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Abstract

The recent development of foundation models for
time series data has generated considerable in-
terest in using such models across a variety of
applications. Although they achieve state-of-the-
art predictive performance, the ability to produce
well-calibrated probabilistic distributions is crit-
ical for practical applications and is relatively
underexplored. In this paper we investigate the
calibration-related properties of four recent time
series foundation models and two competitive
baselines. We perform systematic evaluations
and identify significant variation in calibration
performances across models.

1. Introduction
Time series modeling has applications across a broad range
of fields including analysis and forecasting of data from
climate science (Gharbi et al., 2011), consumer behav-
ior (Makridakis et al., 2022; Adams, 1964), financial trans-
actions (Krollner et al., 2010), and energy consumption (Go-
dahewa et al., 2020; Peterson, 2017). Traditional statistical
approaches such as linear auto-regressive (AR) models and
associated variants are well-established in the field (Hamil-
ton, 1994; Hyndman & Athanasopoulos, 2018). The toolbox
of traditional models has been supplemented in recent years
by a variety of machine learning approaches, e.g., deep
learning time series models such as N-BEATS (Oreshkin
et al., 2019) and Informer (Zhou et al., 2021).

A more recent trend, as an alternative to these earlier
approaches, is the emergence of time series foundation
models (Nie et al., 2022; Yeh et al., 2023), leveraging
transformer-based representations. Unlike traditional sta-
tistical and machine learning approaches where models are
fitted to a specific time series, foundation models are general-
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purpose models trained on a broad range of time series and
are capable of zero-shot or few-shot forecasting on any time
series in principle (Ye et al., 2024; Liang et al., 2024). This
property makes them especially appealing to practitioners in
that they require only a single global model (the foundation
model) rather than retraining a new model for every time
series (Benidis et al., 2022; Bommasani et al., 2021).

With this increase of interest in larger and more flexible foun-
dation models for time series, it becomes important to un-
derstand and characterize the calibration properties of such
models. In particular, for many applications, rather than
just a single point forecast (e.g., the expected value of the
time series at a future time), the availability of distributional
information, such as conditional densities or conditional
quantiles, can be essential for decision-making (Gneiting
et al., 2007; Petropoulos et al., 2022), e.g., downstream tasks
such as anomaly detection (Menon & Williamson, 2018).

Methods for evaluating the calibration properties of clas-
sification and regression models have received significant
attention in machine learning in recent years (e.g., Guo et al.
(2017); Song et al. (2019); Chung et al. (2021)). However,
for time series foundation models there has been less atten-
tion to date on evaluating their probabilistic calibration prop-
erties. Common calibration metrics such as Weighted Quan-
tile Loss (WQL), Continuous Ranked Probability Score
(CRPS), and Mean Scaled Interval Score (MSIS) evaluate
probabilistic forecasts as a combination of accuracy and cal-
ibration (e.g., see Chung et al. (2021)) rather than solely fo-
cusing on calibration properties directly. As a result, model
performance on these metrics can be highly correlated with
point-wise accuracy metrics such as Mean Absolute Scaled
Error (MASE), potentially hiding weaknesses in a model’s
calibration performance.

To address this gap, in this paper we empirically evalu-
ate time series foundation models and baselines with re-
spect to calibration-specific metrics such as probabilistic
calibration error (PCE): see Dheur & Taieb (2023), also
used in Kuleshov et al. (2018); Chung et al. (2021). More
specifically, we evaluate four state-of-the-art time series
foundation models and two widely-used baseline methods,
in terms of their zero-shot forecasts across a variety of uni-
variate time series datasets. We investigate and compare
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their calibration properties through a comprehensive set of
metrics across, focusing on different aspects of conditional
uncertainty in model predictions. Our main findings are:

• Time series foundation models generally have better
calibration properties than baselines; however, some
foundation models are poorly calibrated.

• Calibration properties of models tend to be consistent
across datasets; models that are well (or poorly) cali-
brated on one dataset tend to also be well (or poorly)
calibrated on other datasets.

• Calibration properties of foundation models tend to be
robust across prediction horizons.

2. Methodology
2.1. Foundation Models and Baselines

Since we are primarily interested in exploring the calibra-
tion properties of time series foundation models, we identify
four foundation models trained on time series data from
scratch, either re-using large language model (LLM) archi-
tectures or proposing novel architectures, that are able to
perform zero-shot forecasting and probabilistic predictions.
To provide a better context, we also include two baseline
models, AutoARIMA (Hyndman & Khandakar, 2008) and
N-BEATS (Oreshkin et al., 2019) to represent parametric
and neural baselines.

Although all four foundation models are transformer-based,
Lag-Llama (Rasul et al., 2023) and Chronos (Ansari et al.,
2024) adapted existing LLMs, while TimesFM (Das et al.,
2024) and MOIRAI (Woo et al., 2024) proposed their trans-
former architectures. The main differences between these
models that affect their calibration are (i) training objec-
tives, (ii) sampling procedures, and (iii) how they compute
quantiles that are then used to compute the metrics.

Specially, TimesFM builds pre-fixed quantile heads into
training and jointly optimizes mean squared error (MSE)
and quantile loss (Wen et al., 2017). TimesFM can produce
joint predictions of multiple steps and perform forecast-
ing on the same horizon with fewer auto-regressive steps
than other models, but their quantile forecasting is lim-
ited to pre-determined quantile levels without further fine-
tuning. MOIRAI and Lag-Llama maximizes the likelihood
of a mixture of parametric distributions and a Student’s t-
distribution, respectively; both sample from the parametric
distribution for one-step-ahead predictions. Chronos trans-
forms real-valued time series into a fixed vocabulary via
scaling and quantization, and is optimized for classifications
of binned predictions. It samples one-step-ahead like other
LLMs. Probabilistic quantities are computed by sampling
multiple continuations of the trajectory. For baselines N-
BEATS and AutoARIMA, we use the neuralforecast

library (Olivares et al., 2022) that performs probabilistic
forecasts analytically or samples from the distribution given
the underlying assumption, depending on implementations.

2.2. Datasets

We selected datasets to capture a range of tasks differing in
time-step granularity, seasonality, and forecasting difficulty,
across a variety of domains. We believe that the datasets
that we selected were not used in training of the foundation
models used in our experiments (with the exception of the
M5 data for the MOIRAI model).

We evaluate models on consumer behavior datasets with
two temporal granularities: (i) a Reviews dataset consisting
of hourly counts of Amazon product reviews (Hou et al.,
2024) and Google Places reviews (Li et al., 2022), and (ii) a
modified M5 competition dataset (Makridakis et al., 2022)
consisting of the daily number of products being sold at
different locations.

Many of the datasets used in training time series foundation
models are related to human behavior and natural phenom-
ena that exhibit periodic trends (e.g., 24-hour effects). To an-
alyze model performance on datasets that differ from the pre-
training data, we included datasets for Glucose Level (Cho
et al., 2023) and Heart Rate prediction (Peng et al., 1999).
The former measures interstitial glucose concentration of
16 subjects every 5 minutes over the course of 10 days, and
the latter records the heart rate of 14 volunteers every 4
seconds during a 10 minute metronomic breathing activity.
As noted in Gu et al. (2025), the strong predictive accu-
racy of foundation models on many of the datasets used in
machine learning evaluations does not necessarily translate
into high predictive accuracy in applications such as vital
sign forecasting in healthcare.

2.3. Notation and Metrics

In this section, we formalize the notation and define the com-
prehensive set of metrics for our analysis. Given a context
of T observations for a time series, y1:T , we are interested
in evaluating the H-length forecasting performance of each
model conditioned on the context, i.e., predictions related
to yT+1:T+H | y1:T . We denote the median prediction as
ŷ0.5t at each t ∈ {T +1, ..., T +H} for point estimates, and
predicted quantiles ŷqt to assess uncertainty and calibration
of these predictions, where q ∈ Q := {0.1, ..., 0.9}. The
predicted quantiles are produced either directly or indirectly
(e.g., via sampling) by each model. We consider all h-step
ahead predictions for h ∈ {1, ...,H} where H = 48 and
average metrics over these horizons unless otherwise stated.

In addition to calibration-based metrics, we assess model
accuracy using Mean Absolute Scaled Error (MASE) for the
predicted median, scaling the Mean Absolute Error (MAE)
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by a naive predictor (Hyndman & Athanasopoulos, 2018):

MASE =
1
H

∑T+H
t=T+1 |ŷ0.5t − yt|

1
H−1

∑T+H
t=T+2 |yt − yt−1|

. (1)

As for calibration, we compute metrics that are specifically
designed for calibration, e.g.,Probabilistic Calibration Error
(PCE) (Dheur & Taieb, 2023; Kuleshov et al., 2018):

PCEp =
1

Q

∑
q∈Q

∣∣∣∣∣q − 1

H

H∑
t=T+1

1[yt ≤ ŷqt ]

∣∣∣∣∣
p

. (2)

We use PCE with p = 1 and denote PCE1 as PCE for brevity.
Intuitively, PCE measures the differences between empirical
and predicted CDFs with lower values indicating better-
calibrated models. PCE is lower-bounded by 0 and upper-
bounded (in effect) by 0.5 for the case where predicted
quantiles are always all above or below the observed value
of y.

However, well-calibrated models are not sufficient to pro-
duce useful forecasts: one model could always predict the
marginal distribution that does not depend on the inputs and,
hence, is not informative. In this context a metric that specif-
ically captures sharpness (the concentration of the predictive
distributions) is also important in an overall evaluation of
calibration (Gneiting et al., 2007; Kuleshov et al., 2018). A
simple surrogate for sharpness is the width of a predicted
confidence interval, e.g., where a 95%-confidence interval
is the interval between the qlow =2.5% and qhigh =97.5%
quantile predictions. We refer to this as Scaled Interval
Width (SIW) where s is the confidence associated with the
interval (i.e., s = 95% in the preceeding example):

SIWs =
1

H

T+H∑
t=T+1

ŷ
qhigh
t − ŷqlow

t

yqhigh − yqlow
. (3)

Models with lower SIW values are more confident in their
predictions, while models with larger SIW values are less
confident, i.e., their predictions have more spread.

Finally, we are interested in whether a model is systemati-
cally miscalibrated in one direction or another. To quantify
this, we define the metric Centered Calibration Error (CCE)
that compares the amount of observed data in a predicted
interval with the associated confidence s:

CCE =
1

S

∑
s∈S

s− 1

H

T+H∑
t=T+1

1
[
ŷqlow
t ≤ yt ≤ ŷ

qhigh
t

]
. (4)

The direction of CCE for a model, combined with its SIW,
can be used to identify if a model is being over- or under-
confident. Positive CCE values indicate there is more ob-
served data outside the predicted interval than expected by

the confidence level; together with a low SIW value, we
can infer that a model is over-confident. On the other hand,
negative CCE values and larger SIW values imply that the
model is under-confident.

3. Results
Based on the models, datasets, and metrics outlined above,
in our experiments we found that foundation models typ-
ically exhibited competitive (but not necessarily better)
point-forecasting performance compared to baselines, with
TimesFM, Chronos, and MOIRAI often having a lower
MASE than N-BEATS and AutoARIMA (see the x-axis
of Figure 1). This did not hold for all foundation models:
Lag-Llama typically had worse forecasts than the baselines.
As visualized in Figure 3 in the Appendix, WQL and MSIS
had high correlation with MASE, with the result that using
WQL or MSIS alone could lead to missing key aspects of
calibration performance for a model. For example, the WQL
and MSIS did not show significant differences in calibra-
tion performance between the foundation models and the
baselines in the M5 dataset (see Figure 6 in Appendix). In
contrast, when evaluating calibration using the PCE met-
rics, we saw a clear difference in the foundation models’
calibration compared to the baselines.

Figure 1. Probabilistic calibration error (PCE) versus point-
forecast accuracy (MASE) across the four datasets. Each dot
represents model performance on an individual time series; larger
centroids being the average over all time series in a dataset.

3.1. Calibration Error

For point prediction (MASE), Figure 1 (x-axis) illustrates
that the difference in prediction performance between foun-
dation models and baselines can vary across datasets and
is not always in favor of foundation models. In contrast,
in terms of calibration (PCE), the variation in the y-axis
in Figure 1 shows that the best foundation models tend to
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Figure 2. Model accuracy (top) and different calibration metrics
(bottom 3 charts) for all models for the Reviews dataset.

have systematically better calibration performance. To pro-
vide a general sense of scale, PCE numbers below 0.05 can
(loosely) be considered to be much better calibrated that
numbers in the range of 0.15 to 0.2. TimesFM, MOIRAI,
and Chronos had much lower PCE than the baselines (typi-
cally less than 0.05 across datasets) with Lag-Llama being
more comparable to the baselines (between 0.1 and 0.2).

Although foundation model point-forecasting performance
varied across datasets, the probabilistic calibration remained
consistent. For example, despite all models performing
poorly (in terms of point prediction/MASE) on the Glucose
dataset (which is difficult to predict), their calibration per-
formance was consistent, i.e., the well-calibrated models
were still well-calibrated even if point predictions were inac-
curate. If we had evaluated calibration using WQL or MSIS,
we would have incorrectly concluded that N-BEATS and
AutoARIMA were equally or better calibrated than the best
foundation models on the Glucose dataset in Figure 6.

3.2. Confidence Calibration

Of the foundation models evaluated, Chronos had consis-
tently the smallest mean SIW, indicative of narrower predic-
tion intervals, i.e., higher confidence. Noting in addition that
Chronos has large positive CCE on all the datasets, this indi-
cates that Chronos is being consistently over-confident. Fig-
ure 2 provides the SIW and CCE values (as well as MASE

and PCE) for the Reviews dataset for Chronos and the other
5 models. The overconfidence of Chronos was a systematic
feature of the model across all 4 datasets (see Figure 4 in
Appendix). TimesFM and MOIRAI were well-calibrated
according to PCE, and this is reflected in the near-zero CCE
values, often with a smaller SIW than the baselines. There
was no clear trend with Lag-Llama’s confidence calibration.

3.3. Forecast Horizon Length

For point-forecasting we found that MASE steadily in-
creased with a larger prediction horizon (see Figure 7 in
the Appendix). However, this trend does not hold up for
calibration: Figure 8 (in Appendix) shows that the founda-
tion models are robust across increasing prediction horizons,
increasing only a couple of percent in PCE when comparing
predictions from 1 time-step ahead to 48 steps. The Glucose
dataset was particularly difficult to predict at longer forecast
horizons (see Table 1), yet TimesFM and Lag-Llama only
increased their PCE by 0.02 while MOIRAI and Chronos
improved their PCE by 0.01 and 0.02 respectively. The
baselines were less consistent in the change in calibration,
with N-BEATS improving PCE by 0.17 and AutoARIMA a
much smaller 0.02.

We include additional figures and findings in the Appendix,
where we discuss the empirical correlation of WQL, MSIS,
and MASE along with details on calibration error on the tail
end of probabilistic forecasts.

4. Conclusions and Future Work
In summary, in this work we systematically evaluated the
calibration properties of time series foundation models
and found that the best-performing models, TimesFM and
MOIRAI, were consistently well-calibrated across multiple
datasets compared to baselines. However, not all founda-
tion models were accurate or were well-calibrated, with
Lag-Llama for example having both poor point-prediction
accuracy and poor probabilistic calibration, and the Chronos
model exhibiting significant over-confidence.

For the final workshop version of this paper, we plan a case
study to assess the accuracy of all models (4 foundations
models plus 2 baselines) on the downstream task of anomaly
detection using the UCR Anomaly Detection Dataset (Wu
& Keogh, 2021). Using model predictive uncertainty as an
anomaly detection signal, we will investigate how calibra-
tion of the different models affects their ability to detect
anomalies. We will also extend the results to additional
datasets and additional models (both foundation models
and baselines). Finally, we also plan to investigate the ef-
fect of training loss, decoupled from model architecture,
on calibration performance, e.g., evaluating the calibration
performance of baselines when trained with quantile loss.
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A. Experimental Setup
We report the default model parameters used in the main paper results in the following table:

prediction length context size seasonality

Reviews 48 512 24
M5 48 128 7
Glucose 48 128 1
Heart-Rate 48 256 1

The exceptions to the default model parameters are as follows: (1) AutoARIMA had a max lag of 64 timesteps and (2)
N-BEATS used a context length of 128 for the Heart-Rate dataset due to limited dataset size.

A.1. Foundation Models

Time series foundation models are generally classified into three categories: (i) adapt pre-trained LLMs (Gruver et al., 2023;
Jin et al., 2023), (ii) re-use LLM architectures while trained on time series data from scratch (Ansari et al., 2024; Rasul et al.,
2023), and (iii) novel architectures tailored for time series data (Das et al., 2024; Woo et al., 2024; Goswami et al., 2024). In
addition to AutoARIMA (Hyndman & Khandakar, 2008) and N-BEATS (Oreshkin et al., 2019) as parametric and neural
baselines, we identify four foundation models representing the latter two categories that come with probabilistic predictions
out of the box, without requiring post-hoc conformal prediction.

TimesFM TimesFM (Das et al., 2024) uses a decoder-only stacked transformer architecture, and provides probabilistic
predictions at pre-trained fixed quantile heads. The training objective combines mean squared error (MSE) and quantile
loss (Hyndman & Athanasopoulos, 2018; Gneiting et al., 2007). The model is trained with larger output patches than inputs,
and thus able to make joint predictions of forecast quantiles over horizons h > 1 with fewer auto-regressive steps.

MOIRAI MOIRAI (Woo et al., 2024) is an encoder-based transformer where the time series prediction is a mixture
of several parametric distributions, including Student’s t-distribution, negative binomial distribution, and log-normal
distribution. Model parameters are optimized to maximize the log-likelihood, and predictive samples are drawn from
conditional mixtures of parametric distributions.

Lag-Llama Lag-Llama (Rasul et al., 2023) is another decoder-only transformer model reusing the architecture of Meta’s
Llama LLM (Touvron et al., 2023). The network is trained on a corpus of real-world time series data, where input patching
is modified to fit time series data and an output head is added to predict a conditional Student’s t-distribution.

Chronos Chronos (Ansari et al., 2024) is a foundation model based on the T5 family of encoder-decoder language models
(Raffel et al., 2020) trained on time series data, where they tokenize real-valued time series into fixed vocabularies via
scaling and quantization. The training objective is cross-entropy, and probabilistic forecasting is obtained by sampling
different trajectories through repeating one-step-ahead predictions of the next token.

A.2. Datasets

For the Reviews ensemble dataset, we aggregated reviews by product and location category and sampled 10 of the most
abundant categories from each dataset. In total the ensemble consisted of 20 time series binned at hourly granularity. We
evaluated the models on the period between 02-01-2021 and 03-01-2021.

We aggregated the M5 dataset to reduce sparsity by binning each product by their product department and store id, totaling
70 time series.

The Glucose dataset remained unchanged with no preprocessing steps required. The meditative Heart-Rate dataset is recorded
as seconds since start of meditation session. However, foundation models require and use timestamps for forecasting so we
mapped the Heart-Rate dataset as if it started at 01-01-2000 and lasted 10 minutes.
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Calibration Properties of Time Series Foundation Models

Table 1. Calibration evaluation results. Best results are highlighted in bold, and second best results are underlined.
Foundation Model Baseline

TimesFM MOIRAI Chronos Lag-Llama N-BEATS AutoARIMA

MASE

Reviews 0.627 0.785 0.626 0.876 1.313 0.800
M5 0.852 0.968 0.915 1.324 0.811 0.867

Glucose 6.006 7.012 6.783 8.219 6.015 5.675
Heart-Rate 1.060 1.106 1.120 1.275 1.212 1.147

PCE

Reviews 0.030 0.022 0.063 0.143 0.139 0.137
M5 0.024 0.020 0.075 0.148 0.095 0.116

Glucose 0.030 0.019 0.023 0.109 0.075 0.132
Heart-Rate 0.020 0.023 0.049 0.107 0.219 0.171

CCE

Reviews 0.007 -0.011 0.097 -0.213 0.192 -0.247
M5 -0.009 -0.022 0.124 0.087 0.151 -0.203

Glucose -0.026 0.005 0.032 0.094 -0.093 -0.230
Heart-Rate -0.011 -0.022 0.051 -0.174 -0.370 -0.306

SIW

Reviews 0.180 0.245 0.124 0.712 0.151 0.691
M5 0.250 0.310 0.166 0.351 0.119 0.558

Glucose 0.921 0.976 0.873 0.953 1.082 1.786
Heart-Rate 0.582 0.650 0.514 1.310 2.711 1.963

WQL

Reviews 39.109 49.857 40.752 72.120 97.598 68.954
M5 45.662 51.980 50.308 79.341 51.109 55.722

Glucose 44.348 51.463 49.783 63.292 46.350 47.378
Heart-Rate 13.690 14.379 14.698 18.677 29.783 23.110

B. Additional Results and Figures
B.1. Tail Forecasting

In downstream tasks such as Anomaly Detection, calibration at the tail ends of probabilistic predictions is more important
than at the body of a predictive distribution. We evaluated the tailed calibration with a modified PCE that only considers the
0.1 and 0.9 quantile predictions, and found that while some models are better calibrated at the tail end of the probabilistic
predictions, foundation models do not have a significant change of calibration at the tails (see Figure 5. Unlike the baselines
whose PCE varied considerably when comparing the calibration of the tail and body of the probabilistic forecast, TimesFM
and MOIRAI saw a consistent PCE delta of less than 0.02. Chronos and Lag-Llama were less consistent in the delta, but to a
lesser extent than the baselines.

B.2. Additional Metrics

As mentioned in the main paper, WQL, MSIS, and CRPS are common metrics for evaluating model calibration. However,
as described in Chung et al. (2021), CRPS and Weighted Quantile Loss (WQL), which rely on Pinball loss, measures
a combination of probabilistic calibration and sharpness (Gneiting et al., 2007). This arbitrary combination leads to an
imbalance often skewing to prioritize predictive sharpness (Chung et al., 2021). MSIS has the same limitations being a
measure of interval size with a penalty term for observed values outside the interval (Gneiting et al., 2007; Hyndman &
Athanasopoulos, 2018; Gneiting & Raftery, 2007). We found that these metrics were highly correlated to MASE in Figure 3.
Therefore, when using these metrics to evaluate calibration, their values resulted in a measure of sharpness and accuracy that
diverged from a measurement of calibration (see Figure 6).
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Figure 3. WQL (top), MSIS (middle), and PCE (bottom) compared to MASE where each dot is the performance of an individual time
series.
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Figure 4. Comparison of MASE, SIW, PCE, and CCE across all models and datasets.
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Figure 5. Comparison of model calibration on the entire probabilistic distribution versus calibration of the tail-ends of the distribution.
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Figure 6. Comparison of PCE to WQL and MSIS across all models and datasets.
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Figure 7. MASE accuracy on all datasets across increasing forecast prediction horizons.

Figure 8. PCE on all datasets across increasing forecast horizon lengths.
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