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ABSTRACT

In stochastic contextual bandits, an agent sequentially makes actions from a time-
dependent action set based on past experience to minimize the cumulative regret.
Like many other machine learning algorithms, the performance of bandits heavily
depends on the values of hyperparameters, and theoretically derived parameter
values may lead to unsatisfactory results in practice. Moreover, it is infeasible to use
offline tuning methods like cross-validation to choose hyperparameters under the
bandit environment, as the decisions should be made in real time. To address this
challenge, we propose the first online continuous hyperparameter tuning framework
for contextual bandits to learn the optimal parameter configuration within a search
space on the fly. Specifically, we use a double-layer bandit framework named CDT
(Continuous Dynamic Tuning) and formulate the hyperparameter optimization as a
non-stationary continuum-armed bandit, where each arm represents a combination
of hyperparameters, and the corresponding reward is the algorithmic result. For the
top layer, we propose the Zooming TS algorithm that utilizes Thompson Sampling
(TS) for exploration and a restart technique to get around the switching environment.
The proposed CDT framework can be easily utilized to tune contextual bandit
algorithms without any pre-specified candidate set for multiple hyperparameters.
We further show that it could achieve a sublinear regret in theory and performs
consistently better than all existing methods on both synthetic and real datasets.

1 INTRODUCTION

The contextual bandit is a powerful framework for modeling sequential learning problems under
uncertainty, with substantial applications in recommendation systems Li et al. (2010), clinical
trials Woodroofe (1979), personalized medicine Bastani & Bayati (2020), etc. At each round t, the
agent sequentially interacts with the environment by pulling an arm from a feasible arm set At of
K arms (K might be infinite), where every arm could be represented by a d-dimensional feature
vector, and only the reward of the selected arm is revealed. Here At is drawn IID from an unknown
distribution. In order to maximize the cumulative reward, the agent would update its strategy on the
fly to balance the exploration-exploitation tradeoff.

Generalized linear bandit (GLB) was first proposed in Filippi et al. (2010) and has been extensively
studied under various settings over the recent years Jun et al. (2017); Kang et al. (2022), where the
stochastic payoff of an arm follows a generalized linear model (GLM) of its associated feature vector
and some fixed, but initially unknown parameter θ∗. Note that GLB extends the linear bandit Abbasi-
Yadkori et al. (2011) in representation power and has greater applicability in the real world, e.g.
logistic bandit algorithms can achieve improvement over linear bandit when the rewards are binary.
Upper Confidence Bound (UCB) Auer et al. (2002a); Filippi et al. (2010); Li et al. (2010) and
Thompson Sampling (TS) Agrawal & Goyal (2012; 2013) are the two most popular ideas to solve
the GLB problem. Both of these methods could achieve the optimal regret bound of order Õ(

√
T )1

under some mild conditions, where T stands for the total number of rounds Agrawal & Goyal (2013).

However, the empirical performance of these bandit algorithms significantly depends on the configu-
ration of hyperparameters, and simply using theoretical optimal values often yields unsatisfactory
practical results, not to mention some of them are unspecified and needed to be learned in reality. For

1Õ(·) ignores the poly-logarithmic factors.
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example, in both LinUCB Li et al. (2010) and LinTS Abeille & Lazaric (2017); Agrawal & Goyal
(2013) algorithms, there are hyperparameters called exploration rates that govern the tradeoff and
hence the learning process. But it has been verified that the best exploration rate to use is always
instance-dependent and may vary at different iterations Bouneffouf & Claeys (2020); Ding et al.
(2022b). Note it is inherently impossible to use any state-of-the-art offline hyperparameter tuning
methods such as cross validation Stone (1974) or Bayesian optimization Frazier (2018) since decisions
in bandits should be made in real time. To choose the best hyperparameters, some previous works
use grid search in their experiments Ding et al. (2021); Jun et al. (2019), but obviously, this approach
is infeasible when it comes to reality, and how to manually discretize the hyperparameter space is
also unclear. Conclusively, this limitation has already become a bottleneck for bandit algorithms in
real-world applications, but unfortunately, it has rarely been studied in the previous literature.

The problem of hyperparameter optimization for contextual bandits was first studied in Bouneffouf
& Claeys (2020), where the authors proposed two methods named OPLINUCB and DOPLINUCB
to learn the optimal exploration rate of LinUCB in a finite candidate set by viewing each candidate
as an arm and then using multi-armed bandit to pull the best one. However, 1) the authors did not
provide any theoretical support for these methods, and 2) we believe the best exploration parameter
would vary during the iterations – more exploration may be preferred at the beginning due to the lack
of observations, while more exploitation would be favorable in the long run when the model estimate
becomes more accurate. Furthermore, 3) they only consider tuning one single hyperparameter. To
tackle these issues, Ding et al. (2022b) proposed TL and Syndicated framework by using a non-
stationary multi-armed bandit for the hyperparameter set. However, their approach still requires a
pre-defined set of hyperparameter candidates. In practice, choosing the candidates requires domain
knowledge and plays a crucial role in the performance. Also, using a piecewise-stationary setting
instead of a complete adversarial bandit (e.g. EXP3) for hyperparameter tuning is more efficient since
we expect a fixed hyperparameter setting would yield indistinguishable results in a period of time.
Conclusively, it would be more efficient to use a continuous space for bandit hyperparameter tuning.

We propose an efficient bandit-over-bandit (BOB) framework Cheung et al. (2019) named Con-
tinuous Dynamic Tuning (CDT) framework for bandit hyperparameter tuning in the continuous
hyperparameter space, without requiring a pre-defined set of hyperparameter configurations. For
the top layer bandit we formulate the online hyperparameter tuning as a non-stationary Lipschitz
continuum-arm bandit problem with noise where each arm represents a hyperparameter configu-
ration and the corresponding reward is the performance of the GLB, and the expected reward is a
time-dependent Lipschitz function of the arm with some biased noise. Here the bias depends on
the previous observations since the history could also affect the update of bandit algorithms. It
is also reasonable to assume the Lipschitz functions are piecewise stationary since we believe the
expected reward would be stationary with the same hyperparameter configuration over a period of
time (i.e. switching environment). Specifically, for the top layer of our CDT framework, we propose
the Zooming TS algorithm with Restarts, and the key idea is to adaptively refine the hyperparameter
space and zoom into the regions with more promising reward Kleinberg et al. (2019) by using the TS
methodology Chapelle & Li (2011). Moreover, the restarts could handle the piecewise changes of the
bandit environments. We summarize our contributions as follows:

1) We propose an online continuous hyperparameter optimization framework for contextual bandits
called CDT that handles all aforementioned issues of previous methods with theoretical guarantees.
To the best of our knowledge, CDT is the first hyperparameter tuning method (even model selection
method) with continuous candidates in the bandit community. 2) For the top layer of CDT, we propose
the Zooming TS algorithm with Restarts for Lipschitz bandits under the switching environment. To the
best of our knowledge, our work is the first one to consider the Lipschitz bandits under the switching
environment, and the first one to utilize TS methodology in Lipschitz bandits. 3) Experiments on
both synthetic and real datasets with various GLBs validate the efficiency of our method.

Notations: For a vector x ∈ Rd, we use ∥x∥ to denote its l2 norm and ∥x∥A :=
√
xTAx for any

positive definite matrix A ∈ Rd×d. We also denote [T ] = {1, . . . , T} for T ∈ N+.

2 RELATED WORK

There has been extensive literature on contextual bandit algorithms, and most of them are based on the
UCB or TS techniques. For example, several UCB-type algorithms have been proposed for GLB, such
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as GLM-UCB Filippi et al. (2010) and UCB-GLM Li et al. (2017) that achieve the optimal Õ(
√
T )

regret bound. Another rich line of work on GLBs follows the TS idea, including Laplace-TS Chapelle
& Li (2011), SGD-TS Ding et al. (2021), etc. In this paper, we focus on the hyperparameter tuning
of contextual bandits, which is a practical but under-explored problem. For related work, Sharaf &
Daumé III (2019) first studied how to learn the exploration parameters in contextual bandits via a
meta-learning method. However, this algorithm fails to adjust the learning process based on previous
observations and hence can be unstable in practice. Bouneffouf & Claeys (2020) then proposed
OPLINUCB and DOPLINUCB to choose the exploration rate of LinUCB from a candidate set, and
moreover Ding et al. (2022b) formulates the hyperparameter tuning problem as a non-stochastic
multi-armed bandit and utilizes the classic EXP3 algorithm. However, as we mentioned in Section 1,
both works have several limitations that could be improved. Note that hyperparameter tuning could
be regarded as a branch of model selection in bandit algorithms. For this general problem, Agarwal
et al. (2017) proposed a master algorithm that could combine multiple bandit algorithms, while Foster
et al. (2019) initiated the study of model selection tradeoff in contextual bandits and proposed the
first model selection algorithm for contextual linear bandits. We further explain why these general
model selection methods fail for the bandit hyperparameter tuning task in Remark B.1 in Appendix B
due to the space limit. In contrast, we propose the first continuous hyperparameter tuning framework
for contextual bandits, which doesn’t require a pre-defined set of candidates.

We also briefly review the literature on Lipschitz bandits that follows two key ideas. One is uni-
formly discretizing the action space into a mesh Kleinberg (2004); Magureanu et al. (2014) so that
any learning process like UCB could be directly utilized. Another more popular idea is adaptive
discretization on the action space by placing more probes in more encouraging regions Bubeck et al.
(2008); Kleinberg et al. (2019); Lu et al. (2019); Valko et al. (2013), and UCB could be used for
exploration. Furthermore, the Lipschitz bandit under adversarial corruptions was recently studied
in Kang et al. (2023). In addition, Podimata & Slivkins (2021) proposed the first fully adversarial
Lipschitz bandit in an adaptive refinement manner and derived instance-dependent regret bounds,
but their algorithm relies on some unspecified hyperparameters and is computationally infeasible.
Since the expected reward function for hyperparameters would not drastically change every time, it is
also inefficient to use a fully adversarial algorithm here. Therefore, we introduce a new problem of
Lipschitz bandits under the switching environment, and propose the Zooming TS algorithm with a
restart trick to deal with the “almost stationary” nature of the bandit hyperparameter tuning problem.

3 PRELIMINARIES

We first review the problem setting of contextual bandit algorithms. Denote T as the total number of
rounds and K as the number of arms we could choose at each round, where K could be infinite. At
each round t ∈ [T ] := {1, . . . , T}, the player is given K arms represented by a set of feature vectors
Xt = {xt,a | a ∈ [K]} ∈ Rd, where xt,a is a d-dimensional vector containing information of arm a
at round t. The player selects an action at ∈ [K] based on the current Xt and previous observations,
and only receives the payoff of the pulled arm at. Denote xt := xt,at as the feature vector of the
chosen arm at and yt as the corresponding reward. We assume the reward yt follows a canonical
exponential family with minimal representation, a.k.a. generalized linear bandits (GLB) with some
mean function µ(·). In addition, one can represent this model by yt = µ(x⊤

t θ
∗) + ϵt, where ϵt

follows a sub-Gaussian distribution with parameter σ2 independent with the previous information
filtration Ft = σ({as, xs, ys}t−1

s=1) and the sigma field σ({xt}), and θ∗ is some unknown coefficient.
Denote at,∗ := argmaxa∈[K] µ(x

⊤
t,aθ

∗) as the optimal arm at round t and xt,∗ as its corresponding
feature vector. The goal is to minimize the expected cumulative regret defined as:

R(T ) =

T∑
t=1

[
µ(xt,∗

⊤θ∗)− E
(
µ(x⊤

t θ
∗)
)]

. (1)

Note that all state-of-the-art contextual GLB algorithms depend on at least one hyperparameter to
balance the well-known exploration-exploitation tradeoff. For example, LinUCB Li et al. (2010), the
most popular UCB linear bandit, uses the following rule for arm selection at round t:

at = arg max
a∈[K]

x⊤
t,aθ̂t + α1(t) ∥xt,a∥V −1

t
. (LinUCB)

Here the model parameter θ̂t is estimated at each round t via ridge regression, i.e. θ̂t =

V −1
t

∑t−1
s=1 xsys where Vt = λIr +

∑t−1
s=1 xsx

⊤
s . And it considers the standard deviation of each
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arm with an exploration parameter α1(t), where with a larger value of α1(t) the algorithm will be
more likely to explore uncertain arms. Note that the regularization parameter λ is only used to ensure
Vt is invertible and hence its value is not crucial and commonly set to 1. In theory we can choose the
value of α1(t) as α1(t) = σ

√
r log ((1 + t/λ)/δ) + ∥θ∗∥

√
λ, to achieve the optimal Õ(

√
T ) bound

of regret: However, in practice, the values of σ and ∥θ∗∥ are unspecified, and hence this theoretical
value of α1(t) is inaccessible. Furthermore, it has been shown that this is a very conservative choice
that would lead to unsatisfactory practical performance, and the optimal hyperparameter values to use
are distinct and far from the theoretical ones under different algorithms or settings. We also conduct
a series of simulations with several state-of-the-art GLB algorithms to validate this fact, which is
deferred to Appendix A.1. Conclusively, the best exploration parameter to use in practice should
always be chosen dynamically based on the specific scenario and past observations. In addition, many
GLB algorithms depend on some other hyperparameters, which may also affect the performance.
For example, SGD-TS also involves a stepsize parameter for the stochastic gradient descent besides
the exploration rate, and it is well known that a decent stepsize could remarkably accelerate the
convergence Loizou et al. (2021). To handle all these cases, we propose a general framework that can
be used to automatically tune multiple continuous hyperparameters for a contextual bandit.

For a certain contextual bandit, assume there are p different hyperparameters α(t) = {αi(t)}pi=1, and
each hyperparameter αi(t) could take values in an interval [ai, bi], ∀t. Denote the parameter space
A =

⊗p
i=1[ai, bi], and the theoretical optimal values as α∗(t). Given the past observations Ft by

round t, we write at(α(t)|Ft) as the arm we pulled when the hyperparameters are set to α(t), and
xt(α(t)|Ft) as the corresponding feature vector.

The main idea of our algorithm is to formulate the hyperparameter optimization as a (another layer
of) non-stationary Lipschitz bandit in the continuous space A ⊆ Rp, i.e. the agent chooses an arm
(hyperparameter combination) α ∈ A in round t ∈ [T ], and then we decompose µ(xt(α|Ft)

⊤θ∗) as

µ(xt(α|Ft)
⊤θ∗) = gt(α) + ηFt,α. (2)

Here gt is some time-dependent Lipschitz function that formulates the performance of the bandit
algorithm under the hyperparameter combination α at round t, since the bandit algorithm tends to
pull similar arms if the chosen values of hyperparameters are close at round t. To demonstrate that
our Lipschitz assumption w.r.t. the hyperparameter values in Eqn. (3) is reasonable, we conduct
simulations with LinUCB and LinTS, and defer it to Appendix A due to the space limit. Moreover,
(ηFt,α − E[ηFt,α]) is IID sub-Gaussian with parameter τ2, and to be fair we assume E[ηFt,α] could
also depend on the history Ft since past observations would explicitly influence the model parameter
estimation and hence the decision making at each round. In addition to Lipschitzness, we also
suppose gt follows a switching environment: gt is piecewise stationary with some change points, i.e.

|gt(α1)− gt(α2)| ≤ ∥α1 − α2∥ , ∀α1, α2 ∈ A; (3)
T−1∑
t=1

1[∃α ∈ A : gt(α) ̸= gt+1(α)] = c(T ), c(T )∈N. (4)

Since after sufficient exploration, the expected reward should be stable with the same hyperparameter
setting, we could assume that c(T ) = Õ(1). More justification on this piecewise Lipschitz assumption
is deferred to Remark B.2 in Appendix B due to the limited space. Although numerous research works
have considered the switching environment (a.k.a. abruptly-changing environment) for multi-armed
or linear bandits Auer et al. (2002b); Wei et al. (2016), our work is the first to introduce this setting
into the continuum-armed bandits. In Section 4.1, we will show that by combining our proposed
Zooming TS algorithm for Lipschitz bandits with a simple restarted strategy, a decent regret bound
could be achieved under the switching environment.

4 MAIN RESULTS

In this section, we present our novel online hyperparameter optimization framework that could be
easily adapted to most contextual bandit algorithms. We first introduce the continuum-arm Lipschitz
bandit problem under the switching environment, and propose the Zooming TS algorithm with
Restarts which modifies the traditional Zooming algorithm Kleinberg et al. (2019) to make it more
efficient and also adaptive to the switching environment. Subsequently, we propose our bandit
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Algorithm 1 Zooming TS algorithm with Restarts

Input: Time horizon T , space A, epoch size H .
1: for t = 1 to T do
2: if t∈{τH + 1:τ=0, 1, . . . } then
3: Initialize the total candidate space A0 = A and the active set J ⊆ A0 s.t. A0 ⊆
∪v∈JB(v, r1(v)) and n1(v)← 1,∀v ∈ J . ▷Restart

4: else if f̂t(v)− f̂t(u) > rt(v) + 2rt(u) for some pair of u, v ∈ J then
5: Set J = J\{u} and A0 = A0\B(u, rt(u)). ▷Removal
6: end if
7: if A0 ⊈ ∪v∈JB(v, rt(v)) then ▷Activation
8: Activate and pull some point v ∈ A0 that has not been covered: J = J ∪ {v}, vt = v.
9: else

10: vt = argmaxv∈J It(v), break ties arbitrarily. ▷Selection
11: end if
12: Observe the reward ỹt+1, and then update components in the Zooming TS algorithm:

nt+1(v), f̂t+1(v), rt+1(v), st+1(v) for the chosen vt ∈ J :

nt+1(vt) = nt(vt) + 1, f̂t+1(vt) = (f̂t(vt)nt(vt) + ỹt+1)/nt+1(vt).

13: end for

hyperparameter tuning framework named Continuous Dynamic Tuning (CDT) by making use of our
proposed Zooming TS algorithm with Restarts and the Bandit-over-Bandit (BOB) idea.

W.l.o.g we assume that there exists a positive constant S such that ∥θ∗∥ ≤ S and ∥xt,a∥ ≤ 1, ∀ t, a,
and each hyperparameter space has been shifted and scaled to [0, 1]. We also assume that the mean
reward µ(x⊤

t,aθ
∗) ∈ [0, 1], and hence naturally gt(α) ∈ [0, 1], ∀α ∈ A = [0, 1]p, t ∈ [T ].

4.1 ZOOMING TS ALGORITHM WITH RESTARTS

For simplicity, we will reload some notations in this subsection. Consider the non-stationary Lipschitz
bandit problem on a compact space A under some metric Dist(·, ·) ≥ 0, where the covering dimension
is denoted by pc. The learner pulls an arm vt ∈ A at round t ∈ [T ] and subsequently receives a
reward ỹt sampled independently of Pvt as ỹt = ft(vt) + ηv, where t = 1, . . . , T and ηv is IID
zero-mean error with sub-Guassian parameter τ20 , and ft is the expected reward function at round t
and is Lipschitz with respect to Dist(·, ·). The switching environment assumes the time horizon T is
partitioned into c(T ) + 1 intervals, and the bandit stays stationary within each interval, i.e.

|ft(m)− ft(n)| ≤ Dist(m,n), m, n ∈ A; and
T−1∑
t=1

1[∃m ∈ A : ft(m) ̸= ft+1(m)] = c(T ).

Here in this section c(T ) = o(T ) could be any integer. The goal of the learner is to minimize the
expected (dynamic) regret that is defined as:

RL(T ) =

T∑
t=1

max
v∈A

ft(v)−
∑T

t=1
E (ft(vt)) .

At each round t, v∗t := argmaxv∈A ft(v) denotes the maximal point (w.l.o.g. assume it’s unique),
and ∆t(v) = ft(v

∗)− ft(v) is the “badness” of each arm v. We also denote Ar,t as the r-optimal
region at the scale r ∈ (0, 1], i.e. Ar,t = {v ∈ A : r/2 < ∆t(v) ≤ r} at time t. Then the
r-zooming number Nz,t(r) of (A, ft) is defined as the minimal number of balls of radius no more
than r required to cover Ar,t. (Note the subscript z stands for zooming here.) Next, we define the
zooming dimension pz,t Kleinberg et al. (2019) at time t as the smallest q ≥ 0 such that for every
r ∈ (0, 1] the r-zooming number can be upper bounded by cr−q for some multiplier c > 0 free of r:

pz,t = min{q ≥ 0 : ∃c > 0, Nz,t(r) ≤ cr−q,∀r ∈ (0, 1]}.

It’s obvious that 0 ≤ pz,t ≤ pc, ∀t ∈ [T ]. (Note pz,t is fixed under the stationary environment.) On
the other hand, the zooming dimension could be much smaller than pc under some mild conditions. For
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example, if the payoff function ft defined on Rpc is greater than ∥v∗t − v∥β in scale for some β ≥ 1

around v∗ in the space A, i.e. ft(v∗t )− ft(v) = Ω(∥v∗t − v∥β), then it holds that pz,t ≤ (1− 1/β)pc.
Note that we have β = 2 (i.e. pz,t ≤ pc/2) when ft(·) is C2-smooth and strongly concave in a
neighborhood of v∗. More details are presented in Appendix C. Since the expected reward Lipschitz
function ft(·) is fixed in each time interval under the switching environment, the zooming number
and zooming dimension pz,t would also stay identical. And we also write pz,∗ = maxt∈[T ] pz,t ≤ pc.

Our proposed Algorithm 1 extends the classic Zooming algorithm Kleinberg et al. (2019), which
was used under the stationary Lipschitz bandit environment, by adding two new ingredients for
better efficiency and adaptivity to non-stationary environment: on the one hand, we employ the TS
methodology and propose a novel removal step. Here we utilize TS since it was shown that TS is
more robust than UCB in practice Chapelle & Li (2011); Wang & Chen (2018), and the removal
procedure could adaptively subtract regions that are prone to yield low rewards. Both of these two
ideas could enhance the algorithmic efficiency, which coincides with the practical orientation of
our work. On the other hand, the restarted strategy proceeds our proposed Zooming TS in epochs
and refreshes the algorithm after every H rounds. The epoch size H is fixed through the total time
horizon and controls the tradeoff between non-stationarity and stability. Note that H in our algorithm
does not need to match the actual length of stationary intervals of the environment, and we would
discuss its selection later. At each epoch, we maintain a time-varying active arm set St ⊆ A, which is
initially empty and updated every time. For each arm v ∈ A and time t, denote nt(v) as the number
of times arm v has been played before time t since the last restart, and f̂t(v) as the corresponding
average sample reward. We let f̂t(v) = 0 when nt(v) = 0. Define the confidence radius and the TS
standard deviation of active arm v at time t respectively as

rt(v) =

√
13τ20 lnT

2nt(v)
, st(v) = s0

√
1

nt(v)
, (5)

where s0 =
√
52πτ20 ln(T ). We call B(v, rt(v)) = {u ∈ Rp : Dist(u, v) ≤ rt(v)} as the

confidence ball of arm v at time t ∈ [T ]. We construct a randomized algorithm by choosing the best
active arm according to the perturbed estimate mean It(·):

It(v) = f̂t(v) + st(v)Zt,v, (6)

where Zt,v is i.i.d. drawn from the clipped standard normal distribution: we first sample Z̃t,v from
the standard normal distribution and then set Zt,v = max{1/

√
2π, Z̃t,v}. This truncation was also

used in TS multi-armed bandits Jin et al. (2021), and our algorithm clips the posterior samples with a
lower threshold to avoid underestimation of good arms. Moreover, the explanations of the TS update
is deferred to Appendix D due to the space limit.

The regret analysis of Algorithm 1 is very challenging since the active arm set is constantly changing
and the optimal arm v∗ cannot be exactly recovered under the Lipschitz bandit setting. Thus, existing
theory on multi-armed bandits with TS is not applicable here. We overcome these difficulties with
some innovative use of metric entropy theory, and the regret bound of Algorithm 1 is given as follows.

Theorem 4.1. With H = Θ
(
(T/c(T ))(pz,∗+2)/(pz,∗+3)]

)
, the total regret of our Zooming TS algo-

rithm with Restarts under the switching environment over time T is bounded as

RL(T ) ≤ Õ
(
(c(T ))1/(pz,∗+3) T (pz,∗+2)/(pz,∗+3)

)
,

when c(T ) > 0. In addition, if the environment is stationary (i.e. c(T ) = 0, ft = f, pz,t = pz,∗ :=
pz,∀t ∈ [T ]), then by using H = T (i.e. no restart), our Zooming TS algorithm could achieve the
optimal regret bound for Lipschitz bandits up to logarithmic factors:

RL(T ) ≤ Õ
(
T (pz+1)/(pz+2)

)
.

We also present empirical studies to further evaluate the performance of our Algorithm 1 compared
with stochastic Lipschitz bandit algorithms in Appendix A.3. A potential drawback of Theorem
4.1 is that the optimal epoch size H under switching environment relies on the value of c(T ) and
pz,∗, which are unspecified in reality. However, this problem could be solved by using the BOB
idea Cheung et al. (2019); Zhao et al. (2020) to adaptively choose the optimal epoch size with a meta
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algorithm (e.g. EXP3 Auer et al. (2002b)) in real time. In this case, we prove the expected regret can
be bounded by the order of Õ

(
T

pc+2
pc+3 ·max

{
c(T )

1
pc+3 , T

1
(pc+3)(pc+4)

})
in general, and some better

regret bounds in problem-dependent cases. More details are presented in Theorem F.1 with its proof
in Appendix F. However, in the following Section 4.2 we could simply set H = T (2+p)/(3+p) in our
CDT framework where p is the number of hyperparameters to be tuned after assuming c(T ) = Õ(1)
is of constant scale up to logarithmic terms. Note our work introduces a new problem on Lipschitz
bandits under the switching environment. One potential limitation of our work is that how to deduce
a regret lower bound under this problem setting is unclear, and we leave it as a future direction.

4.2 ONLINE CONTINUOUS HYPERPARAMETER OPTIMIZATION FOR CONTEXTUAL BANDITS

Based on the proposed algorithm in the previous subsection, we introduce our online double-layer
Continuous Dynamic Tuning (CDT) framework for hyperparameter optimization of contextual bandit
algorithms. We assume the arm to be pulled follows a fix distribution given the hyperparameters to
be used and the history at each round. The detailed algorithm is shown in Algorithm 2. Our method
extends the bandit-over-bandit (BOB) idea that was first proposed for non-stationary stochastic bandit
problems Cheung et al. (2019), where it adjusts the sliding-window size dynamically based on the
changing model. In our work, for the top layer we use our proposed Algorithm 1 to tune the best
hyperparameter values from the admissible space, where each arm represents a hyperparameter
configuration and the corresponding reward is the algorithmic result. T2 is the length of each epoch
(i.e. H in Algorithm 1), and we would refresh our Zooming TS Lipschitz bandit after every T2

rounds as shown in Line 5 of Algorithm 2 due to the non-stationarity. The bottom layer is the
primary contextual bandit and would run with the hyperparameter values α(it) chosen from the
top layer at each round t. We also include a warming-up period of length T1 in the beginning to
guarantee sufficient exploration as in Li et al. (2017); Ding et al. (2021). Despite the focus of our CDT
framework is on the practical aspect, we also present a novel theoretical analysis in the following.

Although there has been a rich line of work on regret analysis of UCB and TS GLB algorithms,
most literature certainly requires that some hyperparameters, e.g. exploration rate, always take
their theoretical values. It is challenging to study the regret bound of GLB algorithms when their
hyperparameters are synchronously tuned in real time, since the chosen hyperparameter values may be
far from the theoretical ones in practice, not to mention that previous decisions would also affect the
current update cumulatively. Moreover, there is currently no existing literature and regret analysis on
hyperparameter tuning (or model selection) for bandit algorithms with an infinite number of candidates
in a continuous space. Recall that we denote Ft = σ({as, Xs, ys}t−1

s=1) as the past information before
round t under our CDT framework, and at, xt are the chosen arm and its corresponding feature vector
at time t, which implies that at = at(α(it)|Ft), xt = xt(α(it)|Ft). Furthermore, we denote α∗(t)
as the theoretical optimal value at round t and F∗

t as the past information filtration by always using
the theoretical optimal α∗(t). Since the decision at each round t also depends on the history observe
by time t, the pulled arm with the same hyperparameter α(t) might be different under Ft or F∗

t . To
analyze the cumulative regret R(T ) of our Algorithm 2, we first decompose it into four quantities:

R(T ) = E

[
T1∑
t=1

(
µ(x⊤

t,∗θ
∗)− µ(xt

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (A)

+E

[
T∑

t=T1+1

(
µ(x⊤

t,∗θ
∗)− µ(xt(α

∗(t)|F∗
t )

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (B)

+E

[
T∑

t=T1+1

(µ
(
xt(α

∗(t)|F∗
t )

⊤θ∗)−µ(xt(α
∗(t)|Ft)

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (C)

+E

[
T∑

t=T1+1

(µ
(
xt(α

∗(t)|Ft)
⊤θ∗)−µ(xt(α(it)|Ft)

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (D)

.

Intuitively, Quantity (A) is the regret paid for pure exploration during the warming-up period and
could be controlled by the order O(T1). Quantity (B) is the regret of the contextual bandit algorithm
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Algorithm 2 Continuous Dynamic Tuning (CDT)

Input: T1, T2, {Xt}Tt=1, A =
⊗p

i=1[ai, bi].
1: Randomly choose at ∈ [K] and observe xt, yt, t ≤ T1.
2: Initialize the hyperparameter active set J s.t. A ⊆ ∪v∈JB(v, r1(v)) where nT1

(v)← 1,∀v ∈ J .
3: for t = (T1 + 1) to T do
4: Run the t-th iteration of Algorithm 1 with initial input horizon T − T1, input space A and

restarting epoch length T2. Denote the pulled arm at round t as α(it) ∈ A. ▷Top
5: Run the contextual bandit algorithm with hyperparameter α(it) to pull an arm at. ▷Bottom
6: Obtain yt and update components in the contextual bandit algorithm. ▷Bottom Update
7: Update components in Algorithm 1 by treating yt as the reward of arm α(it) ▷Top Update
8: end for

that runs with the theoretical optimal hyperparameters α∗(t) all the time, and hence it could be
easily bounded by the optimal scale Õ(

√
T ) based on the literature. Quantity (C) is the difference of

cumulative reward with the same α∗(t) under two separate lines of history. Quantity (D) is the extra
regret paid to tune the hyperparameters on the fly. By using the same line of history Ft in Quantity
(D), the regret of our Zooming TS algorithm with Restarts in Theorem 4.1 can be directly used to
bound Quantity (D). Conclusively, we deduce the following theorem:
Theorem 4.2. Under our problem setting in Section 3, for UCB and TS GLB algorithms with
exploration hyperparameters (e.g. LinUCB, UCB-GLM, GLM-UCB, LinTS), by taking T1 =
O(T 2/(p+3)), T2 = O(T (p+2)/(p+3)) where p is the number of hyperparameters, and let the op-
timal hyperparameter combination α∗(T ) ∈ A, it holds that

E[R(T )] ≤ Õ(T (p+2)/(p+3)).

The detailed proof of Theorem 4.2 is presented in Appendix G. Note that this regret bound could be
further improved to Õ(T (p0+2)/(p0+3)) where p0 is any constant that is no smaller than the zooming
dimension of (A, gt),∀t. For example, from Figure 2 in Appendix A we can observe that in practice
gt would be C2-smooth and strongly concave, which implies that E[R(T )] ≤ Õ(T (p+4)/(p+6)).

Note our work is the first one to consider model selection for bandits with a continuous candidate
set, and the regret analysis for online model selection in the bandit setting Foster et al. (2019) is
intrinsically difficult. For example, regret bound of the classic algorithm CORRAL Agarwal et al.
(2017) is linearly dependent on the number of candidates and the regret of the worst model among
them, which would be infinitely large in our case. And the non-stationarity under the switching
environment would also deteriorate the optimal order of cumulative regret Cheung et al. (2019).
Therefore, we believe our theoretical result is non-trivial and significant.

5 EXPERIMENTAL RESULTS

In this section, we show by experiments that our hyperparameter tuning framework outperforms
the theoretical hyperparameter setting and other tuning methods with various (generalized) linear
bandit algorithms. We utilize seven state-of-the-art bandit algorithms: two of them (LinUCB Li et al.
(2010), LinTS Agrawal & Goyal (2013)) are linear bandits, and the other five algorithms (UCB-
GLM Li et al. (2017), GLM-TSL Kveton et al. (2020), Laplace-TS Chapelle & Li (2011), GLOC Jun
et al. (2017), SGD-TS Ding et al. (2021)) are GLBs. Note that all these bandit algorithms except
Laplace-TS contain an exploration rate hyperparameter, while GLOC and SGD-TS further require
an additional learning parameter. And Laplace-TS only depends on one stepsize hyperparameter
for a gradient descent optimizer. We run the experiments on both simulations and the benchmark
Movielens 100K dataset as well as the Yahoo News dataset. We compare our CDT framework with the
theoretical setting, OP Bouneffouf & Claeys (2020) and TL Ding et al. (2022b) (one hyperparameter)
and Syndicated Ding et al. (2022b) (multiple hyperparameters) algorithms. Due to space limit,
the detailed descriptions of our experimental settings and the utilized algorithms, along with the
results on the Yahoo News dataset, are deferred to Appendix A.4.1 and A.4.2. Since all the existing
tuning algorithms require a user-defined candidate set, we design the tuning set for all potential
hyperparameters as {0.1, 1, 2, 3, 4, 5}. And for our CDT framework, which is the first algorithm for
tuning hyperparameters in an interval, we simply set the interval as [0.1, 5] for all hyperparameters.
Each experiment is repeated for 20 times, and the average regret curves with standard deviation are

8
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Figure 1: Cumulative regret curves of our CDT framework compared with existing hyperparameter
selection methods under multiple (generalized) linear bandit algorithms.

displayed in Figure 1. We further explore the existing methods after enlarging the hyperparameter
candidate set to validate the superiority of our proposed CDT in Appendix A.4.3.

We believe a large value of warm-up period T1 may abandon some useful information in practice,
and hence we use T1 = T 2/(p+3) according to Theorem 4.2 in experiments. And we would restart
our hyperparameter tuning layer after every T2 = 3T (p+2)/(p+3) rounds. An ablation study on the
role of T1, T2 in our CDT framework is also conducted and deferred to Appendix A.4.4, where we
demonstrate that the performance of CDT is pretty robust to the choice of T1, T2 in practice.

From Figure 1, we observe that our CDT framework outperforms all existing hyperparameter tuning
methods for most contextual bandit algorithms. It is also clear that CDT performs stably and soundly
with the smallest standard deviation across most datasets (e.g. experiments for LinTS, UCB-GLM),
indicating that our method is highly flexible and robustly adaptive to different datasets. Moreover,
when tuning multiple hyperparameters (GLOC, SGD-TS), we can see that the advantage of our CDT
is also evident since our method is intrinsically designed for any hyperparameter space. It is also
verified that the theoretical hyperparameter values are too conservative and would lead to terrible
performance (e.g. LinUCB, LinTS). Note that all tuning methods exhibit similar results when applied
to Laplace-TS. We believe it is because Laplace-TS only relies on an insensitive hyperparameter that
controls the stepsize in gradient descent loops, which mostly affects the convergence speed.

6 CONCLUSION

In this paper, we propose the first online continuous hyperparameter optimization method for contex-
tual bandit algorithms named CDT given the continuous hyperparameter search space. Our framework
can attain sublinear regret bound in theory, and is general enough to handle the hyperparameter tuning
task for most contextual bandit algorithms. Multiple synthetic and real experiments with multiple
GLB algorithms validate the remarkable efficiency of our framework compared with existing methods
in practice. In the meanwhile, we propose the Zooming TS algorithm with Restarts, which is the first
work on Lipschitz bandits under the switching environment.
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