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Abstract: Safe reinforcement learning (RL) focuses on training reward-
maximizing agents subject to pre-defined safety constraints. Yet, learning versatile
safe policies that can adapt to varying safety constraint requirements during de-
ployment without retraining remains a largely unexplored and challenging area. In
this work, we formulate the versatile safe RL problem and consider two primary
requirements: training efficiency and zero-shot adaptation capability. To address
them, we introduce the Conditioned Constrained Policy Optimization (CCPO)
framework, consisting of two key modules: (1) Versatile Value Estimation (VVE)
for approximating value functions under unseen threshold conditions, and (2) Con-
ditioned Variational Inference (CVI) for encoding arbitrary constraint thresholds
during policy optimization. Our extensive experiments demonstrate that CCPO
outperforms the baselines in terms of safety and task performance while preserving
zero-shot adaptation capabilities to different constraint thresholds data-efficiently.
This makes our approach suitable for real-world dynamic applications.
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1 Introduction
Safe reinforcement learning (RL) has emerged as a promising approach to address the challenges
faced by robots operating in complex, real-world environments [1], such as autonomous driving [2],
home service [3], and UAV locomotion [4]. Safe RL aims to learn a reward-maximizing policy
within a constrained policy set [5, 6, 7]. By explicitly accounting for safety constraints during policy
learning, agents can better reason about the trade-off between task performance and safety constraints,
making them well-suited for safety-critic applications [8].

Despite the advances in safe RL, the development of a versatile policy that can adapt to varying
safety constraint requirements during deployment without retraining remains a largely unexplored
area. Investigating versatile safe RL is crucial due to the inherent trade-off between task reward and
safety requirement [9, 10]: stricter constraints typically lead to more conservative behavior and lower
task rewards. For example, an autonomous vehicle can adapt to different thresholds for driving on an
empty highway and crowded urban area to maximize transportation efficiency. Consequently, learning
a versatile policy allows agents to efficiently adapt to diverse constraint conditions, enhancing their
applicability and effectiveness in real-world scenarios [11].

This paper studies the problem of training a versatile safe RL policy capable of adapting to tasks
with different cost thresholds. The primary challenges are two-fold: (1) Training efficiency. A
straightforward approach is to train multiple policies under different constraint thresholds, then
the agent can switch between policies for different safety requirements. However, this method is
sampling inefficient, making it unsuitable for most practical applications, as the agent may only collect
data under a limited number of thresholds during training. (2) Zero-shot adaptation capability.
Constrained optimization-based safe RL approaches rely on fixed thresholds during training [12],
while recovery-based safe RL methods require a pre-defined backup policy to correct agent’s unsafe

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.



behaviors [5, 6, 7]. Therefore, current safe RL training paradigms face challenges in adapting the
learned policy to accommodate unseen safety thresholds. To tackle the challenges outlined above, we
introduce the Conditioned Constrained Policy Optimization (CCPO) framework, a sampling-efficient
algorithm for versatile safe reinforcement learning that achieves zero-shot generalization to unseen
cost thresholds during deployment. Our key contributions are summarized as follows:

1. We frame safe RL beyond pre-defined constraint thresholds as a versatile learning problem.
This perspective highlights the limitations of most existing constrained-optimization-based approaches
and motivates the development of CCPO based on conditional variational inference. Importantly,
CCPO can generalize to diverse unseen constraint thresholds without retraining the policy.

2. We introduce two key techniques, Versatile Value Estimation (VVE) and Conditioned
Variational Inference (CVI), for safe and versatile policy learning. To the best of our knowledge,
our method is the first successful online safe RL approach capable of achieving zero-shot adaptation
for unseen thresholds while preserving safety. Our theoretical analysis further provides insights into
our approach’s data efficiency and safety guarantees.

3. We conduct comprehensive evaluations of our method on various safe RL tasks. The results
demonstrate that CCPO outperforms baseline methods in terms of both safety and task performance
for varying constraint conditions. The performance gap is notably larger in tasks with the high-
dimensional state and action space, wherein all baseline methods fail to realize safe adaptation.

2 Problem Formulation
Constrained Markov Decision Process: CMDPM is defined by the tuple (S,A,P, r, c, µ0) [13],
where S is the state space, A is the action space, P is the transition function, r is the reward function,
and µ0 is the initial state distribution. CMDP augments MDP with an additional element c to
characterize the cost of violating the constraint. Note that this work can be directly applied to the
multiple-constraints setting, but we use a single constraint for ease of demonstration. Let π denote the
policy and τ = {s1, a1, ...} denote the trajectory. We use shorthand ft = f(st, at, st+1), f ∈ {r, c}
for simplicity. The value function is V πf (µ0) = Eτ∼π,s0∼µ0

[
∑∞
t=0 γ

tft], f ∈ {r, c}, which is the
expectation of discounted return under the policy π and the initial state distribution µ0.

Versatile safe RL problem: Safe RL beyond a single pre-defined constraint threshold. Specifically,
we consider a set of thresholds ϵ ∈ E and a constraint-conditioned policy: π(·|ϵ). We can then
formulate the versatile safe RL problem as finding the optimal versatile policy π∗(·|ϵ) that maximizes
the reward within the corresponding threshold condition on a range of constraint thresholds ϵ ∈ E :

π∗(·|ϵ) = argmax
π

V πr (µ0), s.t. V
π
c (µ0) ≤ ϵ, ∀ϵ ∈ E . (1)

The training datasetD =
⋃N
i=1Di is collected through a limited set of thresholdsDi ∼ π(·|ϵ̃i),∀ϵi ∈

Ẽ ,with Ẽ ⊂ E , |Ẽ | = N , where N denotes the number of behavior policies with pre-specified
constraint conditions during training. We also provide the related works in Appendix E.

3 Method

Figure 1: Proposed CCPO framework.

We identify two key challenges for versatile safe RL: (1) Q
function estimation for unseen threshold conditions with
limited behavior policy data and (2) encoding arbitrary
safety constraint conditions in the versatile policy training.
To address these challenges, we propose the Constraint-
Conditioned Policy Optimization (CCPO) method.

As illustrated in Figure. 1, CCPO operates in two modules.
The first versatile critic learning involves the concurrent training of several behavior agents, each
under their respective target constraint thresholds. The goal is to learn feature representations for
both the state-action pair feature and the target thresholds, hence enabling generalization to unseen
thresholds using Versatile Value Estimation (VVE). In the versatile actor training, we train the
policy to be responsive to a range of unseen thresholds based on the well-trained value functions. Our
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key insight is to adopt the variational inference safe RL framework [14, 15]. With this Conditional
Variational Inference (CVI) step, the policy can achieve zero-shot adaptation to unseen thresholds
without needing behavior agents to collect data under corresponding conditions. We introduce each
module as follows.

3.1 Versatile value estimation
The estimation of Q-value functions becomes increasingly crucial when dealing with unseen thresh-
olds that the behavior agents do not encounter. To tackle this problem, we propose the versatile critics
learning module, which disentangles observations and target thresholds within a latent feature space.
The assumption regarding the decomposition is as follows.
Assumption 1 (Critics linear decomposition). The versatile Q functions Q∗

f with respect to the
optimal versatile policy π∗ can be represented as:

Q∗
f (s, a|ϵ) = ψf (s, a)

⊤z∗f (ϵ), f ∈ {r, c}, (2)

where ||ψf (s, a)||∞ ≤ Kf is the feature for the function of the state-action pair (s, a), and z∗f is the
optimal constraint-conditioned policy feature, which only depends on the policy condition ϵ for a
specified task. The dimension of ψf (s, a) and z∗f (ϵ) are both M .

Here we decompose the Q function into the product of ψ(s, a) and z(ϵ). In practice, we utilize a
Neural Network to parameterize ψ(s, a) and a much smaller model such as polynomial regression
to parameterize z(ϵ). Thus we can get a bounded estimation error for Q functions Q̂f under unseen
threshold conditions. The theoretical analysis of bounded estimation, empirical verification of Q
function learning, and the model structure can be found in Appendix B.1, A.5, D.5, respectively.

3.2 Conditioned variational inference
Given well-trained versatile Q functions in versatile critics learning, we aim to encode arbitrary
threshold constraints during policy learning in the versatile actor training. We utilize the safe RL
as inference framework to achieve this goal. The key strength of using this framework lies in its
ability to encode arbitrary threshold conditions during policy learning, as shown in (3), a feat that
is challenging for other methods, such as those based on primal-dual algorithms [14]. Following
the EM-style policy optimization for RL as inference, our Constrained variational inference (CVI)
realizes the versatile policy update via Constraint-conditioned E-step and Versatile M-step as follows.

Constraint-Conditioned E-step: The conditioned E-step aims to find the optimal variational
distribution q(a|s, ϵi) that maximizes the reward return while satisfying the safety condition defined
by ϵi for the state s and resampled action a. At the j-th iteration, denote the policy parameter as θj ,
we can write the policy update objective w.r.t q as a constrained optimization problem:

max
q(a|s,ϵi)

Eρq

[∫
q (a|s, ϵi) Q̂

πθj
r (s, a|ϵi) da

]
s.t. Eρq

[∫
q (a|s, ϵi) Q̂

πθj
c (s, a|ϵi) da

]
≤ ϵi, (3)

where Q̂f (·|ϵi) is the versatile Q functions as introduced in section 3.1, the inequality constraint
represents the safety constraint defined by ϵi. The closed-form solution q∗i (a|s, ϵi), which means the
optimal action distribution, can be found in Appendix C.3.

Versatile M-step: After the constraint-conditioned E-step, we obtain a set of optimal feasible
variational distribution q∗i = q∗i (·|s, ϵi) for each constraint threshold ϵi. In the versatile M-step, we
aim to improve the policy (see objective details in the Appendix A.4) w.r.t the policy parameter θ for
ϵi ∈ E , which is a supervised-learning problem with KL-divergence constraints [16, 17]:

max
θ

Eρq

[ |E|∑
i=1

Eq∗i

[
log πθ(a|s, ϵi)

]
/|E|

]
s.t. Eρq

[
DKL(πθj (a|s, ϵi)∥πθ(a|s, ϵi))

]
≤ γ ∀i, (4)

where E is the set for all the sampled versatile policy conditions ϵi in fine-tuning stage of training.
The constraint in (4) is a regularizer to stabilize the policy update.

4 Experiments
Baselines: We divide the baseline methods into two categories and name them as: Constraint-
conditioned baselines. (V-SAC, and V-DDPG), and policy linear combination (C-PPO, and C-TRPO)
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Task. The simulation environments are from a publicly available benchmark [18]. We name the tasks
as Ball-Circle (BC), Car-Circle (CC), Drone-Circle (DC), Drone-Run (DR), and Ant-Run
(AR) [10, 11, 12]. More details about baselines and tasks can be found in Appendix D.1.

Metrics: We compare the methods in terms of episodic reward (the higher, the better) and episodic
constraint violation cost (the lower, the better) on each evaluated threshold condition. We take the
average of the episodic reward and episodic cost as the main comparison metrics. For the reward, the
higher the better. For the cost, it should be less than the target threshold condition.

The evaluation results are shown in Figure. 2. The models are trained on Ẽ = {20, 40, 60} and
evaluated on Eg = {10, 15, ..., 70}, and we report the averaged reward and constraint violation values
on Eg . Each value is reported for 50 episodes and 5 seeds.

Figure 2: Results of zero-shot adaption to different cost returns. Each column is a task. The x-axis is the
threshold condition. The first row shows the evaluated reward and the second row shows the evaluated cost under
different target costs. The solid line is the mean value, and the light shade represents the area within one standard
deviation. The versatile agents are trained on Ẽ = {20, 40, 60}, and evaluated on Eg = {10, 15, ..., 70}.

For baseline methods, we can observe that in the Drone-Circle, Drone-Run, and Ant-Run tasks
characterized by highly-nonlinear robot dynamics, the constraint-conditioned baseline method
(V-DDPG) exhibits the poor ability to encode threshold into the policy generation, thus leading to high
cost violation values. This limitation arises due to the inadequacy of utilizing only a limited number
of behavior policies for versatile policy training in tasks with high-dimensional observation and
action spaces. for the policy linear combination baseline (C-TRPO), it has a significant reward drop
at unseen thresholds. It indicates the concepts from the control theory that the safety-critical control
component is proportional to the conservativeness level and can not be directly used in versatile safe
RL with high-dimensional settings.

For the proposed CCPO method, we can clearly see that CCPO learns a versatile safe RL policy
that can generalize well to unseen thresholds data-efficiently with low cost-violations and high
rewards. We also provide detailed full quantitative experiment results, more baseline comparison,
results for the ablation study, and the different choices of behavior policies in Appendix D.

5 Conclusion

In this study, we pioneered the concept of versatile safe reinforcement learning (RL), presenting the
Conditioned Constrained Policy Optimization (CCPO) algorithm. This approach adapts efficiently to
different and unseen cost thresholds, offering a promising solution to safe RL beyond pre-defined
constraint thresholds. With its core components, Versatile Value Estimation (VVE) and Conditioned
Variational Inference (CVI), CCPO facilitates zero-shot generalization for constraint thresholds. Our
theoretical analysis further offers insights into the constraint violation bounds for unseen thresholds
and the sampling efficiency of the employed behavior policies. The extensive experimental results
reconfirm that CCPO effectively adapts to unseen threshold conditions and is much safer and more
data-efficient than baseline methods.

4



References
[1] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, and A. Knoll. A review of safe

reinforcement learning: Methods, theory and applications. arXiv preprint arXiv:2205.10330,
2022.

[2] D. Isele, A. Nakhaei, and K. Fujimura. Safe reinforcement learning on autonomous vehicles. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1–6.
IEEE, 2018.

[3] H. Ding, Y. Xu, B. C. S. Hao, Q. Li, and A. Lentzakis. A safe reinforcement learning approach
for multi-energy management of smart home. Electric Power Systems Research, 210:108120,
2022.

[4] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. Learning safe multi-agent control with
decentralized neural barrier certificates. arXiv preprint arXiv:2101.05436, 2021.

[5] T.-Y. Yang, T. Zhang, L. Luu, S. Ha, J. Tan, and W. Yu. Safe reinforcement learning for legged
locomotion. arXiv preprint arXiv:2203.02638, 2022.

[6] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan, M. Hwang, J. E. Gonzalez,
J. Ibarz, C. Finn, and K. Goldberg. Recovery rl: Safe reinforcement learning with learned
recovery zones. IEEE Robotics and Automation Letters, 6(3):4915–4922, 2021.

[7] H. Bharadhwaj, A. Kumar, N. Rhinehart, S. Levine, F. Shkurti, and A. Garg. Conservative
safety critics for exploration. arXiv preprint arXiv:2010.14497, 2020.

[8] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe
learning in robotics: From learning-based control to safe reinforcement learning. Annual Review
of Control, Robotics, and Autonomous Systems, 5, 2021.

[9] A. Ray, J. Achiam, and D. Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7, 2019.

[10] Z. Liu, Z. Guo, Z. Cen, H. Zhang, J. Tan, B. Li, and D. Zhao. On the robustness of safe
reinforcement learning under observational perturbations. arXiv preprint arXiv:2205.14691,
2022.

[11] Z. Liu, Z. Guo, Y. Yao, Z. Cen, W. Yu, T. Zhang, and D. Zhao. Constrained decision transformer
for offline safe reinforcement learning. arXiv preprint arXiv:2302.07351, 2023.

[12] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In International
Conference on Machine Learning, pages 22–31. PMLR, 2017.

[13] E. Altman. Constrained Markov decision processes: stochastic modeling. Routledge, 1999.

[14] Z. Liu, Z. Cen, V. Isenbaev, W. Liu, S. Wu, B. Li, and D. Zhao. Constrained variational policy
optimization for safe reinforcement learning. In International Conference on Machine Learning,
pages 13644–13668. PMLR, 2022.

[15] Z. Liu, Z. Guo, Z. Cen, H. Zhang, Y. Yao, H. Hu, and D. Zhao. Towards robust and safe
reinforcement learning with benign off-policy data. 2023.

[16] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. Maxi-
mum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

[17] A. Abdolmaleki, J. T. Springenberg, J. Degrave, S. Bohez, Y. Tassa, D. Belov, N. Heess, and
M. Riedmiller. Relative entropy regularized policy iteration. arXiv preprint arXiv:1812.02256,
2018.

[18] S. Gronauer. Bullet-safety-gym: Aframework for constrained reinforcement learning. 2022.

5



[19] A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver, M. Hessel, D. Mankowitz, A. Zidek, and
R. Munos. Transfer in deep reinforcement learning using successor features and generalised
policy improvement. In International Conference on Machine Learning, pages 501–510. PMLR,
2018.

[20] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[21] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[23] H. De Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. C. Courville. Modulating
early visual processing by language. Advances in Neural Information Processing Systems, 30,
2017.

[24] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al. Conditional image
generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.

[25] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[26] A. Kumar, X. B. Peng, and S. Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019.

[27] T. Wei and C. Liu. Safe control algorithms using energy functions: A uni ed framework,
benchmark, and new directions. In 2019 IEEE 58th Conference on Decision and Control (CDC),
pages 238–243. IEEE, 2019.

[28] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in
continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[29] W. Saunders, G. Sastry, A. Stuhlmueller, and O. Evans. Trial without error: Towards safe
reinforcement learning via human intervention. arXiv preprint arXiv:1707.05173, 2017.

[30] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe reinforcement
learning via shielding. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[31] H. Yu, W. Xu, and H. Zhang. Towards safe reinforcement learning with a safety editor policy.
arXiv preprint arXiv:2201.12427, 2022.

[32] Z. Liu, H. Zhou, B. Chen, S. Zhong, M. Hebert, and D. Zhao. Safe model-based reinforcement
learning with robust cross-entropy method. arXiv preprint arXiv:2010.07968, 2020.

[33] Y. Luo and T. Ma. Learning barrier certificates: Towards safe reinforcement learning with zero
training-time violations. Advances in Neural Information Processing Systems, 34, 2021.

[34] A. Sootla, A. I. Cowen-Rivers, T. Jafferjee, Z. Wang, D. H. Mguni, J. Wang, and H. Ammar.
Sauté rl: Almost surely safe reinforcement learning using state augmentation. In International
Conference on Machine Learning, pages 20423–20443. PMLR, 2022.

[35] B. Chen, Z. Liu, J. Zhu, M. Xu, W. Ding, L. Li, and D. Zhao. Context-aware safe reinforcement
learning for non-stationary environments. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 10689–10695. IEEE, 2021.

6



[36] Z. Liu, Z. Guo, Z. Cen, H. Zhang, Y. Yao, H. Hu, and D. Zhao. Towards robust and safe reinforce-
ment learning with benign off-policy data. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, editors, Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 21586–21610.
PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/liu23l.html.

[37] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(1):1437–1480, 2015.

[38] Y. Flet-Berliac and D. Basu. Saac: Safe reinforcement learning as an adversarial game of
actor-critics. arXiv preprint arXiv:2204.09424, 2022.

[39] S. Bhatnagar and K. Lakshmanan. An online actor–critic algorithm with function approximation
for constrained markov decision processes. Journal of Optimization Theory and Applications,
153(3):688–708, 2012.

[40] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. Risk-constrained reinforcement learning
with percentile risk criteria. The Journal of Machine Learning Research, 18(1):6070–6120,
2017.

[41] Y. As, I. Usmanova, S. Curi, and A. Krause. Constrained policy optimization via bayesian
world models. arXiv preprint arXiv:2201.09802, 2022.

[42] Q. Liang, F. Que, and E. Modiano. Accelerated primal-dual policy optimization for safe
reinforcement learning. arXiv preprint arXiv:1802.06480, 2018.

[43] C. Tessler, D. J. Mankowitz, and S. Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

[44] M. Yu, Z. Yang, M. Kolar, and Z. Wang. Convergent policy optimization for safe reinforcement
learning. arXiv preprint arXiv:1910.12156, 2019.

[45] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge. Projection-based constrained policy
optimization. arXiv preprint arXiv:2010.03152, 2020.

[46] S. Gu, J. G. Kuba, M. Wen, R. Chen, Z. Wang, Z. Tian, J. Wang, A. Knoll, and Y. Yang.
Multi-agent constrained policy optimisation. arXiv preprint arXiv:2110.02793, 2021.

[47] D. Kim and S. Oh. Efficient off-policy safe reinforcement learning using trust region conditional
value at risk. IEEE Robotics and Automation Letters, 7(3):7644–7651, 2022.

[48] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou. Transfer learning in deep reinforcement learning: A
survey. arXiv preprint arXiv:2009.07888, 2020.

[49] P. Vaezipoor, A. C. Li, R. A. T. Icarte, and S. A. Mcilraith. Ltl2action: Generalizing ltl
instructions for multi-task rl. In International Conference on Machine Learning, pages 10497–
10508. PMLR, 2021.

[50] B. Araki, X. Li, K. Vodrahalli, J. DeCastro, M. Fry, and D. Rus. The logical options framework.
In International Conference on Machine Learning, pages 307–317. PMLR, 2021.

[51] E. Todorov. Compositionality of optimal control laws. Advances in neural information
processing systems, 22, 2009.

[52] G. Nangue Tasse, S. James, and B. Rosman. A boolean task algebra for reinforcement learning.
Advances in Neural Information Processing Systems, 33:9497–9507, 2020.

[53] J. Rajendran, A. Srinivas, M. M. Khapra, P. Prasanna, and B. Ravindran. Attend, adapt and
transfer: Attentive deep architecture for adaptive transfer from multiple sources in the same
domain. arXiv preprint arXiv:1510.02879, 2015.

7

https://proceedings.mlr.press/v202/liu23l.html


[54] C. Ma, D. R. Ashley, J. Wen, and Y. Bengio. Universal successor features for transfer reinforce-
ment learning. arXiv preprint arXiv:2001.04025, 2020.

[55] J. Kim, S. Park, and G. Kim. Constrained gpi for zero-shot transfer in reinforcement learning.
Advances in Neural Information Processing Systems, 35:4585–4597, 2022.

[56] M. Nemecek and R. Parr. Policy caches with successor features. In International Conference
on Machine Learning, pages 8025–8033. PMLR, 2021.

[57] P. Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural computation, 5(4):613–624, 1993.

[58] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt, and D. Silver.
Successor features for transfer in reinforcement learning. Advances in neural information
processing systems, 30, 2017.

[59] I. Momennejad, E. M. Russek, J. H. Cheong, M. M. Botvinick, N. D. Daw, and S. J. Gershman.
The successor representation in human reinforcement learning. Nature human behaviour, 1(9):
680–692, 2017.

8



Contents

1 Introduction 1

2 Problem Formulation 2

3 Method 2

3.1 Versatile value estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Conditioned variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Experiments 3

5 Conclusion 4

A Algorithm details 10

A.1 Details for Versatile value estimation . . . . . . . . . . . . . . . . . . . . . . . . . 10

A.2 Derivation of ELBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A.3 Constraint-conditioned E-step details . . . . . . . . . . . . . . . . . . . . . . . . . 11

A.4 Versatile M-step details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A.5 CCPO implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

B Supplementary theoretical analysis 14

B.1 Bounded safety violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.2 ϵ-sample complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.3 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.4 Training robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C Proofs and discussions 16

C.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.2 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.3 Closed-form solution (9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D Supplementary experiments 19

D.1 Experiment details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

D.2 Full result table of the main experiment . . . . . . . . . . . . . . . . . . . . . . . 19

D.3 More experiments with different choices of behavior policy conditions . . . . . . . 20

D.4 ϵ-sampling efficiency evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.5 Q functions estimation verification . . . . . . . . . . . . . . . . . . . . . . . . . . 22

E Related work 23

9



A Algorithm details

A.1 Details for Versatile value estimation

Note that Assumption 1 is reasonable and widely accepted in the RL transfer learning literature with
successor features [19], as it is reasonable to find a high-dimensional feature space to decompose
the Q functions into the product of feature functions ψf (s, a) and the latent vectors zf (ϵ) [20]. As
shown in Theorem 1, by learning ψf (s, a) and zf (ϵ) jointly and adding norm constraints on the
feature function ||ψf (s, a)||∞ ≤ Kf , we can efficiently encode the threshold information ϵ into
the Q functions and achieve accurate estimations for unseen thresholds. This is the basis for our
method’s data-efficient training. To further facilitate theoretical analysis, we assume that the optimal
constraint-conditioned policy feature z∗f (ϵ) can be approximated by polynomial functions:

Assumption 2 (Polynomial feature space). The optimal constraint-conditioned policy feature z∗f can
be approximated by z∗f (ϵ) = Poly(ϵ, p) + e, meaning each element of z∗f is a p-degree polynomial of
ϵ, and e is the remainder. Each component for e follows ej ∼ N (0, σ2

j ), j = i, ...,M , and denote
σ = maxj σj .

Note that the degree p corresponds to the z(ϵ) model representation capability. Based on the above
assumptions, we can derive the Q function estimation error bound as follows.

Theorem 1 (Bounded estimation error). Denote ϵL and ϵH are the lower and upper bound of the
target threshold interval for E . Suppose the threshold conditions {ϵ̃i}i=1,2,...,N for behavior policies
are selected to divide the interval [ϵL, ϵH ] evenly, then with confidence level 1− α, the estimation
error of versatile Q functions conditioned on arbitrary ϵ ∈ [ϵL, ϵH ] can be bounded by:

||Q̂f (s, a|ϵ)−Q∗
f (s, a|ϵ)|| ≤

zα/2B(p)

Nβ(p)

√
σ2K2

fM, (5)

where B(p) and β(p) are both functions of the polynomial degree p, and zα/2 is the upper alpha
quantile for the standard Gaussian distribution. The proof and detailed discussion of Theorem 1 and
functions B(p), β(p) are shown in Appendix C.1. It is worth noting that we normalize the threshold
conditions ϵ ∈ [ϵL, ϵH ] to the interval [0, 1] by ϵ = (ϵ− ϵL)/ϵH for numerical stability. Theorem 1
establishes that by decomposing the Q function into the product of ψ(s, a) and z(ϵ) and jointly
learning these components, we can guarantee a bounded estimation error for Q functions under unseen
threshold conditions. Furthermore, we can derive the bounded cost violation for unseen thresholds
and ϵ-sample complexity analysis based on the theorem, both of which are discussed in proposition 1
and remark 1. We also provide empirical verification of Q function estimation in Appendix D.5.

A.2 Derivation of ELBO

We utilize the safe RL as inference framework to achieve this goal, as it decomposes safe RL to a
convex optimization followed by supervised learning, both stages readily accommodating varying
target thresholds. In contrast to the classical view of safe RL aiming to find the most-rewarding
actions while satisfying the constraints, the probabilistic inference perspective finds the feasible
(constraint-satisfying) actions most likely to have been taken given future success in maximizing task
rewards [14].

Following the RL as inference literature [21], we consider an infinite discounted reward formulation.
In the condition that the constraint threshold is ϵi, we denote O = O(s, a) as the optimality variable
of a state-action pair (s, a), which indicates the reward-maximizing (optimal) event by choosing an
action a at a state s. Then for a given trajectory τ , the likelihood of being optimal is proportional to
the exponential of the discounted cumulative reward: p(O = 1|τ) ∝ exp(

∑
t γ

trt/α), where α is a
temperature parameter. Since the probability of getting a trajectory τ under the conditioned policy
π(·|ϵi) can be expressed as pπ(·|ϵi)(τ) = p(s0)

∏
t≥0 p(st+1|st, at)π(at|st, ϵi), the lower bound for
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the log-likelihood of optimality given the conditioned policy π(·|ϵi) is:

log pπ(·|ϵi)(O = 1) = logEτ∼q(·|ϵi)
p(O = 1|τ)pπ(τ |ϵi)

q(τ |ϵi)

≥ Eτ∼q(·|ϵi) log
p(O = 1|τ)pπ(·|ϵi)(τ)

q(τ |ϵi)

∝ Eτ∼q(·|ϵi)[
∞∑
t=0

γtrt]− αDKL(q(τ |ϵi)∥pπ(·|ϵi)(τ)) := J (q, π|ϵi),

(6)

where the inequality follows Jensen’s inequality, and q(τ |ϵi) is an auxiliary trajectory-wise variational
distribution conditioned on ϵi. J (q, π|ϵi) in equation (6) is the evidence lower bound (ELBO) to reach
the reward optimality under condition ϵi. Since q(τ |ϵi) = p(s0)

∏
t≥0 p(st+1|st, at)q(at|st, ϵi), we

have the following ELBO over the state and constraint conditioned action distribution q(a|s, ϵi):

J (q, θ|ϵi) =Eρq(·|ϵi)
[ ∞∑
t=0

γtrt − αDKL(q(·|ϵi)∥πθ(·|ϵi))
]
+ log p(θ) (7)

where ρq(s|ϵi) is the stationary state distribution induced by q(·|s, ϵi) and ρ0, θ refers to the parame-
ters for policy π, and p(θ) is a prior distribution over the parameters. Note we overload q by using it
both in q(a|s, ϵi) and q(τ |ϵi).

A.3 Constraint-conditioned E-step details

The conditioned E-step aims to find the optimal variational distribution q(·|ϵi) ∈ ΠϵiQ that maximizes
the reward return while satisfying the safety condition defined by ϵi. At the j-th iteration, We can
write the ELBO objective w.r.t q as a constrained optimization problem (see Appendix C for proofs):

max
q(a|s,ϵi)

Eρq
[∫

q (a|s, ϵi) Q̂
πθj
r (s, a|ϵi) da

]
s.t. Eρq

[∫
q (a|s, ϵi) Q̂

πθj
c (s, a|ϵi) da

]
≤ ϵi,

Eρq
[
DKL

(
q (a|s, ϵi) ∥πθj (·|ϵi)

)]
≤ κ;

(8)

where Q̂f (·|ϵi) is the versatile Q functions as introduced in section 3.1, the first inequality constraint
represents the safety constraint and the last term in the constraint is the trust region with the old
policy defined by KL distance κ. Inspired by [16], we use the solution of the optimal variational
distribution q∗i = q∗i (a|s, ϵi) for arbitrary safety constraint ϵi, which has the closed form:

q∗i =
πθj (·|ϵi)
Z(s, ϵi)

exp

(
Q̂
πθj
r (·|ϵi)− λ∗i Q̂

πθj
c (·|ϵi)

η∗i

)
, (9)

where Z(s, ϵi) is a normalizer to make sure q∗i is a valid distribution, and the dual variables η∗i and
λ∗i are the solutions of the following convex optimization problem (see Appendix C for details):

min
λi,ηi≥0

g(ηi, λi) = λiϵi + ηiκEρq

[
logEπ(·|ϵi)

[
exp

(
Q̂r(·|ϵi)− λiQ̂c(·|ϵi)

ηi

)]]
. (10)

Then we can encode arbitrary safety constraints by calculating the optimal distribution q∗i (a|s, ϵi)
regarding the corresponding condition ϵi efficiently with (9). The term q∗i (a|s, ϵi) means when
conditioned on ϵi, the probability of taking a at s for the optimal feasible policy.

A.4 Versatile M-step details

After the constraint-conditioned E-step, we obtain a set of optimal feasible variational distribution
q∗i = q∗i (·|s, ϵi) for each constraint threshold ϵi. In the versatile M-step, we aim to improve the
ELBO (6) w.r.t the policy parameter θ for ϵi ∈ E .

J (θ|ϵi) = Eρq
[
αEq∗i

[
log πθ(a|s, ϵi)

]]
+ log(p|ϵi) (11)
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Using a Gaussian prior for each threshold-conditioned policy, this problem can be further converted
to the following supervised-learning problem with KL-divergence constraints [16, 17]:

max
θ

Eρq
[ |E|∑
i=1

Eq∗i
[
log πθ(a|s, ϵi)

]
/|E|

]
s.t. Eρq

[
DKL(πθj (a|s, ϵi)∥πθ(a|s, ϵi))

]
≤ γ ∀i, (12)

where E is the set for all the sampled versatile policy conditions {ϵi} in fine-tuning stage of training.
The constraint in (4) is a regularizer to stabilize the policy update.

A.5 CCPO implementation details

Due to the page limit, we omit the implementation details of CCPO in the main content. We
will present the full algorithm and some implementation tricks in this section. Without otherwise
statements, the critics’ and policies’ parametrization is assumed to be neural networks (NNs), while
we believe other parametrization forms should also work in practice.

Critics update. Denote ϕψf
, ϕzf as the parameters for ψf (s, a) and zf (ϵ) in the critic Qf (s, a|ϵ).

Similar to many other off-policy algorithms [22] , we use a target network for each critic and the
polyak smoothing trick to stabilize the training. Other off-policy critic’s training methods, such as
Re-trace , could also be easily incorporated with the CCPO training framework. Denote ϕ′ψr

, ϕ′zr
as the parameters for the target reward critic Q′

r, and ϕ′ψc
, ϕ′zc as the parameters for the target cost

critic Q′
c. Define D = ∪ϵ̃i∈ẼDi as the replay buffer and (s, a, s′, r, c, ϵ̃i) as the state, action, next

state, reward, cost, and behavior policy condition, respectively. The critics are updated by minimizing
the following mean-squared Bellman error (MSBE):

L(ϕr) =
∑
Di

E(s,a,s′,r,c)∼Di

[ (
Qr(s, a|ϵi)− (r + γEa′∼π(·|ϵi)[Q

′
r(s

′, a′|ϵi)])
)2 ]

(13)

L(ϕc) =
∑
Di

E(s,a,s′,r,c)∼Di

[ (
Qc(s, a|ϵi)− (c+ γEa′∼π(·|ϵi)[Q

′
c(s

′, a′|ϵi)])
)2 ]

. (14)

Denote αc as the critics’ learning rate, we have the following updating equations:
ϕψf
←− ϕψf

− αc∇ϕr
L(ϕr), ϕzf ←− ϕzf − αc∇ϕc

L(ϕc). (15)

We use the polyak averaging trick to update the critics with a weight parameter ρ ∈ (0, 1):
ϕ′ψf

= ρϕ′ψf
+ (1− ρ)ϕψf

ϕ′zf = ρϕ′zf + (1− ρ)ϕzf . (16)

Full Algorithm. Note that for off-policy methods, we need to convert the episodic-wise constraint
violation threshold to a state-wise threshold for the Qc functions. Denote T as the episode length, the
target cost limit for one episode is ϵTi . Denote the discounting factor as γ. Then, if we assume that at
each time step we have an equal probability to violate the constraint, the target constraint value ϵi for
safety critic Q

πθj
c (·|ϵi) could be approximated by:

ϵi = ϵTi ×
1− γT

T (1− γ)
The converted threshold ϵi will be used to compute the Lagrangian multipliers for the baselines, and
also be used as one of the constraint thresholds in the constraint-conditioned E-step of our method:∫

π(a|s, ϵi)Q̂
πθj
c (s, a|ϵi) ≤ ϵi, ∀s, a

More details can be found in the code.

Model structure. The versatile critics model Qf (s, a|ϵi) = ψf (s, a)
⊤zf (ϵi) is shown in Figure. 3.

We set the feature dimension M = 32, and use an MLP with size [256, 256] to map from the
state-action pair to the feature ψf . Also, we use an MLP with size [32, 32] to map from ϵ to zf . For
the versatile actor, we provide two options for the model structure. The first one is to direct concat
the threshold ϵi into the state: s̄ = [s, ϵi] (Con) as shown in Figure. 4. The second one is to use the
Multiplicative Interaction (MI) structure inspired by previous works [23, 24, 25, 26]. To give a fair
comparison, we use the Con net for both our methods and the baseline. The user may turn on the MI
option in the code to get a higher performance of our proposed CCPO method.
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Figure 3: Versatile critics using
Linear decomposition.

Figure 4: Versatile ac-
tor using state augmen-
tation.

Figure 5: Versatile actor using multi-
plicative interaction.
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B Supplementary theoretical analysis

B.1 Bounded safety violation

Proposition 1 (Bounded safety violation). With the threshold conditions ϵ̃i ∈ Ẽ for behavior policies
selected to divide the target condition interval [ϵL, ϵH ] evenly, and with confidence level 1− α, the
cost violation of versatile policy under arbitrary threshold condition ϵ ∈ [ϵL, ϵH ] is bounded as:

V π(µ0|ϵ)
c − ϵ ≤

zα/2B(p)

Nβ(p)

√
σ2K2

cM, (17)

The proof is shown in Appendix C.1. Proposition 1 ensures that the cost violation of the versatile
safe RL agent on unseen thresholds can be bounded if the selected behavior policy conditions divide
the interval [ϵL, ϵH ] evenly. We can observe that the bound (17) is proportional to

√
K2
cM . Since

larger Kc and M correspond to a wider range of threshold conditions, this safety violation bound
is related to the interval range. Also, we provide the complexity analysis for the ϵ-sample, i.e., the
estimation error corresponding to the number of behavior policies N as shown in remark 1.

B.2 ϵ-sample complexity analysis

Remark 1 (ϵ-sample complexity analysis). The estimation error for Q functions and safety violation
bound decreases as the number of behavior policies N increases. The decreasing rate is proportional
to 1

Nβ(p) , where the exponent of N is related to p, which is the representation capabilities of the
model to represent the constraint-conditioned policy feature z(ϵ). When p increases, β also increases
as shown in the Appendix C.1, which means when the model capability is high, the proposed method
significantly becomes more data-efficient.

The functions β(p), B(p) are shown in Appendix C.1 and the proof is shown in Appendix C.2. Since
CCPO is under the “RL as inference” framework, we also enjoy many benefits as revealed in previous
works, such as the optimality guarantees and training robustness [14].

B.3 Optimality

The optimality guarantee is mainly derived from the EM-style safe RL training framework, and more
details could be found in Appendix A.5 in [14]. For self-contained, we briefly introduce it as follows.

Assumption 3 (Slater’s condition). There exists a feasible distribution q̄ ∈ ΠϵiQ within the trust region
of the old policy πθj (·|ϵi): DKL(q̄∥πθj (·|ϵi)) < κ,∀ϵi ∈ E .

Assumption 4 (Two-step Slater’s condition). The Slater’s condition holds for both πθj−1 and πθj .

The above assumptions indicate a well-optimized policy in the constraint-conditioned M-step. In
addition, they ensure the variational distributions qj−1(·|ϵi) and qj(·|ϵi) are feasible. Note that an
infeasible variational distribution qj−1(·|ϵi) may lead to arbitrarily high reward return. With this
assumption, we separately prove the ELBO improvement for constraint-conditioned E-step and
versatile M-step.

Proposition 2 (Optimality guarantee). Suppose the optimal distribution at j − 1-th and j-th update
πθj−1

, πθj both satisfy the Slater’s condition, then the ELBO in Eq. (7) is guaranteed to be non-
decreasing: J (qj , θj+1|ϵi) ≥ J (qj−1, θj |ϵi).

Proof. Constraint-conditioned E-step: By the definition of constrained-condition E-step, we
improve the ELBO w.r.t q(·|ϵi). Since qj−1(·|ϵi) is feasible (reward return is bounded) and πθj (·|ϵi)
satisfies Slater’s condition, we can prove the closed-form solution of the constrain-conditioned E-step
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update will increase ELBO:

qj(·|ϵi) = argmax
q∈Π

ϵi
Q

Eρq
[
Ea∼q(·|s,ϵi)

[
Q̂
πθj
r (s, a|ϵi)

]
− αDKL[q(·|s, ϵi)∥πθi(·|s, ϵi)]

]
= argmax

q∈Π
ϵi
Q

Eτ∼q

[ ∞∑
t=0

(
γtrt − αDKL(q(·|st, ϵi)∥πθj (·|st, ϵi))

)]
= argmax

q∈Π
ϵi
Q

J (q, θj |ϵi)

qi−1(·|ϵi) ∈ ΠϵiQ

⇒J (qj , θj |ϵi) ≥ J (qj−1, θj |ϵi).

Therefore, as long as assumption 4 holds, the ELBO will increase monotonically in terms of q.

Versatile M-step: Assuming the ELBO conditioned on different constraints ϵi ∈ E are independent
of θ. By definition in Eq. (4), when conditioned on ϵi, we update θ by

θj+1 = argmax
θ

Eρqj
[
αEa∼qj(·|s,ϵi) [log πθ(a|s, ϵi)]

]
+ log p(θ)

= argmax
θ

Eρqj [−αDKL[qi(·|st, ϵi)∥πθ(·|s, ϵi)]] + log p(θ)

= argmax
θ

Eρqj
[
Ea∼qj(·|s,ϵj)

[
Q̂qjr (s, a|ϵi)

]
− αDKL[qj(·|st, ϵi)∥πθ(·|s, ϵi)]

]
+ log p(θ)

= argmax
θ

J (qj , πθ|ϵi).

Therefore, we have: J (qj , πθj+1
|ϵi) ≥ J (qj , πθj |ϵi). Combining all the above together, we have

J (qi, πθj+1
|ϵi) ≥ J (qi, πθj |ϵi) ≥ J (qi−1, πθj |ϵi).

B.4 Training robustness

The training robustness is mainly derived from the EM-style safe RL training framework, and more
details could be found in Appendix A.6 in [14]. For self-contained, we briefly introduce it as follows.

Proposition 3 (Training robustness). Suppose πθj (·|ϵi) ∈ ΠϵiQ. πθj+1
and πθj are related by the

M-step. If ϵi < γ, where ϵi, γ are the KL threshold in constraint-conditioned E-step and versatile
M-step respectively, then the variational distribution q∗j+1 in the next iteration is guaranteed to be
feasible and optimal.

Proof. Since ϵ < ϵ2, the KL divergence between πθi+1
and πθi DKL(πθi∥πθi+1

) ≤ ϵ < ϵ2. Thus, the
Slater condition 3 holds for πθi+1

as long as πθi is feasible, because at least one feasible solution πθi
within the trust region exists. In Appendix. C.3, we know that q∗i+1(·|ϵi) in the constraint-conditioned
E-step is guaranteed to be feasible and optimal.
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C Proofs and discussions

C.1 Proof of Theorem 1

Proof. In the proof, we omit the subscript f ∈ {r, c} for notation simplicity. The results hold for
both cost and reward Q functions. Denote xj = [1, ϵ̃j , ..., ϵ̃

p
j ],X = [xT1 , ...,x

T
N ] ∈ R(p+1)×N . For

each component zi of z, it can be written as:

z∗i = βTi x+ ei; i = 1, ...,M (18)

where ei is the remainder, and we regard it following the Gaussian distribution: ei ∼ N (0, σ2
i ), and

σi ≤ σ. We divide the proof of the bounded estimation error into the following parts:

(1) Estimation error bound depending on the threshold ϵ for generalization: The objective of the
Poly-regression is to find the optimal parameter βi such that it minimizes the Mean Squared Error:

β̂i := argmin
β

1

N
∥βTi X − zi∥22 (19)

The point estimation of βi as:
β̂i =

(
XTX

)−1
XTzi (20)

Without loss of generality, we assume ei ∼ N (0, σ2),∀i to derive a loosen bound. In this case, it can
be verified that this estimator is unbiased, i.e., E[β̂i] = βi, and the covariance matrix for β̂i is:

cov(β̂i) = (XTX)−1XT cov(zi)X(XTX)−1 = σ2(XTX)−1 (21)

Then the mean of ψi(s, a)ẑi = ψi(s, a)β̂
T
i x is:

E ψi(s, a)ẑi = ψi(s, a)ẑ
∗
i (22)

and the variance of ψi(s, a)ẑi = ψi(s, a)β̂
T
i x is:

Var(ψi(s, a)ẑi) = ψ2
i (s, a)x

TVar(β̂i)x = σ2ψ2
i (s, a)x

T (XTX)−1x (23)

Then ψi(s, a)ẑi follows the Gaussian distribution:

ψi(s, a)ẑi ∼ N (ψi(s, a)ẑ
∗
i , σ

2ψ2
i (s, a)x

T (XTX)−1x) (24)

Assuming ẑi are independent of each other, we can get the estimation error of the versatile Q function
as:

w := Q̂(s, a|ϵ)−Q∗(s, a|ϵ) ∼ N

(
0,

M∑
i=1

σ2ψ2
i (s, a)x

T (XTX)−1x

)
(25)

With (25), we can get the prediction error bound as:

Pr

−zα/2 ≤ Q̂(s, a|ϵ)−Q∗(s, a|ϵ)√∑M
i=1 σ

2ψ2
i (s, a)x

T (XTX)−1x
≤ zα/2

 = 1− α (26)

Also since ||ψf ,i(s, a)|| ≤ Kf , with confidence level 1− α, we can get:

||Q̂(s, a|ϵ)−Q∗(s, a|ϵ)|| ≤ zα/2
√
σ2 MK2xT (XTX)−1x, (27)

where zα/2 is the Z-score for the standard Gaussian distributions. Bound shown in (27) depends on
the choice of behavior policy conditions (encoded inXTX) and the targeted threshold for adaptation
(encoded in x).

(2) Upper bound for all the threshold conditions: In the next, we are going to find the upper bound
for
√
xT (XTX)−1x to derive an upper bound for any threshold ϵ. First, we assume the threshold

conditions for behavior policies are selected to divide the target condition interval [ϵL, ϵH ] evenly.
We then show that given limited N ≤ Nmax, there exists B0(p) and β0(p) such that the estimation
error bound can be presented as:

||Q̂(s, a|ϵ)−Q∗(s, a|ϵ)|| ≤ B0(p)

Nβ0(p)
(28)
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This result naturally holds since ψ(s, a) is bounded, and z∗ can be represented as a polynomial of
normalized ϵ ∈ [0, 1]. One trivial solution is a large enough B(p) and β(p) = 0. The problem is how
can we find the tight estimate of B(p) and β(p). Here we use the numerical method to find the tight
mappings from p to C and β. When N ≤ 20, the results are shown as:√

xT (XTX)−1x ≤ B(p)

Nβ(p)
, (29)

where C(p) and β(p) can be found in Table. 1. Putting the results in (1) and (2) together and adding

Table 1: B(p) and β(p)
p 1 2 3 4 5 6 7 8

β(p) 0.08 0.08 0.18 0.29 0.45 0.75 1.21 1.82
B(p) 1.06 1.09 1.39 2.04 3.57 9.13 37.38 248.7

the subscript f for Q functions and the parameter Kf , one can derive:

||Q̂f (s, a|ϵ)−Q∗
f (s, a|ϵ)|| ≤

B(p)zα/2

Nβ(p)

√
σ2 MK2

f , (30)

which is claimed in (17).

C.2 Proof of Proposition 1

Proof. With the definition of the versatile safe RL, the optimal policy π∗ should satisfy the constraint:

V π
∗(µ0|ϵ)

c ≤ ϵ, (31)

Consequently, with confidence 1− α:

V π(µ0|ϵ)
c − ϵ ≤ V π(µ0|ϵ)

c − V π
∗(µ0|ϵ)

c

= Es0∼µ0,a∼π(·|ϵ) [Qc(s, a|ϵ)−Q
∗
c(s, a|ϵ)]

≤ max
(s,a)

Qc(s, a|ϵ)−Q∗
c(s, a|ϵ)

≤
zα/2B(p)

Nβ(p)

√
σ2K2

fM,

(32)

where the last inequality comes from Theorem 1.

C.3 Closed-form solution (9)

The closed-form solution is mainly derived from the EM-style safe RL training framework, and more
details could be found in Appendix A.2 in [14]. For self-contained, we briefly introduce them as
follows. The closed form for E-step optimal variational distribution is:

q∗i =
πθj (·|ϵi)
Z(s, ϵi)

exp

(
Q̂
πθj
r (·|ϵi)− λ∗i Q̂

πθj
c (·|ϵi)

η∗i

)
, (33)

where Z(s, ϵi) is a normalizer to make sure q∗i is a valid distribution, and the dual variables η∗i and
λ∗i are the solutions of the following convex optimization problem (see Appendix C for details):

min
λi,ηi≥0

g(ηi, λi) = λiϵi + ηiκEρq

[
logEπ(·|ϵi)

[
exp

(
Q̂r(·|ϵi)− λiQ̂c(·|ϵi)

ηi

)]]
. (34)

Proof. It should be noticed that we have an inherent constraint for q(·|s, ϵi) to be a valid distribution:∫
q(a|s, ϵi)da = 1, ∀s ∼ ρq (35)
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Then to solve the constrained optimization problem, we first convert it to the equivalent Lagrangian
function:

L(q, λ, η, κ) =

∫
ρq(s)

∫
q(a|s)Q̂r(s, a|ϵi)dads (36)

+ λ

(
ϵi −

∫
ρq(s)

∫
q(a|s, ϵi)Q̂c(s, a|ϵi)dads

)
(37)

+ η

(
κ−

∫
ρq(s)

∫
q(a|s, ϵi) log

q(a|s, ϵi)
π(a|s, ϵi)

dads

)
(38)

+ κ

(
1−

∫
ρq(s)

∫
q(a|s, ϵi)dads

)
, (39)

where λ, η, κ are the Lagrange multipliers for the constraints. Since the objective is linear and all
constraints are convex (note that KL is convex), the E-step optimization problem is convex. Then we
obtain the equivalent dual problem:

min
λ,η,κ

max
q(·|ϵi)

L(q(·|ϵi), λ, η, κ). (40)

Take the derivative of the Lagrangian function w.r.t q:

∂L

∂q(·|ϵi)
= Q̂r(s, a|ϵi)− λQ̂c(s, a|ϵi)− η − κ− η log

q(a|s, ϵi)
π(a|s, ϵi)

. (41)

Let (41) be zero, then we have the form of the optimal q distribution:

q∗(a|s, ϵi) = π(a|s, ϵi) exp

(
Q̂r(s, a|ϵi)− λQ̂c(s, a|ϵi)

η

)
exp

(
−η + κ

η

)
, (42)

where exp
(
−η+κη

)
could be viewed as a normalizer for q(a|s, ϵi) since it is a constant that is

independent of q(·|ϵi). Thus, we obtain the following form of the normalizer by integrating the
optimal q(·|ϵi):

exp

(
η + κ

η

)
=

∫
πθi(a|s) exp

(
Q
πθi
r (s, a)− λQπθi

c (s, a)

η

)
da, (43)

η + κ

η
= log

∫
π(a|s, ϵi) exp

(
Q̂r(s, a|ϵi)− λQ̂c(s, a|ϵi)

η

)
da. (44)

Take the optimal q distribution in Equation (42) and η+κ
η in Equation (44) back to the Lagrangian

function (39), we can find that most of the terms are cancelled out, and obtain the dual function
g(η, λ),

g(η, λ) = λϵi + ηκ+ η

∫
ρq(s) log

∫
π(a|s, ϵi) exp

(
Q̂r(s, a|ϵi)− λQ̂c(s, a|ϵi)

η

)
dads. (45)

The optimal dual variables are calculated by

η∗, λ∗ = argmin
η,λ

g(η, λ). (46)

A good property is that the dual function (46) is convex (as shown in appendix A.3 of [14]), so we
could use off-the-shelf convex optimization tools to solve the dual problem.
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D Supplementary experiments

D.1 Experiment details

Due to the page limit, we omit some descriptions of experiments in the main context. Here we give
the full details of our experiment settings.

Task. The simulation environments are from a publicly available benchmark [18]. We consider two
tasks (Run and Circle) and four robots (Ball, Car, Drone, and Ant) which have been used in many
previous works as the testing ground [10, 11, 12]. For the Circle task, the agents are rewarded for
running in a circle but are constrained within a safe region smaller than the target circle’s radius. We
name the tasks as Ball-Circle, Car-Circle, Drone-Circle, Drone-Run, and Ant-Run. In the
Run tasks, agents are rewarded for running fast between two safety boundaries and are given costs for
violation constraints if they run across the boundaries or exceed an agent-specific velocity threshold.
The reward and cost functions are defined as:

r(st) = ||xt−1 − g||2 − ||xt − g||2 + rrobot(st)

c(st) = 1(|y| > ylim) + 1(||vt||2 > vlim)

where vlim is the speed limit, ylim specifies the safety region, vt = [vx, vy] is the velocity of the
agent at timestamp t, g = [gx, gy] is the position of a fictitious target, xt = [xt, yt] is the position of
the agent at timestamp t, and rrobot(st) is the specific reward for different robot. For example, an
ant robot will gain reward if its feet do not collide with each other. In the Circle tasks, the agents
are rewarded for running in a circle in a clockwise direction but are constrained to stay within a safe
region that is smaller than the radius of the target circle. The reward and cost functions are defined as:

r(st) =
−ytvx + xtvy
1 + |||xt||2 − r|

+ rrobot(st)

c(st) = 1(|x| > xlim)

where r is the radius of the circle, and xlim specifies the range of the safety region.

Constraint-conditioned Baselines. We design these baselines by directly integrating the threshold
as a part of the state in the CMDP tuple, s̄ = [s; ϵ]. The policy is optimized with behavior policy
conditions only. We adopt commonly used off-policy safe RL algorithms, SAC-Lag and DDPG-Lag,
and name the proposed baselines as V-SAC-Lag and V-DDPG-Lag.

Policy linear combination baselines. We also compare our method with single-threshold policy
combinations. Denote ϵ as an unseen target threshold for adaptation, and ϵ1, ϵ2 as two behavior policy
conditions closest to ϵ. Then the policy for ϵ is the combination of π(·|ϵ1), π(·|ϵ2):

π(·|ϵ) = w1π(·|ϵ1) + w2π(·|ϵ2); w1 = (ϵ2 − ϵ)/(ϵ2 − ϵ1), w2 = (ϵ− ϵ1)/(ϵ2 − ϵ1) (47)

This method is designed for both threshold interpolation and extrapolation, i.e., the coefficients w1

or w2 can be negative. This baseline draws inspiration from the safe control theory, which suggests
the safe input component is proportional to the conservativeness level [27]. To this end, we use two
strong on-policy methods PPO-Lag and TRPO-Lag to train the single-threshold agents and named the
corresponding baselines as C-PPO-Lag and C-TRPO-Lag.

Metrics: We compare the methods in terms of episodic reward (the higher, the better) and episodic
constraint violation cost (the lower, the better) on each evaluated threshold condition. We take the
average of the episodic reward (Avg. R) and constraint violation (Avg. CV) as the main comparison
metrics. The constraint violation for threshold ϵ is defined as: CV = max{0,Στ ct − ϵ}. We
also report the average performance solely on unseen thresholds (Avg. R-G and Avg. CV-G) to
characterize the adaptation capability.

D.2 Full result table of the main experiment

Due to the page limit, we omit the quantitative results for the experiment. Here we provide the full
version of the results and a more details analysis. The full results are shown in Table 2. We utilize the
Metrics mentioned in Appendix D.1 for evaluation.
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Table 2: Evaluation results of proposed CCPO method and the proposed versatile safe RL baselines.
↑: the higher reward, the better. ↓: the lower constraint violation (minimal 0), the better. The models
are evaluated on a series of threshold conditions and we report the averaged reward and constraint
violation values on all evaluation thresholds and generalized thresholds. Each value is reported as
mean ± standard deviation for 50 episodes and 5 seeds. We shade the two safest agents with the
lowest averaged cost violation values.

Task Stats CCPO (ours)
Constraint-conditioned Linear combination

V-SAC V-DDPG C-PPO C-TRPO

Ball-Circle

Avg. R ↑ 710.86±20.47 774.16±20.34 762.61±58.65 637.85±14.03 699.38±1.94
Avg. CV ↓ 0.59±0.31 5.32±5.00 2.81±1.12 3.11±1.64 4.50±0.08
Avg. R-G ↑ 699.04±20.48 766.52±22.59 756.67±58.48 667.89±12.17 699.14±2.05

Avg. CV-G ↓ 0.83±0.42 6.29±5.72 3.53±1.26 3.40±1.75 5.59±0.25

Car-Circle

Avg. R ↑ 406.06±6.30 331.80±11.57 448.82±18.65 440.01±2.59 461.14±1.39
Avg. CV ↓ 1.60±0.91 12.18±4.65 14.48±8.14 9.09±1.52 7.84±1.71
Avg. R-G ↑ 401.53±5.59 331.19±11.00 445.32±17.42 438.31±3.03 460.72±1.15

Avg. CV-G ↓ 1.49±0.38 12.74±4.32 14.63±8.69 11.07±1.58 9.14±2.01

Drone-Circle

Avg. R ↑ 630.55±40.03 693.69±22.37 734.58±49.69 392.64±23.13 380.77±18.62
Avg. CV ↓ 0.32±0.38 13.24±8.80 19.62±11.15 0.45±0.38 6.55±1.95
Avg. R-G ↑ 625.51±40.12 699.14±24.88 730.29±48.43 342.77±19.06 291.87±19.88

Avg. CV-G ↓ 0.47±0.55 14.97±10.10 19.44±10.36 0.21±0.09 7.23±2.03

Drone-Run

Avg. R ↑ 458.69±12.98 355.61±35.44 244.60±48.29 398.88±21.53 461.70±4.91
Avg. CV ↓ 0.23±0.25 8.66±4.30 11.33±9.63 9.46±5.63 47.97±3.49
Avg. R-G ↑ 455.64±11.83 354.61±33.34 236.61±43.49 386.77±30.09 464.07±6.61

Avg. CV-G ↓ 0.33±0.37 9.96±4.54 12.72±9.91 11.18±7.46 60.39±4.32

Ant-Run

Avg. R ↑ 660.88±4.82 615.73±91.99 594.75±172.35 636.06±6.78 629.83±7.84
Avg. CV ↓ 3.13±1.67 8.47±3.55 23.69±30.42 5.16±1.59 0.22±0.17
Avg. R-G ↑ 660.07±5.26 626.27±84.61 592.50±173.01 620.46±9.99 605.07±10.63

Avg. CV-G ↓ 3.25±1.48 7.76±11.83 22.90±9.39 6.73±2.32 0.03±0.06

D.3 More experiments with different choices of behavior policy conditions

Due to the page limit, we only provide the experiment results based on behavior policy set E =
{20, 40, 60}. Here we provide more experiment results when the behavior policy set is selected to
be Ẽ = {10, 30, 50, 70} as shown in Table. 3. The algorithms are evaluated on threshold conditions
E = {10, 15, ..., 70} for the Ball-Circle, Car-Circle, and Drone-Circle tasks. From the
results, we can clearly see that all the conclusions in section 4 also hold for different behavior policy
choices.

Table 3: Evaluation results of proposed CCPO method and the proposed versatile safe RL baselines.
↑: the higher reward, the better. ↓: the lower constraint violation (minimal 0), the better. The models
are evaluated on a series of threshold conditions and we report the averaged reward and constraint
violation values on all evaluation thresholds and generalized thresholds. Each value is reported as
mean ± standard deviation for 50 episodes and 5 seeds. We shade the two safest agents with the
lowest averaged cost violation values.

Task Stats CCPO (ours)
Constraint-conditioned Linear combination

V-SAC V-DDPG C-PPO C-TRPO

Ball-Circle

Avg. R ↑ 639.65±37.91 778.14±7.92 737.79±29.84 590.58±20.76 700.86±2.81
Avg. CV 0±0 5.98±2.29 2.36±1.30 0.84±0.58 1.78±0.36

Avg. R-G ↑ 640.71±37.46 781.82±7.73 739.22±28.98 589.08±18.85 702.74±2.93
Avg. CV-G 0±0 5.95±2.06 2.64±1.45 0.56±0.48 2.28±0.40

Car-Circle

Avg. R ↑ 414.08±3.47 342.68±12.59 436.02±33.56 440.31±9.83 457.25±1.29
Avg. CV ↓ 1.18±0.36 14.18±6.24 19.60±13.67 9.49±1.47 8.63±1.38
Avg. R-G ↑ 414.36±3.17 344.02±13.38 436.72±33.92 441.92±9.16 456.23±2.16

Avg. CV-G ↓ 1.19±0.35 15.23±7.27 21.06±14.91 11.05±1.82 11.24±1.02

Drone-Circle

Avg. R ↑ 703.06±31.82 696.92±35.98 719.54±95.85 367.84±15.85 489.42±9.40
Avg. CV ↓ 0±0 5.39±4.45 11.06±10.12 2.09±1.62 8.64±1.42
Avg. R-G ↑ 705.52±30.35 702.72±36.73 721.57±95.17 277.42±19.26 427.59±10.26

Avg. CV-G ↓ 0±0 5.92±5.03 11.37±10.78 2.82±1.94 12.05±1.74
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D.4 ϵ-sampling efficiency evaluation

The proposed algorithm is sampling-efficient as it satisfies the requirement Thresholds Sampling
Efficiency: it is able to train the versatile safe RL agent with limited behavior policies for data
collection. Here we provide some quantitative results. In this experiment, we aim to answer
the question: How data-efficient CCPO is compared to exhaustively training the safe RL agents?
We compare our method with policy linear combination with different behavior policy set Ẽ =
{20, 40, 60} and Ẽ ′ = {20, 30, 40, 50, 60, 70}, where |Ẽ ′| = 2|Ẽ |. The algorithms are evaluated on
threshold conditions E = {10, 15, ..., 70}, and the averaged performance is reported in Table. 4. The
safest agent is shadowed. We can clearly see that even if the policy linear combination algorithm
C-TRPO uses more behavior policy, it can not behave as safely as the CCPO method on all the
evaluated tasks. Thus we can conclude that our method is at least 2 times more ϵ-sampling efficient
than exhaustively training the safe RL agents using TRPO-Lag.

Table 4: ϵ-sampling efficiency evaluation. ↑: the higher reward, the better. ↓: the lower constraint violation
(minimal 0), the better. The models are evaluated on a series of threshold conditions and we report the averaged
reward and constraint violation values on all evaluation thresholds and generalized thresholds. Each value is
reported as mean ± standard deviation for 50 episodes and 5 seeds. We shade the safest agent with the lowest
averaged cost violation value.

Algorithm Stats Ball-Circle Car-Circle Drone-Circle Drone-Run

CCPO Avg. R ↑ 710.86±20.47 406.06±6.30 630.55±40.03 458.69±12.98
with Ẽ Avg. CV ↓ 0.59±0.31 1.60±0.91 0.32±0.38 0.23±0.25

C-TRPO Avg. R ↑ 699.38±1.94 461.14±1.39 380.77±18.62 461.70±4.91
with Ẽ Avg. CV ↓ 4.50±0.08 7.84±1.71 6.55±1.95 47.97±3.49

C-TRPO Avg. R ↑ 682.94±8.08 458.13±2.22 411.91±8.95 472.89±2.65
with Ẽ′ Avg. CV ↓ 2.66±0.37 11.90±2.12 5.20±0.81 30.20±2.47
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D.5 Q functions estimation verification

The verification results for the Q function estimation are shown in Figure. 6. The testing task is
Car-Circle, the behavior policy condition set is Ẽ = {20, 40, 60}, and the evaluating thresholds
are set to be {10, 20, 30, 40, 50, 60, 70}. We select Qc as the testing target. The “ground truth”
of the Q functions are the Q functions trained with the single-threshold safe RL agents (CVPO).
The state-action pair data (s, a) for evaluation are sampled randomly from the replay buffer of one
single-threshold CVPO agent. We can see from Figure. 6 that the Qc distribution mismatch is small
on generalized thresholds, which shows that the proposed VVE is efficient in Q function zero-shot
adaptation.

Figure 6: Q function estimation verification. Green histograms represent the evaluation results of the
single-threshold policies (“ground truth”), and the blue histograms represent the evaluation results for
the versatile Q function.
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E Related work

Safe RL has been approached through various methods. Some techniques leverage domain knowledge
of the target problem to enhance the safety of an RL agent [28, 29, 30, 31, 32, 33, 34, 35, 36].
Another line of work employs constrained optimization techniques to learn a constraint-satisfaction
policy [37, 1, 38], such as the Lagrangian-based approach [39, 40, 41], where the Lagrange multipliers
can be optimized via gradient descent along with the policy parameters [42, 43, 9]. Alternatively,
other works approximate the non-convex constrained optimization problem with low-order Taylor
expansions [12] or through variational inference [14], then solve for the dual variable using convex
optimization [44, 45, 46, 47]. However, most existing approaches consider a fixed constraint threshold
during training, which can hardly be deployed for different threshold conditions after training.

Transfer learning in RL. The concept of transfer learning, also recognized as knowledge transfer,
denotes a sophisticated technique that exploits external knowledge harnessed from various domains
to enhance the learning trajectory of a specified target task [48]. Transfer learning in RL can
be categorized from multiple perspectives, such as skill composition for novel tasks [49, 50, 51,
52], parameter transfer [53], and feature representation transfer [54, 55, 56]. Among these, the
methodologies leveraging Successor Features (SFs) [57, 19] are particularly relevant to this work.
These methodologies operate under the assumption that the reward function can be deconstructed
into a linear combination of features, and they further extend the successor representation to decouple
environmental dynamics from rewards [58, 59]. However, most existing works using SFs consider
transfer learning problems among tasks with different reward functions but not with different task
conditions.
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