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Abstract
Recent development of foundation models for
time series data has generated considerable in-
terest in using such models across a variety of
applications. Although they achieve state-of-the-
art predictive performance, the ability to produce
well-calibrated probabilistic distributions is criti-
cal for practical applications and is relatively un-
derexplored. In this paper, we investigate the
calibration-related properties of five recent time
series foundation models and two competitive
baselines. We perform systematic evaluations
and identify significant variation in calibration
performances across models.

1. Introduction
Time series modeling has applications across a broad range
of fields including climate science (Mudelsee, 2014), energy
forecasting (Deb et al., 2017), healthcare (Crabtree et al.,
1990), consumer behavior modeling (Goel et al., 2010), and
financial forecasting (Tsay, 2005). Traditional statistical
approaches such as linear auto-regressive (AR) models and
associated variants are well-established in the field (Hamil-
ton, 1994; Hyndman & Athanasopoulos, 2018). The toolbox
of traditional models has been supplemented in recent years
by a variety of machine learning approaches, including deep
learning time series models such as N-BEATS (Oreshkin
et al., 2019) and Informer (Zhou et al., 2021).

A more recent trend, as an alternative to these earlier ap-
proaches, is the emergence of time series foundation models
(TSFMs) (Nie et al., 2022; Yeh et al., 2023). Unlike tradi-
tional statistical and machine learning approaches where
models are fitted to a specific time series, TSFMs are
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general-purpose models trained on a broad range of time
series and are capable of zero-shot or few-shot forecasting
on any time series in principle (Ye et al., 2024; Liang et al.,
2024). This is appealing to practitioners in that only a single
global model (the foundation model) is required rather than
retraining a new model for every time series (Bommasani
et al., 2021; Benidis et al., 2022).

With this increase of interest in TSFMs, it becomes impor-
tant to understand and characterize the calibration properties
of such models. Rather than just a single point forecast
(e.g., the expected value of the time series at a future time),
the availability of distributional information, such as condi-
tional densities or conditional quantiles, can be essential for
decision-making (Gneiting et al., 2007; Petropoulos et al.,
2022) and for downstream tasks such as anomaly detec-
tion (Menon & Williamson, 2018).

While the calibration properties of classification and regres-
sion models have received considerable attention in machine
learning in recent years (e.g., Guo et al. (2017); Song et al.
(2019); Chung et al. (2021)), there has been significantly
less attention on investigating the calibration properties
of TSFMs. To address this gap, we empirically evaluate
TSFMs and baselines with respect to calibration-specific
metrics. More specifically, we evaluate five state-of-the-art
TSFMs and two widely used baseline methods in terms
of their zero-shot forecasts across a variety of univariate
time series datasets. We investigate and compare their cali-
bration properties through a comprehensive set of metrics,
such as probabilistic calibration error (Dheur & Taieb, 2023;
Kuleshov et al., 2018; Chung et al., 2021), and investigate
a variety of different aspects of conditional uncertainty in
model predictions. Our main findings1 for the models and
datasets we used in our evaluations are:

• TSFMs generally have better calibration properties
than baselines, although some TSFMs can be poorly
calibrated.

• Calibration properties of models tend to be consistent
across datasets; models that are well (or poorly) cali-

1Code to reproduce our experiments is available at: https:
//github.com/Coaster41/TSFM-Calibration.
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brated on one dataset tend to also be well (or poorly)
calibrated on other datasets.

• Calibration properties of models tend to be robust
across varying prediction horizons.

2. Methodology
2.1. Foundation Models and Baselines

We focus on the calibration properties of TSFMs in terms
of their zero-shot forecasts. We first identify five foundation
models, including one variant, that are trained on time series
data from scratch and can perform probabilistic forecasts:
Chronos (Ansari et al., 2024a), Chronos-Bolt (Ansari et al.,
2024b), TimesFM (Das et al., 2024), MOIRAI (Woo et al.,
2024), and Lag-Llama (Rasul et al., 2023). These models are
either LLM-based or have their own specific architectures.
We also include two baseline models, AutoARIMA (Hyn-
dman & Khandakar, 2008) and N-BEATS (Oreshkin et al.,
2019) to represent parametric and neural baselines. De-
tails on pre-trained model checkpoints and hyperparameter
settings are provided in Appendix A.1.

Although all five foundation models are transformer-based,
Lag-Llama, Chronos, and Chronos-Bolt adapted existing
LLMs, while TimesFM and MOIRAI proposed their own
transformer architectures. The main differences between
these models that affect their calibration are (i) training
objectives, (ii) sampling procedures, and (iii) quantile com-
putations.

Specifically, TimesFM uses pre-determined quantile heads
during training and jointly optimizes mean squared error
(MSE) and quantile loss (Wen et al., 2017). MOIRAI and
Lag-Llama maximize the likelihood of a mixture distri-
bution and a Student’s t-distribution, respectively. Both
Chronos and Chronos-Bolt transform real-valued time se-
ries into a fixed vocabulary via scaling and quantization, and
are optimized for classification of binned predictions.

MOIRAI, Lag-Llama, and Chronos autoregressively sam-
ple one-step-ahead predictions. These forecasts are then
incorporated into the context to predict the next time step.
TimesFM and Chronos-Bolt differ in that they can produce
joint forecasts over multiple steps. For baselines N-BEATS
and AutoARIMA, we use the neuralforecast and
statsforecast libraries (Olivares et al., 2022) that gen-
erate probabilistic forecasts using quantile heads over multi-
ple time-steps (N-BEATS) and recursive Kalman filtering
based on residual variance (AutoARIMA). For each time
series, the first half (approximately) is used for training and
model selection while we evaluate all models on the remain-
ing test data. Unlike the TSFMs which perform zero-shot
forecasting, we do a hyper-parameter search for the baseline
models using the train set on each time series. We then use

all the data in the training split to re-train N-BEATS while
AutoARIMA is refit at each timestep during evaluation.

2.2. Datasets

We selected datasets to capture a range of tasks differing in
time-step granularity, seasonality, and forecasting difficulty
across a variety of domains. To the best of our knowledge,
these datasets were not used in training of the foundation
models used in our experiments (with the exception of the
M5 data for the MOIRAI model).

We evaluate models on three human behavior datasets: (i)
a Reviews dataset consisting of hourly counts of Amazon
product reviews (Hou et al., 2024) and Google Places re-
views (Li et al., 2022), (ii) a modified Shopping (M5)
dataset (Makridakis et al., 2022) consisting of the daily
number of products being sold at different locations, and
(iii) an NYC Crime report dataset (New York City Police
Department, 2025) aggregating daily crime occurrences.

Many datasets used in training TSFMs are related to human
behavior and natural phenomena that exhibit periodic trends
(e.g., 24-hour effects). To analyze model performance on
datasets that differ in this respect from the pre-training data,
we included datasets for Glucose Level (Cho et al., 2023)
and Heart Rate prediction (Peng et al., 1999). The former
measures interstitial glucose concentration of 16 subjects
every 5 minutes over the course of 10 days, and the latter
records the heart rate of 14 volunteers every 4 seconds dur-
ing a 10 minute metronomic breathing activity. As noted
in Gu et al. (2025), the strong predictive accuracy of foun-
dation models on many of the datasets used in machine
learning evaluations does not necessarily translate into high
predictive accuracy in applications such as vital sign fore-
casting in healthcare.

To evaluate models on coarser time granularities, we also
use the Patents dataset (Marco et al., 2015) which counts
the number of US patents filed per month from 1981-2014.

2.3. Notation and Metrics

In this section, we formalize the notation and define a com-
prehensive set of metrics for our analysis. Given a con-
text of T observations for a time series, y1:T , we evalu-
ate the H-length forecasting performance of each model
conditioned on the context, i.e., predictions related to
yT+1:T+H | y1:T . We denote the median prediction as
ŷ0.5t at each t ∈ {T + 1, ..., T + H} for point estimates,
and predicted quantiles ŷqt to assess uncertainty and cali-
bration of these predictions, where q ∈ Q := {0.1, ..., 0.9}.
The predicted quantiles are produced either directly or indi-
rectly (e.g., via sampling) by each model. We consider all
h-step ahead predictions for h ∈ {1, ...,H} where H = 48
and average metrics over these horizons unless otherwise
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stated. Figures 11 to 16 in the Appendix show examples of
forecasts for each model and dataset.

We assess point accuracy using Mean Absolute Scaled
Error (MASE) for the predicted median, scaling the Mean
Absolute Error (MAE) by a naive predictor (Hyndman &
Athanasopoulos, 2018):

MASE =
1
H

∑T+H
t=T+1 |ŷ0.5t − yt|

1
H−1

∑T+H
t=T+2 |yt − yt−1|

. (1)

Commonly-used calibration metrics for regression, such
as Weighted Quantile Loss (WQL), Continuous Ranked
Probability Score (CRPS), and Mean Scaled Interval Score
(MSIS) evaluate probabilistic forecasts as a combination
of accuracy and calibration (e.g., see Chung et al. (2021))
rather than solely focusing on calibration properties directly.
As a result, model performance on these metrics can be
highly correlated with point-wise accuracy metrics such as
MASE, potentially hiding weaknesses in a model’s calibra-
tion performance. Therefore, we use metrics specifically
designed for calibration, such as Probabilistic Calibration
Error (PCE) (Dheur & Taieb, 2023; Kuleshov et al., 2018):

PCE =
1

Q

∑
q∈Q

∣∣∣∣∣q − 1

H

T+H∑
t=T+1

1[yt ≤ ŷqt ]

∣∣∣∣∣
p

, (2)

with p = 1 in our analysis. Intuitively, PCE measures the
differences between empirical and predicted CDFs with
lower values indicating better-calibrated models. PCE is
lower-bounded by 0 and upper-bounded (in effect) by 0.5
for the case where predicted quantiles are always all above
or below the observed value yt.

However, well-calibrated models are not sufficient to pro-
duce useful forecasts: a model could always predict the
marginal distribution, independent of the inputs. In this
context, a metric that specifically captures sharpness (the
concentration of the predictive distributions) is also impor-
tant in an overall evaluation of calibration (Gneiting et al.,
2007; Kuleshov et al., 2018). A simple surrogate for sharp-
ness is the width of a predicted confidence interval, e.g.,
where a 95%-confidence interval is the interval between the
qlow = 2.5% and qhigh = 97.5% quantile predictions. We
refer to this as Scaled Interval Width (SIW) where s is the
confidence associated with the interval (i.e., s = 95% in the
preceding example):

SIWs =
1

H

T+H∑
t=T+1

ŷ
qhigh
t − ŷqlow

t

yqhigh − yqlow
. (3)

Models with lower SIW values are more confident in their
predictions, while models with larger SIW values are less
confident, i.e., their predictions have more spread.

Finally, we are interested in whether a model is systemati-
cally miscalibrated in one direction or another. To quantify
this, we define the metric Centered Calibration Error
(CCE) that compares the amount of observed data in a
predicted interval with the associated confidence s:

CCE =
1

S

∑
s∈S

s− 1

H

T+H∑
t=T+1

1
[
ŷqlow
t ≤ yt ≤ ŷ

qhigh
t

]
. (4)

The direction of CCE for a model, combined with its SIW,
can be used to identify if a model is being over- or under-
confident. Positive CCE values indicate there is more ob-
served data outside the predicted interval than expected by
the confidence level; together with a low SIW value, we can
infer that a model is over-confident. On the other hand, nega-
tive CCE values and larger SIW values imply that the model
is under-confident. For both CCE and SIW, we average over
s = {0.2, 0.4, 0.6, 0.8} in our analyses.

3. Results
Based on the models, datasets, and metrics outlined above,
we found that foundation models exhibited competitive (but
not necessarily better) point-forecasting performance com-
pared to baselines, with TimesFM, Chronos, Chronos-Bolt,
and MOIRAI often having a lower MASE than N-BEATS
and AutoARIMA (see the x-axis of Figure 1). This did not
hold for all foundation models: Lag-Llama typically had
worse forecasts than the baselines. Calibration performance
across models showed clear differences with foundation
models (except for Lag-Llama) having significantly lower
PCE than the baseline models (see the y-axis of Figure 1).
Below, we summarize the main results. In the Appendix, we
include additional figures and findings, where we discuss
the empirical correlation of WQL, MSIS, and MASE, along
with details on the calibration of tail probabilities.

3.1. Calibration Error

Figure 1 compares calibration performances (PCE) against
point predictions (MASE). The x-axis illustrates that the
difference in prediction performance between foundation
models and baselines can vary across datasets and is not
always in favor of foundation models. In contrast, in terms
of calibration, the variation in the y-axis shows that the
best foundation models tend to have systematically better
calibration performance. To provide a general sense of scale,
PCE numbers below 0.05 can (loosely) be considered to be
much better calibrated than numbers in the range of 0.15 to
0.2. TimesFM, MOIRAI, and both Chronos models have
much lower PCE than the baselines (typically less than 0.05
across datasets) with Lag-Llama being more comparable to
the baselines (between 0.1 and 0.2).

Although point-forecasting performance for foundation
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Figure 1. Probabilistic calibration error (PCE) versus point-
forecast accuracy (MASE) across the six datasets. Each dot rep-
resents model performance on an individual time series; larger
centroids being the average over all time series in a dataset.

models varies across datasets, their probabilistic calibration
remains relatively consistent. For example, despite all mod-
els performing poorly (in terms of point prediction/MASE)
on the Glucose dataset (which is difficult to predict), the
well-calibrated models are still well-calibrated even if their
point predictions are inaccurate. In general, all of the mod-
els have the poorest calibration performance on the Patents
dataset; but the TSFMs (except for Lag-Llama) are still
better calibrated than the baselines.

3.2. Confidence Calibration

Figure 2 shows TSFM confidence calibration on the Re-
views and Crime datasets (see Figure 3 in the Appendix for
all datasets). The interval width (SIW) and centered calibra-
tion (CCE) tend to have a negative correlation: models with
smaller intervals tend to have a larger CCE or were overcon-
fident. Chronos (with topk as vocabulary size) generally had
smaller SIW and greater positive CCE, indicating it being
slightly more overconfident than other TSFMs. With the
exception of Lag-Llama often having larger (both positive
and negative) CCE, the remaining TSFMs had low CCE.

0.25 0.50 0.75 1.00

SIW

−0.2

−0.1

0.0

0.1

C
C

E

Reviews

0.6 0.8 1.0

SIW

−0.05

0.00

0.05

0.10

0.15

0.20
Crime

TimesFM

MOIRAI

Chronos-Bolt

Chronos

Lag-Llama

Chronos (topk = 50)

Figure 2. Centered calibration error (CCE) versus scaled interval
width (SIW) for foundation models on Reviews and Crime datasets.

We also compared Chronos sampling using only the top 50
tokens (topk = 50, which is the default setting for Chronos)
versus setting topk to be the vocabulary size. While chang-
ing to topk = 50 does not affect point prediction accuracy
(see Figure 10 in the Appendix), the model’s confidence
significantly changes, now producing more overconfident
forecasts (lower SIW and higher positive CCE), likely due
to a lack of sampling of low-probability tokens.

3.3. Forecast Horizon Length

For point-forecasting, we found that MASE increased sig-
nificantly as the prediction horizon increased (see Figure 8
in the Appendix). However, in terms of calibration, the
foundation models tend to be more robust across increasing
prediction horizons, increasing only a couple of percent in
PCE when comparing predictions from 1 time-step ahead to
48 steps (Figure 9 in the Appendix).

4. Conclusions and Future Work
In summary, we systematically evaluated the calibration
properties of TSFMs on six sets of time series datasets and
found that the best-performing models, TimesFM, MOIRAI,
and both Chronos models, were consistently well-calibrated
relative to baselines. However, not all foundation models
were accurate or well-calibrated, with Lag-Llama for ex-
ample having both poor point-prediction accuracy and poor
probabilistic calibration.

Potential directions for future work include more in-depth
investigations of sensitivity of calibration metrics to training
objectives and prediction hyperparameters, broader ranges
of datasets for evaluation, development of methods for im-
proving calibration (e.g., in an online manner), and mea-
suring calibration performance in the context of few-shot
inference (via fine-tuning). Additionally, it would be of in-
terest to assess how calibration performance affects the per-
formance of models in downstream tasks such as anomaly
detection based on model predictive uncertainty.
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A. Experimental Setup
We report the default experiment parameters used in the main paper results in the following table:

Table 1. Experimental setup details per dataset.

prediction length context size seasonality train/test split

Reviews 48 512 24 2021-01-31 23:00
Shopping (M5) 48 128 7 2015-04-23
Glucose 48 128 1 2020-02-16 12:43
Heart-Rate 48 256 1 2000-01-01 00:04:59
Crime 48 128 7 2015-01-01
Patents 48 128 1 2004-01-01

Prediction length is fixed at 48 time-steps across all datasets. Seasonality is only used in initializing AutoARIMA. The
exceptions to the default model parameters are as follows: (i) AutoARIMA has a max lag of 64 timesteps and (ii) N-BEATS
uses a context length of 128 for the Heart-Rate dataset due to limited dataset size.

Baseline models (N-BEATS and AutoARIMA) use the training data (dates before train/test split column) for parameter
selection and training. Models forecast the first 48 time-steps of the test set using the end of the training set as the context.
The forecast date is then shifted by a single time step, forecasting an additional 48 time-steps. The models forecast at each
timestep in the time series.

A.1. Models

TSFMs are generally classified into three categories: (i) adapt pre-trained LLMs (Gruver et al., 2023; Jin et al., 2023), (ii)
re-use LLM architectures while trained on time series data from scratch (Ansari et al., 2024a; Rasul et al., 2023), and (iii)
novel architectures tailored for time series data (Das et al., 2024; Woo et al., 2024; Goswami et al., 2024). In addition to
AutoARIMA (Hyndman & Khandakar, 2008) and N-BEATS (Oreshkin et al., 2019) as parametric and neural baselines, we
identify five foundation models representing the latter two categories that come with probabilistic predictions out of the box,
without requiring post-hoc conformal prediction.

TimesFM TimesFM (Das et al., 2024) uses a decoder-only stacked transformer architecture, and provides probabilistic
predictions at pre-trained fixed quantile heads. The training objective combines mean squared error (MSE) and quantile
loss (Hyndman & Athanasopoulos, 2018; Gneiting et al., 2007). The model is trained with larger output patches than inputs,
and thus able to make joint predictions of forecast quantiles over horizons h > 1 with fewer auto-regressive steps than
repeating one-step-ahead predictions. We use the timesfm-2.0-500m-pytorch version for our experiments.2

MOIRAI MOIRAI (Woo et al., 2024) is an encoder-based transformer where the time series prediction is a mixture
of several parametric distributions, including Student’s t-distribution, negative binomial distribution, and log-normal
distribution. Model parameters are optimized to maximize the log-likelihood, and single-step autoregressive samples
are drawn from conditional mixtures of parametric distributions. We use the moirai-1.1-R-small version for our
experiments with default 100 samples. 3

Lag-Llama Lag-Llama (Rasul et al., 2023) is another decoder-only transformer model reusing the architecture of Meta’s
Llama LLM (Touvron et al., 2023) for single-step autoregressive forecasting. The network is trained on a corpus of
real-world time series data, where input patching is modified to fit time series data and an output head is added to predict a
conditional Student’s t-distribution. We use the default of 100 samples. 4

Chronos/Chronos-Bolt Chronos (Ansari et al., 2024a) is a foundation model based on the T5 family of encoder-decoder
language models (Raffel et al., 2020) trained on time series data, where they tokenize real-valued time series into fixed

2TimesFM checkpoint on Hugging Face: https://huggingface.co/google/timesfm-2.0-500m-pytorch.
3MOIRAI checkpoint on Hugging Face: https://huggingface.co/Salesforce/moirai-1.1-R-small
4Lag-LLama checkpoint on Hugging Face: https://huggingface.co/time-series-foundation-models/Lag-

Llama
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vocabularies via scaling and quantization. The training objective is cross-entropy, and probabilistic forecasting is obtained by
sampling different trajectories through repeating one-step-ahead predictions of the next token. The chronos-t5-small5

version was used in our experiments with default parameters except setting the topk parameter to the size of the vocabulary
(4096). We use the default num samples: 20. We also tested with the Chronos-Bolt model which uses direct multi-step joint
forecasting similar to TimesFM for significantly faster inference times (Ansari et al., 2024b). 6

N-BEATS N-BEATS (Oreshkin et al., 2019) is a deep neural architecture that has been designed for the purposes of time
series predictions. Similarly to TimesFM, N-BEATS jointly forecasts the entire prediction horizon in a single forward
pass. Due to the sensitivity of the model results to hyper-parameters, we perform a grid search on a variety of parameters
(see Table 2) using the held-out training data. Quantile loss outperforms normal distribution loss on all datasets. When
forecasting with distribution loss, we use the default 100 samples.

Table 2. N-BEATS hyper-parameter grid-search space.

Parameter Search Space

Epochs {100, 1000}
Learning Rate {0.001, 0.0001}
Early Stop Patience Steps {-1, 2}
Number of Blocks {(1,1,1), (3,3,3)}
Validation Check Steps {10, 100}
Loss Function {Normal Distribution Loss, Quantile Loss}

AutoARIMA AutoARIMA (Hyndman & Khandakar, 2008) is a variation of the statistical ARIMA model. We use Nixtla’s
StatsForecast implementation of AutoARIMA that automatically selects the optimal ARIMA parameters for each time
series on the training set. The model is then refit on all earlier data before each forecast on the evaluation set. The ARIMA
implementation uses Kalman filters to recursively predict the mean and variance. Quantiles are computed by fitting a normal
distribution to the forecasts and using the inverse CDF (PPF) with the appropriate z-scores.

A.2. Datasets

For the Reviews ensemble dataset, we aggregated Amazon (Hou et al., 2024) and Google (Li et al., 2022) reviews by product
and location category and sampled 10 of the most abundant categories from each dataset. In total the ensemble consisted of
20 time series binned at hourly granularity. We trimmed the dataset to consist of data from 2021-01-04 00:00 to 2021-03-01
23:00.

We aggregated the daily Shopping (M5) (Makridakis et al., 2022) dataset to reduce sparsity by binning each product by
their product department and store ID, totaling 70 time series.

The Glucose (Cho et al., 2023) dataset remained unchanged with no preprocessing steps required. We used the Dexcom G6
dataset measuring interstitial glucose concentration (mg/dL) every 5 minutes.

The meditative Heart-Rate dataset (Peng et al., 1999) records heart-rate of volunteers during a metronomic breathing
meditation session, where it is recorded as relative time since the start of the meditation session. However, foundation
models require and use timestamps for forecasting so we mapped the Heart-Rate dataset to start at 2000-01-01 00:00:00 and
last 10 minutes.

We aggregated the NYC Crime reports dataset (New York City Police Department, 2025) by number of daily reports and
cutoff the dataset to only include reports between the years 2006 and 2023. We split the dataset into time series based on
borough.

The US Patents dataset (Marco et al., 2015) counted the number of filed patents every month between 1981 and 2014, We
removed sparse time series aggregated by patent field and category with a minimum value of less than 100.

5Chronos checkpoint on Hugging Face: https://huggingface.co/amazon/chronos-t5-small
6Chronos-Bolt checkpoint on Hugging Face: https://huggingface.co/amazon/chronos-bolt-small
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Table 3. Dataset information breakdown
# Time Series Time Granularity # Time-Steps

Reviews 20 Hourly 1368
Shopping (M5) 70 Daily 1912
Glucose 16 5 Min 1686
Heart-Rate 6 Second 744
Crime 5 Daily 6574
Patents 83 Monthly 408

B. Additional Results and Figures

Table 4. Calibration evaluation results. Best results are highlighted in bold, and second best results are underlined.
Foundation Models Baselines

TimesFM MOIRAI Chronos-Bolt Chronos Lag-Llama N-BEATS AutoARIMA

MASE

Reviews 0.627 0.785 0.631 0.626 0.876 1.247 0.800
M5 0.852 0.968 0.846 0.914 1.324 0.802 0.867

Glucose 6.007 7.012 8.022 6.764 8.220 7.381 5.676
Heart-Rate 1.060 1.107 1.074 1.122 1.276 1.404 1.148

Crime 0.789 0.810 0.774 0.814 1.009 0.776 0.812
Patents 7.451 7.037 6.675 9.816 33.554 18.738 11.566

PCE

Reviews 0.030 0.023 0.031 0.035 0.143 0.077 0.137
M5 0.024 0.021 0.008 0.026 0.149 0.083 0.116

Glucose 0.030 0.020 0.057 0.022 0.110 0.066 0.132
Heart-Rate 0.021 0.024 0.016 0.051 0.107 0.087 0.172

Crime 0.014 0.023 0.020 0.010 0.160 0.065 0.152
Patents 0.050 0.039 0.070 0.117 0.101 0.211 0.166

CCE

Reviews 0.007 -0.011 0.004 0.065 -0.213 0.126 -0.247
M5 -0.009 -0.022 -0.009 0.041 0.087 -0.181 -0.203

Glucose -0.026 0.005 0.034 0.036 0.094 0.075 -0.230
Heart-Rate -0.011 -0.022 -0.027 0.062 -0.174 -0.170 -0.306

Crime -0.014 -0.046 -0.045 0.013 0.149 -0.127 -0.340
Patents 0.082 -0.042 0.011 0.132 -0.005 0.274 0.001

SIW

Reviews 0.180 0.245 0.184 0.157 0.712 0.297 0.691
M5 0.250 0.310 0.239 0.243 0.351 0.419 0.558

Glucose 0.921 0.976 1.010 0.878 0.953 0.869 1.786
Heart-Rate 0.582 0.650 0.615 0.519 1.310 1.305 1.963

Crime 0.289 0.341 0.315 0.287 0.276 0.477 0.847
Patents 0.048 0.098 0.067 0.048 0.597 0.020 0.066

WQL

Reviews 39.109 49.857 39.343 39.870 72.120 86.890 68.954
M5 45.662 51.980 45.561 49.168 79.341 48.126 55.722

Glucose 44.348 51.463 58.524 49.627 63.292 55.980 47.378
Heart-Rate 13.690 14.379 13.887 14.686 18.677 21.530 23.110

Crime 31.322 32.678 31.053 32.605 42.045 32.235 40.334
Patents 10.559 9.983 9.328 14.593 55.518 37.193 19.772
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Figure 3. Centered calibration error (CCE) versus scaled interval width (SIW) for foundation models. Chronos (topk = 50) is typically
more overconfident compared to the other foundation models.
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Figure 5. Comparison of MASE, SIW, PCE, and CCE across all models and datasets. MASE y-axis for Glucose and Patents are on a
separate scale from the other datasets.

B.1. Tail Forecasting

In downstream tasks such as Anomaly Detection, calibration at the tail ends of probabilistic predictions is more important
than at the body of a predictive distribution. We evaluate the tailed calibration with a modified PCE that only considers the
0.1 and 0.9 quantile predictions, and find that while some models are better calibrated at the tail end of the probabilistic
predictions, foundation models do not have a significant change of calibration at the tails (see Figure 6). Unlike the baselines
whose PCE varies considerably when comparing the calibration of the tail and body of the probabilistic forecast, TimesFM,
MOIRAI, and both Chronos models see a consistently small PCE delta. Lag-Llama is less consistent in the delta, but to a
lesser extent than the baselines.
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Figure 6. Comparison of model calibration on the entire probabilistic distribution versus calibration of the tail-ends of the distribution.
Tailed calibration errors are computed using only the 0.1 and 0.9 quantiles.

B.2. Additional Metrics

As mentioned in the main paper, WQL, MSIS, and CRPS are common metrics for evaluating model calibration. Weighted
Quantile Loss (WQL) is an approximation of Continuous Ranked Probability Score (CRPS) defined as the pinball (or
quantile) loss pq scaled by the absolute sum of the true values:

pq(yt, ŷ
q
t ) =

{
2 · (1− q) · (ŷqt − yt) if ŷqt ≥ yt

2 · q · (yt − ŷqt ) if ŷqt < yt
(5)

WQL =
1∑T+H

t=T+1 |yt|

T+H∑
t=T+1

∑
q

pq(yt, ŷ
q
t ) (6)
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However, as described in Chung et al. (2021), CRPS and WQL, measure a combination of probabilistic calibration and
sharpness (Gneiting et al., 2007). This arbitrary combination leads to an imbalance often skewing to prioritize predictive
sharpness (Chung et al., 2021).

Mean scaled interval score (MSIS) is a scaled version of mean interval score (MIS) which is the mean difference in upper
and lower bound prediction penalized with the error when the true value lies outside the bounds:

MSIS =
1

MAEn

1

H

H∑
t=T+1

(Us
t − Ls

t )

+
2

1− s
(Ls

t − yt)1[yt < Ls
t ]

+
2

1− s
(yt − Us

t )1[yt > Us
t ]

(7)

MSIS has the same limitations being a measure of interval size with a penalty term for observed values outside the
interval (Gneiting et al., 2007; Hyndman & Athanasopoulos, 2018; Gneiting & Raftery, 2007). We find that these metrics
were highly correlated to MASE in Figure 4. Therefore, when using these metrics to evaluate calibration, their values result
in a measure of sharpness and accuracy that diverge from a measurement of calibration (see Figure 7). For example, if we
evaluate calibration using WQL or MSIS, we would incorrectly conclude that AutoARIMA is equally or better calibrated
than the best foundation models on the Glucose dataset.
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Figure 7. Comparison of PCE to WQL and MSIS across all models and datasets. MSIS y-axis for Glucose and Patents are on a separate
scale from the other datasets. Models with the lowest PCE do not always have the lowest WQL or MSIS.
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Figure 8. MASE accuracy on all datasets across increasing forecast prediction horizons. Point forecasting error tends to increase with a
further prediction horizon.

16



Calibration Properties of Time Series Foundation Models

1 4 12 24 48

0.05

0.10

0.15

P
C

E

PCE vs Prediction Horizon (Reviews)

1 4 12 24 48
H-step Prediction Horizon

0.0

0.1

0.2

PCE vs Prediction Horizon (Crime)

1 4 12 24 48
H-step Prediction Horizon

0.0

0.1

0.2

P
C

E

PCE vs Prediction Horizon (Shopping (M5))

1 4 12 24 48

0.05

0.10

0.15
PCE vs Prediction Horizon (Glucose)

1 4 12 24 48

0.1

0.2
PCE vs Prediction Horizon (Heart Rate)

1 4 12 24 48
H-step Prediction Horizon

0.1

0.2

PCE vs Prediction Horizon (Patents)

TimesFM MOIRAI Chronos-Bolt Chronos Lag-Llama NBEATS AutoARIMA

Figure 9. PCE on all datasets across increasing forecast horizon lengths. Model accuracy does not consistently increase with a further
prediction horizon.
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B.3. Visualizations on Model Forecasts
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Figure 11. Model median and 0.1 and 0.9 quantile forecasts on Reviews dataset. Prediction timestamp randomly selected.
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Figure 12. Model median and 0.1 and 0.9 quantile forecasts on M5 dataset. Prediction timestamp randomly selected.
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Figure 13. Model median and 0.1 and 0.9 quantile forecasts on Heart-Rate dataset. Prediction timestamp randomly selected.
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Figure 14. Model median and 0.1 and 0.9 quantile forecasts on Glucose dataset. Prediction timestamp randomly selected.
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Figure 15. Model median and 0.1 and 0.9 quantile forecasts on Crime dataset. Prediction timestamp randomly selected.
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Figure 16. Model median and 0.1 and 0.9 quantile forecasts on Patents dataset. Prediction timestamp randomly selected.
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