvári 2020). In
the classic MAB problem, the arms are assumed indepen-
dent. However, in the real world, arms are often dependent;
pulling one arm gives information about the others. In cases
like recommendation systems, the goal is to show an ordered
list of items that best engage with the users and provide
more rewards (i.e., clicks, watch time). To incorporate arm
dependencies, (Lykouris, Tardos, and Wali 2020), (Singh
et al. 2020), and (Buccapatnam, Eryilmaz, and Shroff 2014)
use the graph-based feedback setting based on the work of
(Mannor and Shamir 2011). In this work, when the learner
selects arm a, they also observe the rewards of all adjacent
arms. (Gupta et al. 2021) introduced another approach where
rewards obtained by pulling different arms are correlated.

On the ranking problem, (Radlinski, Kleinberg, and
Joachims 2008) proposes algorithms that learn a marginal

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

utility for each document at each rank separately by ei-
ther exploring and then committing to the best arms or run-
ning separate bandit algorithms for each position. (Slivkins,
Radlinski, and Gollapudi 2013) introduced a contextual ban-
dit algorithm, where, the context for each position is the
event that previous items have not been clicked. This work
was generalized in (Ermis et al. 2020; Lagrée, Vernade, and
Cappe 2016) using contextual bandits for position-based
models. (Lattimore and Szepesvári 2020) and (Gauthier,
Gaudel, and Fromont 2022) introduce a more general ap-
proach for click models (Chuklin, Markov, and de Rijke
2015) where the objective is to identify the most attractive
list. However, these works do not use any information on the
items’ similarities. In (Li et al. 2016), the authors proposed
a more general cascading bandit model using the position
discount and contextual information between arms.

1.1 Our Contribution
In previous works, the expected reward function is non-
decreasing with respect to items’ attractiveness, i.e. if the
user finds item a more attractive than item a′, any ordered
list with item a′ replaced by item a provides a higher ex-
pected reward. This assumption can be very restrictive since
the expected reward function may not always be monotonic
in real scenarios; a realistic example is when the attractive-
ness of an item depends on neighboring items.

Here, we generalize the previous works in two ways. First,
the reward function we propose can be non-monotonic, ad-
dressing the abovementioned issue. Second, in recommen-
dation systems, it is reasonable to assume that items receive
different levels of attention from users in different positions,
i.e. having different attractiveness in each position. Discount
factor (Li et al. 2016) is one way to address this. However,
item-position dependency may be more complicated. There-
fore, we let items share different contextual information at
each position. We propose a novel graph-based ranking so-
lution. To the best of our knowledge, this is the first work
addressing these issues.

2 Notation and Setting
Let A = {1, . . . ,K} be the finite set of arms, where for
each arm i there exists a vector vi ∈ Rd. We have L slots
available, for which we want to find the best-ordered list
of L items, where L ≪ K. At each round t ∈ [T] the

learner chooses an ordered list of L arms called an action
at = {a1t , . . . , aLt } ∈ A, where for each i, ait ∈ A and A
denotes the set of all the possible actions. At the end of each
round, the learner observes the sample reward rlat

for each
position 1 ≤ l ≤ L. The goal is to minimize the expected
regretRT over the time horizon T ; i.e. we have:

RT = E

[
T∑

t=1

max
a∈A

L∑
l=1

E
[
rla
]
−

T∑
t=1

L∑
l=1

rlat

]
.

Choosing the optimal L-tuple of items is NP-hard
since it is equivalent to the maximum coverage problem
(Nemhauser, Wolsey, and Fisher 1978). The standard greedy
algorithm for this problem translates to iteratively choosing
the items with the highest reward, which is what (Radlin-
ski, Kleinberg, and Joachims 2008) does. A simple sce-
nario to address this is to formulate the problem with KL

arms and d × L dimension. This setting is reducible to
the standard finite-arm generalized linear bandit with the
total reward of L positions as f(⟨θ, vat⟩), which results
in Õ(L

√
dT log(K)) regret. However, we propose another

way that allows for different function behaviors f l for each
position and cannot be reduced to the classical setting and
has Õ(L

√
dT) regret. For each action at at round t and po-

sition l, we assume the reward function rlat
to be as follows:

rlat
= f l(⟨θl , val

t
+ wlvat

l−1⟩) + ηlt, (1)

where f l : R 7→ R is a continuous and differentiable func-
tion called the link function, ⟨· , ·⟩ : Rd×Rd → R is the Eu-
clidean inner product, θl ∈ Θ is an unknown d-dimensional
vector for position l from the convex compact set Θ ⊆ Rd,
wl ∈ R is a known parameter measuring the dependency of
the reward function at position l to the item in the previous
position, and {ηlt}t,l is a family of centered, independent 1-
subgaussian random variables. We denote the history before
the learner chooses action at time t byHt.

Equation 1 assumes that the reward at position l depends
on the attractiveness of both the items at positions l and l−1.
The result can be generalized to a window of neighboring
items instead (see Appendix D.1). Moreover, the parameter
wl can be negative allowing the reward function to be non-
monotonic. Finally, θl allows the arms to share contextual
information at each position. Different parameters and re-
ward functions at each position allow us to model a more
general case of discount factors, i.e., model different users’
behavior for each position. The discount factor model is a
special case of f l(x) = x and θl+1 = dlθ

l, where dl de-
notes the discount parameter.

For the first position, as there is no previous item, one
approach is to assume that va0

t
= 0 or w1 = 0, for any action

at. However, we could recommend a list based on the user’s
last action in a movie recommendation system. In this case,
va0

t
would be a vector embedding the user’s last action, and

w1 would indicate its importance, i.e. the degree to which it
affects the list. We denote va0

t
by v0 in the rest of this paper.

We can now reformulate the problem by defining a new
set of arms, called “super-arms of set A”, as pairs of arms,

x1

x2

y1

y2

y3

z1

z2

z3

(a) A valid 3-layered graph

x1

x2

y1

y2

y3

z1

z2

(b) An invalid 3-layered graph

Figure 1: An illustration of a Valid (1a) and an Invalid (1b)
3-Layered Graph. The graph in 1b is invalid due to the red
edges that violate conditions (a) and (b) of Definition 1.

i.e. (i, j) where i, j ∈ A, denoting the items in the previ-
ous and present positions respectively. As there is no pre-
vious item for the first position, we denote the correspond-
ing super-arms by (0, i). We now propose a graph-based ap-
proach, which finds the best-ordered list using super-arms.

3 The Graph-Based Approach for Ranking

Let us start by defining the L-layered graph. All graphs we
consider are weighted directed graphs.

Definition 1. The directed graph G = (V,E) is “L-
layered” if and only if (a) V =

⋃L
j=1 Vj , where Vi ∩ Vj = ∅

for i ̸= j, (b) all edges e ∈ E have the form e = (v, w)
where v ∈ Vl, w ∈ Vl+1 for some 0 ≤ l ≤ L − 1, (c) there
are no edges e = (v, w) with v ∈ V0, and (d) l-th layer, Vl,
with l ≥ 2, consists of the nodes with a depth of exactly l−1
from the nodes of the first layer V1.

An illustration of a valid and an invalid 3-layered graph
is presented in Figure 1. Now, we want to build a L-layered
graph G using the super-arms defined in the previous sec-
tion. We add K vertices to the first layer and K2 vertices
for each layer 2 ≤ l ≤ L. We denote the nodes at layer one
as u1

0i for i ∈ [K], corresponding to the super-arm (0, i);
at layer l we write ul

ij , where 1 ≤ i, j ≤ K for the vertex
assigned to super-arm (i, j) at position l. We connect the ver-
tex ul

ij , l ∈ [L− 1], to all the vertices ul+1
jq , where q ∈ [K].

It is not hard to see that G is L-layered. Additionally, note
that G =

⋃K
i=1 Gi, where Gi is the induced subgraph of G

that includes all the paths of G containing u1
0i.

Next, we define the weights of the edges for the weighted
graph G and the vector θ = (θ1, . . . , θL). If e is an edge
between vertices ul

ij and ul+1
jq , then the weight of e denoted

by ce is defined as follows:

ce =



1
2

(
2f1(⟨θ1 , vj + w1v0⟩)
+ f2(⟨θ2 , vq + w2vj⟩)

) if l = 1;

1
2

(
fL−1(⟨θL−1 , vj + wL−1vi⟩)
+ 2fL(⟨θL , vq + wLvj⟩)

) if l = L− 1;

1
2

(
f l(⟨θl , vj + wlvi⟩)
+ f l+1(⟨θl+1 , vq + wl+1vj⟩)

) otherwise.

(2)
We call this process of building G as “L-layering” over

super-arms of set A and vector θ. Now, consider a path
p with L vertices. In the L-layered graph, a path starts
with one of the first layer vertices and ends at a vertex
from the L-th layer resulting in a sequence of the form
{u1

0i1
, u2

i1i2
, . . . , uL

iL−1iL
}. The sum of the weights of this

path is equal to the expected reward of playing the action
(i1, . . . , iL). The interesting thing about this graph is that ev-
ery path with L vertices provides a valid ordered list for the
main ranking problem. Moreover, the problem of finding the
best-ordered list corresponds to finding the longest weighted
path. Two problems arise, (1) the time complexity of finding
the longest weighted path needs to be controlled, and (2) the
vector θ (i.e. the reward functions rl) is unknown.

Longest Weighted Path. Finding the longest weighted
path of an arbitrary graph G is NP-hard (Sedgewick and
Wayne 2011). However, if G is a directed acyclic graph,
then no negative cycles can be created, and the longest path
in G can be determined in linear time by finding the short-
est path in −G (replacing every weight with its opposite)
(Cormen et al. 2022). If G is L-layered, it is also a directed
acyclic graph, and we can find the shortest path which gives
us the best-ordered list of items. Moreover, the L-layered
property already gives a topological ordering for the graph
G, which helps the shortest path algorithms. Also, note that
we can reduce the time complexity of finding the shortest
path of G by running the algorithm for each Gi in par-
allel and then comparing the shortest paths of sub-graphs.
For instance, if we use Dijkstra’s algorithm (Sniedovich
2006), the worst-case running time complexity would be
O (|EG|+ |VG| log(|VG|)), where |EG| and |VG| represent
the number of edges and the number of vertices of graph G.
For the L-layered graph G with K arms, it would be O(K3).

Unknown Vector θ. To find the longest path, we need to
know the weights of the graph, which is not possible if the
vector θ is unknown. This situation is similar to the MAB
problem where we cannot play the optimal action from the
beginning. In the MAB setting, we estimate the expected
reward for each action at each round and then play the ac-
tion with the highest expected reward. We will take a simi-
lar approach here. For any algorithm that estimates the ex-
pected reward of each super-arm, we will be able to find the
longest path in the graph with these estimated weights. At
each round, we update the weights based on the reward his-
tory of the super-arms. When the algorithm converges to the
actual values of the expected reward, the longest path would
also converge to the best-ordered list.

We use the L-layered technique to find the best-ordered
list in the next section by adapting famous algorithms, UCB
(Auer, Cesa-Bianchi, and Fischer 2002). In Appendix C we

apply Thompson Sampling (Russo et al. 2018).

4 Ranking UCB Algorithm
We first explain the main idea behind the algorithm. By
Equation 1, we have:

E
[
rla|Ht

]
= f l(θl

T
(val + wlval−1)).

We estimate θl and the expected reward using the Maxi-
mum Likelihood Estimator (MLE) in the classical likelihood
theory of generalized linear models (McCullagh and Nelder
1989) with samples xl

t = val
t
+ wlval−1

t
and labels rlat

.
Then, we construct a confidence set Clt ⊂ Rd that con-

tains the unknown parameter θl with high probability. (Fil-
ippi et al. 2010) was the first to study generalized linear ban-
dits using UCB methods. However, the bound is not optimal
with respect to T . Here, we use an approach that provides the
optimal bound. First, let us define the following variables:

glt(θ) = λθ +
∑t

s=1 f
l(⟨θ , xl

s⟩)xl
s (3)

Ll
t(θ) = ∥glt(θ)−

∑t
s=1 r

l
sx

l
s∥V l−1

t
(4)

where V l
0 (λ) = λI , V l

t (λ) = V l
0 (λ) +

∑t
s=1 x

l
sx

l
s

T, and
xl
s = val

s
+ wlval−1

s
. Note that V l

t (λ) ∈ Rd×d is a symmet-
ric strictly positive definite matrix, and for any strictly pos-
itive definite matrix V , a norm on Rd is given by ∥x∥V =

(xTV x)
1
2 . Now, we have the following lemma:

Lemma 1. Let δ ∈ (0, 1), and
√

βl
t =

√
λ∥θl∥2 +√

2 log
(
1
δ

)
+ log

(
det(V l

t (λ))
λd

)
. Define Clt as follows:

Clt =
{
θ ∈ Θ : Ll

t(θ) ≤
√
βl
t

}
(5)

Then, with probability at least 1 − δ, it holds that for any
time t, θl ∈ Clt; i.e. P(∃t : θl /∈ Clt) ≤ δ.

The proof can be found in Appendix A.1 which uses the
super-martingale technique introduced in (Abbasi-Yadkori,
Pál, and Szepesvári 2011). Now, we can define the optimistic
estimated reward for any super-arm (i, j) and position l in
the UCB algorithm as follows:

UCBl
t(i, j) = maxθ∈Cl

t
f l (⟨θ , vj + wlvi⟩) . (6)

Then, we use Equation 2 to build the L-layering graph G
over the super-arms and the estimated rewards. Namely, at
each round t, Equation 6 allows us to replace the weight ce
for the edge e = (ul

ij , u
l+1
jq) by the estimate ĉe:

ĉe =


1
2 (2UCB1

t (0, j) + UCB2
t (j, q) if l = 1;

1
2 (UCBL−1

t (i, j) + 2UCBL
t (j, q)) if l = L− 1;

1
2 (UCBl

t(i, j) + UCBl+1
t (j, q)) otherwise.

(7)
Finding the longest path of G leads us to the best-ordered

list for each round t using the UCB algorithm. The complete
algorithm, RankUCB, is described in Algorithm 1. We will
now provide a regret bound for the RankUCB algorithm un-
der the following assumptions:

Figure 2: Expected regret for K = 100. Left: wl = 0 ∀l ∈ [L], Right: maxl∈[L] |wl| = 10.

Algorithm 1: RankUCB

1: Input: λ > 0, δ ∈ (0, 1), L, {wl}l≤L, T , arm set A =
{1, . . . ,K}, and vector v0

2: Create L-layered graph G =
⋃K

i=1 Gi over super-arms
of set A

3: Initialization: θ̂l0 = 0, V l
0 = λI for l ∈ [L], and for any

edge e of G, set ĉe = 0
4: for t = 1, 2, . . . , T do
5: Obtain pi ← ShortestPathAlgorithm(−Gi) for all

i ∈ [K] simultaneously
6: p⋆ ← argminpi

∑
e∈pi

ĉe
7: Choose action at as the ordered vertices of path p⋆
8: Play at and observe rlat

for l ∈ [L]
9: for l = 1, . . . L do

10: V l
t (λ)←V l

t−1+(val
t
+wlval−1

t
)(val

t
+wlval−1

t
)T

11: Create Clt+1 based on Equation 5
12: UCBl

t+1(i, j)←maxθ∈Cl
t+1

f l⟨(θ, vj+wlvi⟩) for
all super-arms (i, j)

13: Update ĉe, for any edge e, based on Equation 7
14: end for
15: end for

Assumption 1. For some m1,m2 > 0, the following hold:
(a) for any arm i ∈ A, ∥vi∥2 ≤ m1, (b) for all l ∈ L,
∥θl∥2 ≤ m2, (c) supl∈[L] supa∈Rd |f l(⟨θl , a⟩)| ≤ 1, (d)
There exist δ ∈ (0, 1) such that with probability at least
1− δ, for all t ∈ [T] and l ∈ [L], θl ∈ Clt where Clt satisfies
the Equation 5.

Assumption 2. We denote the derivative of f l by ḟ l. There
exist c1 > 0 and c2 <∞ such that:

c1 = min{1,min
l∈[L]

min
a∈Rd

min
θl∈Θ

ḟ l(⟨θl , a⟩)}

c2 = max{1,max
l∈[L]

max
a∈Rd

max
θl∈Θ

ḟ l(⟨θl , a⟩)}

Theorem 1. Under Assumptions 1 and 2, with probability
at least 1−δ, the expected regret of the RankUCB algorithm

satisfies:

RT ≤ 2
√
2c2
c1

L

√
dTβT log

(
1 +

T((1+maxl∈[L] |wl|)m1)
2

dλ

)
(8)

where

√
βT = maxl∈[L]

√
λm2+

√
2 log

(
1
δ

)
+ log

(
det(V l

T (λ))
λd

)
.

Theorem 1 (see Appendix A.2 for proof) provides an up-
per bound of Õ(L

√
dT) for the ranking MAB problem. The

notation Õ drops the logarithmic complexity. This upper
bound increases linearly on L while capturing both item and
position dependencies compared to previous works, where
these dependencies were either ignored or simplified.

5 Experiments
In this section, we compare RankUCB, genRankUCB (Ap-
pendix B), and RankTS (Appendix C) to the baseline al-
gorithm (Radlinski, Kleinberg, and Joachims 2008), where
there is no assumption on the dependency between posi-
tions. To make the comparison fair to the baseline, we im-
plemented the linear case. The experiments are contextual
bandits with d = 10, L = 4 and K ∈ {10, 100}, and
various values for weights wl to be small, large, and zero.
The case where wl = 0 for all l ∈ [L] would be sim-
ilar to the setting discussed in (Radlinski, Kleinberg, and
Joachims 2008). Regarding the parameters, we randomly
choose θ′l ∈ Rd−1 with ∥θ′l∥2 = 1 and let θl = (

θ′
l

2 , 1
2).

We let the vector associated to arm i be vi = (v′i , 1), where
v′i ∈ Rd−1 with ∥v′i∥2 = 1. This process will guarantee
that supl∈[L] supi∈A |⟨θl , vi⟩| ≤ 1, which is required for
assumptions. Next, we generate the weight wl by a random
sample from the uniform distribution.

The results are reported in Figure 2 and Appendix D.
When maxl∈[L] |wl| is very small or zero, Figure 2-left, all
the algorithms perform well. As maxl∈[L] |wl| increases, the
baseline algorithm, which does not capture the position de-
pendencies, does not converge to the optimal action. This

leads to a non-zero regret over time T . In contrast, our algo-
rithms perform well with all ranges of wl.

6 Conclusion
We studied the ranking problem in multi-armed bandits
with position-item dependency with generalized linear re-
ward functions. We proposed two algorithms, RankUCB and
RankTS, where the key idea is to formulate the optimal or-
dered list as the longest path in a graph. The experiments
show the advantage of involving position dependency. We
hope this work motivates the community to gather temporal
data to improve the ranking in recommendation systems.

Acknowledgement
Arnaud Doucet is partly supported by the EPSRC grant
EP/R034710/1. He also acknowledges the support of the UK
Defence Science and Technology Laboratory (DSTL) and
EPSRC under grant EP/R013616/1. This is part of the col-
laboration between US DOD, UK MOD, and UK EPSRC,
under the Multidisciplinary University Research Initiative.

References
Abbasi-Yadkori, Y.; Pál, D.; and Szepesvári, C. 2011. Im-
proved algorithms for linear stochastic bandits. Advances in
Neural Information Processing Systems, 24.
Abeille, M.; and Lazaric, A. 2017. Linear Thompson sam-
pling revisited. In Artificial Intelligence and Statistics, 176–
184. PMLR.
Agrawal, S.; and Goyal, N. 2013. Thompson sampling for
contextual bandits with linear payoffs. In International Con-
ference on Machine Learning, 127–135. PMLR.
Andrieu, C.; De Freitas, N.; Doucet, A.; and Jordan, M. I.
2003. An introduction to MCMC for machine learning. Ma-
chine Learning, 50(1): 5–43.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine Learn-
ing, 47(2): 235–256.
Buccapatnam, S.; Eryilmaz, A.; and Shroff, N. B. 2014.
Stochastic Bandits with Side Observations on Networks. In
The 2014 ACM international conference on Measurement
and modeling of computer systems, 289–300.
Chuklin, A.; Markov, I.; and de Rijke, M. 2015. Click mod-
els for web search. Synthesis lectures on information con-
cepts, retrieval, and services, 7(3).
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2022. Introduction to Algorithms. MIT press.
Ding, Q.; Hsieh, C.-J.; and Sharpnack, J. 2021. An efficient
algorithm for generalized linear bandit: Online stochastic
gradient descent and thompson sampling. In International
Conference on Artificial Intelligence and Statistics, 1585–
1593. PMLR.
Ermis, B.; Ernst, P.; Stein, Y.; and Zappella, G. 2020. Learn-
ing to rank in the position based model with bandit feedback.
In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, 2405–2412.

Filippi, S.; Cappe, O.; Garivier, A.; and Szepesvári, C.
2010. Parametric Bandits: The Generalized Linear Case. In
Advances in Neural Information Processing Systems, vol-
ume 23. Curran Associates, Inc.
Gauthier, C.-S.; Gaudel, R.; and Fromont, E. 2022. Uni-
Rank: Unimodal Bandit Algorithms for Online Ranking. In
Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research. PMLR.
Gittins, J. C. 1979. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society: Series B
(Methodological), 41(2): 148–164.
Gupta, S.; Chaudhari, S.; Joshi, G.; and Yagan, O. 2021.
Multi-Armed Bandits With Correlated Arms. IEEE Trans-
actions on Information Theory, 67(10).
Kim, W.; Lee, K.; and Paik, M. C. 2022. Double Doubly Ro-
bust Thompson Sampling for Generalized Linear Contextual
Bandits. arXiv preprint arXiv:2209.06983.
Lagrée, P.; Vernade, C.; and Cappe, O. 2016. Multiple-play
bandits in the position-based model. Advances in Neural
Information Processing Systems, 29.
Lattimore, T.; and Szepesvári, C. 2020. Bandit Algorithms.
Cambridge University Press.
Li, S.; Wang, B.; Zhang, S.; and Chen, W. 2016. Contex-
tual Combinatorial Cascading Bandits. In Proceedings of
The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research.
PMLR.
Liu, C.-Y.; and Li, L. 2016. On the Prior Sensitivity of
Thompson Sampling. In Algorithmic Learning Theory, 321–
336. Springer International Publishing.
Lykouris, T.; Tardos, E.; and Wali, D. 2020. Feedback graph
regret bounds for Thompson Sampling and UCB. In Algo-
rithmic Learning Theory, 592–614. PMLR.
Mannor, S.; and Shamir, O. 2011. From bandits to experts:
On the value of side-observations. Advances in Neural In-
formation Processing Systems, 24.
McCullagh, P.; and Nelder, J. 1989. Generalized Linear
Models, Second Edition. Chapman and Hall/CRC Mono-
graphs on Statistics and Applied Probability Series. Chap-
man & Hall.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978.
An analysis of approximations for maximizing submodular
set functions–I. Mathematical programming, 14(1).
Radlinski, F.; Kleinberg, R.; and Joachims, T. 2008. Learn-
ing diverse rankings with multi-armed bandits. In Interna-
tional Conference on Machine Learning, 784–791.
Russo, D. J.; Van Roy, B.; Kazerouni, A.; Osband, I.; and
Wen, Z. 2018. A Tutorial on Thompson Sampling. Founda-
tions and Trends in Machine Learning, 11(1).
Sedgewick, R.; and Wayne, K. 2011. Algorithms, 4th Edi-
tion. Addison-Wesley.
Singh, R.; Liu, F.; Liu, X.; and Shroff, N. 2020. Con-
textual bandits with side-observations. arXiv preprint
arXiv:2006.03951.

Slivkins, A.; Radlinski, F.; and Gollapudi, S. 2013. Ranked
bandits in metric spaces: learning diverse rankings over large
document collections. Journal of Machine Learning Re-
search, 14(Feb): 399–436.
Sniedovich, M. 2006. Dijkstra’s algorithm revisited: the dy-
namic programming connexion. Control and Cybernetics,
35(3): 599–620.
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25(3-4): 285–294.
Wainwright, M. J.; and Jordan, M. I. 2008. Graphical mod-
els, exponential families, and variational inference. Founda-
tions and Trends® in Machine Learning, 1(1–2): 1–305.

A RankUCB Proofs
A.1 Proof of Lemma 1
Here, we give the proof of Lemma 1.

Proof. It is enough to show that Ll
t(θ

l) ≤
√
(βl

t). To do so, we use Equations 3 and 4, and rewrite Ll
t(θ) as follows:

Ll
t(θ

l) = ∥λθl +
t∑

s=1

[
f(⟨θl , val

s
+ wlval−1

s
⟩)− f(⟨θl , val

s
+ wlval−1

s
⟩)− ηls

]
(val

s
+ wlval−1

s
)∥

V l−1
t

= ∥λθl −
t∑

s=1

ηls(val
s
+ wlval−1

s
)∥

V l−1
t

≤
√
λ∥θl∥2 + ∥

t∑
s=1

ηls(val
s
+ wlval−1

s
)∥

V l−1
t

Now, we can use the standard self-normalized bound for vector-valued martingales proposed in (Abbasi-Yadkori, Pál, and
Szepesvári 2011), see Lemma 8 and 9 for details, to bound the second term in the right hand side. The proof follows the
corresponding lemmas by replacing Xs = val

s
+ wlval−1

s
for any time s.

A.2 Proof of Theorem 1
In order to provide the proof for Theorem 1, we first need the following lemmas, which often the second one is called the
elliptical potential lemma:
Lemma 2. For any θ, θ′ ∈ Θ and l ∈ [L], we have c1∥θ − θ′∥V l

t
≤ ∥glt(θ)− glt(θ

′)∥
V l−1
t

.

Proof. Since f is continuous and differentiable, glt(θ) is also continuous and differentiable. By Mean Value Theorem, we have
that there exist θ⋆, such that:

glt(θ)− glt(θ
′) = ġlt(θ

⋆)(θ − θ′)

Therefore, we have:

glt(θ)− glt(θ
′) = (λI +

t∑
s=1

ḟ(⟨θ⋆ , val
s
+ wlval−1

s
⟩)(val

s
+ wlval−1

s
)(val

s
+ wlval−1

s
)T)︸ ︷︷ ︸

M l
t

(θ − θ′)

Since M l
t ⪰ c1V

l
t , then we have:

∥glt(θ)− glt(θ
′)∥

V l−1
t

= ∥θ − θ′∥
M l

tV
l−1
t M l

t
≥ c1∥θ − θ′∥V l

t

And the proof is complete.

Lemma 3. Let V0 ∈ Rd×d be a positive definite matrix and b1, . . . , bT ∈ Rd be a sequence of vectors with ∥bt∥2 ≤ M < ∞.
For all t ∈ [T], define Vt = V0 +

∑
s≤t bsb

T
s . Then,

T∑
t=1

min{1 , ∥bt∥2V −1
t
} ≤ 2 log

(
det (VT)

det (V0)

)
≤ 2d log

(
tr(V0) + TM2

ddet (V0)
1
d

)
.

Proof. If V is a symmetric positive definite matrix, then V +U = V 1/2(I+V −1/2UV −1/2)V 1/2. Moreover, for each t ∈ [T],
we have that Vt is a symmetric positive definite matrix. Thus, for any t ≥ 1, we can write:

Vt = Vt−1 + btb
T
t = V

1/2
t−1

(
I + V

−1/2
t−1 btb

T
t V

−1/2
t−1

)
V

−1/2
t−1

By noting that det(V U) = det(V) det(U), we have that:

det(Vt) = det(Vt−1) det
(
I + V

−1/2
t−1 btb

T
t V

−1/2
t−1

)
= det(Vt−1)

(
1 + ∥bt∥2V −1

t−1

)
.

The last equality is due to the fact that the determinant of a matrix is the product of its eigenvalues, and matrix I + xxT has
eigenvalues 1 + ∥x∥22 and 1. By repeatedly applying this equality, we have that:

det(Vt) = det(V0)

t∏
s=1

(
1 + ∥bs∥2V −1

s−1

)
.

Therefore, we obtain

det(Vt)

det(V0)
=

t∏
s=1

(
1 + ∥bs∥2V −1

s−1

)
. (9)

Now, using Equation 9 and the fact that for any x ≥ 0, min{1, x} ≤ 2 log(1 + x), we get the following:

T∑
t=1

min
{
1 , ∥bt∥2V −1

t

}
≤ 2

T∑
t=1

log
(
1 + ∥bt∥2V −1

t

)
= 2 log

(
det(Vt)

det(V0)

)
.

This proves the first inequality in the lemma. For the second inequality, we use the inequality of arithmetic and geometric
means. So, we have that:

det(VT) =

d∏
i=1

λi ≤

(
1

d

d∑
i=1

λi

)d

=

(
1

d
tr(VT)

)d

≤
(

tr(V0) + TM2

d

)d

,

where λ1, . . . , λd denote the eigenvalues of VT , and the proof is complete.

Now, we give the proof of Theorem 1.

Proof. By Assumption 1, it suffices to prove the bound on the event that for all l ∈ [L], θl ∈ Clt. Let a⋆ =

argmaxa∈A
∑L

l=1 f
l
(
⟨θl , val + wlval−1⟩

)
, and Rt be the instantaneous total regret in round t. Then,

Rt =

L∑
l=1

f l
(
⟨θl , val

⋆
+ wlval−1

⋆
⟩
)
−

L∑
l=1

f l
(
⟨θl , val

t
+ wlval−1

t
⟩
)
.

For each l ∈ [L], let θ̃lt ∈ Clt be the parameter for which f l
(
⟨θ̃l , val

t
+ wlval−1

t
⟩
)

= UCBl
t(a

l−1
t , alt). Now, the fact that

θl ∈ Clt and Equation 6 lead us to the following:

f l
(
⟨θl , val

⋆
+ wlval−1

⋆
⟩
)
≤ UCBl

t(a
l−1
⋆ , al⋆)

=⇒
L∑

l=1

f l
(
⟨θl , val

⋆
+ wlval−1

⋆
⟩
)
≤

L∑
l=1

UCBl
t(a

l−1
⋆ , al⋆).

Note that a⋆ corresponds to a path in graph G of Algorithm 1, and since the longest path of graph G at round t has been at, we
can write:

L∑
l=1

UCBl
t(a

l−1
⋆ , al⋆) ≤

L∑
l=1

UCBl
t(a

l−1
t , alt) =

L∑
l=1

f l
(
⟨θ̃l , val

t
+ wlval−1

t
⟩
)
.

Therefore,

Rt =

L∑
l=1

f l
(
⟨θl , val

⋆
+ wlval−1

⋆
⟩
)
−

L∑
l=1

f l
(
⟨θl , val

t
+ wlval−1

t
⟩
)

≤
L∑

l=1

f l
(
⟨θ̃lt , val

t
+ wlval−1

t
⟩
)
−

L∑
l=1

f l
(
⟨θl , val

t
+ wlval−1

t
⟩
)

≤
L∑

l=1

c2⟨θ̃lt − θl , val
t
+ wlval−1

t
⟩

≤
L∑

l=1

c2∥val
t
+ wlval−1

t
∥
V l−1
t−1
∥θ̃lt − θl∥V l

t−1
.

The last line follows from the Cauchy-Schwartz inequality and the line before that is concluded by Assumption 2. Now, by
using Lemma 2 and Equation 4, we have:

Rt ≤
L∑

l=1

c2∥val
t
+ wlval−1

t
∥
V l−1
t−1
∥θ̃lt − θl∥V l

t−1

≤
L∑

l=1

c2∥val
t
+ wlval−1

t
∥
V l−1
t−1

∥glt−1

(
θ̃lt

)
− glt−1

(
θl
)
∥V l

t−1

c1

≤
L∑

l=1

c2
c1
∥val

t
+ wlval−1

t
∥
V l−1
t−1

(
Ll
t−1(θ̃

l)− Ll
t−1(θ

l)
)

≤
L∑

l=1

2c2
c1

√
βl
t−1∥val

t
+ wlval−1

t
∥
V l−1
t−1

.

The last inequality follows from Lemma 1. By Assumption 1, we can write that Rt ≤ 2L. Hence,

Rt ≤ min

{
2L ,

L∑
l=1

2c2
c1

√
βl
t−1∥val

t
+ wlval−1

t
∥
V l−1
t−1

}
Using Lemma 1 and Assumption 1, we have that:√

βl
t−1 ≤

√
λm2 +

√√√√2 log

(
1

δ

)
+ log

(
det
(
V l
t−1(λ)

)
λd

)
Thus,

Rt ≤
2c2
c1

L∑
l=1

√λm2 +

√√√√2 log

(
1

δ

)
+ log

(
det
(
V l
t−1(λ)

)
λd

)min
{
1 , ∥val

t
+ wlval−1

t
∥
V l−1
t−1

}
(10)

Moreover, the expected regret can be written as RT = E
[∑T

t=1 Rt

]
, which can be upper bounded by Equation 10. Also, note

that
{
det
(
V l
t

)}T
t=0

is an increasing sequence.1 Therefore, we can upper bound the regret as follows:

RT = E

[
T∑

t=1

Rt

]

≤ 2c2
c1

T∑
t=1

L∑
l=1

√
βT min

{
1 , ∥val

t
+ wlval−1

t
∥
V l−1
t−1

}

≤ 2c2
c1

√√√√LT

L∑
l=1

T∑
t=1

βT min

{
1 , ∥val

t
+ wlval−1

t
∥2
V l−1
t−1

}
.

The last inequality follows from Cauchy–Schwartz inequality. Now, we can use Lemma 3 to upper bound∑T
t=1 min

{
1 , ∥val

t
+ wlval−1

t
∥2
V l−1
t−1

}
. One can check that if we define variable bt = val

t
+ wlval−1

t
, and variable M =

(1 +maxl∈[L] |wl|)m1, then we can write:

RT ≤
2c2
c1

√√√√√LTβT

L∑
l=1

2d log

 tr(V l
0) + T

(
(1 + maxl∈[L] |wl|)m1

)2
ddet

(
V l
0

) 1
d

.

By replacing tr(V l
0) = dλ and det(V l

0) = λd, we get the following bound:

RT ≤ 2
√
2
c2
c1

L

√√√√dTβT log

(
1 +

T
(
(1 + maxl∈[L] |wl|)m1

)2
dλ

)
.

This completes the proof.
1For more details, see the proof of Lemma 3.

B Generalization of RankUCB: Estimating Position Dependencies
In Section 4, we have assumed that the dependency parameters are known. However, in realistic scenarios, we need to estimate
them. We now reformulate the problem in a way that allows us to jointly estimate θ = (θ1, . . . , θl) and w = (w1, . . . , wl).
Then, we modify the RankUCB algorithm for this general case and provide the corresponding regret bound.

Let us rewrite the expected reward of action a = (a1, . . . , aL) at position l as follows:

E
[
rla
]
= f l

(
⟨θl , val + wlval−1⟩

)
= f l

(
⟨ϕl , x̃l

a⟩
)
,

where ϕl =
(
θl wlθ

l
)T ∈ R2d and x̃l

a = (val val−1)
T ∈ R2d. We can follow a similar procedure to that in Section 4. We

define the modified required variables as follows:

glt(θ) = λθ +

t∑
s=1

f l(⟨θ , xl
s⟩)xl

s,

Ll
t(θ) = ∥glt(θ)−

t∑
s=1

rlsx
l
s∥V l−1

t
,

where Ṽ l
0 (λ) = λI ∈ R2d×2d, and Ṽ l

t (λ) = Ṽ l
0 (λ) +

∑t
s=1 x̃

l
as
x̃lT

as
. Now, we can use Lemma 1 to create a confidence interval

for ϕl denoted by C̃lt. Thus, the estimated reward for super-arm (i, j) at position l, which is denoted by vector x̃ji = (vj vi)
T,

would be
UCBl

t(i, j) = max
ϕ∈C̃l

t

f l (⟨ϕ , x̃ji⟩) . (11)

Finally, to find the best-ordered list at each round, we can build the L-layered graph G as before and use the Equations 11 and
7 to update the weights of the edges. The generalized algorithm, genRankUCB, is provided in Algorithm 2. The next theorem
upper bounds the regret of this algorithm. First, we need the following assumption:

Algorithm 2: genRankUCB

1: Input: λ > 0, δ ∈ (0, 1), L, T , arm set A = {1, . . . ,K}, and vector v0
2: Create L-layered graph G =

⋃K
i=1 Gi over super-arms of set A

3: Initialization: ϕ̂l
0 = 0, Ṽ l

0 = λI for l ∈ [L], and for any edge e of G, set ĉe = 0
4: for t = 1, 2, . . . , T do
5: Obtain pi ← ShortestPathAlgorithm(−Gi) for all i ∈ [K] simultaneously
6: p⋆ ← argminpi

∑
e∈pi

ĉe
7: Choose action at as the ordered vertices of path p⋆
8: Play at and observe rlat

for l ∈ [L]
9: for l = 1, . . . L do

10: Ṽ l
t (λ)← Ṽ l

t−1 + x̃l
as
x̃lT

as

11: Create C̃lt+1 based on Lemma 1
12: UCBl

t+1(i, j)← maxϕ∈C̃l
t+1

f l (⟨ϕ , x̃ji⟩) for all super-arms (i, j)
13: Update ĉe, for any edge e, based on Equation 7
14: end for
15: end for

Assumption 3. For some m1,m2,m3 > 0, the following hold: (a) for any arm i ∈ A, ∥vi∥2 ≤ m1, (b) for all l ∈ L,
∥θl∥2 ≤ m2, (c) for all l ∈ L, |wl| ≤ m3, (d) supl∈[L] supa∈Rd |f l

(
⟨θl , a⟩

)
| ≤ 1, (e) There exist δ ∈ (0, 1) such that with

probability at least 1− δ, for all t ∈ [T] and l ∈ [L], ϕl ∈ C̃lt where C̃lt satisfies the Equation 5 for ϕl.

Theorem 2. Under the conditions of Assumptions 3 and 2, with probability at least 1−δ, the expected regret of the genRankUCB
algorithm satisfies:

RT ≤ 4
c2
c1

L

√
dTβT log

(
1 +

2Tm2
2

dλ

)
(12)

where
√
βT = maxl∈[L]

√
λ
(
m2

√
1 +m2

3

)
+

√
2 log

(
1
δ

)
+ log

(
det(Ṽ l

T (λ))
λ2d

)
.

The upper bound provided in Theorem 2 has a larger coefficient factor and is looser than the bound reported in Theorem 1,
which was predictable since there are more unknown parameters.

Proof. The proof is similar to the proof of Theorem 1 in Appendix A.2. By Assumption 3, it is suffices to prove the bound on
the event that for all l ∈ [L], ϕl ∈ C̃lt. Let a⋆ = argmaxa∈A

∑L
l=1 f

l
(
⟨ϕl , xl

a⟩
)
, where xl

a = (val val−1)T, and Rt be the
instantaneous total regret in round t. Then,

Rt =

L∑
l=1

f l
(
⟨ϕl , xl

a⋆
⟩
)
−

L∑
l=1

f l
(
⟨ϕl , xl

at
⟩
)
.

For each l ∈ [L], let ϕ̃l
t ∈ C̃lt be the parameter for which f l

(
⟨ϕ̃l , xl

at
⟩
)
= UCBl

t(a
l−1
t , alt). Now, the fact that ϕl ∈ C̃lt and

Equation 11 lead us to the following:
f l
(
⟨ϕl , xl

a⋆
⟩
)
≤ UCBl

t(a
l−1
⋆ , al⋆). (13)

Using Equation 13 and the facts that a⋆ corresponds to a path in graph G of Algorithm 2, and the longest path of graph G at
round t has been at, we can write:

L∑
l=1

f l
(
⟨ϕl , xl

a⋆
⟩
)
≤

L∑
l=1

UCBl
t(a

l−1
⋆ , al⋆) ≤

L∑
l=1

UCBl
t(a

l−1
t , alt) =

L∑
l=1

f l
(
⟨ϕ̃l , xl

at
⟩
)
.

Therefore,

Rt =

L∑
l=1

f l
(
⟨ϕl , xl

a⋆
⟩
)
−

L∑
l=1

f l
(
⟨ϕl , xl

at
⟩
)

≤
L∑

l=1

f l
(
⟨ϕ̃l

t , v
l
at
⟩
)
−

L∑
l=1

f l
(
⟨ϕl , xl

at
⟩
)

≤
L∑

l=1

c2⟨ϕ̃l
t − ϕl , xl

at
⟩

≤
L∑

l=1

c2∥xl
at
∥
Ṽ l−1
t−1
∥ϕ̃l

t − ϕl∥Ṽ l
t−1

≤
L∑

l=1

c2∥xl
at
∥
Ṽ l−1
t−1

∥glt−1

(
ϕ̃l
t

)
− glt−1

(
ϕl
)
∥V l

t−1

c1

≤
L∑

l=1

c2
c1
∥xl

at
∥
V l−1
t−1

(
Ll
t−1(ϕ̃

l)− Ll
t−1(ϕ

l)
)

≤
L∑

l=1

2c2
c1

√
βl
t−1∥xl

at
∥
V l−1
t−1

≤ min

{
2L ,

L∑
l=1

2c2
c1

√
βl
t−1∥xl

at
∥
V l−1
t−1

}
.

The lines are followed by the Cauchy-Schwartz inequality, Lemmas 1 and 2, and the last line is due to Assumption 3, which
bounds Rt ≤ 2L. Now, using Lemma 1 and Assumption 3, we have that:

√
βl
t−1 ≤

√
λ

(
m2

√
1 +m2

3

)
+

√√√√√2 log

(
1

δ

)
+ log

det
(
Ṽ l
t−1(λ)

)
λ2d

.

Thus,

Rt ≤ 2
c2
c1

L∑
l=1

√λ(m2

√
1 +m2

3

)
+

√√√√√2 log

(
1

δ

)
+ log

det
(
Ṽ l
t−1(λ)

)
λ2d


min

{
1 , ∥xl

at
∥
Ṽ l−1
t−1

}
. (14)

Now, we can upper bound the expected regretRT = E
[∑T

t=1 Rt

]
by Equation 14. Noting that

{
det
(
Ṽ l
t

)}T

t=1
is an increasing

sequence, we can write:

RT = E

[
T∑

t=1

Rt

]

≤ 2
c2
c1

T∑
t=1

L∑
l=1

√
βT min

{
1 , ∥xl

at
∥
Ṽ l−1
t−1

}

≤ 2
c2
c1

√√√√LT

L∑
l=1

T∑
t=1

βT min

{
1 , ∥xl

at
∥2
Ṽ l−1
t−1

}
.

The last claim follows from Cauchy–Schwartz inequality. Using Lemma 3 and defining bt = xl
at

= (val
t

val−1
t

)T, and
M = 2m2, we can write:

RT ≤ 2
c2
c1

√√√√√√LTβT

L∑
l=1

4d log

 tr(Ṽ l
0) + 4Tm2

2

2ddet
(
Ṽ l
0

) 1
2d

.

By replacing tr(Ṽ l
0) = 2dλ and det(Ṽ l

0) = λ2d, we get the following bound:

RT ≤ 4
c2
c1

L

√
dTβT log

(
1 +

2Tm2
2

dλ

)
.

This completes the proof.

C Ranking Thompson Sampling Algorithm
Thompson Sampling (TS) (Thompson 1933) assumes there exists a prior distribution Q on the parameter θ ∈ Θ of the condi-
tional reward distribution P(·|θ). At each round t, the algorithm draws a sample from the posterior distribution θ̂t ∼ Q(·|Ht),
selects the best action according to the sample, and updates the distribution based on the observed reward. However, the compu-
tation of the posterior becomes complicated when the conjugacy condition does not apply to these distributions, namely when
the reward distribution is not conjugate to the distribution over θ. Recent papers (Ding, Hsieh, and Sharpnack 2021; Kim, Lee,
and Paik 2022) have attempted to address this issue using different techniques. Nevertheless, the posterior distribution might be
difficult or expensive to sample, even in the conjugate scenario.

This section will present an overview of the influence of the L-layered graph on the linear case to avoid the computation
complexity caused by conjugacy. We assume that each θl is sampled independently from a prior distribution Ql, and we will
update their posterior distributions separately. The prior distribution Ql for different l can be different, i.e., the samples are not
necessarily identically distributed. Also, note that for finding the best action according to the samples θ̂lt for l ∈ [L], we use the
L-layering graph technique. In other words, we use the samples of the vector θ̂ = (θ̂1, . . . , θ̂L) to estimate the weights of each
edge e in the L-layered graph G over super-arms of set A, and find the longest path in the graph as the best action for round t.
Thus, the estimated weight of ĉe, where e is the edge from ul

ij to ul+1
jq would be defined as follows:

ĉe =



1
2 (2⟨θ̂

1 , vj + w1v0⟩
+ ⟨θ̂2 , vq + w2vj⟩)

if l = 1;

1
2 (⟨θ̂

L−1 , vj + wL−1vi⟩
+ 2⟨θ̂L , vq + wLvj⟩)

if l = L− 1;

1
2 (⟨θ̂

l , vj + wlvi⟩
+ ⟨θ̂l+1 , vq + wl+1vj⟩)

otherwise.

(15)

The final adaptation of TS algorithm, RankTS, is described in Algorithm 3.
The first result providing an upper bound for TS with linear reward functions was obtained in (Agrawal and Goyal 2013).

Then, (Abeille and Lazaric 2017) presented a new proof, which can also be applied to generalized or regularized linear models.
Our upper bound for RankTS borrows the techniques from these two papers. We first need the following assumption to state
the main theorem:
Assumption 4. For some m1,m2 > 0, the following hold: (a) for any arm i ∈ A, ∥vi∥2 ≤ m1, (b) for all l ∈ L, ∥θl∥2 ≤ m2

with Ql-probability one, (c) supl∈[L] supa∈Rd |⟨θl , a⟩| ≤ 1.

Algorithm 3: RankTS

1: Input: L, prior distributions {Ql}Ll=1, {wl}l≤L, T , arm set A = {1, . . . ,K}, and vector v0
2: Create L-layered graph G =

⋃K
i=1 Gi over super-arms of set A

3: Initialization: For any edge e of G, set ĉe = 0
4: for t = 1, 2, . . . , T do
5: (θ̂1, . . . , θ̂L) ∼ Q1(·|Ht)⊗ . . .⊗QL(·|Ht)
6: Update ĉe, for any edge e, based on Equation 15
7: Obtain pi ← ShortestPathAlgorithm(−Gi) for all i ∈ [K] simultaneously
8: p⋆ ← argminpi

∑
e∈pi

ĉe
9: Choose action at as the ordered vertices of path p⋆

10: Play at and observe rlat
for l ∈ [L]

11: Ht+1 ← Ht ∪ {at, (r1at
, . . . , rLat

)}
12: Update Ql(·|Ht+1) for l ∈ L
13: end for

Now, we have the following theorem:

Theorem 3. Under Assumption 4, the expected regret of the RankTS algorithm is bounded by:

RT ≤2L
(
1 +

√
2Tdβ2 log

(
1 +

T((1+maxl∈[L] |wl|)m1)
2

dλ

)) (16)

where

β = 1 +

√
4 log(T) + d log

(
1 +

T((1+maxl∈[L] |wl|)m1)
2

dλ

)
.

We need the following corollary of Lemma 3 to prove Theorem 3.

Corollary 1. Let V0 = λI ∈ Rd×d, and b1, . . . , bT ∈ Rd be a sequence of vectors with ∥bt∥2 ≤ M < ∞. For all t ∈ [T],
define Vt = V0 +

∑
s≤t bsb

T
s . Then,

det (Vt(λ))

λd
≤

(
tr
(
Vt(λ)

λd

)d
)
≤
(
1 +

TM2

λd

)2

.

We can now give the proof of Theorem 3.

Proof. Let us denote the set of the super-arms of set A by S(A). We start by defining upper confidence bound functions
U l
t : S(A) 7→ R for all l ∈ [L] as follows:

U l
t(i, j) = ⟨θ̂lt−1 , vj + wlvi⟩+ β∥vj + wlvi∥V l−1

t−1

where V l
t = 1

m2
2
I +

∑t
s=1(val

s
+wlval−1

s
)(val

s
+wlval−1

s
)T. By Lemma 1 and Lemma 3, and setting λ = 1

m2
2

and δ = 1
T 2 , we

have that P(∃t ∈ [T] : ∥θ̂lt−1 − θl∥V l
t−1

> β) ≤ 1
T 2 . Let El

t be the event that ∥θ̂lt−1 − θl∥V l
t−1
≤ β, and define El =

⋂T
t=1 Et,

E =
⋂L

l=1 E
l, and a⋆ = argmaxa∈A

∑L
l=1⟨θl , al + wla

l−1⟩. Since {θl}Ll=1 are random, a⋆ is a random variable. Now, we
can write the regret as follows:

RT = E

[
T∑

t=1

L∑
l=1

⟨θl , al⋆ − alt + wl(a
l−1
⋆ − al−1

t)⟩

]

= E

[
1E

T∑
t=1

L∑
l=1

⟨θl , al⋆ − alt + wl(a
l−1
⋆ − al−1

t)⟩

]

+ E

[
1Ec

T∑
t=1

L∑
l=1

⟨θl , al⋆ − alt + wl(a
l−1
⋆ − al−1

t)⟩

]
.

(17)

Here 1E is the indicator function of event E. Now, for the second term which is on the event Ec, we can bound the term inside
the expectation based on Assumption 4:

E

[
1Ec

T∑
t=1

L∑
l=1

⟨θl , al⋆ − alt + wl(a
l−1
⋆ − al−1

t)⟩

]

=

L∑
l=1

E

[
1Elc

T∑
t=1

⟨θl , al⋆ − alt + wl(a
l−1
⋆ − al−1

t)⟩

]

≤ 2T (1 + max
l∈[l]
|wl|)

L∑
l=1

P(Elc).

The first line is due to the fact that events El for any l ∈ [L] are independent because in Algorithm 3 we have that (θ̂1, . . . , θ̂L) ∼
Q1(·|Ht)⊗ . . .⊗QL(·|Ht). Now, for P(Elc) we have that:

P(Elc) = P(
T⋃

t=1

El
t

c
) ≤

T∑
t=1

P(El
t

c
) ≤ T

1

T 2
=

1

T
.

Therefore, the second term of Equation 17 is bounded by 2L(1 + maxl∈[l] |wl|). Now, for the first term, we can write:

E

[
1E

T∑
t=1

L∑
l=1

⟨θl , al⋆ − alt + wl(a
l−1
⋆ − al−1

t)⟩

]

≤ E

[
T∑

t=1

L∑
l=1

1El
t
⟨θl , al⋆ − alt + wl(a

l−1
⋆ − al−1

t)⟩

]

= E

[
T∑

t=1

L∑
l=1

E
[
1El

t
⟨θl , al⋆ − alt + wl(a

l−1
⋆ − al−1

t)⟩|Ht

]]
.

(18)

To bound this, note that for any l ∈ [L] both θl and θ̂lt are drawn from the same prior, which basically means that P(θl ∈ ·|Ht) =

P(θ̂lt ∈ ·|Ht). Hence, we can conclude that P(a⋆ = ·|Ht) = P(at = ·|Ht) and E
[
U l
t(a

l−1
⋆ , al⋆)|Ht

]
= E

[
U l
t(a

l−1
t , alt)|Ht

]
.

Thus,

E
[
1El

t
⟨θl , al⋆ − alt + wl(a

l−1
⋆ − al−1

t)⟩|Ht

]
= 1El

t
E
[
⟨θl , val

⋆
+ wlval−1

⋆
⟩ − U l

t(a
l−1
⋆ , al⋆)

]
+ 1El

t
E
[
U l
t(a

l−1
t , alt)− ⟨θl , val

t
+ wlval−1

t
⟩
]

≤ 1El
t
E
[
U l
t(a

l−1
t , alt)− ⟨θl , val

t
+ wlval−1

t
⟩
]

≤ 1El
t
E
[
⟨θ̂lt−1 − θl , val

t
+ wlval−1

t
⟩
]

+ β∥val
t
+ wlval−1

t
∥
V l−1
t−1

≤ 1El
t
E
[
∥θ̂lt−1 − θl∥V l

t−1
∥val

t
+ wlval−1

t
∥
V l−1
t−1

]
+ β∥val

t
+ wlval−1

t
∥
V l−1
t−1

≤ 2β∥val
t
+ wlval−1

t
∥
V l−1
t−1

.

The second line is due to the fact that, by the definition of U l
t functions, the first term of the first line is negative or zero. Now,

we can bound the Equation 18 by noting that according to Assumption 4, 1El
t
⟨θl , al⋆− alt+wl(a

l−1
⋆ − al−1

t)⟩ ≤ 2. Therefore,
we have:

E

[
1E

T∑
t=1

L∑
l=1

⟨θl , al⋆ − alt + wl(a
l−1
⋆ − al−1

t)⟩

]
≤ 2βE

[
T∑

t=1

L∑
l=1

min
{
1, ∥val

t
+ wlval−1

t
∥
V l−1
t−1

}]
.

Algorithm K ART (ms)

baseline 10 8.43
baseline 100 730.88

RankUCB 10 8.85
RankUCB 100 780.02

RankTS 10 8.02
RankTS 100 729.57

genRankUCB 10 9.30
genRankUCB 100 801.89

Table 1: Average response-time (ART) for d = 10, L = 4, T = 1e4 and 100 runs

Using Cauchy–Schwartz inequality and Lemma 3, we will have:

E

[
T∑

t=1

L∑
l=1

min
{
1, ∥val

t
+ wlval−1

t
∥
V l−1
t−1

}]
≤

√√√√LTE

[
T∑

t=1

L∑
l=1

min

{
1, ∥val

t
+ wlval−1

t
∥2
V l−1
t−1

}]

≤

√√√√LT

L∑
l=1

2d log

(
1 +

T
(
(1 + maxl∈[L] |wl|)m1

)2
dλ

)

= L

√√√√2Td log

(
1 +

T
(
(1 + maxl∈[L] |wl|)m1

)2
dλ

)
.

By substituting all the above bounds to Equation 17, we get the following bound and the proof is complete.

RT ≤ 2L

1 + β

√√√√2Td log

(
1 +

T
(
(1 + maxl∈[L] |wl|)m1

)2
dλ

) .

The upper bound obtained for RankTS matches the upper bound obtained by RankUCB, which is consistent with previous
results on TS and UCB. As explained earlier, implementation of RankTS needs to sample from the posterior, which is not
straightforward for some priors and might need numerical methods such as Markov chain Monte Carlo (Andrieu et al. 2003)
or variational inference (Wainwright and Jordan 2008). Having sampled θl, finding the best action requires solving a linear
optimization problem. By comparison, RankUCB needs to solve 6, which can be intractable for large or continuous action sets.

D More Details On Experiments
We conduct additional experiments to compare the algorithms. In Figure 3, the expected regret for all four algorithms under
different initial parameters is shown. As it was discussed in Section 5, all algorithms perform well when maxl∈[L] |wl| is close
to zero. This can be seen in Figures 2 (Left figure) and 3a. However, the baseline algorithm cannot capture the true behavior
of the optimal action when |wl| becomes larger. Even in relatively small maxl∈[L] |wl| like Figure 3c, the baseline algorithm
converges to a non-optimal action. In contrast, the other three algorithms proposed in this paper follow the optimal regret. Note
that the regret at each time step t is averaged over 100 runs.
The Figures 2 and 3 are using the multivariate normal distribution as prior in RankTS, i.e. sampling θ̂lt ∼ N (µl

t−1,Σ
l
t−1)

for each θ̂l separately. We assume the noise is Gaussian as well; therefore, the parameters of the normal distribution for the
posterior can easily be updated by the following equations:

µl
t−1 = Σl−1

t−1

[
t∑

s=1

rlas
(vlas

+ wlv
l−1
as

)

]
,

Σl
t = Σl

t−1 + (val
t
+ wlval−1

t
)(val

t
+ wlval−1

t
)T.

(a) maxl∈[L] |wl| = 0.1, K = 10 (b) maxl∈[L] |wl| = 10, K = 10

(c) maxl∈[L] |wl| = 0.5, K = 100

Figure 3: Expected Regret for d = 10, and L = 4.

It is noteworthy to mention that Thompson Sampling heavily relies on the prior distribution; a poor prior may prevent an arm
from being played enough times, leading to linear regret. A detailed study of prior sensitivity is out of scope of this work2. In
addition, it can be challenging to find a practical example of this sensitivity.

The algorithms are straightforward to implement. Since the majority of computations in UCB and TS are matrix multipli-
cations, they are quite fast. However, when K is high, the shortest path algorithm becomes very slow. This is because shortest
path algorithms are not optimized for a specific graph structure, which in our case is the L-layered graph. Changing to shortest
path algorithms for sparse graphs, however, may speed up the process. An analysis of the run times of algorithms can be found
in Table 1. Moreover, multiprocessing can be used to improve the run time of finding the shortest path to each induced subgraph
of Gi, as defined in Section 3. The specifications of the system that generated the data for Table 1 are AMD Ryzen 5 5600x
@ 3.7GHz. The importance of contextual bandit algorithms for practical applications such as recommendation systems and
online advertising services makes the theoretical and practical investigation of the shortest path optimization problem essential.
Applying algorithms with the shortest possible run time can mitigate negative societal impacts in the systems mentioned earlier.

Furthermore, it would be interesting to explore the robustness of these algorithms. Considering a small deviation from the
main assumptions, such as non-subgaussianity of the noise, how well the algorithms would perform in finding the optimal
action. For this case, we assume that the noise is sampled from a Laplace distribution. In this case, we have the following
changes:

rla = ⟨θl , val + wlval−1⟩+ ηl + ϵη̃l

where η̃l ∼ Laplace(0, 1)

Here, ηl is a subgaussian noise that matches the main assumptions, and η̃l is a sample from a zero-mean Laplace distribution
with scale 1. Figure 4 shows the results. All algorithms can come close to the optimal action when the scale of perturbation is
relatively small. However, a large perturbation scale might result in a potentially non-optimal action, resulting in linear regrets.
The interesting point is that adding some perturbations seems to help the algorithms to converge faster, like Figure 4b.

2See for instance (Liu and Li 2016).

(a) ϵ = 1e−5 (b) ϵ = 0.1

(c) ϵ = 3

Figure 4: Robustness of Algorithms in Presence of Non-Subgaussian Noise. maxl∈[L] |wl| = 1, and K = 10

The codes to reproduce the result are available at https://github.com/shidani/rankingcontextualbandits.

D.1 Dependency on a Window of Previous Items
In this work, we assumed that the reward at position l depends on the attractiveness of both the items at positions l and l − 1.
The result can be generalized to a window of size S − 1 of the previous items. In other words, we have:

E
[
rla|Ht

]
= f l

(
θl

T
(val +

S−1∑
i=1

wl,ival−i)

)
.

Here, wl,i denotes the dependency of position l to the item shown in position l− i. In this case, we need to modify the definition
of super-arm to be an S-tuple of items instead of a pair of items. This generalization would change the size of the L-layered
graph over super-arms while the structure remains very similar. In more detail, to build a L-layered graph G over the super-arms
of S-tuple items, we add Ki vertices to the i-th layer, 1 ≤ i ≤ S, and KS vertices for the l-th layer, S < l ≤ L. The edges
would connect two nodes at layer l to layer l + 1 if and only if the vertex at layer l + 1 is left shifted of the vertex at layer l.

Now, we can generalize the previous results. For instance, we will have the following algorithm and theorem based on UCB
algorithm:

Theorem 4. Under Assumption 1, with probability at least 1− δ, the expected regret of the winRankUCB algorithm satisfies:

RT ≤ 2
√
2
c2
c1

L

√
dTβT log

(
1 +

T
(
(1+maxl∈[L]

∑S−1
i=1 |wl,i|)m1

)2
dλ

)
(19)

where
√
βT = maxl∈[L]

√
λm2 +

√
2 log

(
1
δ

)
+ log

(
det(V l

T (λ))
λd

)
.

Algorithm 4: winRankUCB

1: Input: λ > 0, δ ∈ (0, 1), L, S ≥ 1, {wl,i}l≤L , i≤S−1, T , arm set A = {1, . . . ,K}, and vector v0
2: Create L-layered graph G =

⋃K
i=1 Gi over S-tuple super-arms of set A

3: Initialization: θ̂l0 = 0, V l
0 = λI for l ∈ [L], and for any edge e of G, set ĉe = 0

4: for t = 1, 2, . . . , T do
5: Obtain pi ← ShortestPathAlgorithm(−Gi) for all i ∈ [K] simultaneously
6: p⋆ ← argminpi

∑
e∈pi

ĉe
7: Choose action at as the ordered vertices of path p⋆
8: Play at and observe rlat

for l ∈ [L]
9: for l = 1, . . . L do

10: V l
t (λ)← V l

t−1 + (val
t
+
∑S−1

i=1 wl,ival−i
t

)(val
t
+
∑S−1

i=1 wl,ival−i
t

)T

11: Create Clt+1 based on Equation 5

12: UCBl
t+1(i1, . . . , iS−1, j)← maxθ∈Cl

t+1
f l
(
⟨θ , vj +

∑S−1
k=1 wl,kvik⟩

)
for all super-arms

13: Update ĉe, for any edge e, based on Equation 7 modified for S-tuple nodes of G
14: end for
15: end for

The proof is exactly the same as Theorem 1 achieved by replacing the pair of actions with their S-tuple counterparts. However,
the size of the L-layered graph would be O(K2

K−1 (K
S −1)+(L−S)KS+1), which directly affects the run-time of the shortest

path algorithm. Depending on the computational power, we might be able to solve the shortest path problem for some large
value of S.

