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ABSTRACT

In machine learning, no data point stands alone. We believe that context is
an underappreciated concept in many machine learning methods. We propose
Attention-Based Clustering (ABC), a neural architecture based on the attention
mechanism, which is designed to learn latent representations that adapt to context
within an input set, and which is inherently agnostic to input sizes and number of
clusters. By learning a similarity kernel, our method directly combines with any
out-of-the-box kernel-based clustering approach. We present competitive results
for clustering Omniglot characters and include analytical evidence of the effec-
tiveness of an attention-based approach for clustering.

1 INTRODUCTION

Many problems in machine learning involve modelling the relations between elements of a set. A
notable example, and the focus of this paper, is clustering, in which the elements are grouped ac-
cording to some shared properties. A common approach uses kernel methods: a class of algorithms
that operate on pairwise similarities, which are obtained by evaluating a specific kernel function (Fil-
ippone et al., 2008). However, for data points that are not trivially comparable, specifying the kernel
function is not straightforward.

With the advent of deep learning, this gave rise to metric learning frameworks where a parameterized
binary operator, either explicitly or implicitly, is taught from examples how to measure the distance
between two data points (Bromley et al., 1993; Koch et al., 2015; Zagoruyko & Komodakis, 2015;
Hsu et al., 2018; Wojke & Bewley, 2018; Hsu et al., 2019). These cases operate on the assumption
that there exists a global metric, that is, the distance between points depends solely on the two
operands. This assumption disregards situations where the underlying metric is contextual, by which
we mean that the distance between two data points may depend on some structure of the entire
dataset.

We hypothesize that the context provided by a set of data points can be helpful in measuring the
distance between any two data points in the set. As an example of where context might help, con-
sider the task of clustering characters that belong to the same language. There are languages, like
Latin and Greek, that share certain characters, for example the Latin T and the Greek upper case
τ .1 However, given two sentences, one from the Aeneid and one from the Odyssey, we should have
less trouble clustering the same character in both languages correctly due to the context, even when
ignoring any structure or meaning derived from the sentences themselves. Indeed, a human perform-
ing this task will not need to rely on prior knowledge of the stories of Aeneas or Odysseus, nor on
literacy in Latin or Ancient Greek. As a larger principle, it is well recognized that humans perceive
emergent properties in configurations of objects, as documented in the Gestalt Laws of Perceptual
Organization (Palmer, 1999, Chapter 2).

We introduce Attention-Based Clustering (ABC) which uses context to output pairwise similarities
between the data points in the input set. Like other approaches in the literature (Hsu et al., 2018;
2019; Han et al., 2019; Lee et al., 2019b), our model is trained with ground-truth labels in the form
of pairwise constraints, but in contrast to other methods, ours can be used with an unsupervised
clustering method to obtain cluster labels. To demonstrate the benefit of using ABC over pairwise

1To the extend that there is not even a LaTeX command \Tau
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Figure 1: Illustration of the output of different clustering methods for points sampled from four
overlapping circles. (A) ABC with additive attention. (B) ABC with multiplicative attention. (C)
Pairwise similarity with additive attention. Pairwise similarity with multiplicative attention per-
formed similarly. (D) Out-of-the box spectral clustering. Only D was given the true number of
clusters. (Best viewed in colour.)

metric learning methods, we propose a clustering problem that requires the use of properties emerg-
ing from the entire input set in order to be solved. The task is to cluster a set of points that lie on
a number of intersecting circles, which is a generalization of the Olympic circles problem (Anand
et al., 2014). Pairwise kernel methods for clustering perform poorly on the circles problem, whereas
our ABC handles it with ease, as displayed in Figure 1. We use the circles dataset for an ablation
study in Section 6.1.

In recent years, numerous deep neural network architectures have been proposed for clustering (Xie
et al., 2016; Min et al., 2018). The idea of using more than pairwise interactions between elements
of an input set in order to improve clustering has been pursued recently in Lee et al. (2019a;b),
and is motivated by the problem of amortized clustering (Gershman & Goodman, 2014; Stuhlmüller
et al., 2013). Our architecture is inspired by the Transformer (Vaswani et al., 2017), which was used
by Lee et al. (2019a) as the Set Transformer to improve clustering (Lee et al., 2019b). We inherit
its benefits such as being equivariant under permutations as well as agnostic to input size. However,
our approach is motivated by the use of context to improve metric learning, giving us a model that is
moreover agnostic to the number of clusters in the sense that neither a prediction nor a bound on the
number of clusters needs to be specified for the architecture definition. We also provide theoretical
evidence that the Transformer architecture is effective for metric learning and clustering, and to our
knowledge, are the first to do so.

The idea of using deep metric learning to improve clustering has been pursued in Koch et al. (2015);
Zagoruyko & Komodakis (2015); Hsu et al. (2018; 2019); Han et al. (2019), but without considering
the use of context. We use ground-truth labels, only in the form of pairwise constraints, to train a
similarity kernel, making our approach an example of constrained clustering. These algorithms are
often categorized by whether they use the constraints to only learn a metric or to also generate clus-
ter labels (Hsu et al., 2018). Our architecture belongs to the former category, where we only use the
constraints to learn a metric and rely on an unconstrained clustering process to obtain cluster labels.
Despite this, we achieve nearly state-of-the-art clustering results on the Omniglot, embedded Ima-
geNet, and CIFAR-100 datasets, comparable to sophisticated methods that synthesize clusters, either
using the constraints (Hsu et al., 2018; 2019; Han et al., 2019) or otherwise (Lee et al., 2019a;b).

Our main contributions are:

• ABC incorporates context in a general and flexible manner to improve metric learning for
clustering. Our competitive results on Omniglot, embedded ImageNet, and CIFAR-100, as
well as our ablation study on our circles dataset provide support for the use of context in
metric learning algorithms.

• We provide theoretical evidence of why the self-attention module in the Transformer archi-
tecture is well suited for clustering, justifying its effectiveness for this task.
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2 RELATED WORKS

Our method is similar to a line of research where a distance metric, rather than a similarity score,
is learned in a supervised manner, which can then be used as input to off-the-shelf clustering meth-
ods (Xing et al., 2003; Shalev-Shwartz et al., 2004; Davis et al., 2007). Only certain classes of
distances, such as the Mahalanobis distance, are learned. In general, deep neural nets offer the
ability to learn a more general class of distances, and have been used to learn a pairwise metric in
numerous works (Zagoruyko & Komodakis, 2015; Hsu et al., 2018; Wojke & Bewley, 2018; Hsu
et al., 2019), most notably in the Siamese network (Bromley et al., 1993; Koch et al., 2015). The
idea of using contextual information has not been explored in any of these papers. Many models go
further than metric learning by also learning how to synthesize clusters. An example of constrained
clustering can be found in Anand et al. (2014); Amid et al. (2015), where pairwise constraints are
used to transform a predefined kernel in an iterative manner, which is used in a kernel mean shift
clustering algorithm. Constrained clustering algorithms have been implemented using deep neural
nets as well. In Hsu et al. (2018; 2019), the authors train a similarity metric and transfer learning
to a secondary clustering model. Both models are trained using only pairwise constraints, and any
available context information remains unused in both components of their architecture. In Han et al.
(2019), a constrained clusterer inspired by the deep embedded clustering idea (Xie et al., 2016) is
proposed, along with a number of best practices such as temporal ensembling and consistency con-
straints in the loss function. These techniques are fairly generic and can perhaps be applied to any
other clustering algorithm to improve its results. Their model generates clusters by slowly annealing
them, requiring optimization and back-propagation even at test time. The models from Hsu et al.
(2018) and Hsu et al. (2019) also have this requirement. This may not be feasible during deployment.

A more detailed discussion of the differences between our approach and that of Lee et al. (2019a;b) is
in order. The Set Transformer architecture (Lee et al., 2019a) uses the Transformer as a contextual
encoder, followed by a pooling layer that uses a fixed number of seed vectors as queries. This
architecture is used to cluster a mixture of Gaussians, but is less flexible than ours for two reasons:
it requires the number of clusters in advance in setting the number of seed vectors, and those seed
vectors being learned makes their approach less adaptable to unseen classes. The first limitation is
addressed in a follow-up paper (Lee et al., 2019b), with the use of an iterated process to filter out
clusters and a stopping condition. Our architecture, due to its use of metric learning in place of the
pooling layer with learned seed vectors, is inductive and better suited to handle new classes. We
also present a mathematical justification for the use of the Transformer in clustering applications.
Lastly, Lee et al. (2019a) contains no clustering results on real-world data. Lee et al. (2019b) does
and our results on embedded ImageNet are similar, while ours on Omniglot are significantly better.

3 BACKGROUND

Taking inspiration from kernel methods, we aim to compute a similarity matrix from a sequence of
data points. Our architecture is inspired by ideas from two streams: the metric learning literature and
the Siamese network (Bromley et al., 1993; Koch et al., 2015) on how to learn compatibility scores,
and the Transformer architecture (Vaswani et al., 2017) and the Set Transformer (Lee et al., 2019a)
on how to use context to make decisions. We discuss a few concepts from the literature which will
form building blocks of our architecture in the next section.

3.1 COMPATIBILITY

In this section we introduce some compatibility functions which compute a similarity score between
two vector arguments, called the query and key respectively. We present the forms of compatibility
used in this paper in Table 1 and for both of these forms, keys and queries are required to have equal
dimension d.

In Siamese Networks (Koch et al., 2015), compatibility between two input images is measured by
the sigmoid of a weighted L1-distance between representations of the input. This can be seen as
a special case of additive compatibility above. The Transformer (Vaswani et al., 2017) and Set
Transformer (Lee et al., 2019a;b) make use of multiplicative compatibility.
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Table 1: Possible implementations of the compatibility function. act is any elementwise activation
function, such as tanh or sigmoid.

Form Parameters Expression Reference
Multiplicative None qᵀk/

√
d (Vaswani et al., 2017)

Additive w ∈ RH act(q + k)ᵀw (Bahdanau et al., 2015)

3.2 THE TRANSFORMER

The attention mechanism forms the core of the Transformer architecture, and generates contextually
weighted convex combinations of vectors. The elements included in this combination are called
values and the weights are provided via compatibilities between queries and keys as in the previous
section.

Suppose we have a length m sequence of query vectors and a length n sequence of key-value pairs.
We denote the the dimensionality of each query, key and value vector by dq , dk, and dv respectively.
In matrix form, these are expressed as Q ∈ Rm×dq for the queries, K ∈ Rn×dk for the keys, and
V ∈ Rn×dv for the values. The attention function Att with softmax activation is given as

Att(Q,K, V ) = AV,

with Ai,j =
exp(Ci,j)∑n
k=1 exp(Ci,k)

(i.e. row wise softmax),

for C = compat(Q,K) ∈ Rm×n.

The result is a new encoded sequence of length m. We use the terms additive or multiplicative
attention to specify the compatibility function that a particular form of attention uses.

Multi-head Attention (MHA) (Vaswani et al., 2017) extends the standard attention mechanism to
employ multiple representations of the data in parallel. The parallel outputs of that are concatenated
and linearly transformed. The result is a matrix in Rm×d. For our purposes we will only need the
Self Attention Block (SAB) where the queries, keys, and values are all equal. Lee et al. (2019a)
denote the special case as

SAB(X,X,X) = LayerNorm(H + FF(H)), (1)
with H = LayerNorm(X + MHA(X,X,X)), (2)

where FF is a feed-forward layer operating elementwise, and LayerNorm is layer normalisa-
tion (Ba et al., 2016)

4 ARCHITECTURE

The ABC architecture is a composition of previously introduced components. In the most general
case, ABC expects a variable-sized set of elements as input, where each element is represented by a
fixed-sized feature vector. From this, ABC outputs a square matrix of the similarity scores between
all pairs of elements in the input.

A note on terminology: some literature uses the word mini-batch to mean a single input set whose
elements are to be clustered. To avoid confusion with the concept of mini-batches used in training a
neural network, from now on we opt to reserve the terminology input instance instead.

4.1 ABSTRACT DEFINITION

Let dx be the dimensionality of input elements and dz be the desired number of latent features,
chosen as a hyper-parameter. ABC consists of two sequential components:

1. Embedding: A function T mapping an any length sequence of elements in Rdx to a same-
length sequence of encoded elements in Rdz , or in tensor notation: for any n ∈ N we have
T : Rn×dx → Rn×dz .

2. Similarity: A kernel function κ : Rdz × Rdz → R,
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such that for X ∈ Rn×dx the output is an n × n-matrix. Explicitly, composing these parts gives us
for any n ∈ N a function ABC : Rn×dx → Rn×n with

ABC(X)i,j = κ(T (X)i, T (X)j).

4.2 EXPLICIT EMBEDDING AND SIMILARITY

We construct the embedding layer by composing a fixed number of SABs2:

T (X) = (SAB1 ◦ · · · ◦ SABN )(X)

and we rely on the embedding stage to capture the relevant information related to all terms of the
input instance and encode that within every term of its output. As such, computing the similarity
can simply be performed pairwise. We now make the choice to constrain the output of the similarity
function κ to lie in the unit interval. Our choice for the symmetric similarity component is

κ(zi, zj) =
1

2
[sigmoid(compat(zi, zj)) + sigmoid(compat(zj , zi))] ,

where zi is the ith term of the encoded sequence. This choice satisfies the two constraints of sym-
metry and mapping to the unit interval.

4.3 LOSS FUNCTION AND TRAINING

Given a labelled input instance comprised of a collection of elements and corresponding cluster
labels, we train ABC in a supervised manner using a binary ground-truth matrix indicating same-
cluster membership. Each cell of the output matrix can be interpreted as the probability that two
elements are members of the same cluster. The loss is given as the mean binary cross entropy (BCE)
of each cell of the output matrix.

4.4 SUPERVISED KERNEL TO UNSUPERVISED CLUSTERING

ABC learns a mapping directly from an input instance to a kernel matrix. We pass this matrix in
to an off-the-shelf kernel-based clustering method, such as spectral clustering, to obtain the cluster
labels.

What remains is to specify the number of clusters present in the predicted kernel. Depending on the
use-case this can be supplied by the user or inferred from the kernel matrix by using the eigengap
method (von Luxburg, 2007). LetA be the symmetric kernel matrix. The number of clusters inferred
from this matrix is

NumClusters(A) = argmaxi∈{1,...,n}{λi − λi+1},

where λi is the ith largest eigenvalue of the normalized Laplacian L = I −D− 1
2AD−

1
2 , and where

D is the diagonal degree matrix of A.

5 ANALYSIS

In this section we discuss some theoretical properties of the architecture. We focus on the role of
attention and the effects of skip-connections (He et al., 2016). In particular, we show how these
elements are able to separate clusters from other clusters, making it easier for the similarity block of
ABC to learn pairwise similarity scores based on the context given by the entire input instance.

We consider a simplified version of the SAB using just a single attention head. It is not difficult
to prove that attention with any compatibility function maps a set of vectors into its convex hull,
and that the diameter of the image is strictly smaller than the diameter of the original. This leads
repeated application to blur the input data too much to extract relevant features. This behaviour
is also noticed in Bello et al. (2017) and is counteracted in the Transformer by the use of skip-
connections. Reports showing that skip-connections play a role in preserving the scale of the output
in feed-forward networks can for example be found in Balduzzi et al. (2017); Zaeemzadeh et al.

2In particular this forces dx = dz in the abstract definition of T .
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(2018), and we include a short discussion on the same effect in our setting in Appendix A.2. We
note that the remaining parts of the Multi-Head attention block as described in equations (1) and (2),
i.e. the layer normalizations and the elementwise feed-forward layer, are of a ‘global’ nature, by
which we mean that they do not depend on different elements in the input instance. These parts
merely support the functionality of the network along more general deep learning terms and they do
not form an interesting component to this particular analysis.

The counterbalanced contraction discussed above holds for the entire dataset as a whole, but more
structure can be uncovered that motivates the use of the set encoder in our architecture. Somewhat
informally we may state it as the following, of which the formal statement and proof are treated in
Appendix A.1.

Proposition 1. Assume we are given a set of points that falls apart into two subsets A and B, where
the pairwise compatibility weights within each of A and B are larger than the pairwise weights
between A and B. Under repeated application of SABs and under some symmetry conditions, the
two subsets become increasingly separated.

Anand et al. (2014) use a similar idea to devise a transformation for their kernel. A linear trans-
formation is designed to bring pairs of points from a cluster closer together and to push pairs of
points from different clusters apart, by iterating over all labelled pairs. The Transformer architecture
accomplishes this without the restriction of linearity and without the need for iteration over points
in an input instance due to an amortization of the clustering process.

6 EXPERIMENTS

We conduct some experiments to validate the feasibility of our architecture and to evaluate the claim
that context helps learn good similarity output. We give details on how we sample training instances
in Appendix B. It is interesting to see that neither form of additive or multiplicative attention is
consistently better than the other. For this reason we refrain from making a choice between them
and report both results for each experiment.

6.1 TOY PROBLEM: POINTS ON A CIRCLE

To generalize the phenomenon of real-world datasets intersecting, such as characters in multiple
languages, as well as to illustrate the necessity for context during some clustering tasks, we devise
the following toy problem. Given a fixed-length sequence of points, where each point lies on four
likely overlapping circles, cluster points according to the circle they lie on. As we will demonstrate,
only considering the pairwise similarities between points is insufficient to solve this problem, but
our architecture does give a satisfactory solution.

We try two variants of ABC, one with additive attention and the other with multiplicative attention.
As an ablation study, we compare against a pairwise metric learning method as well as out-of-the-
box spectral clustering. For the pairwise metric learning method, we remove the embedding block
from ABC and use only the similarity block with additive compatibility. For all these methods, the
input data is first transformed elementwise to a 128-dimensional space including a tanh activation,
and this pre-embedding is trained independently for each method. By comparing with spectral
clustering, we show the improvement that our architecture brings.

In Figure 2, we present the adjusted Rand score of all these clustering methods for different values
of input instance length. For each instance, four circles with a random radii and centers are gen-
erated, while guaranteeing that every circle overlaps with at least one other circle. For each point,
one of the circles is picked with equal probability, and the point is then sampled uniformly from that
circle. Notice that the pairwise method performs poorly, in fact worse than out-of-the-box spectral
clustering. This can be explained by the use of radial basis functions in spectral clustering internally
to compute the affinity matrix, which is relatively well-suited for the circles problem. The multi-
plicative and additive variants of ABC far outperform the other two methods on the circles problem,
thus validating our use of context in learning a metric.
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Figure 2: Comparative performance on the cir-
cles problem of ABC with either additive or
multiplicative attention, as well as ablated ver-
sions of the ABC architecture. The horizontal
axis shows the number of points sampled from
the combined circles. The vertical axis shows
the Rand score adjusted so that random assign-
ment gives a score of 0. The big gap in perfor-
mance between pairwise and spectral clustering
on the one hand and the two versions of ABC on
the other shows the benefit that context brings.

Figure 3: Clustering performance on the test set
for our three clustering tasks on Omniglot over
the course of training. It is worth noting that
training is visibly noisier for unknown numbers
of clusters, which indicates that the off-the-shelf
cluster number estimates are unstable. As the
model improves, estimating the number of clus-
ters becomes more accurate, and the disadvan-
tage of not knowing the true number of clusters
becomes negligible.

6.2 OMNIGLOT CLUSTERING

The Omniglot training dataset (Lake et al., 2015) consists of hand-drawn images of characters from
30 alphabets, with another 20 alphabets reserved for testing. Each alphabet has varying numbers
of characters, each with 20 unique example images. This dataset was proposed to test model per-
formance on one-shot learning tasks (Lake et al., 2019), where a model must learn from single
examples of novel categories. We attempt clustering of images from classes within novel alphabets.
We treat each character as a class such that an alphabet is a grouping of related classes. Notice that
context is still relevant within the same alphabet, as we also discuss in section 7 and Figure 4.

For training, each input instance consists of 100 within alphabet images, where the number of unique
characters per input instance varies as much as permitted by the available data. We use the CNN
from Vinyals et al. (2016) as the image embedding function. Training is conducted using our imple-
mentation in PyTorch3 and uses the standard Adam optimizer. Details of the data augmentation and
the hyperparameters can be found in Appendix C.1.

For testing, we use the 20 alphabets from the reserved lot in Omniglot, as a standalone dataset each.
At test time, an instance of 100 images are presented to the model, assembled as a random number
of elements chosen from a certain number of clusters as described below. We report clustering
performance on three tasks with: (i) a variable number of clusters, unknown at inference, (ii) a
variable number of clusters, known at inference, and (iii) a fixed number of clusters (k = 20),
known at inference. Note that training is independent of the task; at inference time, all tasks use the
same trained model. The scores are similar across the three tasks, and can be found in the bottom
row of Table 5 in the Appendix. This indicates that the kernel is well-trained irrespective of the
specifics of the downstream out-of-the-box clustering task.

Our results show that ABC performs equally well on all three tasks. In particular, the Normalized
Mutual Information score (NMI)4 obtained with an unknown number of clusters matches the val-

3Code will be available at redacted.
4Contrary to the adjusted Rand score, NMI is not adjusted for randomness. Despite this, it appears to be

the default metric in recent clustering results. We report our results on real-world data in NMI so that we can
compare against alternative methods.
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Table 2: Comparative results on Omniglot. The table presents results for known and unknown
number of clusters. Where the architecture relies on knowning a (maximum) number of clusters,
such as KLC, that maximum is set to 100. The first four entries are copied from Hsu et al. (2018) as
their methods are most relevant in comparison to ours. The table is split up as explained in the main
text.

Method NMI (known) NMI (unknown) Reference
ITML 0.674 0.727 (Davis et al., 2007)
SKMS - 0.693 (Anand et al., 2014)
SKKm 0.770 0.781 (Anand et al., 2014)
SKLR 0.791 0.760 (Amid et al., 2015)
ABC (add. compat.)† 0.873 0.816 (ours)
ABC (mul. compat.)† 0.893 0.874 (ours)
DAC† - 0.829 (Lee et al., 2019b)
KLC 0.889 0.874 (Hsu et al., 2018)
MLC 0.897 0.893 (Hsu et al., 2019)
DTC-Π 0.949 0.945 (Han et al., 2019)

ues that are obtained when the number of clusters is known. Hence, after training the model to
convergence, it is not necessary to know the true number of clusters to obtain good performance.

In Table 2, we compare against previous results reported on this problem. In this table, there are two
categories of clustering methods; the first four methods use supervised metric learning in combina-
tion with unsupervised clusterers, whereas the last four methods use the constraints to synthesize
clusters, which adds to the model complexity. ABC belongs to the former category, but performs
comparably to the latter category of clustering methods. Also notice that ABC with multiplicative
compatibility outperforms the only other method that uses context, distinguished by the † symbol
added to its name in Table 2. This validates our hypothesis that context can improve metric learning,
and that using context can be valuable when working with real world data.

6.3 EMBEDDED IMAGENET CLUSTERING

We also perform experiments on embedded ImageNet (Deng et al., 2009), where ABC again gets
competitive results, using the embeddings generated by Rusu et al. (2019). See Tables 3 for the
results. Each embedded image is represented as a feature vector of length 640. Matching the setup
described by Lee et al. (2019b), the predetermined training and validation subsets are used as the
labelled data and the test subset is used as the unlabelled data. This produces a training set consisting
of 620000 feature vectors across 495 classes, and a test set consisting of 218000 samples across 176
classes, with no overlap between training and test classes. Both training and test instances are of
length 300, each consisting of a minimum of 2 and a maximum of 12 classes. ABC operates on the
embeddings directly.

Table 3: Clustering results on embedded Ima-
geNet. The cited scores are copied from Lee
et al. (2019b).

Method NMI (known) NMI (unk.)
KLC 0.361 -
MLC 0.350 -
DAC - 0.579
ABC (add.) 0.612 0.521
ABC (mul.) 0.630 0.550

Table 4: Clustering results on CIFAR-100. The
cited scores are copied from Han et al. (2019).

Method NMI (known) NMI (unk.)
KLC 0.151 -
MLC 0.202 -
DTC-TE 0.634 -
ABC (add.) 0.527 0.505
ABC (mul.) 0.591 0.567

6.4 CIFAR-100 CLUSTERING

As a third exhibit of competitiveness on real-world data, we include experimental results on CIFAR-
100 (Krizhevsky, 2009) in Table 4. CIFAR-100 consist of 60000 colour images of size 32×32 across
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100 classes, where each class has exactly 500 training examples and 100 evaluation examples. We
combine the training and evaluation examples, and partition the dataset by classes. Similar to Han
et al. (2019), the last 10 classes are reserved as unlabelled data and are not seen during training.
Training and test instances are of length 128, each consisting of a minimum of 2 and a maximum
of 10 clusters. Images are embedded using the VGG-like architecture (Simonyan & Zisserman,
2015) from Han et al. (2019) before being passed in to ABC. This elementwise encoder is randomly
initialized and trained together with the rest of our model.

7 DISCUSSION

It is perhaps unsurprising that the Transformer architecture performs well for clustering in addition
to a number of other areas. The self-attention module in the Transformer architecture offers a unique
advantage to neural networks: this module acts as a linear layer whose weights are determined by
the compatibility scores of the queries and keys rather than a fixed set of learned values. This makes
the self-attention module a nonparametric approximator (Wasserman, 2006; Orbanz & Teh, 2010),
whose expressivity is far more than what might be expected by looking at the parameter reuse in the
compatibility module (Yun et al., 2020).

The encoder in ABC can be seen to be balancing the two objectives of using context and learning
from ground-truth labels, in the manner in which it combines the multi-head attention term with a
skip-connection. This sometimes gives rise to conflicts, as seen in the example in Figure 4. Here,
the input instance consists of all the variations of the letter k. The predicted similarity matrix is far
from the ground-truth: a perceived mistake by the model. Upon closer look however, we can see
that while each element represents the same character, each of them is written in a slightly different
way. For this particular input instance, those small differences are precisely what makes up the
relevant context, and the model is able to pick up on that. A modified version of the Transformer
using weighted skip-connections as in Highway Networks (Srivastava et al., 2015) should enable it
to learn when to focus on context and when not to.

Figure 4: (A) Example input instance of characters all of the same class. (B) Ground-truth and
predicted similarity matrices and their difference in greyscale, where white means a value of 1 and
black a value of 0. ABC picks up on the small differences between each of the characters; this is
precisely the context that this input instance provides.

Reimagining ABC as a graph neural network (Scarselli et al., 2009; Zhang et al., 2019) could enable
it to handle datasets where explicit context is available in the form of a weighted adjacency matrix
rather than merely binary ground-truth cluster labels. To accomplish this, we would use a graph
attention network that incorporates weighted adjacency data in the encoder. (Veličković et al., 2018)

So far, the use of constraints has been limited to learning a similarity kernel in ABC, in contrast to the
approach taken in Hsu et al. (2018). A hybrid approach where the similarities are learned instance
wise, like in ABC, and then processed using a learned model which is robust to noise would be an
interesting avenue for future research. We would also be interested to see how far we can push our
method by including general good practices as in Han et al. (2019).
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A MORE DETAILS ON THE ANALYSIS

A.1 FORMAL TREATMENT OF PROPOSITION 1

Let n andm be two positive integers. We will write IA = {1, . . . , n} and IB = {n+1, . . . , n+m}.
Consider the discrete time dynamical system on a set of points xi,t ∈ Rd for i ∈ IA ∪ IB , t ∈ N and
some d ≥ 0, given by the update rule

∆xi,t+1 := xi,t+1 − xi,t =
∑

j∈IA∪IB

wi,j,txj,t (3)

under the following assumptions:

wi,j,t = αt > 0 for i, j ∈ IA, i 6= j,

wi,j,t = βt > 0 for i, j ∈ IB , i 6= j,

wi,j,t = γt > 0 for i ∈ IA, j ∈ IB ,
wi,i,t = δt > 0 for i ∈ IA ∪ IB .

Assume for any i ∈ IA ∪ IB and t ∈ N moreover∑
j∈IA∪IB

wi,j,t = 1. (4)

Notice that this is the setup as described informally in Proposition 1, for the two clusters given by
A = {xi,0 : i ∈ IA} andB = {xi,0 : i ∈ IB}. The use of skip-connections is visible in equation (3)
yielding ∆xi,t+1 rather than xi,t+1 itself.

We will write

cp,t =
1

#Ip

∑
i∈Ip

xi,t for p = A,B

for the centroids of the two clusters.

We will assume δt > max{αt, βt} for all t ∈ N. This assumption is natural in our application do-
main of similarity scores, and it will in fact be necessary in Corollary 1. While not strictly necessary
for the proof of Proposition 2 itself, we already assume it now so that the quantities involved in the
statement of the proposition are non-negative.

Proposition 2. Using the notation and assumptions outlined above, the following statements hold:

1. For all i, j ∈ IA and t ∈ N we have xi,t+1 − xj,t+1 = (1 + δt − αt)(xi,t − xj,t).

2. For all i, j ∈ IB and t ∈ N we have xi,t+1 − xj,t+1 = (1 + δt − βt)(xi,t − xj,t).

3. For all t ∈ N we have c1,t+1 − c2,t+1 = (2− (n+m)γt)(c1,t − c2,t).

Note before we start the proof itself, that expanding (4) for i ∈ IA and i ∈ IB separately gives
relations between the different weights:

δt + (n− 1)αt +mγt = 1, and
δt + (m− 1)βt + nγt = 1.

(5)

Proof of Proposition 2. The proofs of parts 1 and 2 are identical up to switching the roles of IA and
IB , so we merely give the former, which is by simple computation. For i, j ∈ IA we have

∆xi,t+1 −∆xj,t+1 =
∑
`∈IA

wi,`,tx`,t +
∑
`∈IB

wi,`,tx`,t −
∑
`∈IA

wj,`,tx`,t −
∑
`∈IB

wj,`,tx`,t.

Notice that the second and fourth sum both equal γt
∑

`∈IB x`,t. As they have opposite signs, these
two sums disappear from the overall expression. Similarly, each term in the first and third sum that
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corresponds to some ` ∈ IA \ {i, j} occurs with opposite signs in the overall expression and hence
disappears. Therefore we arrive at

∆xi,t+1 −∆xj,t+1 = wi,i,txi,t + wi,j,txj,t − wj,i,txi,t − wj,j,txj,t,

which equals (δt − αt)xi,t + (αt − δt)xj,t = (δt − αt)(xi,t − xj,t). Retrieval of the statement of
the proposition follows by expanding ∆xi,t+1 = xi,t+1 − xi,t, giving rise to the additional 1 inside
the parentheses.

For the proof of part 3 we notice that we may write

c1,t+1 − c2,t+1 =
1

nm

∑
i∈IA,j∈IB

xi,t+1 − xj,t+1 (6)

for all t ∈ N, so we first study the individual differences xi,t+1 − xj,t+1 for i ∈ IA and j ∈ IB .

Again, straightforward computation yields

∆xi,t+1 −∆xj,t+1 =
∑
`∈IA

(wi,`,t − wj,`,t)x`,t +
∑
k∈IB

(wi,k,t − wj,k,t)xk,t

=(δt − γt)xi,t +
∑

i 6=`∈IA

(αt − γt)x`,t

+ (γt − δt)xj,t +
∑

j 6=k∈IB

(γt − βt)xk,t

=(δt − γt)(xi,t − xj,t)

+
∑

i6=`∈IA

(αt − γt)x`,t −
∑

j 6=k∈IB

(βt − γt)xk,t

and substitution into (6) together with expansion of ∆xi,t+1 allows us to write

c1,t+1 − c2,t+1 =(1 + δt − γt)(c1,t − c2,t)

+
1

mn

∑
i∈IA,j∈IB

 ∑
i 6=`∈IA

(αt − γt)x`,t −
∑

j 6=k∈IB

(βt − γt)xk,t

 .

Let us investigate the double sum here. Each term involving x`,t for ` ∈ IA occurs m(n− 1) times
since for any fixed j ∈ IB , among the n outer terms involving i ∈ IA, it happens exactly once that
there is no term involving x`,t. Similarly for the terms involving xk,t for k ∈ IB , which each occur
n(m− 1) times. Hence the double sum equals

m(n− 1)(αt − γt)
∑
i∈IA

xi,t − n(m− 1)(βt − γt)
∑
j∈IB

xj,t.

Accounting for the factor 1
nm and reinserting the definition of c1,t and c2,t we arrive at

c1,t+1 − c2,t+1 = (1 + δt + (n− 1)αt − nγt) c1,t − (1 + δt + (m− 1)βt − nγt) c2,t.

To finalize the proof we make use of our earlier observation from (5) that allows us to recognize
that the coefficients for c1,t and c2,t in the last line are in fact equal (up to sign) and have the values
±(2− (n+m)γt).

The proposition above does not yet include one of the assumptions that were outlined in the informal
statement, namely that the weights within either cluster are larger than the weights between clusters,
i.e. γt < min{αt, βt}. Adding this assumption to the formalism leads us to the following corollary.
Corollary 1. For any t ∈ N, if αt > γt holds, then at time t the diameter of {xi,t : i ∈ IA} expands
at a slower rate than the rate at which the centroids cA,t and cB,t are pushed apart. Moreover, the
same statement holds when replacing αt by βt and IA by IB .

Proof. We will only give the proof for the former statement. The proof of the latter statement is
identical after performing the symbolic replacement as indicated.
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The rates mentioned in the corollary are 1 + δt − αt and 2 − (n + m)γt respectively. Their ratio
equals

1 + δt − αt

2− (n+m)γt
=

2− nαt −mγt
2− nγt −mγt

,

which is evidently smaller than 1 in case αt > γt holds. Moreover, both rates are strictly lower
bounded by 1, so the respective diameters grow and so does the separation between the cluster
centroids.

A discussion on the practical applicability of these results is in order. While the setup of Proposi-
tion 2 and Corollary 1 is artificial in its specifics, these statements are still relevant for real-world
phenomena. The results of these statements remain approximately true if the individual weights are
independently perturbed by a small amount, so a situation close to the one studied here follows the
same behaviour.

A.2 THE USE OF SKIP-CONNECTIONS

As noted in Section 5, the skip-connections serve a specific purpose in the Set Transformer archi-
tecture, which we discuss in a little more detail here. We will focus specifically on their use in the
proofs of Proposition 2 and Corollary 1.

Without skip-connections, equation (3) becomes

xi,t+1 =
∑

j∈IA∪IB

wi,j,txj,t

and the statement of Proposition 2 would be modified. The multiplication factors 1 + δt − αt and
1+δt−βt from the first and second statements and 2−(n+m)γt from the third statement would each
decrease by 1. This would mean that these factors would fall into the interval (0, 1) and each encoder
block would operate in a contractive way. While the result of Corollary 1 would remain morally
correct – each cluster would contract faster than the rate at which the cluster centroids would come
together – this would complicate training a network containing multiple stacked encoder blocks.

B MORE DETAILS ON THE SAMPLING PROCEDURE

Given a classification dataset containing a collection of examples with corresponding class labels,
we briefly outline a general procedure to synthesize an ABC-ready dataset. A single input instance
is independently generated using the procedure outlined in Algorithm 1.

Algorithm 1: Generating a cluster instance from a classification dataset
input : desired length of output sequence L
constraint: number of classes C, number of available examples per class b1, . . . , bC
output : length L sequence of examples, kernel matrix of size L× L, number of clusters

present

Initialize O ← [ ]
Pick k ← uniform(1, min(C,L))
Pick per cluster frequencies n1, · · · , nk with 1 ≤ ni ≤ bi and

∑k
i=1 ni = L

for i← 1 to k do
Pick a class not yet chosen uniformly at random
append ni uniform examples of chosen class to O

Let A← true kernel matrix corresponding to O
return(O,A, k)
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C MORE DETAILS ON EXPERIMENTS

C.1 DETAILS OF EXPERIMENTAL SETUP

The results discussed in Section 6 on Omniglot, Embedded ImageNet, and CIFAR-100 are produced
with the following hyperparameters: the embedding component uses two Self Attention Blocks
(SAB), each with four heads. The dimensionality of keys, queries, and values is set to 128. The
learning rate is set to 0.0001 except for Embedded ImageNet, where it is a factor 10 larger. We
found that using larger batch sizes of up to 128 tends to improve training. Each of these settings was
found by tuning on the Omniglot experiment and subsequently copied over for the other experiments.
No further hyperparameter search was done for CIFAR-100 nor for Embedded ImageNet, except the
learning rate for the latter to speed up training.

We used a few data augmentation techniques for Omniglot and for CIFAR-100. For Omniglot, we
invert and downscale all images from the original 105 × 105 to 28 × 28. Additionally, we perform
class expansion on the training set as in Vinyals et al. (2016) and apply random rotations between
±15◦. For CIFAR-100 we use the same augmentations as in Han et al. (2019).

C.2 NORMALIZED MUTUAL INFORMATION PER ALPHABET

In Table 5 we show more details on Omniglot testing results, split out per alphabet.

Table 5: Average NMI scores for 1000 random instances, each of size 100, for each alphabet in
the evaluation set. The number of clusters varies uniformly up to the maximum available for each
alphabet, which is 47 for Malayalam. ‘Mul’ refers to multiplicative attention, while ‘Add’ means
ABC with additive attention.

Alphabet k ∈ [5, 47] (unknown) k ∈ [5, 47] (known) k = 20 (known)
Mul Add Mul Add Mul Add

Angelic 0.8944 0.8566 0.8977 0.8757 0.8593 0.8435
Atemayar Qelisayer 0.8399 0.8003 0.8761 0.8570 0.8692 0.8315
Atlantean 0.9182 0.8927 0.9272 0.9188 0.9104 0.8994
Aurek-Besh 0.9371 0.9247 0.9444 0.9312 0.9367 0.9247
Avesta 0.9011 0.8728 0.9067 0.8956 0.8939 0.8733
Ge ez 0.8877 0.8833 0.8931 0.8943 0.8725 0.8864
Glagolitic 0.9046 0.8366 0.9186 0.8965 0.9158 0.8943
Gurmukhi 0.8685 0.7999 0.8949 0.8668 0.9018 0.8674
Kannada 0.8120 0.6837 0.8545 0.8267 0.8648 0.8225
Keble 0.8671 0.8195 0.8921 0.8623 0.9042 0.8291
Malayalam 0.8810 0.8494 0.8963 0.8869 0.8909 0.8854
Manipuri 0.9035 0.8637 0.9152 0.8948 0.9039 0.8918
Mongolian 0.9200 0.8879 0.9277 0.9143 0.9176 0.9020
Old Church Slavonic (Cyrillic) 0.9358 0.9336 0.9419 0.9425 0.9302 0.9372
Oriya 0.8008 0.6734 0.8460 0.8019 0.8466 0.7912
Sylheti 0.7725 0.6414 0.8220 0.7923 0.8151 0.7708
Syriac (Serto) 0.8909 0.8381 0.8946 0.8762 0.8794 0.8535
Tengwar 0.8758 0.8359 0.8872 0.8697 0.8571 0.8524
Tibetan 0.8840 0.8694 0.8996 0.8961 0.8982 0.8935
ULOG 0.7895 0.5621 0.8185 0.7656 0.8132 0.7544
mean 0.8742 0.8163 0.8927 0.8733 0.8840 0.8602
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