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ABSTRACT

Latent space directions have played a key role in understanding, debugging, and
fixing deep learning models. Concepts are often encoded in distinct feature space
directions, and evaluating impact of these directions on the model’s predictions,
highlights their importance in the decision-making process. Additionally, recent
studies have shown that penalizing directions associated with spurious artifacts
during training can force models to unlearn features irrelevant to their prediction
task. Identifying these directions, therefore, provides numerous benefits, includ-
ing a deeper understanding of the model’s strategy, fostering trust, and enabling
model correction and improvement. We introduce a novel unsupervised approach
utilizing signal vectors and uncertainty region alignment to discover latent space
directions that meet two key debugging criteria: significant influence on model
predictions and high level of interpretability. To our knowledge, this method is
the first of its kind to uncover such directions, leveraging the inherent structure of
the feature space and the knowledge encoded in the deep network. We validate
our approach using both synthetic and real-world benchmarks, demonstrating that
the discovered directions effectively fulfill the critical debugging criteria.

1 INTRODUCTION

Central to the functioning of deep learning models is the latent space, where, to a large-extend,
high-level concepts are encoded in distinct directions Szegedy et al. (2014); Alain & Bengio (2018);
Zhou et al. (2018); Kim et al. (2018); Nanda et al. (2023). The identification of these directions has
been proven to be extremely valuable in providing explanations for deep learning models Kim et al.
(2018); Zhou et al. (2018); Pfau et al. (2020); Schrouff et al. (2022); Yuksekgonul et al. (2023) as
well as become the cornerstone of correcting models that rely on spurious correlations, biases, or
irrelevant features within the data Anders et al. (2022); Pahde et al. (2023).

Initially, concept directions were modeled using the filter weights of a linear classifier designed to
distinguish samples representing the concept from those that do not Zhou et al. (2018); Kim et al.
(2018). However, under a signal - distractor data model, in which latent space representations are
considered as superpositions of components along an informative direction related to the concept,
called the concept’s signal direction, and components along non-informative, noisy directions, called
distractors, filters were found to be mostly influenced by distractors, deviating from concept’s true
signal direction Kindermans et al. (2017); Pahde et al. (2024). As a mitigation measure, in the case
of binary concept labels, Pahde et al. (2024) suggested pattern-CAVs, as a better estimator of the
concept’s signal direction.
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Figure 1: Each image to be classified by the deep network is represented as a set of spatial elements in the
network’s latent space. Each element represents an encoded patch of the image with feature values determined
by the convolutional operations of the network. The graph illustrates the concepts of signal directions, filter
directions and concept hyperplanes. It also exemplifies the phases of direction learnining which is separate of
the phases of interpretability and influence testing.

Both filters and concept signals constitute vectors, which allows us to refer to them as directions.
A filter, when accompanied with a bias constitutes a classifier that can answer questions of inter-
pretability like: ”Is this a representation of the concept motorbike?”. Thus, whenever a filter can
reliably predict the presence of a concept we term it an interpretable direction and we refer to the
respective classifier as concept detector. Similarly, a signal direction can answer questions of in-
fluence like ”Does the concept boat influence the prediction of class harbor?”. For this reason,
whenever a signal direction significantly influences the network’s predictions, we term it an influ-
ential direction. For each concept, there does a exist a filter-signal pair with each direction serving
its own purpose. We will be using the term concept directions to refer to filter - signal pairs of high
interpretability and influence.

In this work, we aim to identify concept directions that fulfill two key debugging properties: a) in-
fluence on the network’s predictions b) be as interpretable as possible. We address these objectives
with a bottom-up approach. We focus on learning a set of directions that are crucial to the network’s
predictions first, while optimizing interpretability through a sparsity property Doumanoglou et al.
(2023). By doing so, we aim to capture what the model deems significant for predictions from its
own perspective, rather than speculating on concepts it might rely on and potentially rejecting many
hypotheses after influence evaluation. This bottom-up approach makes the proposed method unsu-
pervised and it does not require access to concept annotations to identify the directions. We base our
method on the foundations of unsupervised interpretable basis learning Doumanoglou et al. (2023;
2024), which already, to some extend, addresses the discovery of interpretable directions, while we
also make a significant leap forward to additionally identify influential directions by a) considering
and extending the signal-distractor theory to the case of encoding multiple concepts (instead of the
binary setting of prior work Pahde et al. (2024)) b) in this multi-concept setting, we propose sig-
nal vectors as estimators of a concept’s signal direction and provide empirical evidence that those
vectors align with ground truth signal directions in an experiment with synthetic data (when pattern-
CAVs fail) and c) we propose Uncertainty Region Alignment, a loss term that aligns the subspace
where the studied network makes uncertain predictions with the subspace where concept detectors
are maximally uncertain. By empirical evidence, the latter allows optimization of the filters for inter-
pretability and signal vectors for influence. Experiments on a state-of-the-art convolutional image
classifier support that, compared to supervised direction learning, the classifiers learned with our
method, manifest competitive performance in concept classification and segmentation tasks, while
the learned signal vectors show substantial influence on the model’s predictions, far surpassing any
influence from a possible random signal.

2 BACKGROUND

2.1 PRELIMINARIES

Let X ∈ RH×W×D denote the representation of an image in an intermediate layer of a convolutional
neural network with spatial dimensions H,W ∈ N+ and feature space dimensionality D ∈ N+.
Let also xp ∈ RD denote an element of this representation at the spatial location p = (w, h),
w ∈ {0, 1, ...,W − 1}, h ∈ {0, 1, ...,H − 1}.
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2.2 SIGNALS, DISTRACTORS, FILTERS, PATTERN-CAVS

In the case of encoding a single concept i, Kindermans et al. (2017); Pahde et al. (2024) suggest the
following (binary) model for the data generation process of feature representations: xp = αpsi +
βpd, si,d ∈ RD, αp, βp ∈ R. In this model, si is the direction which contains the information
whether xp is a member of concept i and is called the signal direction of concept i. The actual
information is hidden in the coefficient αp, which we call the value of the concept’s signal. In
simple terms, the larger αp is, the more confident we are that xp belongs to concept i. d is called
the distractor direction, and models noise or information unrelated to the concept. βp is modeled
to follow a gaussian distribution N (µ, σ2) and its value is considered independent of whether xp

belongs to concept i. The answer to the question: “Is xp a member of concept i ?” is hidden in
the value of the concept’s signal αp. Since stronger values of αp indicate more confidence for the
presence of the concept, we may find a threshold bi against whom we may compare αp to answer
the question. According to Kindermans et al. (2017), the value of the signal αp can be extracted
via a regression filter wi: zp,i = wT

i xp = αpw
T
i si + βpw

T
i d, if we choose wi : wi ⊥ d, and

wT
i si = 1. Combined with the knowledge of bi which may be learned from data, this regression

filter can be turned into a classifier: yp,i = σ(zp,i − bi) which can provide answers to the above
question.

Supposing that we do have access to the actual value of the signal (for instance if we do have access
to a regression filter), Haufe et al. (2014); Kindermans et al. (2017) provided the following formula
that can estimate the concept’s signal direction:

ŝi =
cov[xp, zp,i]

σz2
p,i

(1)

In this formula, σ2
zp,i denotes the variance of the signal values in the dataset. While this signal

estimator requires access to the values of the signal, when trying to explain the latent space, we miss
this information. In practice, we only have access to xp, while si and d constitute latent variables of
the underlying process. Based on Haufe et al. (2014); Kindermans et al. (2017), Pahde et al. (2024)
introduced pattern-CAVs as concept signal estimators without the need to have explicit access to
the signal values. Instead, their estimator requires access to labeled data, i.e. concept’s positive
and negative samples. Their estimator is based on (1) where they approximate the signal value with
binary labels, i.e. zp,i ∈ {0, 1} and is:

ŝP = Ep(x
+
p )− Ep(x

−
p )

with x+
p and x−

p denoting positive and negative representation samples of the concept.

2.3 UNSUPERVISED INTERPRETABLE DIRECTION LEARNING

Recent research (Doumanoglou et al. (2023)) proposed an unsupervised method that can be used to
identify concepts from the bottom-up, i.e. from the structure of the feature space. Motivated by the
fact that concepts are encoded in the directions of the latent space, the method partitions this space
into linear regions each defined by a hyperplane and its normal vector. Each region corresponds
to a cluster, where features coming from an unlabeled concept dataset (which can be the same
as the network’s training set) are assigned. The method learns W and b of a feature-to-cluster
membership function yp = σ(W Txp − b) ∈ [0, 1]I ,W ∈ RD×I , b ∈ RI with I denoting the
number of clusters. Each feature is soft-assigned to a small number of clusters, with this number
being minimized to fulfill a sparsity property that they show it is essential for interpretability. This
is based on the observation that the semantic label that can be attributed to an image patch is only
one (or a few) among a larger set of possible semantic labels, which implies sparsity at the semantic
level. Sparsity in the assignments is accomplished via the following two loss terms, with the first
being the Sparsity Loss (Ls) and the second the Maximum Activation Loss (Lma), which enforces
cluster membership to be binary:

Ls = Ep(Ls
p), Lma = −Ep(q

T
p log2(yp)), Ls

p = H(qp), qp =
yp

||yp||1
(2)

with H denoting entropy. From another viewpoint, the columns of W and the elements of b (e.g.
wi, bi) constitutes a linear classifier or concept detector yp,i = σ(wT

i xp − bi). The method also
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maximizes linear separability of the features by minimizing the inverse of classification margin
Mi =

1
||wi||2 (Maximum Margin Loss - Lmm section A.5) and penalizes clusters with few assign-

ments using the Inactive Classifier Loss (Lic Doumanoglou et al. (2024)) provided in section A.4.
Although not guaranteed to align with human intuition, the sparsity property of the transformed
representations allows for possible concept definition or identification. Overall, the method of
Doumanoglou et al. (2023; 2024), addresses the debugging property regarding interpretability. Yet,
it disregards the signal-distractor theory and does not provide a suggestion for the debugging prop-
erty of influence.

2.4 DIRECTION LABELING

In Doumanoglou et al. (2023; 2024), the filters of the learned classifiers correspond to an orthogonal
feature space basis with each vector pointing towards the linear region of a cluster. While the method
does not require annotations to learn the basis, to measure the interpretability of the clustering (thus
for quantitative evaluation), they use Network Dissection Bau et al. (2017). Network Dissection is a
basis labeling method which assigns the best-possible human semantic label to each one of the basis
vectors based on how well the classifier behind the vector performs in identifying known concepts
from a densely annotated concept dataset.

2.5 CONCEPT INFLUENCE TESTING

Given access to the intermediate representation of an image belonging to class k and the direction
of a concept i in the considered latent space, RCAV Pfau et al. (2020) quantifies the image-level
concept-sensitivity score by perturbing the representation towards the concept’s direction and mea-
suring the difference in the network’s output probability for class k, before and after the perturbation.
A dataset-wide sensitivity score in the range [−1, 1] is subsequently calculated, with zero indicating
inconsistent use of the concept for predictions of the class, while values near the extremes indicating
consistent negative or positive concept contributions. Finally, due to the fact that the network may
demonstrate non-zero sensitivity along random directions of the feature space, a statistical signif-
icance test is performed where the sensitivity of the network towards the direction of the concept
is compared against the sensitivity scores across a set of random directions. In this paper we use
the term directions of significant influence, whenever the direction passes the latter statistical sig-
nificance test. Apparently, to accurately measure the concept’s-sensitivity score, a reliable estimate
of the concept’s direction is required. Previous works, including Pfau et al. (2020) and Kim et al.
(2018), would consider using classifier filter directions for this purpose. Recent research though
(Pahde et al. (2024)), suggests that the concept’s direction should be modeled using an estimator
of the concept’s signal direction, such as pattern-CAVs. For a more detailed description regarding
RCAV the reader may refer to section A.8.

3 METHOD

For a given network layer, the input to our method is the feature representations of images coming
from a concept dataset, an image collection from the domain on which the network was trained.
We build on the foundations of unsupervised interpretable direction learning Doumanoglou et al.
(2023; 2024) under the lens of a multi-concept signal-distractor data model. First, we learn a set of
linear classifiers (also called concept detectors), W , b using the objectives discussed in section 2.3
with the aim of interpretability. Yet, under the new perspective of signal-distractor theory, we lift
constraints of prior work regarding the orthogonality of the filters and standardization of the feature
space, to allow for a more flexible clustering of representations. Those constraints though that were
previously there, would consist implicit regularizers to avoid degenerate solutions in the direction
search. Thus, removing those restrictions requires addressing the gap that they leave behind, by
introducing the additional loss terms that we discuss in section 3.1. Beyond this, we make a sig-
nificant advancement, by proposing learnable signal vectors ŝi as concept signal estimators under
the newly introduced multi-concept signal-distractor theoretical model. Finally, we propose Uncer-
tainty Region Alignment, a loss term that aligns the subspace of network’s uncertain predictions
with the subspace of uncertain concept detections. The previously mentioned signal vectors are
learned jointly with the concept detectors in an end-to-end fashion, and through the Uncertainty
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Region Alignment loss, affect the quality of the clustering while at the same time exhibit significant
influence on the network’s predictions. An overview of the approach is depicted in Fig. 1.

3.1 INTERPRETABILITY LOSSES TO RECOVER IMPLICIT REGULARIZATIONS

We propose Self-Weighted Reduction (RSW ) as a loss aggregation method to optimize upper
bounds. Consider a set of un-reduced loss values Lk, k ∈ N. The Self-Weighted Reduction is:

RSW ({Lk}) =
∑

k L
ν+1
k∑

k Lν
k

(3)

which is equal to the weighted average of elements in {Lk} with each element being weighted by
Lν
k, ν > 1, ν ∈ R+ a sharpening factor. This loss may be seen as a soft-differentiable version of the

max operation, since the largest value in the set of {Lk}, is weighted with the largest weight.

3.1.1 EXCESSIVELY ACTIVE CLASSIFIER LOSS (Leac)

This loss term penalizes clusters with a large population, to avoid degenerate cases like the fulfill-
ment of a sparse solution where all input representations are assigned to a single cluster. This loss
term depends on a hyper-parameter ρ (in a similar fashion as it is done in sparse autoencoders Ng
et al. (2011)) that indicates an upper bound on the portion of pixels in the dataset that may be classi-
fied positively by any classifier i ∈ {0, 1, ..., I − 1} in the set. The formula of the un-reduced Leac

i
is provided below, with γ > 1, γ ∈ R+ a sharpening factor and the denominator 1− ρ normalizing
the loss in range [0, 1]:

Leac
i =

1

1− ρ
ReLU(Ep[y

γ
p,i]− ρ) (4)

The final reduced loss, is using RSW : Leac = RSW ({Leac
i })

3.1.2 SPARSITY BOUND LOSS (Lsb)

With this loss term we minimize the upper bound of the un-reduced Ls, among pixel locations, using
RSW . In more detail, if Ls

p (2) denotes the Sparsity Loss for pixel p, the Sparsity Bound Loss (Lsb)
is defined as Lsb = RSW ({Ls

p})

3.2 MULTI-CONCEPT SIGNAL-DISTRACTOR DATA MODEL

We propose an extended signal - distractor data model for modeling the latent space which considers
the encoding of multiple concepts. Let each spatial element xp to be a linear combination of latent
concept signals S ∈ RD×I and distractors D ∈ RD×F , F ≤ D − I:

xp = Sap +Dβp (5)

with ap ∈ RI and βp ∈ RF . S is a matrix of I ∈ N+, D-dimensional, unit-norm, concept
signal directions and D a matrix denoting a basis for distractor components in the data. Each one
of the signal directions contains information regarding the presence of a distinct concept. For the
individual signal values ap,i (the i-th element of ap) and the distractor coefficients βp,f we make
the same assumptions as in section 2. Additionally, we make a sparsity assumption in this data
model, in which xp is only a member of a single concept from the set of possible concepts.

3.3 SIGNAL VECTORS AS CONCEPT SIGNAL ESTIMATORS

Let us now consider the set of I concept detectors wi that we learn according to section 2.3. Our
aim for them is to serve a dual purpose. First, to act as classifiers that are able to classify whether a
representation belongs to their detected concept. Second, we want to base their decision on the value
of the concept’s signal in the data, essentially acting as the filter regressors discussed in section 2.2.
For the first objective, the losses introduced in section 2.3 and in section 3.1 are sufficient. For the
second, the weight vector wi needs to be orthogonal to all sj , j ̸= i and the subspace of distractors
D. This extends the previously discussed conditions for the binary concept case of section 2.2.
Since we require wT

i sj = 0 we need to have an estimate of sj . As we discuss in section A.3,

5
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Figure 2: The uncertainty region of the network is defined as the subspace where all network’s predictions
are maximally uncertain. The uncertainty region of the concept detectors is defined as the intersection of all
their decision hyperplanes. Aligning these two through feature manipulation improves the interpretability and
influence of the concept directions.

under the assumption of sparse feature-to-cluster assignments that we consider in this work, for this
purpose we are able to use (1) if, for the variance and covariance terms, we only consider positive
samples of the concept instead of positive and negative samples that was suggested in prior work.
We refer to the signal estimator for concept i that is learned with these conditions as signal vector ŝi.
According to the previous discussion, we use the following Filter-Signal Orthogonality Loss when
we learn the directions:

Lfso =
√
Ei,j

[
(1− δi,j)w̄T

i s̄j)
2
]

with δi,j the kronecker delta and w̄, s̄ denoting the L2-normalized filter weights and signal vectors.
While for the value of the extracted signal to be exactly accurate we would require that wi are
also perpendicular to the basis of distractors, we do not explicitly model distractors in this work.
Instead, to address the previous shortcoming and at the same time being faithful to their use by
the underlying network, we supervise signal vectors to align with influential directions through the
Uncertainty Region Alignment loss of section 3.4.

3.4 UNCERTAINTY REGION ALIGNMENT TO IMPROVE INTERPRETABILITY AND INFLUENCE

The presence or absence of a concept in a representation may provide neutral, positive or negative
evidence against the prediction of a class. However, when we learn the concept directions, we do
not know the association between concept-class pairs. Despite that, we are motivated to leverage the
knowledge embedded within the studied network to facilitate the discovery of latent space concept
directions, by exploiting the intuitive fact that uncertain predictions of the network should be made
when the representation does not contain confident information for the presence or absence of con-
cepts. Thus, we propose that direction search can be enhanced by alignining two subspaces: a) the
uncertainty region of the network and b) the uncertainty region of the concept detectors. Specifically,
we define the uncertainty region of the network as the subspace where the network’s predictions are
maximally uncertain and the uncertainty region of the concept detectors as the intersection of all
their decision hyperplanes. Fig. 2 illustrates the concept of Uncertainty Region Alignment.

To quantify the alignment, we first manipulate all spatial feature representations xp in the direction
−dxp to become x′

p = xp − dxp. The direction dxp is chosen in a way that the shifted x′
p lies

on the intersection of the estimated concept detectors’ decision hyperplanes. This is done based on
our current estimate of wi, bi and ŝi. Subsequently, we require that the network’s predictions for
the manipulated features are maximally uncertain, effectively aligning the two uncertainty regions.

UNCONSTRAINED AND CONSTRAINED UNCERTAINTY REGION LOSSES (Luur , Lcur)

We define two types of Uncertainty Region Loss: i) unconstrained Luur and ii) constrained Lcur.
Each loss uses a different feature manipulation strategy dxp but both share the same final formula

Luur = Lcur = −EX′
[
H(f+(X ′)

]
(6)

6
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(with H denoting entropy). In (6), X ′ denotes a manipulated image representation, with every xp

shifted in the direction −dxp.

i) Unconstrained Uncertainty Region Manipulation Supposing that we know the latent space’s
interpretable directions wi and the classification offsets bi, we can bring all xp to the concept detec-
tors’ uncertainty region by manipulating each xp in the direction −dxp with the following formula:

wT
i x

′
p − bi = 0 ⇒ wT

i (xp − dxp)− bi = 0, ∀i,⇒
W T (xp − dxp)− b = 0 ⇒ dxp = (W T )+(W Txp − b)

with A+ denoting the pseudo inverse of A.

ii) Constrained Uncertainty Region Manipulation In the previous case, features were brought to
the concept detectors’ uncertainty region without any constraints, taking into account only the filter
directions wi. However, as suggested in Pahde et al. (2024), an accurate manipulation needs to take
into account the signal directions within the data. Motivated by this fact in this second manipulation
variant, we constrain the manipulation of the features to be done in the span of the signal vectors,
i.e. dxp = Ŝv, v ∈ RI , and thus:

W T (xp − dxp)− b = 0 ⇒ W T (xp − Ŝv)− b = 0 ⇒ W T Ŝv = W Txp − b ⇒
v = (W T Ŝ)+(W Txp − b) ⇒ dxp = Ŝv = Ŝ(W T Ŝ)+(W Txp − b)

where Ŝ represents a matrix whose i-th column is equal to the estimated signal vector ŝi.

4 EXPERIMENTS

4.1 EXPERIMENT ON SYNTHETIC DATA

Figure 3: Cosine Similarity of
ground-truth concept signal directions
with the estimated signal using three
estimators: filter, signal-vector and
pattern-CAV. Cosine similarities for
filter and signal-vector estimators.
Only the proposed signal vectors were
able to estimate the ground-truth sig-
nal directions.

In this section, we seek to validate the effectiveness of the pro-
posed method for identifying concept directions within syn-
thetic data. We assume that the spatial dimensions of the im-
age representation space are: width W = 2 and height H = 1,
resulting in two spatial elements within the layer, p1,p2. We
set the embedding space dimensionality to D = 6, the num-
ber of distinct concepts to I = 3, and the size of the distractor
basis to F = 2.

Based on the assumptions of section 3.2, we generate features
xp, each one to correspond to a single concept, which implies
that each image patch is associated with a single concept class
(e.g., bus, car, road, etc.). From a representational standpoint,
this indicates that the component ap,i is significant whenever
the patch belongs to concept i, and resembles random noise
otherwise. Let c(p) ∈ {0, 1, 2} denote the concept of pixel
p. Furthermore, we define synthetic image class labels k ∈
{a, b, c}, which are defined by “images” with the following
properties: For k = a: c(p1) = 0 and c(p2) = 1, for k =
b: c(p1) = 0 and c(p2) = 2 and for k = c: c(p1) = 1
and c(p2) = 2. To make a concrete example, images of label
k = a, parking, could be the ones having one image patch
of concept car (i = 0) and one image patch of concept road
(i = 1), etc.

To create the synthetic data, we first randomly generate unit-norm vectors to construct the matrices S
and D of (5); for their specific values, refer to section A.10. Then, to generate a pixel representation
xp, we choose the i-th element of ap and the f -th element of βp according to:

ap,i ∼
{
N (θµ, θσ2),when c(p) = i

N (ωµ, ωσ2), otherwise
, βp,f ∼ N (ωµ, ωσ2) (7)

with a specific choice for θµ = 10, θσ2 = 3, ωµ = 2.5 and ωσ2 = 1. We generate a balanced dataset
with each class being represented by 1000 “images”.
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The network that we use is comprised of just two layers (corresponding to the top part of a potentially
larger convolutional network). The first being an average-pooling layer and the second, a linear layer
with K = 3 output classes. After training (section A.10), the network attains 100% accuracy on a
test set, generated randomly based on the previous principles.

With the proposed method, we can cluster representations based on their semantic concept and re-
cover the underlying latent concept signal directions. Due to the unsupervised nature of the method,
we assign a concept label to each one of the concept detectors based on their Intersection over Union
(IoU) performance when classifying pixels associated with any of the concepts (section 2.4). All the
learned concept-detectors exhibit an exceptional ability to distinguish pixels from different concepts,
with IoU of 1 (thus, the learned filters fulfill the interpretability property, see also Table 8).The co-
sine similarity between the learned signal vectors ŝi and the ground-truth concept signal directions
sj , j ∈ {0, 1, 2} are depicted in Fig. 3. The learned signal vectors align with the true signal direction
of each concept, as evidenced by their high cosine similarity with the ground-truth signal direction
corresponding to their assigned concept label (and thus signal vectors accurately captured the signal
directions within the data). Detailed comparison with other failing signal estimators, including the
learned filters and Pattern-CAVs are provided in the same figure (For a discussion on how the signal
estimation affects concept sensitivity evaluation with RCAV and details on the ability of the learned
concept detectors to extract the true signal value from the representations see also section A.10).

4.2 EXPERIMENT ON DEEP IMAGE CLASSIFIER

Table 1: Experimental results w.r.t interpretability loss
components. Semantic Segmentation Interpretability
Metrics: S1, S2 and Influence Metrics: Significant Di-
rection Count (SDC) and Significant Class-Direction
Pairs (SCDP).

S1 S2 SDC SCDP
Luur 59.06 25.91 377 2487

Luur+Lsb 49.02 35.23 354 2480
Luur+Lsb+Leac 54.55 37.38 359 2118

Lcur+Lsb+Leac+Lfso 57.34 38.36 376 3271

We further assess the various components of
the method through a real-world experiment.
Unless otherwise noted, we conduct evaluation
on the last convolutional layer of a deep im-
age classifier, specifically ResNet18 (He et al.
(2016)), trained on Places365 (Zhou et al.
(2017)). Again, if not mentioned otherwise,
our proposed Interpretable and Influential Di-
rections (IID) is using a weighted combination
(Table 13) of all the interpretability losses of
sections 2.3 and 3.1 in addition to Lcur and
Lfso from sections 3.3 and 3.4 and the hyper-
parameter I is set to I = 500. For direction
learning and evaluation of interpretability, we adhere to the protocol established in Doumanoglou
et al. (2023). In particular, after learning the directions without labels, we employ Network Dissec-
tion (Bau et al. (2017)) with the Broden concept dataset, which contains dense pixel annotations for
1197 concepts over ∼63K images and 5 concept categories, to assign a label to each learned concept
detector.

Regarding interpretability evaluation, we use the following two interpretability metrics introduced
in Doumanoglou et al. (2023). Specificallym let ϕi(c,K) denote the function of Intersection
Over Union when using classifier i in detecting concept c over the concept dataset K. Let
c⋆i = argmaxcϕi(c,Ktrain), i.e. the label in the training split of the concept dataset (Ktrain) that
can be detected better from classifier i. If Kval denotes the validation split of the concept dataset,
the two interpretability scores S1 and S2 that we use are defined as:

S1 =

∫ 1

0

I−1∑
i=0

1x≥ξ

(
ϕi(c

∗
i ,Kval)

)
dξ, S2 =

∫ 1

0

|{c⋆i | ∃ i : ϕi(c
⋆
i ,Kval) ≥ ξ}|dξ (8)

The first metric S1, counts the number of concept detectors with a score better than a threshold ξ.
In the second metric S2, |.| denotes cardinality of the set and counts the number of unique concept
labels that can be detected by the concept detectors with IoU more than ξ. In both cases, the scores
are made threshold agnostic, by integrating across all ξ ∈ [0, 1].

Regarding influence evaluation, we use RCAV Pfau et al. (2020). For sensitivity scores we are
constructing Concept Activation Vectors (CAVs) by replicating each one of the signal vectors or
pattern-CAVs along all spatial dimensions. For direction significance testing, we use RCAV’s label
permutation test with the significance threshold set to 0.05 and Bonferroni correction. Further details
are provided in section A.12.
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In the table results, we use two summarizing metrics, namely Significant Direction Count (SDC)
and Significant Class-Direction Pairs (SCDP). SDC represents the number of learned signal vectors
that significantly influence at least one of the model’s classes, while SCDP counts the total number
of class-direction pairs in which the learned signal vector significantly affects the class. In both
cases, significant directions are considered the ones that pass the RCAV’s direction significance test.
A qualitative explanation obtained with directions learned with the proposed method is provided in
Fig. 4 and more of them are provided in sections A.13 and A.12.2.

Ablation on interpretability losses In Table 1, we perform an ablation study on the set of inter-
pretability loss terms introduced in this paper. Experimental results indicate that the combination of
all introduced loss terms—Luur, Lsb, and Leac—yields more interpretable directions. While this
combination may underperform in terms of influence compared to using Luur alone, the addition of
signal vectors significantly enhances the influential impact (last row of Table 1). At the same time,
the use of the interpretability loss terms maintains the high interpretability of the learned directions.

Table 2: Experimental results on ablation w.r.t Uncer-
tainty Region Alignment losses. Semantic Segmenta-
tion Interpretability Metrics: S1, S2 and Influence Met-
rics: Significant Direction Count (SDC) and Significant
Class-Direction Pairs (SCDP). The number of concept
detectors are set to I = 450.

S1 S2 SDC SCDP
Luur 50.49 34.76 283 1451
Lcur 50.94 36.01 335 2930

Lcur+Lfso 52.63 34.86 360 2956

Ablation on uncertainty region alignment
losses Table 2 summarizes the metric scores in
relation to uncertainty region alignment. The
most influential directions are learned through
the combination of Lcur and Lfso, as evi-
denced by the high influence metrics. This
combination also achieves the highest score in
terms of S1. However, while it scores relatively
high for S2, it is not the optimal combination
compared to other candidates. Despite that, we
consider it the best combination as it exhibits an
excellent balance between interpretability and
influence.

Interpretability comparison with previous unsupervised approaches. We evaluate the proposed
Luur against prior unsupervised methods in two networks: Resnet18 trained on Places365 and
Resnet50 trained on Moments In Time Monfort et al. (2019), using the exact setup of Doumanoglou
et al. (2024) (i.e. without lifting the orthogonality of the directions, the feature standardization, or
considering signal directions). The experimental results are provided in Table 3. The proposed Luur

increased the interpretability of the directions up to +78.78% in S2. (More details in section A.11)

Interpretability comparison with a supervised approach. We compare classifiers learned us-
ing the proposed method with those learned via a supervised approach Zhou et al. (2018), fo-
cusing on interpretability. For each concept detector, we calculate the binary classification met-
rics, Precision, Recall, F1 Score, Average Precision (AP), and the IoU segmentation metric.
These metrics are averaged across detectors to obtain mean values (mPrecision, mRecall, etc.).

Table 4: Influence Comparison against
Pattern-CAVs. Since all S3 scores
are below 0.5 Pattern-CAVs are not
more influential than the proposed sig-
nal vectors.

RCAV α 0.5 2.0 5.0
S3 0.37 0.37 0.38

For Zhou et al. (2018), directions are learned for the labels
identified by Network Dissection, ensuring a fair comparison.
Three variants of our method are considered: a) individual
directions learned directly; b) combining directions with the
same label using a linear layer, which classifies xp positively
if any detector in the set of detectors with the same label clas-
sifies it positively (denoted as Linear-OR in Table 5); and c)
individual directions learned with our method, but with the
threshold bi learned in a supervised manner to optimize F1
Score. This last approach assesses direction quality indepen-

Table 3: Comparison with prior work on unsupervised basis learning. Works considered: Unsupervised Inter-
pretable Basis Extraction (UIBE Doumanoglou et al. (2023)), Concept-Basis-Extraction (CBE Doumanoglou
et al. (2024)) and Concept-Basis-Extraction with CNN Classifier Loss replaced with the proposed Luur (CBE
/w Luur). Significantly more interpretable directions are obtained for Resnet50.

Resnet18 / Places365 Resnet50 / MiT
UIBE CBE CBE /w Luur UIBE CBE CBE /w Luur

S1 60.93 (+0.0%) 69.43 (+13.95%) 67.3 (+10.45%) 124.73 (+0.0%) 131.73 (+5.61%) 158.76 (+27.28%)
S2 28.39 (+0.0%) 31.53 (+11.06%) 32.16 (+13.28%) 18.47 (+0.0%) 26.94 (+45.86%) 33.02 (+78.78%)
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Table 5: Comparison of concept-detectors’ performance in pixel classification and image segmentation tasks.
Comparing between: a) individual classifiers, b) combined classifiers linear-or c) individual classifiers with
their thresholds learned with supervision, and d) IBD: a set of classifiers learned in a supervised way.

mPrecision mRecall mAP mF1Score S1 S2 mIoU
IBD Zhou et al. (2018) 0.84 0.6 0.77 0.69 53.32 53.32 0.20
IID Individual (ours) 0.81 0.24 0.53 0.33 57.33 38.35 0.11
IID Linear-OR (ours) 0.73 0.4 0.59 0.45 30.56 30.56 0.11

IID Individual /w sup thresholds (ours) 0.62 0.49 0.52 0.53 N/A N/A N/A

dent of bias. As shown in Table 5, a) the individual classifiers from our method achieve high pre-
cision, comparable to those from supervised learning. However, b) Recall improves significantly
when combining classifiers with the same label using a linear layer (Linear-OR). Lastly, c) learn-
ing the classifier bias in a supervised manner (IID /w sup thresholds) shows that relaxing sparsity
(through a reduced bias) also improves F1 Scores.

Figure 4: Explanation obtained when using
Network Dissection and RCAV with directions
learned with IID.

Influence comparison with pattern-CAVs. Al-
though Pattern-CAVs did not capture the true signal
direction in our synthetic experiment, they remain
the best signal estimators from prior work. Here, we
compare the network’s sensitivity to Pattern-CAVs
versus signal vectors. Let j ∈ {0, 1, ..., Nl − 1}
represent an index for classifiers with the same con-
cept label l, and let Sl

j,k denote the RCAV sensitivity
score of class k with respect to the signal vector of
the j-th concept detector for label l. Similarly, Sl

P,k

is the sensitivity score of class k with respect to the
Pattern-CAV for the same label.

Pattern-CAVs are learned with ground-truth labels at
the pixel-level. Since Network Dissection may as-
sign the same concept label to multiple concept de-
tectors, a direct comparison of signal vectors with
Pattern-CAVs is not feasible. Therefore, inspired
by the RCAV approach, we treat signal vectors as
“noise vectors” against whom we compare the sen-
sitivity of Pattern-CAVs for a given label. We define
a metric where a value greater than 0.5 indicates that
Pattern-CAVs have more influence on the network’s
output than the proposed signal vectors at the signif-
icance level θ = 0.05 (with Bonferroni correction):

S3 = El,k

[
1(pl,k <

θ

Nl
)
]
, pl,k =

1

Nl

∑
j

1
(
|Sl

j,k| ≥ |Sl
P,k|

)
(9)

S3 metrics for varying RCAV’s hyper-parameter α, are given in Table 4. Overall, S3 is lower than
0.5, meaning that, pattern-CAVs do not influence network’s predictions more than signal vectors.

5 CONCLUSION

We presented a novel unsupervised method for discovering both interpretable and influential direc-
tions in the latent space of deep networks. To the best of our knowledge, this is the first approach
that extends the concept of signal directions in a multi-label setting, offering a way to recover these
directions in more complex cases. Although the data model proposed in this study represents an
advancement over previous models that focus on binary labels, further analysis is required using
real-world datasets. Our experiments demonstrated the method’s ability to recover true signal di-
rections in the data, but certain limitations remain — particularly when distinct signal directions are
nearly co-linear in the presence of strong distractor noise. Overall, this work opens new avenues for
understanding latent spaces in deep networks especially as it easily fits with existing literature on
explainability and model correction.
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A APPENDIX

A.1 EXTENDED RELATED WORK

Direction Learning and Explainability The typical approach to interpretable direction learning
considers a linear model and a dataset with concept annotations. The most prominent works in this
line are Zhou et al. (2018) and Kim et al. (2018). Zhou et al. (2018) proposed interpretable basis
decomposition of class weight vectors, by projecting them to the learned interpretable directions.
This projection allows the decomposition of network predictions to concept heatmaps, combining
local explanations with high level concepts. Kim et al. (2018) and Pfau et al. (2020) utilize Con-
cept Activation Vectors (CAVs) that represent interpretable concept directions in the latent space of
deep networks. These directions can be used to quantify each concept’s influence on the network’s
predictions, providing a global perspective on its decision-making process. In an attempt to address
the annotation costs, Ghorbani et al. (2019) automates concept annotation by leveraging features
from pre-trained image classifiers, though it does not explicitly propose a method for discovering
concept directions. The pseudo-labels generated by this method can still be employed to learn in-
terpretable directions, as in Kim et al. (2018). Different than previous approaches, Schrouff et al.
(2022) combines a local interpretability method Sundararajan et al. (2017) with the global explana-
tion approach of Kim et al. (2018). This effectively combines local attributions, with interpretable
latent space directions for improved local and global explainability. Recently, Pahde et al. (2024)
proposed Pattern-CAVs, an enhanced method for modeling concept directions in the latent space,
that considers signal and distractor parts as we do. Building on previous work Kindermans et al.
(2017); Haufe et al. (2014), Pattern-CAVs provide more accurate concept influence explanations and
can serve as a replacement for CAVs in Kim et al. (2018); Pfau et al. (2020). In contrast to previ-
ous supervised approaches, non-negative Concept Activation Vectors (NCAVs) have been proposed
Zhang et al. (2021) as an unsupervised alternative to learn interpretable directions directly from the
structure of the feature space using non-negative matrix factorization. However, this approach has
the limitations of non-negativity of direction weights and limited expressivity stemming from the
lack of additional bias. Fundamentally different than all previous approaches is the unsupervised
approach that has been proposed more recently, that learns an interpretable basis (directions) with-
out annotations. Instead of providing pseudo-labels for learning the directions as in Ghorbani et al.
(2019), the work of Doumanoglou et al. (2023; 2024) exploits a sparsity property of interpretability,
removing the need of costly annotations and approaching the direction discovery from the perspec-
tive of the network. Additionally, their work does not suffer from the limitations of Zhang et al.
(2021). Our work expands on their line of research and has the potential to fit in places where CAVs
or Pattern-CAVs are utilized.

Directions and Model Correction Lapuschkin et al. (2019); Anders et al. (2022); Pahde et al.
(2023) identify artifact directions, or potential shortcuts, that deep networks may exploit. They
propose augmenting class representations by either inducing or suppressing these artifact directions
in a fine-tuning correction step. Alternatively, their method can suppress the propagation of the
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artifact’s contribution to the final prediction by manipulating the features in the negative artifact
direction, without requiring further fine-tuning. Dreyer et al. (2024) takes a different fine-tuning
approach and addresses model correction by penalizing the gradient in the direction of the artifacts.
While these works have already proposed ways to identify the artifact directions that may be used
to correct networks, our method can also fit as an unsupervised alternative.

Other Applications of Interpretable Directions Concept Bottleneck Models (CBMs) have been
widely explored as a way to enhance model interpretability by associating specific concepts with
model decisions Koh et al. (2020); Xu et al. (2024); Oikarinen et al. (2023); Sheth & Ebrahimi Ka-
hou (2023); Lai et al. (2023). These models aim to make the decision process of deep networks
more transparent by mapping latent representations to human-understandable concepts. In an at-
tempt to enable post-hoc explainability for any classifier, recently, in Post-Hoc CBMs Yuksekgonul
et al. (2023), a concept subspace (comprised by interpretable latent space directions) is learned in
a supervised way using the approach in Kim et al. (2018). This subspace, together with a learned
interpretable predictor, can turn any deep network to an interpretable classifier. While in Yuksek-
gonul et al. (2023) the concept subspace is learned in a supervised manner, the hereby proposed
approach could offer an unsupervised alternative. In a novel strategy for identifying failure modes,
Jain et al. (2023) leverages directions in the embedding space of CLIP Radford et al. (2021), where
both text and images with the same semantic meaning are aligned. Finally, interpretable directions
have also been considered in the context of Generative Adversarial Networks (GANs Yang et al.
(2021); Voynov & Babenko (2020); Bounareli et al. (2022)), where disentangling concept directions
in GANs’ latent space allows meaninful image interventions and fine-grained image synthesis.

A.2 LIMITATIONS OF CLASSICAL FEATURE DECOMPOSITION METHODS

Below we list some theoretical arguments on why classical matrix decomposition approaches might
fail to recover the signal directions within the data and why we expect them to also fail in our
experiment on synthetic data:

1) Principal Component Analysis - PCA assumes that latent components (signals and distractors)
are orthogonal. For the potential of this to work there should be an additional orthogonality assump-
tion across all signals and distractors. This is a rather a strict assumption which we do not have
empirical evidence to be true. Even if this assumption is satisfied, then a second stronger assump-
tion should be made about the latent space: concepts shall be encoded in directions of decreasing
variance, for which, again to our knowledge, there is not such evidence. PCA is guaranteed to fail to
solve our toy-experiment on synthetic data since the signal directions in that example are not orthog-
onal (The reader may also refer to Table 11 for cosine similarities between signals and distractors in
that experiment).

2) Independent Component Analysis - ICA assumes independence for all αp,i and βp,f . By
assumption, in our data model, a distractor component (βp,f ) is indeed considered independent of
signal components or other distractors. Yet, the signal components ap,i are not. More specifically the
Cov[ap,i, ap,j ] is expected to be negative since the presence of concept i in xp implies non-presence
of all the other concepts j. Since two independent variables have covariance zero, and we identified
that Cov[ap,i, ap,j ] is < 0, we suspect that the solution to our problem does not lie in ICA’s solution
space.

3) Dictionary Learning with sparsity constraints is also fundamentally different than our ap-
proach in the following way: in Dictionary Learning, sparsity constraints are enforced in the units
of latent variables. Yet, our proposed data model implies sparsity in the semantic space, i.e. the
space of concepts defined as:

cp = σ(Wxp − b) ∈ [0, 1]I

where W summarizes the filter directions of the concept detectors and b summarizes the concept
detectors’ biases. The latter assumption is a more accurate assumption to make than enforcing
sparsity in the units of feature space. Provided we do have access to W we recover the concepts’
signal directions using (1). In other words, in a Sparse dictionary representation it is implied that
the representation has a zero coefficient for some of the concepts and distractors, which is a stronger
assumption than ours.

4) Non-negative Matrix Factorization - NMF assumes that all the components of the signal matrix
S and distractor matrix D to be positive. Again, this is a rather strict requirement and we expect that
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this approach will not be always able to recover the latent directions. For instance, in our synthetic
experiment there do exist negative components in S and D, as depicted in Table 11, which once
again implies that this method would not be able to identify them.

A.3 SIGNAL DIRECTION ESTIMATION

In the original theoretical formulation defined in Kindermans et al. (2017), the data model is defined
as xp = s + d, with s denoting the signal and d denoting a distractor component. To extract the
value zp of the signal from the representation, a filter w may be applied to xp: zp = wTxp = wTs,
since wTd = 0, as the filter needs to cancel-out the distractor. All pixels p in this formulation share
the same signal and distractor components, and according to the theory, the signal direction can be
estimated by exploiting the fact that cov[d, zp] should be 0, leading to the equation for the estimated
signal direction ŝ:

ŝ =
cov[xp, zp]

σ2
z

(10)

Thus, it is important to highlight that for the theory to hold, in particular cov[d, zp] = 0, all pixels
p considered in (10) need to share the same signal and distractor components. To link Kindermans
et al. (2017) with our case, a filter extracting the concept component i from the representation
xp, sees all other signal directions sj and basis D as distractors. Thus, for two distinct concepts
i and j, the filters wi and wj “see” different signal and distractor directions. According to the
assumptions in Kindermans et al. (2017), distractor components in the features should not have any
predictive power over the value of the signal. To highlight the issue, consider a feature space with
2 signal directions, i.e. each feature is xp = αp,1s1 + αp,2s2. Now consider two sets C1 = {xp :
c(xp) = 1} and C2 = {xp : c(xp) = 2}, with c(xp) denoting the concept of xp. From the
scope of a filter extracting the signal value of concept 1, s2 is seen as distractor. Thus, cov[d, zp] =
cov[αp,2s2, zp] = s2cov[αp,2, αp,1]. Considering only the pixels of C1, the variables αp,1 and
αp,2 are independent by assumption, leading to the, expected, zero covariance. However, in case
we consider xp to lie in the joint set C = C1 ∪ C2, then this independence does not hold, as the
distributions of αp,1 and αp,2 are negatively correlated, and the covariance is not zero, violating the
assumptions of (10) for recovering the signal direction. Thus, in our formulation we use (10), but
only considering the pixels of the concept, completely disregarding concept negative samples.

A.4 UNSUPERVISED INTERPRETABLE BASIS EXTRACTION AND CONCEPT-BASIS
EXTRACTION LOSSES

Sparsity Loss (Ls) Doumanoglou et al. (2023)

Based on the observation that the number of semantic labels that may be attributed to an image’s
patch, are only a fraction of the set of possible semantic labels, this loss enforces sparsity across the
classification results yp,i for each spatial representation xp. In particular, the sparsity loss for pixel
p is defined as:

Ls
p = −

∑
i

qp,ilog2qp,i, qp,i =
yp,i∑
i yp,i

(11)

and the aggregated sparsity loss Ls:

Ls = Ep

[
Ls
p

]
(12)

Maximum Activation Loss (Lma) Doumanoglou et al. (2023)

With the complement of this loss the pixel classifications are enforced to become binary:

Lma = Ep

[
−

∑
i

qp,ilog2yp,i
]

(13)

Inactive Classifier Loss (Lic) Doumanoglou et al. (2024)
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This loss ensures that each classifier in the set, classifies positively at least ν ∈ [0, 1] percent of
pixels in the concept dataset.

Lic = Ei

[1
ν

ReLU
(
ν − Ep[y

γ
p,i]

)]
(14)

with ν = τ
I , γ > 1, γ ∈ R+ denoting a sharpening factor and τ ∈ [0, 1] denoting a percent of pixels

in the dataset to be evenly distributed among the I classifiers in the set.

A.5 MAXIMUM MARGIN LOSS (Lmm)

In the original formulation of Doumanoglou et al. (2023), the Maximum Margin Loss was defined
as Lmm = 1

M with M being a single parameter for the whole set of classifiers since the optimization
was performed in the standardized space with shared parameters for the margins M and biases b. In
this work, we removed the standardized space constraints and instead, we have a margin parameter
Mi for each classifier in the set. Thus, we modify the Maximum Margin loss to become:

Lmm =
1

I

∑
i

1

Mi
(15)

A.6 DATASET EXPLANATION LOSS (Lde)

In the following, whenever ∃ i : yp,i > 0.5, we say that pixel p is explained by the set of classifiers
and whenever ∄ i : yp,i > 0.5, we say that p is not explained by this set. Let λp denote the pixel
explanation coefficient (PEC) which is defined as λp = maxiyp,i. Let also µ ∈ [0, 1] denote a
target percent of pixels in the dataset that we aim to explain, with N the total number of pixels in the
batch. Then, the Dataset Explanation Loss (DEL) provides a penalty, whenever the set of classifiers
does not explain enough pixels in the dataset:

Lde =
1

µ
ReLU(µ− 1

N

∑
p

λp) (16)

With 1
µ a constant that normalizes Lde to lie in range [0, 1]. We modify the loss reduction across

pixels in the batch in Ls and Lma to be a weighted average with weights equal to each pixel expla-
nation coefficient λp (See (17) and (18) below. Whenever µ < 1, PEC allows the method to totally
ignore 1−µ portion of the pixels in the dataset without any penalty on Ls or Lma. Lde ensures that
optimization does not collapse to a degenerate solution where all λp equal zero. Instead, it enforces
the optimization process to converge in solutions that explain at least the ν percent of pixels in the
dataset.

Sparsity Loss (Ls) with PEC

Ls =
1∑
p λp

[
−λp

∑
i

qp,i log2 qp,i

]
(17)

Maximum Activation Loss (Lma) with PEC

Lma =
1∑
p λp

[
− λp

∑
i

qp,ilog2yp,i

]
(18)

Ablation experimental results with respect to the hyper-parameter µ are provided in Table 6.

A.7 BASELINE INFLUENTIAL DIRECTION LOSS (Lid)

Here we consider an alternative baseline for Uncertainty Region Alignment. A more straightforward
approach to find influential directions, can manipulate each representation xp to become xi

p
′
=

xp + δŝi, δ ∈ R+ and require that after the manipulation, the prediction’s probability distribution
is significantly different than the distribution before manipulation (i.e. explicitly optimizing for
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Table 6: Experimental results w.r.t dataset explanation threshold µ. Semantic Segmentation Interpretability
Metrics: S1, S2 and Influence Metrics: Significant Direction Count (SDC) and Significant Class-Direction
Pairs (SCDP). The number of concept detectors are set to I = 450, and uncertainty region alignment loss terms
is set to Lcur+Lfso.

µ S1 S2 SDC SCDP
0.8 48.01 35.66 335 3014
0.9 52.63 34.86 360 2956
1.0 51.8 36.15 362.0 2900

Table 7: Experimental results on ablation w.r.t the influence losses of the method (left) and concept-detector
count I (right). Semantic Segmentation Interpretability Metrics: S1, S2 and Influence Metrics: Significant
Direction Count (SDC) and Significant Class-Direction Pairs (SCDP). On the left, number of concept detectors
are set to I = 450. On the right, uncertainty region alignment loss is set to Lcur+Lfso.

S1 S2 SDC SCDP
Luur 50.49 34.76 283 1451
Lcur 50.94 36.01 335 2930

Lcur+Lfso 52.63 34.86 360 2956
Lid 49.96 36.2 332 2526

Lid+Lfso 50.32 36.21 326 2543
Lcur+Lid+Lfso 51.52 36.28 320 2205

I S1 S2 SDC SCDP
100 15.74 13.57 80 617
150 21.45 19.13 114 1002
250 29.59 23.26 176 1233
350 39.2 29.14 254 1453
450 52.63 34.86 360 2956
500 57.34 38.36 376 3271

influence). Let f+(Xi′) ∈ (0, 1)K denote the part of the network that follows the layer of study and
produces a probability vector for K classes, where Xi′ denotes a manipulated image representation
with all spatial elements shifted in the direction of the i-th signal vector. Then, this objective is
enforced through KL-Divergence:

Lid = −E(X,i)

[
DKL

(
f+(Xi′)||f+(X)

)]
(19)

In Table 7 we provide an ablation study which uses this loss as a baseline against which we compare
Lcur and Luur from section 3.4.

A.8 CONCEPT INFLUENCE TESTING WITH RCAV

RCAV Pfau et al. (2020), is a global explainability method that we use in our experiments and we
describe it here to make the reader familiar with the terms concept sensitivity and concept significant
influence and highlight the importance of why the estimation of the concept’s signal direction is im-
portant. Supposing that we are studying the latent space of a given network’s intermediate layer, let
vi denote the, unit-norm, direction of concept i in this latent space and X denote the representation
of an image which belongs to class k. RCAV aims to answer questions like the following ”To what
extend does the concept i influence the prediction of class k ?”. The answer to this question we first,
define the image-level concept sensitivity score as follows:

si,k(X) = f+,k(X + αvi)− f+,k(X)

with f+,k the upper part of the network above the studied layer which predicts the probability of
class k and α ∈ R+ a feature perturbation hyper-parameter. This equation measures the difference
in the prediction outcome for class k when we add “more of concept i” to the image representation.
Second, we compute the dataset-wide concept sensitivity score as:

Si,k = −1 + 2
1

|Xk
val|

∑
X∈Xk

val

1
(
si,k(X) ≥ 0

)
with Xk

val denoting a validation dataset split with images of class k. This score measures how con-
sistently the model uses concept i for the prediction of class k. Scores near zero indicate concept
irrelevance with respect to the prediction of class k while values near the extremes {+1,−1} indi-
cate consistent positive or negative contribution. Due to the fact that even random vectors drawn
from the latent space yield non-zero sensitivity scores, finally, RCAV concludes with a third step
which measures robustness through the following statistical significance test: N random noise vec-
tors {un} are drawn from the latent space (there is a bit more in this, see Pfau et al. (2020)) and
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Figure 5: Left: Cosine Similarity of ground-truth concept signal directions with the estimated signal using
three estimators: filter, signal-vector and pattern-CAV. Cosine similarities for filter and signal-vector estimators
for both steps (a) and (d) are provided. Recovering the true signal directions within the data, not only depends
on the estimator but also on the training objectives, as only the signal vectors of step (d) are able to recover
all the signal directions. Right: Cosine Similarity of ground-truth concept signal directions with the estimated
signal using three estimators: filter, signal-vector and a preliminary approach to fixing pattern-CAVs (Pahde
et al. (2024)) for the multi-label case. The proposed preliminary approach significantly improves the alignment
of Pattern-CAVs with the ground-truth signal directions.

subsequently the following p-value is calculated for concept i:

p =
1

N

∑
n

1(|Sn,k| ≥ |Si,k|)

where for the calculation of Sn,k we use un. After applying Bonferroni correction to the resulting
p-values, the impact of concept i to the prediction of class k is considered significant, whenever the
resulting p-value is low enough, based on the overall acceptable significance theshold - usually 0.05
- and the adjustment of Bonferroni correction.

To accurately measure the concept-sensitivity score, apparently, a reliable estimate of the concept’s
direction vi is required. Previous works, including Pfau et al. (2020) and Kim et al. (2018), would
consider using classifier filter directions in the place of vi. Recent research though (Pahde et al.
(2024)), suggests that the direction vi should be modeled using an estimator of the concept’s signal
direction, such as pattern-CAVs.

A.9 DIRECTION LEARNING PROCESS

As outlined in Section 3, we extend the approach of Doumanoglou et al. (2024) by relaxing the
orthogonality and feature standardization constraints, while enhancing the direction search with loss
functions introduced in Sections 3.1, 3.3, and 3.4. However, experiments on both synthetic and real-
world data revealed that direct optimization with these changes does not converge. To resolve this,
we implement a four-step process: a) we first learn the parameters wi, bi following Doumanoglou
et al. (2024), replacing the CNN Classifier Loss with our Luur; b) we then continue optimizing
wi, bi, removing the orthogonality and standardization constraints while incorporating the additional
losses from section 3.1; c) next, we learn the signal vectors from the classifiers obtained in the
previous step to initialize {Ŝ}; and d) finally, we jointly optimize ŝi, wi, bi, using all previous
losses, replacing Luur with Lcur and/or Lid, and adding Lfso from Sections 3.3 and 3.4.

A.10 DETAILS FOR THE EXPERIMENT ON SYNTHETIC DATA

We train the network using cross-entropy loss and the Adam Kingma (2014) optimizer, with learning
rate 0.005 and batch size 1024 for 2000 epochs. In principle, we follow the process defined in
section A.9, but due to the simplicity of the example, we omit step (b) and directly proceed from (a)
to (c). For the same reasons, when performing step (d), we exclude Lsb, as convergence is possible
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Table 8: Results for the experiment on synthetic data. Binary segmentation performance of the learned concept
detectors in distinguishing samples from the 3 concepts (IoU). Cosine similarity scores (Cos-Sim) between
the concept-detectors’ signal vector and the ground truth signal direction of each concept. While both steps
have the same perfect classification performance in identifying each one of the concept samples, only step (d)
recovers the true signal directions within the data accurately.

Step (a) Step (d)
IoU Cos-Sim IoU Cos-Sim

Concept-Detectors Concept-Detectors
0 1 2 0 1 2 0 1 2 0 1 2

C
on

ce
pt

s 0 1 0 0 0.59 0.51 -0.41 1 0 0 0.99 0.48 0.27
1 0 0 1 -0.49 0.76 0.67 0 0 1 0.24 0.77 0.99
2 0 1 0 -0.28 0.99 0.14 0 1 0 0.48 0.99 0.76

Table 9: Results for the experiment on synthetic data when excluding Lfso from step (d). Binary classification
performance of the learned concept detectors in distinguishing samples from the 3 concepts (Jaccard Index -
(IoU)). Cosine similarity scores (Cos-Sim) between the concept-detectors’ signal vector and the ground truth
signal direction of each concept. When not using Lfso, the learned classifiers do not capture the true signal
within the data, except concept-detector 1.

Step (d)
IoU Cos-Sim

Concept-Detectors
0 1 2 0 1 2

C
on

ce
pt

s 0 1 0 0 0.59 0.53 -0.44
1 0 0 1 -0.49 0.74 0.64
2 0 1 0 -0.28 0.99 0.09

even without it. For step (a), we learn interpretable directions using Adam and the learning rate
linearly increasing from zero to 0.005 in 5000 epochs. For step (d), we learn concept directions
using the same optimizer and learning rate scheme, but for a period of 10000 epochs. For the batch
sizes we use the largest number that our GPU allows. We linearly combine the introduced loss terms
with weights λn where n the respective loss name (for their values see Table 10). In both learning
steps, in order to avoid local minima, we use an adaptive loss weighting scheme, which varies across
iterations, for the weights λma and λmm:

λma =

{
0,Lma < 0.8

2.7, otherwise
λmm =

{
0,Ls > 0.1, or Lfso > 0.1 (when applicable)
0.6, otherwise

and keep the direction set that attains the lowest loss score, satisfying the constraints Ls <
0.1,Lma < 0.8 and Lfso < 0.1 (when applicable). The specific values of matrices S and D
used in this experiment, and the cosine similarities between every pair of vectors are provided in
Table 11. Detailed IoU scores of the learned concept detectors and cosine similarity scores between
ground-truth signal directions and various signal estimators for both learning steps (a) and (d) are
provided in Table 8 and Fig. 5 (Left). We also provide cosine-similarity scores for step (d) when not
using Lfso in Table 9.

For Pattern-CAVs we use difference of means between samples depicting the concept and negative
samples, as proposed in Pahde et al. (2024). Yet, this approach is expected to fail in the non-binary
concept regime introduced in section 2. This is due to the fact that for the difference of means
to work, all considered samples in the formulas of Kindermans et al. (2017); Haufe et al. (2014),
should share the same signal and distractor parts and from the scope of a filter extracting the signal
value of a concept, other concept signal directions are also being seen as distractors. According to
Kindermans et al. (2017); Haufe et al. (2014), a distractor component should not leak information
regarding the value of the signal. However, in the non-binary - multiple concept case, the presence of
a concept in a representation indicates negative correlation between this direction and the directions
of other concepts, which contradicts the objective that distractors do not have predictive power over
the considered signal direction.
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Table 10: Loss weights used for the experiment on Synthetic Data. For adaptive entries, refer to the text.

λs λma λmm λic λuur λcur λeac λfso

step (a) 2.6 adaptive adaptive 5.0 0.25 - - -

step (d) 2.6 adaptive adaptive 15.0 - 0.25 15.0 5.0

Table 11: Left: Data matrices S and D for the experiment on synthetic data. Right: Cosine similarities for
every pair of vectors in S, D, i.e.: CTC,C = [S|D].

S

0.4497 -0.8870 1.0000
-0.7530 0.9700 0.9630
-0.1560 0.7053 0.2769
0.7937 0.4342 0.7818
0.3488 0.4440 0.1076
-0.1268 0.3299 0.5396

D

-0.5484 -0.6822
0.3860 -0.6720
-0.6970 0.2621
0.1838 0.3192
-0.3150 0.3057
-0.7146 0.5159

Cosine-Similarities
1.0 0.3070 0.5392 -0.0392 -0.0481

0.3070 1.0 0.7616 -0.1667 0.6893
0.5392 0.7616 1.0 -0.2274 0.6269
-0.0392 -0.1667 -0.2274 1.0 0.0103
-0.0481 0.6893 0.6269 0.0103 1.0

A possible preliminary approach to overcome this, could be based on the analytical formula intro-
duced in Pahde et al. (2024). We may only consider samples containing a concept (disregarding
negative samples), and exclude the bias term b. The formula to calculate the signal directions would
become:

hi : min||A− 1hT
i ||2 (20)

where 1 ∈ RD a vector of ones, hi denotes the learned Pattern-CAV for concept i, A ∈ RN×D with
N denoting the number of spatial elements xp for concept i and D the embedding dimension. Thus
A is a matrix summarizing the features of concept i.

For the experiment on synthetic data, we solved for hi using iterative optimization, using the Adam
optimizer for 25000 epochs and learning rate 0.001. The resulting Pattern-CAVs had a significantly
higher cosine similarity scores with the ground truth signal directions as depicted in Figure 5 (Right).

Although this preliminary approach may solve this toy problem, a more thorough study is essential
for feature work. When comparing against Pattern-CAVs in the experiment on the Deep Image
Classifier, we still use the original proposition introduced in Pahde et al. (2024), i.e. calculate
pattern directions with the difference of cluster means.

Finally, we also measure the ability of each concept-detector in extracting the true value of the
concept’s signal in the data. We treat each concept-detector as a linear feature extractor, excluding
the sigmoid non-linearity and directly apply the weight vectors on the pixel representation: zp,i =
wT

i xp. Feature extractors from step (a) demonstrate root mean squared error (RMSE) of 7.8, while
those from step (d) achieve RMSE 0.99.

COMPARING CONCEPT-CLASS SENSITIVITY SCORES FOR THE EXPERIMENT ON SYNTHETIC
DATA FOR VARIOUS RCAV α

In Figures 6,7,8,9,10,11 we present RCAV sensitivity scores for the experiment on synthetic data
for various values of RCAV’s hyper-parameter α and for different signal estimators, including filter,
signal-vector or Pattern-CAVs Pahde et al. (2024).

In RCAV evaluation, we construct a Concept Activation Vector by replicating the estimated signal
directions (either filter, pattern or signal vector) across spatial locations. Compared to Pattern-CAVs,
the sensitivity scores that are obtained with the learned signal vectors, more closely resemble the
ground-truth sensitivity. This may be attributed to the higher cosine similarity between the signal
vectors and the ground truth directions compared to Pattern-CAVs (according to Fig. 3).
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Figure 6: Concept-Class sensitivity scores for the experiment on synthetic data, computed using RCAV Pfau
et al. (2020) for different choices on RCAV’s hyper-parameter value α. GT: sensitivity computed using the
ground-truth signal direction. (d)-signal-vector: sensitivity computed using the signal vectors of step (d). pat-
tern: sensitivity computed using pattern-CAV Pahde et al. (2024) with ground-truth labeled representations.
The signal vectors of step (d) more accurately approximate the ground-truth sensitivity scores of each concept-
class pair. For other values of α see section A.10 The sensitivity score is rescaled to [−1, 1].

Figure 7: Concept-Class sensitivity scores for the experiment on synthetic data, computed using RCAV Pfau
et al. (2020) for different choices on RCAV’s hyper-parameter value α. Compared to pattern-CAVs, the sen-
sitivity scores that are obtained using the proposed signal vectors are closer to the sensitivity scores that are
obtained using the ground-truth concept directions.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: Concept-Class sensitivity scores for the experiment on synthetic data, computed using RCAV Pfau
et al. (2020) for different choices on RCAV’s hyper-parameter value α. Compared to pattern-CAVs, the sen-
sitivity scores that are obtained using the proposed signal vectors are closer to the sensitivity scores that are
obtained using the ground-truth concept directions.

Figure 9: Concept-Class sensitivity scores for the experiment on synthetic data, computed using RCAV Pfau
et al. (2020) for different choices on RCAV’s hyper-parameter value α. This figure compares against different
ways to estimate each concept’s signal direction: (a)-filter, (d)-filter, (a)-signal vector and (d)-signal vector
and pattern-CAVs Pahde et al. (2024). Apart from pattern-CAVs, the rest of the estimators correspond to filter
directions obtained from steps (a) and (d) or signal vectors computed using 1 for the same steps. Compared
to other estimators, the sensitivity scores that are obtained using the signal vectors of step(d) are closer to the
sensitivity scores that are obtained using the ground-truth concept directions.
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Figure 10: Concept-Class sensitivity scores for the experiment on synthetic data, computed using RCAV Pfau
et al. (2020) for different choices on RCAV’s hyper-parameter value α. This figure compares against different
ways to estimate each concept’s signal direction: (a)-filter, (d)-filter, (a)-signal vector and (d)-signal vector
and pattern-CAVs Pahde et al. (2024). Apart from pattern-CAVs, the rest of the estimators correspond to filter
directions obtained from steps (a) and (d) or signal vectors computed using 1 for the same steps. Compared
to other estimators, the sensitivity scores that are obtained using the signal vectors of step(d) are closer to the
sensitivity scores that are obtained using the ground-truth concept directions.

Figure 11: Concept-Class sensitivity scores for the experiment on synthetic data, computed using RCAV Pfau
et al. (2020) for different choices on RCAV’s hyper-parameter value α. This figure compares against different
ways to estimate each concept’s signal direction: (a)-filter, (d)-filter, (a)-signal vector and (d)-signal vector
and pattern-CAVs Pahde et al. (2024). Apart from pattern-CAVs, the rest of the estimators correspond to filter
directions obtained from steps (a) and (d) or signal vectors computed using 1 for the same steps. Compared
to other estimators, the sensitivity scores that are obtained using the signal vectors of step(d) are closer to the
sensitivity scores that are obtained using the ground-truth concept directions.
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A.11 INTERPRETABILITY COMPARISON OF Luur WITH PRIOR WORK

In an attempt to discover more interpretable directions, Doumanoglou et al. (2024), made a first
attempt to exploit the knowledge encoded in the network, through feature manipulation. In particu-
lar, it was suggested that representations xp should be manipulated towards the concept detectors’
hyperplanes, only for the concepts that are present in xp (i.e. manipulating towards the negative
direction of the filter weights, when those filters classify xp positively). Features were not ma-
nipulated in the direction of the weights (to bring them towards the separating hyperplane, when
they lie in the subspace of negative classification), essentially suggesting that the network’s predic-
tions should be highly uncertain when for all xp, none of the classifiers makes positive predictions
(without minding about confident negative predictions). This is fundamentally different with the
proposition in the present work, which manipulates all features towards the hyperplanes, re-
gardless of whether features were positively or negatively classified, suggesting that the network’s
predictions should be maximally uncertain when for all xp none of the classifiers makes confident
predictions, either positive or negative. Additionally, in Doumanoglou et al. (2024), signal direc-
tions were completely overlooked.

We evaluate the proposed Luur against prior work in two networks: Resnet18 trained on Places365
Zhou et al. (2017) and Resnet50 trained on Moments In Time Monfort et al. (2019), using the
exact setup of Doumanoglou et al. (2024) (i.e. without lifting the orthogonality of the directions,
the feature standardization, or considering signal directions). For Luur we used a loss weight of
λuur = 0.25. The concept datasets that we use for interpretability evaluation are Broden (Bau
et al. (2017)) for Resnet18 and Broden Action (Ramakrishnan et al. (2019)) for Resnet50. The
experimental results are provided in Table 12. The proposed Luur increased the interpretability of
the directions up to +78.78% in S2.

Table 12: Comparison with prior work on unsupervised basis learning for two networks: Resnet18 trained
on Places365 (left) and Resnet50 trained on Moments-In-Time (MiT) (right). Works considered: Unsu-
pervised Interpretable Basis Extraction (UIBE Doumanoglou et al. (2023)), Concept-Basis-Extraction (CBE
Doumanoglou et al. (2024)) and Concept-Basis-Extraction with CNN Classifier Loss replaced with the pro-
posed Luur (CBE /w Luur). Significantly more interpretable directions are obtained for Resnet50.

Resnet18 / Places365 Resnet50 / MiT
UIBE CBE CBE /w Luur UIBE CBE CBE /w Luur

S1 60.93 (+0.0%) 69.43 (+13.95%) 67.3 (+10.45%) 124.73 (+0.0%) 131.73 (+5.61%) 158.76 (+27.28%)
S2 28.39 (+0.0%) 31.53 (+11.06%) 32.16 (+13.28%) 18.47 (+0.0%) 26.94 (+45.86%) 33.02 (+78.78%)

A.12 DETAILS FOR THE EXPERIMENT ON DEEP IMAGE CLASSIFIER

Table 13: Loss weights used for the experiment on the Deep Image Classifier.

λs λsb λma λmm λic λuur λcur λeac λfso Lid Lde

step (a) 2.6 - 2.8 0.6 5.0 0.25 - - - - -

step (b) 0.85 2.6 2.8 0.6 15.0 0.25 - 15.0 - - 15.0

step (d) 0.85 2.6 2.8 0.6 15.0 - 0.25 15.0 1.0 5.0 15.0

For step (a) direction learning lasts 800 epochs using an initial learning rate of 0.001 for a reference
batch size of 4096 (which, in all steps, we scale based on the available GPU memory). We reduce
the learning rate on plateau, by a factor of 0.5 with patience and cooldown set to 10 epochs. Step
(b) lasts for 2000 epochs with initial learning rate of 0.0001 for the same reference batch size. We
also reduce the learning rate on plateau by a factor of 0.5 but with patience and cooldown set to 50
epochs. For both steps (a) and (b) we use τ = 0.9 for Lic. For Leac we use ρ = 12τ/I , chosen
to roughly match the maximum number of pixels in any of the Broden classes. Step (d) lasts for
another 2000 epochs with initial learning rate of 0.0005 with the τ hyper-parameter of Lic set to
0.2 and ρ = 70τ/I . The rest of the parameters remain intact with respect to step (b). For Lid

we use δ = 5.0 and for RSW we use ν = 4.0. Due to memory constraints, when learning with
Lid (Table 7) we manipulate 150 random directions per iteration. Also when using Luur and Lcur,
we observed better results when manipulating features with a stochastic magnitude in the direction
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Figure 12: Interpretability Comparison. Histogram of differences in binary metrics: Precision, Recall, F1Score
between the Linear-OR set of classifiers learned with the proposed method (Lcur + Lfso, I = 500) and
classifiers learned in a supervised way (IBD Zhou et al. (2018)).

dxp, i.e. shifting representations as x′
p = xp − κdxp with κ a random number in [0.5, 0.9]. Table

13, summarizes the loss weights that we used for steps (a), (b) and (d). In practice, we separate filter
directions from their magnitude 1/Mi and learn them independently as suggested in Doumanoglou
et al. (2024). For enforcing ||wi||2 = 1 (i.e. unit norm filter vectors) we use parametrization on
the unit hyper-sphere. In steps (b) and (d) we also used the Dataset Explanation Loss, described in
section A.6 with hyper-parameter µ = 0.9. Due to resource limitations, we were not able to conduct
experiments that prove significant positive contributions for cases of µ < 1, and for this reason we
did not include it in the main text. Table 6 summarizes the interpretability and influence metrics for
µ = 0.8, 0.9, 1.0. A future study could provide better insights for whether learning directions with
µ < 1 provides significant benefits in terms of interpretability or influence.

Regarding the interpretability evaluation protocol (results of 5), for each concept, we construct a
dataset comprised of negative samples that are up-to 20 times more than the number of positive
samples, as a means to mitigate the great imbalance. For RCAV’s perturbation hyper-parameter, we
use α = 5. For direction significance testing, we use RCAV’s label permutation test. To construct
random noise signal vectors, we (a) construct a dataset of feature-label pairs based on the decision
rule of each one of the concept detectors. To deal with great class imbalance, we construct a pool of
negative samples that is at most 20 times more than the positive ones (b) we construct N noisy ver-
sions of that dataset by label permutation (c) we learn a noise-classifier to distinguish features based
on the permuted labels, and (d) we concurrently, estimate a noise-signal vector using (1). To train
each one of the noise signal vectors and before permuting the labels, we construct a balanced dataset
of at most 5000 samples, picked randomly from the pool. We train the noise classifiers using Adam
for 100 epochs and a learning rate 0.01. By using noise signal vectors as RCAV’s noisy directions,
and with the number of of those vectors per classifier set to N = 100, we subsequently calcu-
late RCAV’s p-values. We apply Bonferroni correction to all p-values, by diving the significance
threshold 0.05 with the number of concept detectors I and the number of model classes (K = 365).

Ablation on the number of directions (I). Table 7 (right) shows results for a varying number of
concept detectors I . Notably, both interpretability and influence improved as the number of direc-
tions increased. As previously discussed, the addition of signal vectors enhances both interpretability
and influence (evident when comparing metrics for I = 500 with the scores in Table 1).

A.12.1 DETAILED INTERPRETABILITY COMPARISON AGAINST THE SUPERVISED APPROACH
FOR THE EXPERIMENT ON DEEP IMAGE CLASSIFIER

Figure 12 plots a histogram of classification metric differences between the Linear-OR set of clas-
sifiers and the classifiers learned in a supervised way. The differences are based on the labels,
effectively taking the difference of metrics that regard two classifiers (the first from the Linear-OR
set and the second from Zhou et al. (2018)) with the same concept name.

Figures 13, 14, 15 depict concrete binary classification metrics for some of the concept detectors in
the Linear-OR set of classifiers, comparing them with concept classifiers learned with supervision.
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Figure 13: Interpretability Comparison. Exact Precision/Recall/F1Scores for specific concepts in Broden: com-
parison between the linear-or set of classifiers learned with the proposed method (IID, I = 500) and classifiers
learned in a supervised way (IBD Zhou et al. (2018)).

Figure 14: Interpretability Comparison. Exact Precision/Recall/F1Scores for specific concepts in Broden: com-
parison between the linear-or set of classifiers learned with the proposed method (IID, I = 500) and classifiers
learned in a supervised way (IBD Zhou et al. (2018)).
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Figure 15: Interpretability Comparison. Exact Precision/Recall/F1Scores for specific concepts in Broden: com-
parison between the linear-or set of classifiers learned with the proposed method (IID, I = 500) and classifiers
learned in a supervised way (IBD Zhou et al. (2018)).

A.12.2 DETAILED INFLUENCE METRICS AND DIAGRAMS FOR THE EXPERIMENT ON THE
DEEP IMAGE CLASSIFIER

Table 14 provides more summarizing influence statistics regarding the signal vectors learned with
the proposed method. In that table, SCi,j denotes RCAV’s sensitivity score in the direction of the
i-th signal vector, for the network’s class j. Figures 16,17,18,19 depict concrete examples of how
each concept’s signal direction impacts the Resnet18’s class predictions. Concepts appearing more
than once. correspond to different directions that have been attributed the same label by Network
Dissection. Seemingly irrelevant concepts with positive influence may have three possible expla-
nations: a) the network has some sensitivity to those concepts (as it’s top1 accuracy is 56.51%) b)
their impact might be low, since RCAV only considers the sign of the class prediction difference
before and after the manipulation, regardless of its magnitude, (thus those concepts may influence
the prediction class positively, but by only a small amount) and c) the respective concept detectors
do not reliably predict the concept (that is they exhibit a low IoU score) and thus the concept name
may be misleading.
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Table 14: This table summarizes statistics of the RCAV’s sensitivity score matrix SC for the set of directions
learned with Luur or Lcur +Lfso, I = 500, RCAV α = 5.0. All entries in the sensitivity score matrix SC are
masked for significance before computing the statistics. Sensitivity scores were obtained using signal vectors
calculated using (1).

Metric Formula Luur Lcur + Lfso

Significant Direction Count 359 376.0
Significant Class-Direction Pairs 2118 3271.0
Directions /w Positive Influence

∑
i maxj 1x>0(SCi,j) 174 185.0

Directions /w Negative Influence
∑

i maxj 1x<0(SCi,j) 350 366.0
Positively Impactful Directions Per Class 1

K

∑
i,j 1x>0(SCi,j) 1.41 1.24

Negatively Impactful Directions Per Class 1
K

∑
i,j 1x<0(SCi,j) 4.39 7.71

Minimum # of Positively Influencing Classes Across Directions mini
∑

j 1x>0(SCi,j) 0 0

Maximum # of Positively Influencing Classes Across Directions maxi
∑

j 1x>0(SCi,j) 16 13

Minimum # of Negatively Influencing Classes Across Directions mini
∑

j 1x<0(SCi,j) 0 0

Maximum # of Negatively Influencing Classes Across Directions maxi
∑

j 1x<0(SCi,j) 27 46
# of Classes /w at Least One Positively Impactful Direction

∑
j 1x>1

(∑
i 1x>0(SCi,j)

)
147 161

# of Classes /w at Least One Negatively Impactful Direction
∑

j 1x>1

(∑
i 1x>0(SCi,j)

)
213 345
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Figure 16: Concept Influence Diagram for Resnet18 trained on Places365. The depicted concepts have sen-
sitivity scores above 0.99 in absolute terms. (We use RCAV to quantify the sensitivity, and re-scale the score
to [−1, 1]) Positive influencing and negative influencing concepts are provided. The number of concepts have
been limited to 10. When concepts appear more than once, they correspond to different signal directions (as
labeling the classifiers with NetDissect may assign the same concept name to more than one directions.)
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Figure 17: Concept Influence Diagram for Resnet18 trained on Places365. The depicted concepts have sen-
sitivity scores above 0.99 in absolute terms. (We use RCAV to quantify the sensitivity, and re-scale the score
to [−1, 1]) Positive influencing and negative influencing concepts are provided. The number of concepts have
been limited to 10. When concepts appear more than once, they correspond to different signal directions (as
labeling the classifiers with NetDissect may assign the same concept name to more than one directions.)
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Figure 18: Concept Influence Diagram for Resnet18 trained on Places365. The depicted concepts have sen-
sitivity scores above 0.99 in absolute terms. (We use RCAV to quantify the sensitivity, and re-scale the score
to [−1, 1]) Positive influencing and negative influencing concepts are provided. The number of concepts have
been limited to 10. When concepts appear more than once, they correspond to different signal directions (as
labeling the classifiers with NetDissect may assign the same concept name to more than one directions.)
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Figure 19: Concept Influence Diagram for Resnet18 trained on Places365. The depicted concepts have sen-
sitivity scores above 0.99 in absolute terms. (We use RCAV to quantify the sensitivity, and re-scale the score
to [−1, 1]) Positive influencing and negative influencing concepts are provided. The number of concepts have
been limited to 10. When concepts appear more than once, they correspond to different signal directions (as
labeling the classifiers with NetDissect may assign the same concept name to more than one directions.)
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A.13 QUALITATIVE SEGMENTATION RESULTS FOR THE EXPERIMENT ON DEEP IMAGE
CLASSIFIER

Figures 20 and 21 depict qualitative segmentation results for the classifiers learned with the proposed
method in the experiment with the deep image classifier. Visualizations are obtained using Bau et al.
(2017) which reported that our concept detectors can identify 257 different concepts (at the IoU
threshold level of 0.04) in the following categories: 65 objects, 158 scenes, 12 parts, 3 materials,
18 textures and 1 color. The total number of interpretable concept detectors is 429 (out of the 500
in the set). In the figures, the IoU scores refer to the whole validation split of the concept dataset
and not individual image segmentations. The labels assigned to the concept detectors are based on
the annotations available in the concept dataset and in some cases may not be very accurate. For
instance consider classifiers with index 343 and 430. They have been assigned the label hair while a
more suitable label might be face, but such a concept class is not available in the annotations of the
dataset. Other notable cases include the classifiers with indices 76 and 444. The first is specialized in
detecting cars that dominate the image space, while the second appears better suited for identifying
smaller instances of the same class. The IoU for the latter is only 0.05 because it is calculated
across the entire set of cars, regardless of their size. Lastly, the classifier with index 45 seems adept
at detecting the upper body of a person, whereas the classifier with index 256 is more effective at
identifying the lower body.
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Figure 20: Qualitative segmentations using the classifiers learned with our method. Here I = 500.
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Figure 21: Qualitative segmentations using the classifiers learned with our method. Here I = 500.
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Table 15: Network accuracy and confusion matrix for the network trained on the Chess Pieces dataset.
Rows correspond to ground-truth labels and colums to network predictions. Three classes are considered:
bishop/knight/rook. The rows of the confusion matrix are normalized against ground-truth element count.
Three datasets are also considered: Clean (without watermarks), Poisoned (with watermarks) and Clean &
Poisoned which is the union of the previous two.

Dataset: Clean Poisoned Clean & Poisoned
Accuracy: 0.93 0.34 0.64

b k r b k r b k r
b 0.95 0.05 0.0 0.0 0.0 1.0 0.48 0.02 0.5

k 0 0.95 0.05 0.0 0.0 1.0 0.0 0.48 0.52

r 0.04 0.04 0.92 0.0 0.0 1.0 0.02 0.02 0.96

A.14 TOY EXPERIMENT ON MODEL CORRECTION WITH THE LEARNED DIRECTIONS

In this experiment we demonstrate how the proposed approach may be utilized to correct a model
that relies on controlled confounding factors to make its predictions. For the purposes of this toy
experiment we use a small convolutional neural network with 5 Conv2d layers each one followed
by a ReLU activation. The top of the network is comprised of a Global Average Pooling layer (GAP)
and a linear head. After each convolutional layer, except the last, there is a Dropout layer with
p = 0.3. All Conv2d layers have kernel size 3x3 and stride 2 except the last one which has stride 1.
Furthermore, the latent space dimensionality is set to 16 for all convolutional units. We consider the
task of predicting the chess piece name from an image depicting the piece. We use the Chess Pieces
dataset from Kaggle 1 which contains a collection of images depicting chess pieces from various
online platforms (i.e., piece images appearing in online play). The spatial resolution of those images
is 85x85. For simplicity, we consider 3 chess pieces to be classified by the network, namely: bishop,
knight, rook, thus the network predicts K = 3 output classes. The total number of images in the
dataset are 210, 67 for bishop, 71 for knight and 72 for rook. We make a stratified train-test split
with the training set ratio set to 0.7. To encourage the model to learn a bias to make its predictions,
we poison half of the rook images of the training set with the watermark text “rook” on the top left
of each rook image. With the introduction of this bias on half of the images, we expect that the
network learns that the watermark concept has positive influence on the rook class, while not being
the only feature of positive evidence for the same class, since we include rook images in the training
set without the watermark.

A.14.1 NETWORK TRAINING AND EVALUATION

We train the network with cross-entropy loss and the Adam optimizer with learning rate 0.005 for
1000 epochs. In the (poisoned) training set the model achieves 100% accuracy. For evaluation we
construct three datasets based on the test split that we created earlier. First, we consider a clean test
set, a dataset comprised of test images without any watermarks (Clean). Second, we consider the
previous clean set but with all the images being poisoned with the watermark (Poisoned) and c),
we consider the union of the previous two datasets (Clean & Poisoned). Table 15 summarizes the
performance of the network in each one of the three datasets. As evidenced by the Poisoned section
of the detailed confusion matrix, the watermark is a strong feature that whenever is present in the
image it directs the prediction towards the rook class.

A.14.2 DIRECTION LEARNING FOR WATERMARK DIRECTION IDENTIFICATION

We now consider the application of the proposed method in identifying the watermark direction,
from the bottom up, without relying on annotations. The proposed approach is unsupervised and
identifies directions influential to the model. Since in the previous section we identified that the
watermark actually influences the predictions of the network in a consistent manner, we seek to
answer the following two research questions: a) can the proposed IID method identify the watermark
as a concept? That is, is any of the learned classifiers responsible to detect the watermark? b)
Supposing the answer to (a) is positive, given the watermark’s concept detector and the respective

1Chess Pieces Dataset (85x85): https://www.kaggle.com/datasets/s4lman/
chess-pieces-dataset-85x85
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Figure 22: Example image segmentations based on the concept detectors learned for the model correction
experiment. Top rows illustrate pictures with the concept and bottom rows illustrate pictures without. Classifier
5 clearly detects the watermark.

learned signal vector, can we fix the network in order to not rely on the watermark for its predictions
?

Direction Learning We consider the last convolutional layer as our layer of study. This layer has
spatial dimensionality 2x2. To learn the latent directions, we apply our method by following the
learning process described in section A.9 and we use the network’s training set as our concept
dataset. Furthermore, for stable learning, we have found that the directions are more robustly learned
with the Augmented Lagrangian loss scheme, which implies that the optimization problem is for-
mulated as a constrained optimization problem. We optimize λsLs + λsbLsb + λcurLcur with the
constraints Lma < 0.8,Lic < 0.01,Leacl < 0.01,Lmm < 8.0,Lfso < 0.1, and weights λ similar
to Table 13. The most important hyper-parameter to tune is the dimensionality of the concept space
I .

Watermark Direction Identification We found that, when learning with I = 6, the proposed
approach clearly identifies the watermark direction. By using the learned classifiers as concept
detectors, we are able to group each one of the spatial features of the 2x2 representation, into clusters
of the same concept. When applied on an image representation, each learned classifier produces a
form of a binary label-map, with each element of the label-map indicating whether the part of the
image behind the spatial representation belongs to the concept. In Fig. 22 we provide example
image segmentations based on those label-maps. From the qualitative visualizations we see that
classifier 5 identifies the watermark. Although annotations were not required to learn the direction,
since this is a controlled experiment and we know in which images we injected the watermark, we
are able to quantify how well this classifier can detect the concept by evaluating its IoU performance
on the concept dataset. We found that this classifier detects the watermark concept with IoU 0.93.
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A.14.3 INFLUENCE TESTING WITH RCAV

We use RCAV to measure the sensitivity of the model with respect to the watermark signal vector.
The sensitivity scores reported by RCAV are −1 for the classes bishop and knight while it is 1 for
the class rook. This implies that when the image has the watermark it becomes more rook and less
bishop or knight. This quantitative score aligns with our intuition regarding the watermark.

A.14.4 MODEL CORRECTION BY USING THE WATERMARK’S INTERPRETABLE AND
INFLUENTIAL DIRECTIONS

Let w and b denote the learned parameters of the watermark concept detector and s denote the
respective learned signal vector. Without re-training or fine-tuning the network, we are going to
suppress the watermark artifact component from the representation whenever it is detected by the
concept detector. We propose the following feature manipulation strategy that we apply at the fea-
tures of the last convolutional layer.

x′
p = ReLU(xp −mkŝ),m = σ(wTxp − b) (21)

with k a perturbation hype-parameter that we empirically set to k = 450. The ReLU ensures that
the manipulation does not move the features out of the domain of the linear head.

A.14.5 EVALUATION OF THE CORRECTED MODEL

We evaluate the corrected model according to the same protocol that we did in section A.14.1. The
results are depicted in Table 16. Compared to the performance of the original network (Table 15),
we see that the corrected model: a) has the same accuracy as the original model on the clean test set
b) is significantly more accurate on images of the poisoned dataset with an absolute improvement
of +34% and c) performs substantially better on the union of clean and poisoned datasets with
an absolute improvement of +17%. We also compare our correction strategy to using a random
manipulation direction with the same k as before. (i.e. using a random vector in the place of the
learned signal vector in (21)). In a series of 10 trial evaluations on the Poisoned Test set, we verified
that no improvement was achieved: the classification accuracy was the same as the original model
and the confusion matrix was still the same as in Table 15-Middle. Finally, we also compare against
manipulating towards the concept detector’s filter direction and we found that the classification
accuracy for the poisoned test set was 0.53 (which is inferior to 0.69 when using the signal vector).

Table 16: Network accuracy and confusion matrix for the corrected network trained on the Chess Pieces
dataset. Rows correspond to ground-truth labels and colums to network predictions. Three classes are con-
sidered: bishop/knight/rook. The rows of the confusion matrix are normalized against ground-truth element
count. Three datasets are also considered: Clean (without watermarks), Poisoned (with watermarks) and Clean
& Poisoned which is the union of the previous two.

Dataset: Clean Poisoned Clean & Poisoned
Accuracy: 0.93 0.69 0.81

b k r b k r b k r
b 0.95 0.05 0.0 0.4 0.3 0.3 0.67 0.17 0.15

k 0.0 0.95 0.05 0.0 0.85 0.14 0.0 0.90 0.10

r 0.04 0.04 0.91 0.0 0.18 0.81 0.02 0.11 0.87

38


	Introduction
	Background
	Preliminaries
	Signals, Distractors, Filters, Pattern-CAVs
	Unsupervised Interpretable Direction Learning
	Direction Labeling
	Concept influence testing

	Method
	Interpretability Losses to Recover Implicit Regularizations
	Excessively Active Classifier Loss (Leac)
	Sparsity Bound Loss (Lsb)

	Multi-Concept Signal-Distractor Data Model
	Signal Vectors as Concept Signal Estimators
	Uncertainty Region Alignment to Improve Interpretability and Influence

	Experiments
	Experiment on Synthetic Data
	Experiment on Deep Image Classifier

	Conclusion
	Appendix
	Extended Related Work
	Limitations of Classical Feature Decomposition Methods
	Signal Direction Estimation
	Unsupervised Interpretable Basis Extraction and Concept-Basis Extraction Losses
	Maximum Margin Loss (Lmm)
	Dataset Explanation Loss (Lde)
	Baseline Influential Direction Loss (Lid)
	Concept influence testing with RCAV
	Direction Learning Process
	Details for the Experiment on Synthetic Data
	Interpretability Comparison of Luur with prior work
	Details for the Experiment on Deep Image Classifier
	Detailed Interpretability Comparison Against the Supervised Approach for the Experiment on Deep Image Classifier
	Detailed Influence Metrics and Diagrams for the Experiment on the Deep Image Classifier

	Qualitative Segmentation Results for the Experiment on Deep Image Classifier
	Toy Experiment on Model Correction with the Learned Directions
	Network Training and Evaluation
	Direction Learning for Watermark Direction Identification
	Influence Testing with RCAV
	Model Correction by Using the Watermark's Interpretable and Influential directions
	Evaluation of the Corrected Model



