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Abstract. Graph neural networks and other machine learning models
offer a promising direction for interpretable machine learning on relational
and multimodal data. Until now, however, progress in this area is difficult
to gauge. This is primarily due to a limited number of datasets with
(a) a high enough number of labeled nodes in the test set for precise
measurement of performance, and (b) a rich enough variety of multimodal
information to learn from. We introduce a set of new benchmark tasks for
node classification on RDF-encoded knowledge graphs. We focus primarily
on node classification, since this setting cannot be solved purely by node
embedding models. For each dataset, we provide test and validation
sets of at least 1000 instances, with some over 10000. Each task can be
performed in a purely relational manner, or with multimodal information.
All datasets are packaged in a CSV format that is easily consumable in
any machine learning environment, together with the original source data
in RDF and pre-processing code for full provenance. We provide code for
loading the data into numpy and pytorch. We compute performance for
several baseline models.
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models - multimodal learning

1 Introduction

The combination of knowledge graphs and machine learning is a promising
direction. In particular, the class of machine learning models known as message
passing models offer an interesting set of abilities [1I35]. These models operate
by propagating information along the structure of the graph and are trained end-
to-end, meaning all information in the data can potentially be used if it benefits
the task. Even the contents of the literals may be used by attaching encoder
networks to learn how literals should be read, leading to an end-to-end model for
multimodal learning on knowledge graphs. The message passing framework is
also a promising direction for interpretable machine learning, as the computation
of the model can be directly related to the relational structure of the data [9].

* The first three authors contributed equally to this paper.
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Unfortunately, the progress of message passing models and related machine
learning approaches has been difficult to gauge, due to the lack of high quality
datasets. Machine learning on knowledge graphs is commonly evaluated with two
abstract tasks: link prediction and node labeling. In the latter, the model is given
the whole graph during training, together with labels for a subset of its nodes.
The task is to label a set of withheld nodes with a target label: a class for node
classification or a number for node regression.

While link prediction is probably more popular in recent literature, node
labeling is more promising for developing message passing models. In link pre-
diction, it is not clear whether message passing models offer an advantage over
embedding models on currently popular benchmarks, without a considerable
increase in computational requirements. In node labeling, however, the task
cannot be solved from node embeddings alone. In some way, the deeper structure
of the graph needs to be taken into account, making it a better testing ground
for message-passing algorithms such as R-GCNs [28] and R-GATs [6].

In this work, we specifically focus on knowledge graphs that are built on top
of the Resource Description Framework (RDF). The most common datasets used
in node classification on such knowledge graphs, are the AIFB, MUTAG, BGS
and AM datasets, which were first collected and published for this purpose in
[22]. Their details are given in Table |1} These datasets are well suited to message
passing methods since they are relatively small, allowing a message passing model
to be trained full-batch so that we can gauge the performance of the model
independent the influence of minibatching schemes. However, this small size of
the graphs also means a small number of labeled instances, and, in particular, a
small test set, sometimes with less than 50 instances.

While limited training data is often a cause for concern in machine learning,
limited test data is usually the greater evil. With limited training data, we may
have a model that fails to perform well, but with limited test data we cannot
even tell how well our model is performing. In statistical terms: a performance
metric like accuracy is an estimate of a true value, the expected accuracy under
the data distribution, based on a sample from that distribution; the test set.
The larger that sample, the more accurate our estimate, and the smaller our
uncertainty about that estimate. Figure [1| shows the size of the 95% confidence
intervals for different test set sizes on a balanced binary classification problem.
We see that only at 10000 instances do we have sufficient certainty to say that a
model with a measured accuracy of 0.94 is most likely better than one with a

Table 1. The currently most commonly used benchmark datasets for node classification.

Dataset AIFB MUTAG BGS* AM*
Entities 8285 23644 87688 246728

Relations 45 23 70 122
Edges 29043 74227 230698 875946
Labeled 176 340 146 1000

Classes 4 2 2 11
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Fig. 1. The size of a 95% confidence interval around an estimate of accuracy for a
two-class problem, with test sets of 100, 1000 and 10000 instances. Note that 10000
instances are required before we can tell apart all estimates that differ by 0.01.

measured accuracy of 0.93. The test set sizes in Table [I] do not allow for anything
but the most rudimentary discrimination.

Additionally, while these datasets provide some multimodal data in the form
of literals, they are usually not annotated with datatypes, the modalities remain
restricted to simple strings containing natural language, or structured information
like numerical values and dates. Richer multimodal information like images, audio
or even video would present a more exciting challenge for the possibility of
integrating such data in a single end-to-end machine learning model.

To overcome these problems, we introduce kgbench: a collection of evaluation
datasets knowledge graph node labeling. Each comes with a test set of between
2000 and 20000 labeled nodes, allowing for precise estimates of performance.

Each dataset can be used in two different ways. In the relational setting,
each node is treated as an atomic object, with literals considered equal if their
lexical content is equal. This mode can be used to evaluate relational machine
learning models, as in [286)23]. In the multimodal setting, the content of literal
nodes is taken into account as well, as described in [34)35]. In addition, each
dataset can also be used to evaluate link prediction models by ignoring the node
labels (see Section for details).

The datasets are offered as RDF, with each dataset packaged both in N-Triples
and in HDT [10] format. Additionally, since loading RDF into machine learning
environments can be non-trivial, we offer pre-processed versions of each dataset,
which contain integer indices for all nodes and relations in the graph. These
are stored as a set of CSV files, to ensure that they can be directly read by a
large number of machine learning libraries. We also provide explicit dataloading
code for Numpy and Pytorch, as well as scripts to converts any RDF-encoded
knowledge graph to this format.

All data and code is hosted on GithubEI To ensure long term availability and
to provide a permanent identifier, snapshots are also hosted on Zenodoﬂ Each

! https://github.com /pbloem /kgbench
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dataset is licensed under the most permissive conditions allowed by the licenses
on the source datasets.

1.1 Related work

Similar efforts to ours include: CoDEx [25], a link prediction benchmark, including
multilingual literals and RichPedia, [32] a large-scale multimodal knowledge graph,
with no specific machine learning task attached. Other link prediction research
has included new benchmark data [30/I5]. Our datasets are, to the best of our
knowledge the first node labelling benchmarks that focus on large test set size
and multimodal learning. In [22] node labeling tasks on large knowledge graphs
are included, but the number of total instances in the dataset never exceeds 2000,
and canonical snapshots of the knowledge graphs are not provided.

The field of knowledge graph modeling by machine learning methods can
be divided into two main camps: pure embedding methods, which learn node
embeddings directly, and message passing approaches which learn from the graph
structure more explicitly. For pure embedding methods [24] serves as a good
overview of the state of the art. Message passing methods are popular [I], but
in the specific domain of knowledge graphs, there has been less progress, with
R-GCNs [28] and R-GATs [6] as the main approaches. Other approaches include
kernel methods [7] and feature-extraction approaches [23].

2 Method

In this section we detail the main design choices made in constructing the tasks
and datasets in kgbench. Our data model in all cases follows RDF. That is, a
knowledge graph is defined as a tuple G = (V, R, E'), with a finite set of nodes
V, a finite set of relations R and a finite set of edges (also known as triples)
E CV x RxV. The nodes in V can be atomic entitiesﬂ or literals, defined by a
string which is optionally tagged with a string annotation. This annotation can
either be a datatype (an IRI expressing the type of data) or a language tag.

2.1 Desiderata

A good machine learning benchmark must satisfy a large number of constraints.
We have focused primarily on the following.

Large test sets A large test set is essential for accurate performance estimates.
This is our primary concern.

Manageable graph size A small benchmark dataset allows for quick evaluation
of hypotheses and quick iteration of model designs, and keeps machine learning
research accessible.

2 Details, including DOIs, under the following references amplus [3], dmgfull and
dmg777k [36], dblp [4], mdgenre and mdgender [2].
3 Entities may be resources, identified by an IRI, or blank nodes.
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Small training sets Keeping the number of training instances relatively low
has several benefits: it leaves more instances for the validation and test sets
and it makes the task more difficult. If the instances are more sparsely labeled,
models are forced to use the graph structure to generalize. It is common
practice, once hyperparameter tuning is finished, to combine the training
and validation sets into a larger training set for the final run. Normally
this conveys only a very small extra advantage. In our case, adding the
validation data often has a very large effect on how easy the task becomes,
and which structure can be used to solve. For this reason, in our tasks,
practitioners should only ever train on the training data, no matter
what set is being evaluated on.

Multimodal literals Where possible we offer literals of multiple modalities.
We annotate existing strings with datatypes and language tags, and add
images and spatial geometries. These are placed into the graph as literals
rather than as hyperlinks, making the dataset self-contained.

2.2 Data Splitting and Layout

Each dataset provides a canonical training/validation/test split. We also split off
a meta-test set if the data allows. This is an additional set of withheld data. It
serves as an additional test set for review studies over multiple already-published
models. This provides the possibility to test for overfitting on the test set if
the dataset becomes popular. Any practitioner introducing a single new
model or approach, should ignore the meta-test set. E|

Each dataset is provided as an RDF graph, with the target labels kept in
separate files. We emphatically choose not to include the target labels in the
dataset, as this would then require practitioners to manually remove them prior
to training, which creates a considerable risk of data leakage.

Preprocessing The most common preprocessing step for relational machine
learning is to map all relations and nodes to integer indices. We have preprocessed
all datasets in this manner and provided them as a set of CSV files (in addition
to the original RDF). While a collection of CSV files may not be in keeping with
the spirit of the Semantic Web, this format greatly facilitates reading the data
into any any data science or machine learning software, without the need to parse
RDF or load the data into a triple store.

This format also allows practitoners to choose between the relational and
multimodal setting in a simple manner. If only the integer indices are read, then
the data is viewed purely from a relational setting. The mappings from the integer
indices to the string representations of the nodes then provide the multimodal
layer on top of the relational setting.

4 Tt is common practice to not publish the meta-test set to ensure that it is not used
by practitioners until it is necessary. In our case this makes little sense, since the
meta-test set could easily be derived from the available raw data manually.
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1 @prefix : <http://kgbench.info/dt#> .

2 @prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

3 @prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

4

5 :base64Image a rdfs:Datatype ;

6 rdfs:subClassOf xsd:base64Binary ;

7 rdfs:label "Base64-encoded image"@en ;

8 rdfs:comment "An image encoded as a base64 string"@en .
9

10 :base64Video a rdfs:Datatype ;

11 rdfs:subClassOf xsd:base64Binary ;

12 rdfs:label "Base64-encoded video"@en ;

13 rdfs:comment "A video encoded as a base64 string"@en .
14

15 :base64Audio a rdfs:Datatype ;

16 rdfs:subClassOf xsd:base64Binary ;

17 rdfs:label "Base64-encoded audio"@en ;

18 rdfs:comment "An audio sequence encoded as a base64 string"@en .

Listing 1.1. A small ontology (kgbench.info/dt.ttl) for base64-encoded image, audio,
and video.

2.3 Link prediction

Our focus is node labeling, but since link prediction is an unsupervised task, each
of our datasets can also be used in link prediction, both for purely relational
settings and for multimodal settings. In such cases, we suggest that the following
guidelines should be followed:

— The triples should be shuffled before splitting. The validation, test and
meta-test set should each contain 20000 triples, with the remainder used for
training. We include such a split for every dataset.

— In contrast to the node labeling setting, we do not enforce limited training
data. The final training may be performed on the combined training and
validation sets, and tested on the test set.

— Practitioners should state that the data is being adapted for link prediction,
and whether the dataset is being used in relational or in multimodal setting.

2.4 Expressing Binary Large Objects

No convention currently exists for encoding images, videos, or audio in literals.
A convention in the realm of relational databases is to store complex datatypes
as Binary Large OBjects (BLOBs). Here, we chose to adopt this convention by
encoding binary data in base64 encoded string literals. The conversion to and
from binary data is well supported by many popular programming languages.
To express that a certain string literal encodes a complex type it should be
annotated as such using a suitable datatype. The straightforward choice for this
datatype would be xsd:base64Binary. However, this does little to convey the
type of information which it encodes, which makes it difficult to build machine
learning models that distinguish between these types. To accommodate this
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Table 2. Statistics for all datasets. We consider a dataset “GPU friendly” if the R-GCN
baseline can be trained on it with under 12 GB of memory and “CPU-friendly” if this
can be done with under 64 GB. mdgender is not meant for evaluation (see Section .

Dataset amplus dmgfull dmg777k dblp mdgenre mdgender*
Triples 2521046 1850451 777124 21985048 1252247 1203789
Relations 33 62 60 68 154 154
Nodes. 1153679 842550 341270 4470778 349344 349347

entities 1026162 262494 148127 4231513 191135 191138
literals 127517 580056 192143 239265 158209 158 209

Density 2.107% 3.107% 7.1076 1.107¢ 1.107®  1.107°
Degree avg 4.37 4.47 4.53 9.83 7.17 6.89
min 1 1 1 1 1 1
max 154828 121217 65576 3364084 57363 57363
Classes 8 14 5 2 12 9
Labeled total 73423 63565 8399 86535 8863 57323
train 13423 23566 5394 26 535 3846 27308
valid 20000 10001 1001 20000 1006 10005
test 20000 20001 2001 20000 3005 10003
meta 20000 10001 20000 1006 10007
Source [5] see text 2913121 [BIE2 B3I
GPU friendly v v
CPU friendly v v v v v
Datatype.ﬂ
Numerica 8418 64184 8891 1387 1387
Temporal 6676. 463 290 37442 37442
Textual 56202 340396 117062 239265 51852 51852
Visual 56130 58791 46061 67528 67528
Spatial 116220 20837

distinction, we instead introduce a small collection of datatype classes to annotate
binary-encoded strings in accordance with their information type (Listing [1.1)) E|

3 Datasets

Table [2| lists the datasets contained in kgbench and their basic statistics, as well
as an overview of the distribution of modalities per dataset. All datasets were
created by combining publicly available data sources, with no manual annotation.
Enrichment was limited to combining data sources, and annotating literals.

3.1 The Amsterdam Museum Dataset (amplus)

The Amsterdam Museum is dedicated to the history of Amsterdam. Its catalog
has been translated to linked open data [5]. The AM dataset, as described in

® The same may be achieved with additional triples. While this would remove the need
for new datatypes, it would render the isolated literal meaningless. This contrasts
with most other datatypes, which still convey their meaning in isolation.

5 Numerical includes all subsets of real numbers, as well as booleans, whereas date,
years, and other similar types are listed under temporal information. Textual includes
the set of strings (possibly without datatype, its subsets, and raw URIs (e.g. links).
Images and geometries are listed under visual and spatial information, respectively.
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Table 3. The class mapping for the amplus data. The original categories are translated
from their original Dutch names.

original class frequency
Furniture, Glass, Textile, Ceramics, Sculpture, Arts & crafts Decorative art 25782
Prints Prints 22048
Coins & tokens, Archaeological artifacts, Measures & weights  Historical artifacts 7558
Drawings Drawings 5455
Non-noble metals art, Noble metal art Metallic art 4333
Books, Documents Books & documents 4012
Paintings Paintings 2672
Photographs Photographs 1563

Table [1] is already established as a benchmark for node classification: the task is
to predict the type of a given collection item.

In this version, the number of labeled instances is arbitrarily limited to 1000,
resulting in small test set sizes. We return to the original data and make the
following changes: we collect all collection items as instances, annotate a large
number of literals with the correct datatype, and insert images as base64 encoded
literals. We also include only a subset of the relations of the original data: to
make the dataset both small and challenging. Finally, we remap the categories
to a smaller set of classes; to create a more balanced class distribution. The
mapping is given in Table

The amplus data is provided under a Creative Commons CC-BY license.

3.2 The Dutch Monument Graph (dmgfull, dmg777k)

Like amplus, the Dutch Monument Graph (DMG) is a dataset from the Digital
Humanities. Encompassing knowledge from several organizations, the DMG
contains information about 63566 registered monuments in the Netherlands.

Engineered with the goal of creating a highly multimodal dataset, the DMG
contains information in six modalities, five of which are encoded as literals.
This includes the often common numerical, temporal, and textual information,
but also visual information in the form of images, and, more uniquely, several
different kinds of spatial information. Taken all together, these modalities provide
the monuments with a diverse multimodal context which includes, amongst
other things, a short title, a longer description, a construction date, the city
and municipality it lies in, several images from different directions, a set of
geo-referenced coordinates, and a polygon describing its footprint.

Unique of this dataset is the strong presence of geospatial information. This
form of information encompasses the spatial and hierarchical relations between
spatial features, such as cities, municipalities, and countries, as well as sets of
coordinates in R? which describe a position and/or shape. These coordinates are
expressed using the well-known text format (WKT), and are linked using the
Open GeoSpatial Consortium’s GeoSPARQL ontology.
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Five different knowledge graphs from four different organizationsm were combined
to form the DMG. The information from these organizations was combined using
entity resolution based on string comparison, matching municipality and city
names, as well as multi-part addresses. Once merged, the information was cleaned
and provided with accurate class and datatype declarations where missing.

The 777k-variant is a subset encompassing 8399 monuments created by
sampling monuments from the top-5 monument classes that have no missing
values. Both datasets are published under the CC-BY license.

3.3 The Movie Dataset (mdgenre, mdgender)

The Movie datasets are subsets of Wikidata [31I] in the movie domain. We select
any movies that are recorded as ever having won or been nominated for an award.
Every person affiliated with any of these movies is also selected if the relation
between the movie and the person is in a whitelist.

This whitelist consists of relations that satisfy the following conditions: every
relation needs to have a Wikidata prefix and the relations do not direct to an
identifier (ID) tag outside of Wikidata. Every triple that contains a movie or
individual on their respective lists and a relation on the whitelist is extracted.
This creates a knowledge graph that is centred around movie-related data and
has a longest path of 4, making the knowledge graph relatively simple.

The main objective of this dataset is to predict the genre of the movies.
Movies can have multiple genres, which is not practical when creating a single-
label classification problem. Therefore, movies are assigned a genre based on a
solution to the Set Cover Problem, which was derived using [38]. Each movie is
assigned a single genre of which it already was part. This simplifies the multi-label
classification objective to a multiclass classification objective. Additionally, the
Movie Datasets also contain a gender objective, which we include as a sanity
check as the objective is considered easier compared to the genre objective (see
Section for a discussion). As the classification in the Wikidata knowledge
base is already suitable for multiclass classification, no further constraining as
with the genres was not necessary.

We download thumbnail images from URLs in Wikidata and include base64-
encoded representations. We also include thumbnails of images in the Internet
Movie Database: using the IMDb-identifier in Wikidata, the respective web page
at the IMDb-website is obtained for their thumbnail, which is in turn downloaded,
converted and inserted in the same way.

The relational data in these datasets is taken from Wikidata, and provided
under the same CCO/Public domain license that applies to Wikidata. For 40449
out of the 68247 images in this dataset, we extracted thumbnails from larger
images published by the Internet Movie Database. The copyright of the original
images resides with their producers. We assert no rights on this part of the data

" (1) the Dutch Cultural Heritage Agency, www.cultureelerfgoed.nl, (2) the Dutch
Cadastre, Land Registry and Mapping Agency, www.kadaster.nl, (3) Statistics Nether-
lands, www.cbs.nl, and (4) Geonames, www.geonames.org.
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for redistribution or use outside non-commercial research settings. The remainder
of the thumbnails is taken from from the Wikimedia repository, and distributed
under the individual license of each image.

3.4 The DBLP Dataset (dblp)

The DBLP repository [29] is a large bibliographic database of publications in the
domain of computer science. This was converted to RDF under the name L3S
DBLP, of which we used the HDT dumﬁﬂ To provide a classification task on
this data we extracted citation counts from the OpenCitations project [21], using
the REST API. We checked all DOIs of papers in the DBLP dump, giving us a
set of 86535 DOIs that are present in both databases. These are our instances.

We also extract information from Wikidata about researchers. We use the
XML dump of DBLP [29] to extract ORCiDs, which allows us to link 62774
people to Wikidata. For each person linked, we extract triples from the one-hop
neighborhood in Wikidata. We use 24 relations from the DBLP data and 44
relations from Wikidata.

Since we are focusing here on classification tasks, we turn the prediction of
the citation count into two classes: those papers which received one citation, and
those wich received more (due to the skewed distribution this the closest to a
median-split). We have also preserved the original citation counts in the data, so
the task can also be treated as a node regression task. This dataset is provided
under a CCO/Public domain license.

4 Code and Baselines

In addition to the datasets in their RDF and CSV formats, we also provide scripts
to convert any arbitrary RDF-encoded graph to our CSV format. To import these
datasets into a machine learning workflow, we further provide a small Python
library that loads any dataset that makes use of our CSV format into a object
containing Pytorch [20] or Numpy [I9] tensors, together with mappings to the
string representations of the nodes. This provides both a utility sufficient for the
majority of current machine learning practice, and a reference implementation
for any setting where such a dataloader does not suffice.

In addition to the new datasets of Table [2| the repository also includes legacy
datasets aifb and the original Amsterdam Museum data, named amlk here.
These are useful for debugging purposes.

The dataloader allows the data to be loaded in a single function call. It also
provides utility functions for pruning the dataset to a fixed distance around the
instance nodes, and for re-ordering the nodes so that the datatypes are ordered
together (which may reduce expensive tensor indexing operation in implementing
multimodal models). We also provide three baseline models as reference for how
to use the data in practice:

8 Available at |https://www.rdfhdt.org/datasets,.
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Table 4. Performance of baselines on the datasets in the collection. The RGCNs could
not be trained on dblp in under 64Gb of memory.

setting baseline amplus dmgfull dmg777k dblp mdgenre
relational Features 0.72 0.73 0.42 0.72 0.66

R-GCN 0.77 0.71 0.70 - 0.63
multimodal MR-GCN  0.86 0.76 0.57 - 0.62

Features This model extracts binary graph features about the set of triples
incident to the instance node, which are then used by a logistic regression
classifier. Over the whole set of training instances, all of the following binary
features are considered: (a) whether a particular predicate p is present or
not, (b) whether a particular predicate is present in a specific direction, i.e.
outgoing or incoming, and (c¢) whether a particular predicate, in a particular
direction, connects the instance node to a specific node n. For all collected
features, the information gain is computed for splitting the training instances
on that feature. The k features with the highest information gain are kept
and used to train a classifier.

R-GCN The default classification R-GCN model [28]. It contains two R-GCN
layers that are fed with a one-hot encoding of the nodes, mapping to a hidden
layer, which is mapped to class probabilities. By default, a hidden size of
16 is used, with a basis decomposition of 40 bases. This baseline is purely
relational, and ignores multimodal information.

MR-GCN We provide a stripped-down version of the MR-GCN model [34].
Unlike the original, this model does not train its feature extractors end-to-
end, which means that no backpropagation is needed beyond the R-GCN
layer, saving memory. The literal features are extracted by pretrained models:
a Mobilenet-v2 [26] for the images and DistilBERT [27] for literals. After
feature extraction, the features are scaled down to a uniform input dimension
d by principal component analysis.

4.1 Baseline Performance

Table [ shows the accuracies of the three baseline models on the datasets in
kgbench. The R-GCN models were trained for 50 epochs with default hyperpa-
rameters. That is, a two-layer model, with ReLLU activation and a hidden size of
16. Training was done full-batch for 50 epochs with the Adam optimizer with
default parameters and a learning rate of 0.01. A 0.5-10~2 L2 penalty was applied
to the weights of the first layer. The features baseline was run with k£ = 2000
and a logistic regression classifier with no regularization.

These numbers should be taken as broad baselines for how default models
perform on these datasets, and not as the last word of the performance of, for
instance, the R-GCN. It may well be possible to achieve better performance
with more extensive hyperparameter tuning, a different architecture, or more
training epochs. In particular, the MR-GCN used here is likely considerably less
performant than the fully end-to-end version.
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5 Discussion

5.1 Broader impact

While only a small proportion of benchmarks that are published achieve broad
community-wide uptake, those that do ultimately have a profound impact on
the direction in which technology is developed. A dataset like ImageNet [8] was
developed in a time when no models were available that could solve the task,
but it is now commonly used to pretrain computer vision models that are widely
distributed and used in production systems. Even a dataset like FFHQ [I3], which
was specifically compiled with diversity and representation in mind has led to
pre-trained models that contain bias, which is ultimately exposed in downstream
applications [17].

For this reason we consider it wise to discuss both the biases present in the
data and the implications of setting certain labels as training targets.

Bias in training data A common source of discussion in Al Ethics is the bias
present in training data, especially where the representation of people is concerned
[16]. A case in point are the mdgenre and dblp datasets, which both contain the
“Sex or Gender” property of WikidataEI In the former, a disproportionate number
of the actors in the data are men. While this may be an accurate reflection of a
bias in the Worldﬂ it means that actions taken based on the predictions of a
production model trained on this data, may end up amplifying the data biases.

We have chosen not to de-bias the data for various reasons. First, we can only
correct for the biases for which we have attributes (such as sex, gender, race, or
religion). Second, even if we resample in this way, the biases may still manifest, for
instance in the completeness of the data for men and women. Finally, debiasing
the data ourselves, by a fixed strategy removes the possbility of investigating the
debiasing method itself.

In short, we take it as a given that the data is biased. Since the data was
largely retrieved completely as found in the wild, with only crude filtering based
on node neighborhoods and relation whitelists, we may assume that these biases
are reflective of the biases in real-world data. This may be used to study data
bias in knowledge graphs, but any model trained on these datasets should not be
put into production without careful consideration.

Choice of target relations In all cases, our primary reasons for setting a
particular target relation are technical. It is challenging to find a set of classes
that are well-balanced, offer a large amount of instances, and provide a challenging
task. Moreover, in the multimodal setting, a variety of literals with different
modalities must be available, all of which can be shown to contribute to the task.

9 |https: //www.wikidata.org/wiki/Property:P21
10 Even this is not a given. In many cases, the models themselves also amplify the biases
present in the datal37].
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This narrow range of requirements can lead difficult choices: in our search for
suitable targets, we noted that the category “Sex or gender” in Wikidata, satisfied
our technical requirements very well. However, training a model to predict this
relation is to train (in part) a gender classifier, which is a controversial subject
[IT]. The following reasons have been posed for why such classifiers would be
undesirable:

— Both sex and gender are not well captured by binary categories. Even the
range of 36 categories offered by Wikidata (of which 8 are present in the
Movie data) is unlikely to capture the spectrum of possibilities.

— People with gender identities outside the male/female categorization are at
risk of oppression or discrimination. An oppressive regime may abuse gender
and sex classifiers for large scale detention or prosecution. While there are
currently no such systems employed to our knowledge, such practices do
already exist in the related cases of race and ethnicity classification [I8§].

— The possibility of gender classification from external features may falsely
imply a strong or causal relationship. Here, a comparable case is [33[14], where
a classifier was built to predict sexual orientation. Besides the possibilities for
abuse noted previously, such classifiers are often misinterpreted as showing
strong causal links, for instance between physical features and the target
class. In fact, all that can really be inferred is a weak correlation, which may
well be based on incidental features, such as lighting, or personal choices such
as clothing and make-up.

On the other hand, the inclusion of sex and gender as features in the data
is important for the study of algorithmic bias. Simply removing the sex or
gender attribute as a target class, but not as a feature of the data, also does not
circumvent these issues. In a link prediction setting rather than a node labeling
setting, every relation in the data becomes both feature and target. In such
settings the two cannot be separated, and the problem remains.

Ultimately, we have chosen to include the dataset, with the “Sex or gender”
attribute in place. We urge that practitioners use these datasets with care. For
the gender-prediction task mdgender itself, we recommend strongly that this
dataset be used only as a test case in developmentH and not to report model
performance in general settings, unless the task at hand is specifically relevant to
the issue of sex or gender bias.

6 Conclusion

In this work, we have introduced a collection of multimodal datasets for the
precise evaluation of node classification tasks on RDF-encoded knowledge graphs.

11 The task in its current setup is too easy to serve as a good benchmark (which we
have deliberately refrained from fixing). However, it is unique among these datasets
in offering a strong guarantee that the images can be used to predict the target label
with good accuracy. This property may be useful in debugging models, which can
then be evaluated on the other tasks.



14 Bloem et al.

All datasets are available on GitHub and Zenodo in N-Triples and HDT format.
Also provided are CSVs with an integer:label mapping, which can be loaded
into Numpy and Pytorch by using the provided dataloader code. To support
images, videos, and audio sequences, we also introduced a modest ontology to
express these datatypes as binary-encoded string literals. For all datasets, we
demonstrated their performance using several baseline models.

Limitations To add extra modalities to our data, we have relied primarily on
images. Other modalities are available: for instance wikidata contains a rich
collection of audio clips which provide an additional modality. Even small videos
might be suitable.

An important consideration in constructing our graphs was to keep the total
size of the graph relatively small. This means that the graphs presented here paint
a slightly simplified image of real-world knowledge graphs. A model that performs
well on these graphs can most likely not be applied directly to knowledge graphs
found in the wild, as these will have magnitudes more relations, and relevant
information stored more steps away from the instance nodes.

Outlook To stimulate adoption of the benchmark, we have aimed to offer a
simple and unambiguous way to load the data (including baseline implementations
for reference) and to host the data in multiple, redundant places (Zenodo and
Github). As the data is used, we will offer a leader board on the Github page to
track top performance and collect papers making use of the data.

The ultimate test of a benchmark task is whether it can be solved. In cases
like speech-to-text, we can use human performance as an upper bound, but in a
relational learning setting this is difficult to measure. Our baseline tests show that
simple baselines reach low, but above-chance performance, with plenty of room
for growth. It is difficult to establish what the performance ceiling is, but we hope
that by providing a good number of datasets, we increase the probability that
one of them will turn out to contain that particular trade-off between difficulty
and simplicity that typifies the most enduring benchmark tasks.

Our ultimate hope is that these benchmarks stimulate more principled research
towards models that learn end-to-end from relational and multimodal data, and
that such models help to bridge the gap between statistical and symbolic forms
of knowledge representation.
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