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Abstract

Novel view synthesis is an important problem with many applications, including1

AR/VR, gaming, and simulations for robotics. With the recent rapid development of2

Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) methods, it is3

becoming difficult to keep track of the current state of the art (SoTA) due to methods4

using different evaluation protocols, codebases being difficult to install and use, and5

methods not generalizing well to novel 3D scenes. Our experiments support this6

claim by showing that tiny differences in evaluation protocols of various methods7

can lead to inconsistent reported metrics. To address these issues, we propose8

a framework called NerfBaselines, which simplifies the installation of various9

methods, provides consistent benchmarking tools, and ensures reproducibility. We10

validate our implementation experimentally by reproducing numbers reported in11

the original papers. To further improve the accessibility, we release a web platform12

where commonly used methods are compared on standard benchmarks.13

Web: https://jkulhanek.com/nerfbaselines14

1 Introduction15

Due to the explosive growth in the number of NeRF-based and 3DGS-based works, with about 1016

new papers citing NeRF [37] and 3 papers citing 3DGS [19] each day, there isn’t a single evaluation17

framework and the individual works are based on different codebases for evaluation, resulting in18

numbers that sometimes are not directly comparable. Different methods sometimes use different19

evaluation protocols for the same datasets and often use specific data processing or hyperparameters20

which do not translate well to novel datasets (not used in the original papers). Furthermore, methods21

are often difficult to install with conflicting dependencies, and the codebases differ significantly,22
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which makes custom visualization or benchmarking laborious. To address these issues, we propose a23

framework designed to standardize and simplify the evaluation and comparison of these methods.24

Not all papers follow the same evaluation protocol (partly because it is not fully specified) and25

sometimes innocuous changes can have a significant impact on the overall results. Examples26

include methods using different image resolutions for evaluation, different parameters for image27

downscaling, or different parameters for computing metrics. In our experiments, we show that28

even small discrepancies can cause substantial differences in the metrics, validating the need for a29

framework such as NerfBaselines. Our framework standardizes evaluation protocols, following best30

practices for each benchmark dataset.31

Even with access to original source codes, reproducing paper results can be challenging due to32

codebases evolving over time or some codebases becoming obsolete where it is no longer possible to33

install the dependencies. To tackle this, for each method, we provide a consistent and reproducible way34

of installation (by encapsulating the runtime environment) which enables us to release checkpoint35

that can be used to render from custom camera positions without the need to rerun the training.36

Furthermore, we release a website with benchmarks comparing various methods on multiple datasets.37

Many existing codebases cannot be easily applied to novel datasets due to having simplifying as-38

sumptions in the code, e.g., not implementing various camera models, requiring uniform camera39

intrinsic, or image sizes being equal. Various methods also use different interfaces, dataset formats,40

and coordinate systems, making integration and custom rendering laborious. Therefore, in NerfBase-41

lines, we have integrated some important and influential codebases and implemented the missing42

functionality. Thankfully, most codebases are derived from the few original repositories (often with43

minor modifications), and therefore, they can also be integrated easily. Our experiments show that44

our integrated methods match the original ones with sufficient precision.45

Furthermore, most methods compare using a set of metrics (e.g., PSNR) computed on a set of46

images taken as a subset of the training trajectory, which does not necessarily correlate well with47

the performance outside of the training trajectory [29]. Rendering videos from custom trajectories is48

often much better at demonstrating multiview consistency. Therefore, we release a web-based camera49

trajectory editor, based on Viser [53], to design camera trajectories and standardize their format. The50

common interface allows all integrated methods to render novel images from these trajectories.51

In summary, to simplify benchmarking and improve reproducibility, we propose:52

• A unified interface for NeRF and 3DGS methods, standardizing dataset formats and evaluation53

protocols.54

• The NerfBaselines framework, which installs each method in an isolated environment to manage55

dependencies and ensure reproducibility. We experimentally verify our integrated methods56

reproduce results from original papers.57

• A web-based camera trajectory editor and tools to render different camera trajectories, offering a58

more comprehensive assessment of performance beyond traditional metrics like PSNR, SSIM [6],59

or LPIPS [70].60

• A web platform for comparing the performance of various methods on different datasets,61

providing checkpoints, and enabling interactive viewing of results.62

2 Literature review63

In recent years, progress in novel view synthesis has enabled real-time photo-realistic rendering of64

images from novel camera viewpoints. There has been a surge of interest, first with the advent of65

neural radiance field methods (NeRFs) [37, 30] which enabled photo-realistic results and a wide range66

of application. The second wave of attention came with the introduction of 3D Gaussian Splatting67

[19] , matching NeRFs in terms of the rendering quality while enabling real-time rendering.68

Ray-based methods. NeRFs represent a scene using a continuous volumetric radiance field, originally69

parameterized by a fully connected neural network [37, 2]. While this method enables high-quality70
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rendering for forward-facing or bounded and object-centric scenes, it initially suffered from aliasing71

issues, which were addressed in [2] and extended to unbounded scenes in [3, 69]. However, the MLPs72

used in NeRFs posed a bottleneck in terms of both training and rendering speeds. To address this,73

caching of the radiance field was proposed to enable faster rendering [16, 45], though this came at the74

cost of large storage requirements. Consequently, several methods have investigated replacing MLPs75

with alternatives such as sparse grids [14, 52], point clouds [61], tetrahedral meshes [24], tensorial76

factorizations [9, 15, 46], or hash-grids [39, 4, 56], often combined with tiny MLPs on top of the77

internal representation. While each approach has its advantages and disadvantages, hash-grids [39]78

have become the most popular representation due to their speed and scalability, with Zip-NeRF [4]79

achieving SoTA performance by addressing the aliasing issues of grid-based representations.80

NeRFs have been extended in various ways, such as handling dynamic scenes [41, 44], modeling81

different image appearances [33, 15], and accommodating data with imprecise poses [5, 42]. They82

have also been applied to model semantics [21, 22] and for style transfer [54, 17]. To better model83

geometry, some methods replace the radiance field’s density with a signed distance function (SDF)84

[55, 57, 63]. Finally, another line of work focuses on extending these methods to generative [11, 43]85

or sparse-view settings [66, 8, 26], where the method is trained on a class of environments and then86

performs novel view synthesis given a few context images.87

Rasterization methods, which project 3D geometry onto 2D image planes [19, 13], can be fast88

thanks to hardware optimization (rasterization pipelines have been dominant in the past). Recently,89

Gaussian Splatting (3DGS) [19] has gained popularity by matching the rendering quality of NeRFs90

while rendering at real-time speeds. 3DGS represents scenes using 3D Gaussians, which are projected91

onto the image plane [72], rasterized, and alpha-composited to render a view.92

NerfStudio [53]
Tetra-NeRF [25]
Instruct-NeRF2NeRF [17]
LERF [21]
Nerfbusters [58]
Splatfacto [64]

Multi-NeRF [3, 2]
Zip-NeRF
NeRF [37]
Mip-NeRF [2]
RawNeRF [38]
MipNeRF-360 [3]

SeaThru-NeRF [28]
NeRF on-the-go [47]

Gaussian Splatting (INRIA) [19]
Mip-Splatting [67]

Gaussian Opacity Fields [68]
AbsGS [65]
ScaffoldGS [31]

NeRF [37]
Instant-NGP [39]
TensoRF [9]
Plenoxels [14]

Figure 1: Existing codebases. In-
tegrated methods are bold green.

Like NeRFs, 3DGS has been modified to handle aliasing is-93

sues [67, 31], extended to larger scenes [20], and optimized to94

reduce the size of the representation [40] and to improve its ge-95

ometric accuracy [18]. A minor change to the adaptive density96

control (ACD) was proposed in [65, 68] – where the sum of97

gradients was replaced with a sum of its norm , and a faster ini-98

tialization method was proposed in [12]. Additionally, 3DGS99

has been applied to various domains, including SLAM [34] and100

physics simulation [59]. It has been extended to handle dynamic101

scenes [32] and semantics [71] using an N-D rasterizer. Gener-102

ative 3DGS has also been proposed [10].103

Unlike ray-based approaches which sample pixels randomly from104

training views, 3DGS optimizes on full images, requiring differ-105

ent training batch formation. In NerfBaselines, we do not enforce106

any specific way of constructing training batches, allowing each107

method to use the format it needs.108

2.1 Existing codebases109

Most current methods are based on a few core repositories: Nerf-110

Studio [53], Multi-NeRF [2, 3], Instant-NGP [39] for NeRFs,111

and Gaussian Splatting (INRIA) [19] for 3DGS, typically with112

moderate modifications. Therefore, in NerfBaselines, we focused113

on integrating these core repositories, as it simplifies the subse-114

quent integration of derivative works. In Figure 1, we illustrate the relationships between popular115

repositories and highlight those currently integrated with NerfBaselines.116

NerfStudio is a popular framework that introduced the modular separation of NeRFs into components117

such as ray samplers, radiance field heads, etc. It supports various dataloaders, camera types, and118

export formats. Unfortunately, the rapid evolution of NerfStudio introduces frequent breaking changes.119

Therefore, in NerfBaselines, we freeze each method to ensure reproducibility.120
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Multi-NeRF is fully implemented in JAX and does not have custom CUDA kernels (unlike Instant-121

NGP or NerfStudio), making it easy to install, but slower. Early versions based on Mip-NeRF360122

supported only a single camera per dataset and a single image size; therefore, in NerfBaselines, we123

have extended these methods to handle more complex datasets.124

Instant-NGP is a highly optimized implementation that has inspired numerous follow-up works125

[4, 53, 21, 22]. However, it is a less popular choice as a codebase due to its C++ training code126

being more difficult to extend. Since the repository does not natively support rendering with custom127

(distorted) cameras, in NerfBaselines, we have implemented this functionality.128

Gaussian Splatting (INRIA) is the most popular choice for 3DGS methods, primarily because (until129

recently) it was unmatched in performance. The repository only supports pinhole cameras with their130

centre of projection being in center of the image. We have extended it to work with arbitrary camera131

models, performing undistortion/distortion for more complicated camera models.132

3 Framework design133

When designing the NerfBaselines framework, we aimed to address common issues when bench-134

marking novel view synthesis methods. These include: different interfaces, where each codebase135

has a different structure, making it difficult to interface with it. To this end, we propose a unified136

interface that all methods can share. Installation challenges arise as various methods often require137

specific and potentially difficult-to-install dependencies. To simplify the process, we install each138

method in a separate environment where we fully control the dependencies. For fair evaluation, we139

implement a standardized evaluation protocol for all methods, closely matching the original protocols140

proposed with the datasets. Reproducibility is ensured by carefully storing and tracking checkpoints141

used to generate predictions and compute metrics. Additionally, we have implemented a viewer with142

a trajectory editor and a public website to compare existing methods on standard benchmark datasets.143

Unified method API. The different codebases [53, 3, 19, 9, 19] have very different code structures144

making it difficult to interface with them in a unified way. While studying the codebases, we145

identified a common structure which can be shared between all existing methods, regardless if they146

are raycasting-based (as in the case of NeRF codebases [53, 3, 19, 9, 60]), or rasterization-based (as147

in 3DGS methods [19, 20, 67, 68, 64]). For each codebase, we define a class called method, which148

encapsulates all that is needed to train the method and render new images from an existing checkpoint.149

Each method implements (among others) methods: train_iteration - which performs one training150

step, and render - which renders images from input cameras. Additionally, if the method supports151

appearance conditioning [33, 53], it implements the functionality to obtain the embeddings from152

unseen images. The detailed interface is given in the supp. mat.153

Environment isolation. Installing methods is often difficult due to a set of hard-to-install and154

sometimes obsolete dependencies, e.g., CUDA, CuDNN, GCC, or OpenGL, where the version155

must match. The dependencies are sometimes in conflict with each other or in conflict with the156

user’s environment. Therefore, we provide a level of isolation, where each method is installed in157

its own isolated environment, allowing for different/conflicting dependencies without polluting the158

user’s environment. The user then communicates with the isolated environments using interprocess159

communication. NerfBaselines then handles the installation of all necessary dependencies the first160

time a user uses a method. We provide three levels of isolation: Anaconda [1], Docker [35], and161

Apptainer [27]: 1) While Anaconda [1] is commonly used in research and is easy to install even on162

HPC clusters, it does not offer a good level of isolation, as some dependencies are inherited from the163

system, e.g., glibc, OpenGL, and, therefore, may fail on some systems. 2) Docker [35] provides the164

best level of isolation, fully encapsulating the user environment (except for the CUDA drivers needed165

to control GPUs). Unfortunately, it is more difficult to install and is not commonly present on HPC166

clusters. Therefore, we also support the alternative 3) Apptainer [27] with a better level of isolation167

than Anaconda that is more commonly present on HPC clusters.168
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a) Viewer a) Trajectory editor

Figure 2: The NerfBaselines Viewer enables interactive rendering, shows train/test cameras, and
input point cloud. It also has a trajectory editor (shown in the left figure).

Unified dataloader. Different codebases store and load data in various ways, complicating the169

process of integrating and evaluating methods across different datasets. For example, they use170

different downscaling algorithms and resolutions, different background colors, etc. The camera poses171

processing pipeline is also important, where methods like Instant-NGP [39] and NerfStudio [53] are172

sensitive to the scale of the scene, which depends on the camera placement relative to the scene’s173

geometry. We propose a unified interface for dataset loading and processing to address these issues174

and to facilitate the transfer to new datasets. We implement support for commonly used dataset175

formats such as COLMAP [49, 48], NeRF’s transforms.json [37], NerfStudio’s transforms.json176

[53], Bundler [51, 50] (also supported by RealityCapture [7]), NeRF in the Wild Photo Tourism177

[33, 50] splits format, Tanks and Temples [23], and the LLFF dataset format [36]. The loaders ensure178

consistent data processing and provide a uniform interface and camera format for all datasets, thereby179

simplifying integration and evaluation across diverse datasets. It also makes the development of new180

methods easier as they do not need to implement their own dataloaders anymore. Furthermore, to181

simplify the ease of use, we support an automatic download of commonly used benchmark datasets182

such as the Blender dataset [37] and the Mip-NeRF 360 dataset [3].183

Viewer & camera trajectory rendering. For novel view synthesis methods, evaluation is often184

conducted on a set of test images that are typically a subsequence of the training views. Unfortunately,185

this approach does not adequately demonstrate the method’s robustness and multiview consistency in186

capturing the 3D scene [29]. Rendering a video from a custom trajectory from truly novel viewpoints187

farther away from the training images provides a more insightful evaluation. While the unified188

interface presented in Section 3 ‘Unified method API’ significantly simplifies the process of rendering189

such trajectories, we further enhance this capability by providing an interactive viewer. This viewer190

allows users to inspect how the method performs outside the training camera distribution and includes191

a camera trajectory editor for designing custom trajectories. The viewer, based on NerfStudio’s192

viewer [53] and utilizing the Viser platform [53] for the web interface, is depicted in Figure 2, where193

the viewer interface is shown on the left and the trajectory editor on the right. The trajectory editor194

also enables exporting the trajectory in a format suitable for subsequent rendering.195

Fair evaluation & Reproducibility Evaluating and comparing different methods is challenging196

because original codebases often use different evaluation protocols. For example, some methods use197

different parameters for SSIM [6] and different LPIPS [70] architectures (like AlexNet vs. VGG).198

Some methods even use different image resolutions [60, 62], or compute metrics on the raw image199

(float range) as opposed to rounding to the uint8 range – which cannot be reproduced from the200

commonly saved images. Therefore, we standardize the evaluation protocol by fixing the parameters201

of the metrics, resolution of images, and other aspects of the evaluation.202

Sharing checkpoints often greatly improve research reproducibility, enabling validation of predicted203

test images and rendering 3D scenes from novel viewpoints. To enable this, NerfBaselines stores204
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Figure 3: Mip-NeRF 360 [3] and Blender [37] results comparing PSNRs obtained via NerfBaselines
with those reported in the original papers. We show the relative difference in %. In most cases, the
difference is < 1%. Instant-NGP [39] and Mip Splatting [67] are consistently underperforming
because different evaluation protocols were used in the papers.

checkpoints to ensure models can be restored later. During method evaluation, we store the checkpoint205

SHA and verify it matches the released checkpoint. For all methods, we fix random seeds to match206

the official implementations. Additionally, for each integrated method, we provide a set of tests to207

confirm that loading the checkpoint genuinely reproduces the results.208

Web platform & Extensibility. As part of the NerfBaselines toolbox, we release a website where209

methods are compared and their numbers (measured with NerfBaselines) reported. It also enables210

the checkpoints and the predictions to be downloaded for all scenes. The web can be found at211

https://jkulhanek.com/nerfbaselines.212

Finally, NerfBaselines is designed in such that it makes it easy to extend it with new methods and213

datasets. Therefore we provide extension points to register new datasets, new evaluation protocols,214

and add new loggers (currently, we implement wandb and tensorboard loggers). The new method can215

be added by implementing the protocol described in Section 3 ‘Unified method API’ and providing a216

specification file, containing the installation script and method’s metadata.217

4 Evaluation218

In our experiments, we 1) verify that the integrated methods match the original metrics, 2) show219

the tradeoff between quality and training cost, 3) motivate the need for standardized evaluation220

protocols by demonstrating that small changes in evaluation protocol can bias results, 4) demonstrate221

transferability to novel datasets, and 5) qualitatively compare methods outside training trajectories.222

All our experiments used NVIDIA A100 GPUs. A single GPU was used for all but Mip-NeRF 360 [3],223

which used four GPUs. For comparisons, we use PSNR, SSIM [6], and LPIPS [70] (AlexNet). In the224

main paper, we mostly report PSNR, while other results can be found in the supp. mat.225

4.1 Reproducing published results226

First, to validate our framework, we reevaluate important methods on the standard benchmark datasets:227

Mip-NeRF 360 [3] and Blender [37]. We use the same evaluation protocol for all methods. The228

results are compared to the original numbers as published in the papers in Figure 3, with detailed229

numbers given in the supp. mat. Note, that in the figures and tables, we only compare with methods230

that released their numbers on the datasets in the corresponding publications.231

Mip-NeRF 360 results. As shown in Figure 3, NerfBaselines reproduces the original results with a232

deviation of less than 1% for most scenes. For Mip-Splatting [67] and 3DGS [19], the difference in233

the numbers was caused by the different evaluation protocols used as discussed in Section 4.3. In234

the case of NerfStudio [53] and Tetra-NeRF [25], the codebase evolved since the time of the release235

which is likely the cause of the difference.236
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Figure 4: Performance vs. training cost tradeoff. We compare different methods’ rendering quality
(PSNR↑) and rendering cost (GPU mem. hrs.↓). The variance across different scenes is visualized by
the ellipse scale. While Zip-NeRF [4] performs the best, it is more costly to train than 3DGS[19].

garden bicycle flowers treehill stump
kitchen bonsai counter room

NerfStudio [53] 26.21/25.96/+0.96% 24.06/23.61/+1.90% 21.43/21.12/+1.45% 23.23/22.85/+1.66% 26.09/25.75/+1.33%
29.87/29.96/-0.28% 30.51/30.52/-0.02% 26.91/26.80/+0.43% 30.79/30.56/+0.76%

Zip-NeRF [4] 28.58/28.18/+1.40% 26.35/25.87/+1.85% 22.69/22.34/+1.56% 24.43/24.01/+1.73% 27.70/27.32/+1.37%
32.57/32.39/+0.55% 34.89/34.67/+0.64% 29.14/28.90/+0.82% 33.22/32.95/+0.80%

Gaussian Splatting [19] 27.75/27.37/+1.40% 25.62/25.20/+1.65% 21.84/21.60/+1.14% 22.75/22.46/+1.30% 26.82/26.48/+1.29%
31.65/31.36/+0.92% 32.29/32.10/+0.60% 28.97/28.97/+0.03% 31.38/31.43/-0.17%

Mip-Splatting [4] 27.85/27.48/+1.34% 25.68/25.30/+1.51% 21.93/21.64/+1.35% 22.99/22.64/+1.52% 26.88/26.52/+1.33%
31.55/31.12/+1.38% 32.39/32.18/+0.65% 29.07/29.04/+0.10% 31.68/31.55/+0.42%

Table 1: Mip-NeRF 360 [3] image downscale protocol. We compare the manual downscaling with
the default protocol using released downscaled images (middle number). While NeRFs use released
downscaled images, 3DGS-based methods [19] downscale images internally without compression.
Indoor scenes and outdoor scenes have downscale factors of 2 and 4, respectively.

Blender results. From the results, the discrepancy is again small for most methods. However, for237

the Instant-NGP method [39], we can notice larger differences in PSNR, especially for ‘drums’,238

and ‘ficus’. Note, that Instant-NGP [39] uses a black background for training and evaluation. We239

run additional experiments confirming this to be the case of the difference in the metrics. Since240

Tetra-NeRF [25] uses NerfStudio [53] and the codebase evolved since the time of the release, we can241

notice a slight drop in the performance.242

4.2 Quality vs. computational cost243

When comparing methods, image quality is important, but we also need to consider the computational244

cost of training. Some methods perform better but require more computational power, while others245

achieve good results with less computation. To compare and visualize this, we plot the performance246

of different methods against their computational resources in Figure 4. We measure computational247

cost as the training time multiplied by GPU memory use. The reasoning is that most methods can be248

sped up with more GPU memory or larger batch sizes, while low GPU memory usage allows training249

on cheaper GPUs. We also show the variance in performance and computational cost. For both250

the Mip-NeRF 360 [3] and Blender [37] datasets, performance variance is similar across methods.251

However, due to its adaptive nature, computational cost variance is much higher for methods based252

on Gaussian Splatting [19] compared to NeRF-based methods [37, 3, 4].253

4.3 Mip-NeRF 360 evaluation protocol details254

As stressed in the introduction, ensuring the same evaluation protocol is crucial in benchmarking. In255

this section, we demonstrate this by comparing two evaluation protocols that were used for the Mip-256

NeRF 360 dataset [3]. In Section 4.1, we have seen that NerfBaselines achieves consistently lower257

PSNR for Mip Splatting [67]. The reason is that while NeRFs train/evaluate on released downscaled258

7



ba
rn

ca
ter

pil
lar

tru
ck

lig
hth

ou
se

pla
yg

rou
nd

tra
in

au
dit

ori
um

ba
llr

oo
m

co
urt

roo
m

mus
eu

m

pa
lac

e
tem

ple

PSNR↑ Training Data Intermediate Advanced

Instant NGP [39] 25.90 21.72 22.85 21.65 23.33 20.01 20.67 21.62 19.44 15.19 19.09 17.84
NerfStudio [53] 26.40 21.71 23.37 20.85 24.69 20.43 20.77 22.68 20.24 17.84 17.68 17.06
Zip-NeRF [4] 29.26 23.94 25.09 23.07 27.13 22.19 24.52 25.45 22.17 19.34 19.11 20.58
Gaussian Splatting [19] 27.51 23.38 24.25 22.11 25.37 21.67 24.13 24.07 23.12 20.92 19.63 20.85
Mip-Splatting [67] 27.75 23.42 24.36 22.25 25.87 21.82 24.41 24.15 23.00 20.88 19.63 20.55
Gaussian Opacity Fields [68] 25.72 21.78 22.33 21.80 23.89 19.69 23.20 22.84 21.15 19.92 16.46 20.29

SSIM↑

Instant NGP [39] 0.772 0.633 0.770 0.765 0.696 0.657 0.761 0.652 0.640 0.471 0.668 0.689
NerfStudio [53] 0.794 0.666 0.797 0.768 0.755 0.693 0.771 0.705 0.673 0.648 0.640 0.678
Zip-NeRF [4] 0.884 0.802 0.864 0.849 0.880 0.814 0.877 0.835 0.790 0.746 0.718 0.805
Gaussian Splatting [19] 0.852 0.791 0.853 0.843 0.848 0.791 0.871 0.824 0.790 0.764 0.736 0.806
Mip-Splatting [67] 0.855 0.790 0.857 0.844 0.861 0.795 0.872 0.826 0.791 0.768 0.731 0.805
Gaussian Opacity Fields [68] 0.866 0.791 0.860 0.833 0.869 0.796 0.871 0.818 0.781 0.761 0.683 0.794

LPIPS↑

Instant NGP [39] 0.271 0.360 0.216 0.281 0.343 0.334 0.429 0.352 0.448 0.606 0.440 0.424
NerfStudio [53] 0.215 0.302 0.167 0.245 0.249 0.261 0.330 0.261 0.336 0.311 0.452 0.392
Zip-NeRF [4] 0.083 0.152 0.081 0.131 0.095 0.119 0.153 0.113 0.153 0.159 0.317 0.183
Gaussian Splatting [19] 0.160 0.190 0.108 0.156 0.170 0.171 0.193 0.101 0.165 0.160 0.350 0.222
Mip-Splatting [67] 0.161 0.197 0.109 0.159 0.155 0.172 0.196 0.098 0.165 0.158 0.354 0.226
Gaussian Opacity Fields [68] 0.140 0.187 0.099 0.181 0.142 0.164 0.194 0.107 0.168 0.152 0.443 0.234

Table 2: Tanks & Temples [23] results. We show the PSNR, SSIM [6], and LPIPS [70] (AlexNet)
of various implemented methods. The first , second , and third values are highlighted.

images, the 3DGS [19] and Mip Splatting codebases [67] downscales from the large original images259

during training and evaluation (without storing them as JPEGs, thus avoiding compression artifacts).260

From the results presented in Table 1, we can see that while the difference is not large and the261

relative ordering is preserved, not using compression consistently gives results with larger PSNR.262

The difference is larger for outdoor scenes, where the downscale factor of 4 was used as opposed to263

indoor scenes with a downscale factor of 2.264

4.4 Tanks & Temples evaluation265

To demonstrate how NerfBaseline simplifies the transfer of existing methods to new datasets, we266

evaluate various integrated methods on the Tanks and Temples [23] dataset. For the dataset, we267

run COLMAP reconstruction [48, 49] with a simple radial camera model shared for all images.268

Afterward, we undistorted and downscaled images by a factor of 2. For NerfStudio [53], we run269

the Mip-NeRF 360 configuration (which from our experiments performs better on the dataset). The270

results are given in Table 2. As we can see the reconstructions are dominated by Zip-NeRF [4] for271

easier scenes, while for ‘Advanced’, there is no single best-performing method. We believe this is272

caused by NeRFs with its fixed capacity does not scale as well to larger scenes as 3DGS, where the273

capacity is adaptively increased.274

4.5 Off-trajectory qualitative comparison275

While test-set metrics enable an effective way of comparing different methods, they are insufficient276

to fully evaluate the perceived quality [29]. Rendering images from poses with varying distances277

from the training camera’s trajectory provides a lot of insight into the robustness of the learned278

representations. Therefore, NerfBaselines provides a viewer and a renderer to enable visualising279

methods and rendering images/videos outside the train trajectory. In Figure 5, we compare various280

methods by rendering trained scenes both close to the training camera trajectory and far from it.281

Notice how in the second row Instant-NGP [39], and 3DGS methods [19, 67] cannot fill the sparsely282

observed sky, while NerfStudio [53] and Zip-NeRF [4] can achieve it thanks to space contraction.283

Also, notice how 3DGS methods [19, 67] are more blurred in less observed regions.284
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Instant NGP [39] Zip-NeRF [4] Gaussian Splatting [19] Mip Splatting [67]

Figure 5: Qualitative results. We compare methods on views close and far from the training
trajectory. Top: MipNeRF360/stump scene, bottom: T&T/Auditorium.

5 Conclusion285

In conclusion, our NerfBaselines framework addresses the major challenges in evaluating novel view286

synthesis methods, e.g. NeRFs and 3DGS. By standardizing evaluation protocols and designing a287

unified interface, we enable fair comparisons and scalability to novel datasets. The camera trajectory288

editor enables multiview consistency evaluation, while the NerfBaselines framework ensures smooth289

installation and reproducibility by using isolated environments. Additionally, our web platform290

displays benchmark results, comparing various methods across different datasets. The NerfBaselines291

framework thus improves the fairness and effectiveness of novel view synthesis method evaluations.292

License. This project is released under the MIT license. The integrated methods may be licensed293

under various licenses, and it is the user’s responsibility to conform to the conditions before using294

a method. Note that while NerfBaselines enables access to various methods, the user still uses the295

original official codebases (with some wrapper code to interface with it).296

Limitations. While NerfBaselines offers consistent and reproducible benchmarking, it requires297

methods to expose the same interface either directly or by writing a wrapper script. While we298

integrated some well-known methods and will gradually add more, our hope is that the scientific299

community could collaborate and adopt the interface for future methods.300

Broader impact. While training and evaluating all methods require significant computational301

resources and associated carbon emissions, our release of reproducible checkpoints minimizes the302

need for repeated training by other researchers, thereby reducing overall environmental impact.303
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