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Abstract

Sampling algorithms based on discretizations of Stochastic Differential Equations1

(SDEs) compose a rich and popular subset of MCMC methods. This work pro-2

vides a general framework for the non-asymptotic analysis of sampling error in3

2-Wasserstein distance, which also leads to a bound of mixing time. The method4

applies to any consistent discretization of contractive SDEs. When applied to5

Langevin Monte Carlo algorithm, it establishes Õ
(√

d/ε
)

mixing time, without6

warm start, under the common log-smooth and log-strongly-convex conditions,7

plus a growth condition on the potential of target measures at infinity. This bound8

improves the best previously known Õ
(
d/ε
)

result and is optimal in both dimension9

d and accuracy tolerance ε for log-smooth and log-strongly-convex target measures.10

Our theoretical analysis is further validated by numerical experiments.11

1 Introduction12

The problem of sampling statistical distributions has attracted considerable attention, not only in13

the fields of statistics and scientific computing, but also in machine learning (Robert and Casella,14

2013; Andrieu et al., 2003; Liu, 2008); for example, how various sampling algorithms scale with15

the dimension of the target distribution is a popular recent topic in statistical deep learning (see16

discussions below for references). For samplers that can be viewed as discretizations of SDEs, the17

idea is to use an ergodic SDE whose equilibrium distribution agrees with the target distribution,18

and employ an appropriate numerical algorithm that discretizes (the time of) the SDE. The iterates19

of the numerical algorithm will approximately follow the target distribution when converged, and20

can be used for various downstream applications such as Bayesian inference and inverse problem21

(Dashti and Stuart, 2017). One notable example is the Langevin Monte Carlo algorithm (LMC),22

which corresponds to Euler-Maruyama discretization of overdamped Langevin equation. Its study23

dated back to at least the 90s (Roberts et al., 1996) but keeps on leading to important discoveries, for24

example, on non-asymptotics and dimension dependence, which are relevant to machine learning25

(e.g., Dalalyan (2017a,b); Cheng et al. (2018a); Durmus et al. (2019a,b); Vempala and Wibisono26

(2019); Dalalyan and Riou-Durand (2020); Erdogdu and Hosseinzadeh (2020); Mou et al. (2019)).27

LMC is closely related to SGD too (e.g., Mandt et al. (2017)). Many other examples exist, based28

on alternative SDEs and different discretizations (e.g., Dalalyan and Riou-Durand (2020); Ma et al.29

(2021); Mou et al. (2021); Li et al. (2020); Roberts and Rosenthal (1998); Chewi et al. (2020); Shen30

and Lee (2019)).31

Quantitatively characterizing the non-asymptotic sampling error of numerical algorithms is usually32

critical for choosing the appropriate algorithm for a specific downstream application, for providing33

practical guidance on hyperparameter selection and experiment design, and for designing improved34

samplers. A powerful tool that dates back to (Jordan et al., 1998) is a paradigm of non-asymptotic35

error analysis, namely to view sampling as optimization in probability space, and it led to many36
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important recent results (e.g., Liu and Wang (2016); Dalalyan (2017a); Wibisono (2018); Zhang37

et al. (2018); Frogner and Poggio (2020); Chizat and Bach (2018); Chen et al. (2018); Ma et al.38

(2021); Erdogdu and Hosseinzadeh (2020)). It works by choosing an objective functional, typically39

some statistical distances/diverges, and showing that the law of the iterates of sampling algorithms40

converges in that objective functional. However, the choice of the objective functional often needs to41

be customized for different sampling algorithms. For example, KL divergence works for LMC (Cheng42

and Bartlett, 2018), but a carefully hand-crafted cross term needs to be added to KL divergence for43

analyzing KLMC (Ma et al., 2021). Even for the same underlying SDE, different discretization44

schemes exist and lead to different sampling algorithms, and the analyses of them had usually been45

case by case (e.g., Cheng et al. (2018b); Dalalyan and Riou-Durand (2020); Shen and Lee (2019)).46

Therefore, it would be a desirable complement to have a unified, general framework to study the47

non-asymptotic error of SDE-based sampling algorithms.48

As an important member of the family of SDE-based sampling algorithms, Langevin Monte Carlo is49

widely used in practice. Its stochastic gradient version is implemented in common machine learning50

systems, such as Tensorflow (Abadi et al., 2016), and is the off-the-shelf algorithm for large scale51

Bayesian inference. With the ever-growing size of parameter space, the non-asymptotic error of LMC52

is of central theoretical and practical interest, in particular, its dependence on the dimension of the53

sample space. The best current known upper bound of the mixing time in 2-Wasserstein distance for54

LMC is Õ
(
d
ε

)
(Durmus et al., 2019b). Motivated by a recent result (Chewi et al., 2020) that shows55

better dimension dependence for a Metropolis-Adjusted improvement of LMC, we wonder if the56

current bound for (unadjusted) LMC is tight, and if not, what is the optimal dimension dependence?57

Our contribution We study a broad family of numerical algorithms that discretize SDEs that58

have a contraction property (possibly after a coordinate transformation). For this type of problems,59

we revisit the classical mean-square analysis (Milstein and Tretyakov, 2013) in numerical SDE60

literature and extend its the global error bound from finite time to infinite time. Same as in classical61

mean-square analysis, we show the global error is only half order lower than the order of local strong62

error (p2). We further obtain a Õ

(
C

1

p2− 1
2

1

ε

1
p2− 1

2

)
mixing time upper bound in 2-Wasserstein63

distance for the family of algorithms, where C is a constant containing various information of the64

underlying problem, e.g., the dimension d.65

As an application of the general mixing time result, we study the widely used Langevin Monte66

Carlo algorithm (LMC) for sampling from a Gibbs distribution µ ∝ exp
(
−f(x)

)
, which is an67

Euler-Maruyama discretization of Langevin dynamics. Under the standard smoothness and strong-68

convexity assumptions, plus an additional linear growth condition on the third-order derivative of f ,69

we obtain a Õ
(√

d
ε

)
mixing time in 2-Wasserstein distance, which improves upon the previously best70

known Õ
(
d
ε

)
result (Durmus et al., 2019b). For a comparison, note it was known that discretized71

kinetic Langevin dynamics can lead to
√
d dependence on dimension (Cheng and Bartlett, 2018;72

Dalalyan and Riou-Durand, 2020) and some believe that it is the introduction of momentum that73

improves the dimension dependence, but our result shows that discretized overdamped Langevin (no74

momentum) can also have mixing time scaling like
√
d. In fact, it is important to mention that it was75

recently shown that Metropolis-Adjusted Euler-Maruyama discretization of overdamped Langevin76

(i.e., MALA) has an optimal dimension dependence of Õ
(√

d
)

(Chewi et al., 2020), while what we77

analyze here is the unadjusted version (i.e., LMC), and it has the same dimension dependence (note78

however that our ε dependence is not as good as that for MALA; more discussion in Section 4). We79

also constructed an example that shows that the mixing time of LMC is at least Ω̃
(√

d
ε

)
. Hence, our80

mixing time bound has the optimal dependence on both d and ε. Our theoretical analysis is further81

validated by empirical investigation of numerical examples.82

2 Preliminaries83

Notation Use the symbol x to denote a d-dimensional vector, and the plain symbol x to denote a84

scalar variable. Use ‖x‖ to denote the Euclidean norm of vector x. A numerical algorithm is denoted85
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by A and its k-th iterate is denoted by x̄k. We slightly abuse notation by identifying measures with86

their density function w.r.t. Lebesgue measure. We use the convention Õ (·) = O(·) logO(1)(·),87

i.e., the Õ (·) notation ignores the dependence on logarithmic factors. We use the notation Ω̃(·)88

similarly. Denote 2-Wasserstein distance by W2(µ1, µ2) =
(

inf(X,Y )∼Π(µ1,µ2) E ‖X − Y ‖
2
) 1

2

,89

where Π(µ1, µ2) is the set of couplings, i.e. all joint measures with X and Y marginals being90

µ1 and µ2. Denote the target distribution by µ and the law of a random variable X by Law(X).91

Finally, denote the mixing time of an sampling algorithm A converging to its target distribution µ in92

2-Wasserstein distance by τmix(ε;W2;A) = inf{k ≥ 0|W2(Law(x̄k), µ) ≤ ε}.93

SDE for Sampling Consider a general SDE94

dxt = b(t,xt)dt+ σ(t,xt)dBt (1)

where b ∈ Rd is a drift term, σ ∈ Rd×l is a diffusion coefficient matrix and Bt is a l-dimensional95

Wiener process. Under mild condition (Pavliotis, 2014, Theorem 3.1), there exists a unique strong96

solution xt to Eq. (1). Some SDEs admit geometric ergodicity, so that their solutions converge97

exponentially fast to a unique invariant distribution, and examples include the classical overdamped98

and kinetic Langevin dynamics, but are not limited to those (e.g., Mou et al. (2021); Li et al. (2020)).99

Such SDE are desired for sampling purposes, because one can set the target distribution to be the100

invariant distribution by choosing an SDE with an appropriate potential, and then solve the solution101

xt of the SDE and push the time t to infinity, so that (approximate) samples of the target distribution102

can be obtained. Except for a few known cases, however, explicit solutions of Eq. (1) are elusive and103

we have to resort to numerical schemes to simulate/integrate SDE. Such example schemes include,104

but are not limited to Euler-Maruyama method, Milstein methods and Runge-Kutta method (e.g.,105

Kloeden and Platen (1992); Milstein and Tretyakov (2013)). With constant stepsize h and at k-th106

iteration, a typical numerical algorithm takes a previous iterate x̄k−1 and outputs a new iterate x̄k as107

an approximation of the solution xt of Eq. (1) at time t = kh.108

Langevin Monte Carlo Algorithm LMC algorithm is defined by the following update rule109

x̄k = x̄k−1 − h∇f(x̄k−1) +
√

2hξk, k = 1, 2, · · · (2)

where {ξk}k∈Z>0
are i.i.d. standard d-dimensional Gaussian vectors. LMC corresponds to an Euler-110

Maruyama discretization of the continuous overdamped Langevin dynamics dxt = −∇f(xt)dt+111 √
2dBt, which converges to an equilibrium distribution µ ∼ exp(−f(x)).112

Dalalyan (2017b) provided a non-asymptotic analysis of LMC. An Õ
(
d
ε2

)
mixing time bound in113

W2 for log-smooth and log-strongly-convex target measures (Dalalyan, 2017a; Cheng et al., 2018a;114

Durmus et al., 2019a) has been established. It was further improved to Õ
(
d
ε

)
under additional115

Lipschitz assumption on the Hessian of f (Durmus et al., 2019b). Mixing time bounds of LMC116

in other statistical distances/divergences have also been studied, including total variation distance117

(Dalalyan, 2017b; Durmus et al., 2017) and KL divergence (Cheng and Bartlett, 2018).118

Classical Mean-Square Analysis A powerful framework for quantifying the global discretization119

error of a numerical algorithm for Eq. (1), i.e., ek =
{
E ‖xkh − x̄k‖

} 1
2 , is mean-square analysis120

(e.g., the monograph of Milstein and Tretyakov (2013)). Mean-square analysis studies how local121

integration error propagate and accumulate into global integration error; in particular, if one-step122

(local) weak error and strong error (both the exact solution xt and the numerical approximation start123

from the same initial value x) satisfy124

‖Exh − Ex̄1‖ ≤C1

(
1 + E ‖x‖2

) 1
2

hp1 , (local weak error)(
E ‖xh − x̄1‖2

) 1
2 ≤C2

(
1 + E ‖x‖2

) 1
2

hp2 , (local strong error)
(3)

over a time interval [0,Kh] for some constants C1, C2 > 0, p2 ≥ 1
2 and p1 ≥ p2 + 1

2 , then the125

global error can be bounded by ek ≤ C
(

1 + E ‖x0‖2
) 1

2

hp2−
1
2 , k = 1, 2, · · · ,K for some constant126

C > 0 dependent on Kh.127
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Although classical mean-square analysis is only concerned with numerical integration error, sampling128

error can be also inferred. However, there is a limitation that prevents directly employing mean-square129

analysis in the non-asymptotic analysis of sampling algorithms. The bound of global error only holds130

in finite time because the constant C can grow exponentially as K increases, rendering the bound131

useless when K →∞.132

3 Mean-Square Analysis of Samplers Based on Contractive SDE133

In order to prepare for the analysis of sampling error, we first show that the finite time limitation of134

integration error analysis can be lifted if the SDE being discretized is contractive.135

More precisely, one bottleneck that prevents the results of classical mean-square analysis from136

extending to infinite time horizon, is the fact that the solution of a general SDE may not be bounded,137

and neither is its discretization. Note that local error (Eq. (3)) depends on the initial value. To go138

from local to global error, these ‘initial’ values correspond to iterates of numerical algorithms, which139

change from iteration to iteration and can be unbounded, hence when accumulated together, it is140

possible that the global error may blow up.141

Samplers considered here, on the other hand, are based on stochastic differential equations, each of142

which weakly converges to a limiting distributions. The solution of the underlying converging SDE,143

as it converges to the invariant measure, gradually inherits boundedness properties from the target144

measure. Thus, as long as the target measure has bounded 2nd-moment, a sampling algorithm based145

on a reasonable discretization of the SDE should also have bounded 2nd-moment. Motivated by this146

observation, we will assume the sampling algorithms we study are based on contractive SDEs, which147

is a sufficient condition to ensure the underlying SDE converges to a statistical distribution.148

Definition 3.1. A stochastic differential equation is contractive if there exists a non-singular constant149

matrix A ∈ Rd×d, a constant β > 0, such that any pair of solutions of the SDE satisfy150 (
E
∥∥A (xt − yt)

∥∥2
) 1

2 ≤
∥∥A (x− y)

∥∥ exp(−βt), (4)

where xt,yt are two solutions, driven by the same Brownian motion but evolved respectively from151

initial conditions x and y.152

Remark. As long as b and σ in (1) are not explicitly dependent on time, it suffices to find an153

arbitrarily small t0 > 0 and show (4) holds for all t < t0.154

Remark. Sometimes contraction is not easy to establish directly, but can be shown after an appro-155

priate coordinate transformation, see (Dalalyan and Riou-Durand, 2020, Proposition 1) for such a156

treatment for kinetic Langevin dynamics. The introduction of A permits such transformations.157

We now use contractivity to remove the finite time limitation. We will first need a lemma, which is a158

local (short time) result.159

Lemma 3.2. (Milstein and Tretyakov, 2013, Lemma 1.3) Suppose b and σ in Eq.(1) are Lipschitz160

continuous. For two solutions xt,yt of Eq. (1) starting from x,y respectively, denote z :=161

(xt − x)− (yt − y), then there exist C0 > 0 and h0 > 0 such that162

E ‖z‖2 ≤ C0 ‖x− y‖2 t, ∀x,y, 0 < t ≤ h0. (5)

Then we will have a sequence of results that connects sampling error (a statistical property) with163

local integration error (a simulation property). This justifies our generic produce for non-asymptotic164

sampling error analysis, which only requires bounding the orders of local weak and strong integration165

errors (in addition to establishing contractivity of the continuous dynamics).166

Theorem 3.3. (Global Integration Error, Infinite Time Version) Suppose Eq.(1) is contractive with167

rate β and with respect to a non-singular matrix A ∈ Rd×d, with Lipschitz continuous b and σ,168

and there is a numerical algorithm A with step size h simulating the solution xt of the SDE, whose169

iterates are denoted by x̄k, k = 0, 1, · · · . Suppose there exists 0 < h0 ≤ 1, C1, C2 > 0, D1, D2 ≥170

0, p1 ≥ 1, 1
2 < p2 ≤ p1 − 1

2 such that for any 0 < h ≤ h0, the algorithm A has, respectively, local171

weak and strong error of order p1 and p2, defined as172 
∥∥E (xh − x̄1)

∥∥ ≤ (C1 +D1

√
E ‖x‖2

)
hp1 ,(

E ‖xh − x̄1‖2
) 1

2 ≤
(
C2

2 +D2
2E ‖x‖

2
) 1

2

hp2 ,

(6)
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where xh solves Eq.(1) with any initial value x and x̄1 is the result of applying A to x for one step.173

If the solution of SDE xt and algorithm A both start from x0, then for 0 < h ≤ h1 ,174

min

{
h0,

1
4β ,
( √

β

4
√

2κAD2

) 1

p2− 1
2 ,
(

β

8
√

2κA(D1+C0D2)

) 1

p2− 1
2

}
, the global error ek is bounded as175

176

ek :=
(
E‖xkh − x̄k‖2

) 1
2 ≤ Chp2− 1

2 , k = 0, 1, 2, · · · (7)

where177

C =
2√
β
κ2
A

(
C1 + C0C2 +

√
2U(D1 + C0D2)√
β

+ C2 +
√

2D2U

)
, (8)

C0 is from Eq. (5), κA is the condition number of matrix A and U2 , 4 ‖x0‖2 + 5Eµ ‖x‖2.178

Remark. We use the convention 1/0 =∞ when D1 = D2 = 0. This is pertinent when a numerical179

algorithm A, e.g. LMC (Lemma D.3), produces bounded iterates. In such cases, the initial value in180

Eq. (6) are iterations of A and will be bounded, it then can be absorbed into C1, C2 and we may set181

D1 = D2 = 0.182

Following Theorem 3.3, we obtain the following non-asymptotic bound of the sampling error in W2:183

Theorem 3.4. (Non-Asymptotic Sampling Error Bound: General Case) Under the same assump-184

tion and with the same notation of Theorem 3.3, we have185

W2(Law(x̄k), µ) ≤
√

2e−βkhW2(Law(x0), µ) +
√

2Chp2−
1
2 , ∀0 < h ≤ h1.

A corollary of Theorem 3.4 is a bound on the mixing time of the sampling algorithm:186

Corollary 3.5. (Upper Bound of Mixing Time: General Case) Under the same assumption and187

with the same notation of Theorem 3.3, we have188

τmix(ε;W2;A) ≤ max

 1

βh1
,

1

β

(
2C

ε

) 1

p2− 1
2

 log
2
√

2W2(Law(x0)µ)

ε

In particular, when high accuracy is needed, i.e., ε < 2Ch
p2− 1

2
1 , we have189

τmix(ε;W2;A) ≤ (2C)
1

p2− 1
2

β

1

ε
1

p2− 1
2

log
2
√

2W2(Law(x0), µ)

ε
= Õ

C 1

p2− 1
2

β

1

ε
1

p2− 1
2

 (9)

Corollary 3.5 states how mixing time depends on the order of local (strong) error (i.e., p2) of a190

numerical algorithm. The larger p2 is, the shorter the mixing time of the algorithm is, in term of191

the dependence on accuracy tolerance parameter ε. It is important to note that for constant stepsize192

discretizations that are deterministic on the filtration of the driving Brownian motion and use only its193

increments, there is a strong order barrier, namely p2 ≤ 1.5 (Rüemelin, 1982); however, methods194

involving multiple stochastic integrals (e.g., Kloeden and Platen (1992); Milstein and Tretyakov195

(2013)) and randomization (e.g., Shen and Lee (2019)) can yield a larger p2.196

The constant C defined in Eq. (7) typically contains rich information about the underlying SDE, e.g.197

dimension, Lipschitz constant of drift and noise diffusion, and the initial value x0 of the sampling198

algorithm. Through C, we can uncover the dependence of mixing time bound on various parameters,199

such as the dimension d. This will be exemplified with Langevin Monte Carlo in the next section.200

4 Non-Asymptotic Analysis of Langevin Monte Carlo Algorithm201

This section quantifies how LMC samples from Gibbs target distribution µ ∼ exp
(
−f(x)

)
that has202

a finite second moment, i.e.,
∫
Rd ‖x‖2 dµ <∞. Assume without loss of generality that the origin is203

a local minimizer of f , i.e. ∇f(0) = 0; this is for notational convenience in the analysis and can204

be realized via a simple coordinate shift, and it is not needed in the practical implementation. In205

addition, we assume the following two conditions hold:206
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A 1. (Smoothness and Strong Convexity) Assume f ∈ C2 and is L-smooth and m-strongly-convex,207

i.e. there exists 0 < m ≤ L such that mId 4 ∇2f(x) 4 LId, ∀x ∈ Rd.208

Denote the condition number of f by κ , L
m . The smoothness and strong-convexity assumption is209

the standard assumption in the literature of analyzing LMC algorithm (Dalalyan, 2017a,b; Cheng and210

Bartlett, 2018; Durmus et al., 2019a,b).211

A 2. (Linear Growth of the 3rd-order derivative) Assume f ∈ C3 and the operator ∇(∆f) grows212

at most linearly, i.e., there exists a constant G > 0 such that
∥∥∇(∆f(x))

∥∥ ≤ G (1 + ‖x‖
)
.213

Remark. The linear growth (at infinity) condition on∇∆f is actually not as restrictive as it appears,214

and in some sense even weaker than some classical condition for the existence of solutions to SDE.215

For example, a standard condition for ensuring the existence and uniqueness of a global solution to216

SDE is at most a linear growth (at infinity) of the drift (Pavliotis, 2014, Theorem 3.1). If we consider217

monomial potentials, i.e., f(x) = xp, p ∈ N+, then the linear growth condition on∇∆f is met when218

p ≤ 4, whereas the classical condition for the existence of solutions holds only when p ≤ 2.219

To apply mean-square analysis to study LMC algorithm, we will need to ensure the underlying220

Langevin dynamics is contractive, which we verify in Section C and D in the appendix. In addition,221

we work out all required constants to determine the C in Eq. 7 explicitly in the appendix. With all222

these necessary ingredients, we now invoke Theorem 3.4 and obtain the following result:223

Theorem 4.1. (Non-Asymptotic Error Bound: LMC) Suppose Assumption 1 and 2 hold. LMC224

iteration x̄k+1 = x̄k − h∇f(x̄k) +
√

2hξk satisfies225

W2(Law(x̄k), µ) ≤
√

2e−mkhW2(Law(x0), µ) +
√

2CLMCh, 0 < h ≤ 1

4κL
, k ∈ N (10)

where CLMC = 10(L2+G)

m
3
2

√
2d+m

(
‖x0‖2 + 1

)
= O(

√
d).226

Corollary 3.5 combined with the above result gives the following bound on the mixing time of LMC:227

Theorem 4.2. (Upper Bound of Mixing Time: LMC) Suppose Assumption 1 and 2 hold. If running228

LMC from x0, we then have229

τmix(ε;W2; LMC) ≤ max{4κ2,
2CLMC

m

1

ε
} log

2
√

2W2(Law(x0), µ)

ε

where CLMC is the same in Theorem 4.1. When high accuracy is needed, i.e., ε ≤ CLMC
2mκ2 , we have230

τmix(ε;W2; LMC) ≤ 2CLMC

m

1

ε
log

2
√

2W2(Law(x0), µ)

ε
= Õ

(√
d

ε

)
.

The Õ
(√

d
ε

)
mixing time bound in 2-Wasserstein distance improves upon the previous ones231

(Dalalyan, 2017a; Cheng and Bartlett, 2018; Durmus et al., 2019b,a) in the dependence of d and/or ε.232

If further assumingG = O(L2), we then haveCLMC = O(κ2
√
m
√
d) and Thm.4.2 shows the mixing233

time is Õ
(
κ2
√
m

√
d
ε

)
, which also improves the κ dependence in some previous results (Dalalyan,234

2017a; Cheng and Bartlett, 2018) in the regime m ≤ 1. A brief comparison is summarized in Table 1.235

Optimality In fact, the Õ
(√

d
ε

)
mixing time of LMC has the optimal scaling one can expect. This236

is in terms of the dependence on d and ε, over the class of all log-smooth and log-strongly-convex237

target measures. To illustrate this, consider the following Gaussian target distribution whose potential238

is239

f(x) =
m

2

d∑
i=1

x2
i +

L

2

2d∑
i=d+1

x2
i , with m = 1, L ≥ 4m. (11)

We now establish a lower bound on the mixing time of LMC algorithm for this target measure.240

Theorem 4.3. (Lower Bound of Mixing Time) Suppose we run LMC for the target measure defined241

in Eq. (11) from x0 = 12d, then for any choice of step size h > 0 within stability limit, we have242

τmix(ε;W2; LMC) ≥
√
d

8ε
log

√
d

ε
= Ω̃

(√
d

ε

)
.
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Table 1: Comparison of mixing time results in 2-Wassertein distance of LMC with L-smooth and
m-strongly-convex potential. Constant step size is used and accuracy tolerance ε is small enough.

mixing time Additional Assumption

(Dalalyan, 2017a, Theorem 1) Õ
(
κ2

m ·
d
ε2

)
N/A

(Cheng and Bartlett, 2018, Theorem 1) Õ
(
κ2

m ·
d
ε2

)
N/A

(Durmus et al., 2019a, Corollary 10) Õ
(
κ
m ·

d
ε2

)
N/A

(Durmus et al., 2019b, Theorem 8) Õ
(
d
ε

)
1

∥∥∇2f(x)−∇2f(y)
∥∥ ≤ L̃ ‖x− y‖

This work (Theorem 4.2) Õ
(
κ2
√
m
·
√
d
ε

)
Assumption 2 and G = O(L2)2

Combining Theorem 4.2 and 4.3, we see that mean-square analysis provides a tight bound for LMC.243

However, there is one limitation of our result – Assumption 2, which is, although mild, still extra to the244

standard setup. Therefore, the gap between the upper bound and the lower bound of LMC algorithm245

over the entire family of log-smooth and log-strongly-convex target measures is not completely246

closed. We tend to believe that Assumption 2 may not be essential, but rather than an artifact of our247

proof technique. We hope to lift this restriction in future work.248

Comparison At least two sampling algorithms are closely related to LMC. One is Kinetic Langevin249

Monte Carlo algorithm (KLMC), which is discretized kinetic/underdamped Langevin dynamics, and250

the other is Metropolis-Adjusted Langevin Algorithm (MALA) which uses the one-step update of251

LMC as a proposal and then accepts/rejects them with a Metropolis-Hastings algorithm.252

The Õ
(√

d
ε

)
mixing time in 2-Wasserstein distance of KLMC has been established for log-smooth253

and log-strongly-convex target measures in existing literature (Cheng et al., 2018b; Dalalyan and254

Riou-Durand, 2020). Due to its better dimension dependence over previously best known results of255

LMC, KLMC is understood to be the analog of Nesterov’s accelerated gradient method for sampling256

(Ma et al., 2021). Our findings show that LMC is able to achieve the same mixing time, albeit under257

an additional growth-at-infinity condition. However, this does not say anything about whether/how258

KLMC accelerates LMC, as the optimality of KLMC bound is not yet clear. We also note KLMC has259

better condition number dependence, although the κ dependence in our bound may not be tight.260

In terms of MALA, a recent work (Chewi et al., 2020) establishes a Õ
(√

d
)

mixing time in 2-261

Wasserstein distance with warm start, and the dimension dependence is shown to be optimal. We see262

that without the Metropolis adjustment, LMC can also achieve the optimal dimension dependence as263

MALA. But unlike LMC, MALA only has logarithmic dependence on 1
ε . Under warm-start condition,264

is it possible/how to improve the dependence of 1
ε for LMC, from polynomial to logarithmic? This265

question is beyond the scope of this paper but worth further investigation.266

5 Numerical Examples267

This section numerically verifies our theoretical findings for LMC in Section 4, with a particular268

focus on the dependence of the discretization error in Theorem 4.1 on dimension d and step size h.269

To this end, we consider two target measures specified by the following two potentials:270

f1(x) =
1

2
‖x‖2 + log

 d∑
i=1

exi

 and f2(x) =
1

2
‖x‖2 − 1

2d
1
2

d∑
i=1

cos
(
d

1
4xi

)
. (12)

It is not hard to see that f1 is 2-smooth and 1-strongly convex, f2 is 3
2 -smooth and 1-strongly-271

convex. f2 is also used in (Chewi et al., 2020) to illustrate the optimal dimension dependence272

of MALA. Explicit expression of 2-Wasserstein distance between non-Gaussian distributions is273

1The dependence on κ is not readily available from Theorem 8 in Durmus et al. (2019b).
2The G = O(L2) assumption is only for κ,m dependence. Removing it does not affect d, ε dependence.
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typically not available, instead, we use the Euclidean norm of the mean error as a surrogate because274 ∥∥Ex̄k − Eµx
∥∥ ≤W2(Law(x̄k), µ) due to Jensen’s inequality. To obtain an accurate estimate of the275

ground truth, we run 108 independent LMC realizations using a tiny step size (h = 0.001), each till a276

fixed, long enough time, and use the empirical average to approximate Eµx.277

To study the dimension dependence of sampling error, we fix step size h = 0.1, and for each278

d ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}, we simulate 104 independent Markov chains using279

LMC algorithm for 100 iterations, which is long enough for the chain to be well-mixed. The mean280

and the standard deviation of the sampling error corresponding to the last 10 iterates are recorded.281

To study step size dependence of sampling error, dimension is fixed to be d = 10. We experiment with282

step size h ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × 10−1. We fix a continuous time T = 20, and run LMC283

algorithm for dTh e iterations for each h. The procedure is repeated 104 times with different random284

seeds to obtain independent samples. When the corresponding continuous time t = kh > 10, we see285

from Eq. (10) that LMC is well converged and the sampling error is saturated by the discretization286

error. Therefore, for each h, we take the last d 10
h e iterates and record the mean and standard deviation287

of their sampling error.288

100 101 102 103

Dimension
10 2

10 1

||
X

X|
| 2 O( d )

LMC

(a) f1: d dependence

100 101 102 103
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10 1

||
X

X|
| 2 O( d )
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(b) f2: d dependence
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(c) f1: h dependence
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0.015
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Figure 1: (a) Dependence of the sampling error of LMC on dimension d and step size h for f1 and f2.
Both axes in Figure 1a and 1b are in log scale. The shaded areas in Figure 1a and 1b represent one
standard deviation of the last 10 iterates. The shaded areas in Figure 1c and 1d represent one standard
deviation of the last d 10

h e iterations.

The experiment results shown in Figure 1 are consistent with our theoretical analysis of the sampling289

error.Both linear dependence on
√
d and h can be identified in and supported by the empirical290

evidence. Note results with smaller h are less accurate because one starts to see the error of empirical291

approximation due to finite samples. Experiments were conducted on a machine with a 2.20GHz292

Intel(R) Xeon(R) E5-2630 v4 CPU and an Nvidia GeForce GTX 1080 GPU.293

6 Conclusion294

This paper extends the mean-square analysis framework for analyzing the integration error of SDE295

to analyzing the sampling error in 2-Wasserstein distance. Corresponding mixing time bound296

unveils how a high-order numerical algorithm can help improve dependence on accuracy tolerance ε,297

and potentially other parameters, such as the dimension. When applied to Langevin Monte Carlo298

algorithm, it obtains an improved and optimal Õ
(√

d/ε
)

bound, which was previously thought to be299

obtainable only with the addition of momentum.300

Here are some possible directions worth further investigations. (i) In data-intensive applications,301

stochastic gradients are typically used for better scalability. It seems natural to apply the mean-square302

analysis framework to study SDE-basd stochastic gradient MCMC methods; (ii) Assumption 2 is303

likely to be an artifact of our analysis; how to establish the optimal mixing time bound in the standard304

log-smooth and log-strongly-convex setup is still an open question; (iii) Motivated by the recent305

result of MALA (Chewi et al., 2020), it would be interesting to know whether the dependence on 1
ε306

can be improved to logarithmic, for example if LMC is initialized at a warm start.307
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