Mean-Square Analysis with An Application to Optimal Dimension Dependence of Langevin Monte Carlo

Anonymous Author(s)
Affiliation
Address
email

Abstract

Sampling algorithms based on discretizations of Stochastic Differential Equations (SDEs) compose a rich and popular subset of MCMC methods. This work provides a general framework for the non-asymptotic analysis of sampling error in 2-Wasserstein distance, which also leads to a bound of mixing time. The method applies to any consistent discretization of contractive SDEs. When applied to Langevin Monte Carlo algorithm, it establishes $\widetilde{\mathcal{O}}(\sqrt{d} / \epsilon)$ mixing time, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the potential of target measures at infinity. This bound improves the best previously known $\widetilde{\mathcal{O}}(d / \epsilon)$ result and is optimal in both dimension d and accuracy tolerance ϵ for log-smooth and log-strongly-convex target measures. Our theoretical analysis is further validated by numerical experiments.

1 Introduction

The problem of sampling statistical distributions has attracted considerable attention, not only in the fields of statistics and scientific computing, but also in machine learning (Robert and Casella, 2013; Andrieu et al., 2003; Liu, 2008); for example, how various sampling algorithms scale with the dimension of the target distribution is a popular recent topic in statistical deep learning (see discussions below for references). For samplers that can be viewed as discretizations of SDEs, the idea is to use an ergodic SDE whose equilibrium distribution agrees with the target distribution, and employ an appropriate numerical algorithm that discretizes (the time of) the SDE. The iterates of the numerical algorithm will approximately follow the target distribution when converged, and can be used for various downstream applications such as Bayesian inference and inverse problem (Dashti and Stuart, 2017). One notable example is the Langevin Monte Carlo algorithm (LMC), which corresponds to Euler-Maruyama discretization of overdamped Langevin equation. Its study dated back to at least the 90s (Roberts et al., 1996) but keeps on leading to important discoveries, for example, on non-asymptotics and dimension dependence, which are relevant to machine learning (e.g., Dalalyan (2017a,b); Cheng et al. (2018a); Durmus et al. (2019a,b); Vempala and Wibisono (2019); Dalalyan and Riou-Durand (2020); Erdogdu and Hosseinzadeh (2020); Mou et al. (2019)). LMC is closely related to SGD too (e.g., Mandt et al. (2017)). Many other examples exist, based on alternative SDEs and different discretizations (e.g., Dalalyan and Riou-Durand (2020); Ma et al. (2021); Mou et al. (2021); Li et al. (2020); Roberts and Rosenthal (1998); Chewi et al. (2020); Shen and Lee (2019)).

Quantitatively characterizing the non-asymptotic sampling error of numerical algorithms is usually critical for choosing the appropriate algorithm for a specific downstream application, for providing practical guidance on hyperparameter selection and experiment design, and for designing improved samplers. A powerful tool that dates back to (Jordan et al., 1998) is a paradigm of non-asymptotic error analysis, namely to view sampling as optimization in probability space, and it led to many
important recent results (e.g., Liu and Wang (2016); Dalalyan (2017a); Wibisono (2018); Zhang et al. (2018); Frogner and Poggio (2020); Chizat and Bach (2018); Chen et al. (2018); Ma et al. (2021); Erdogdu and Hosseinzadeh (2020)). It works by choosing an objective functional, typically some statistical distances/diverges, and showing that the law of the iterates of sampling algorithms converges in that objective functional. However, the choice of the objective functional often needs to be customized for different sampling algorithms. For example, KL divergence works for LMC (Cheng and Bartlett, 2018), but a carefully hand-crafted cross term needs to be added to KL divergence for analyzing KLMC (Ma et al., 2021). Even for the same underlying SDE, different discretization schemes exist and lead to different sampling algorithms, and the analyses of them had usually been case by case (e.g., Cheng et al. (2018b); Dalalyan and Riou-Durand (2020); Shen and Lee (2019)). Therefore, it would be a desirable complement to have a unified, general framework to study the non-asymptotic error of SDE-based sampling algorithms.

As an important member of the family of SDE-based sampling algorithms, Langevin Monte Carlo is widely used in practice. Its stochastic gradient version is implemented in common machine learning systems, such as Tensorflow (Abadi et al., 2016), and is the off-the-shelf algorithm for large scale Bayesian inference. With the ever-growing size of parameter space, the non-asymptotic error of LMC is of central theoretical and practical interest, in particular, its dependence on the dimension of the sample space. The best current known upper bound of the mixing time in 2-Wasserstein distance for LMC is $\widetilde{\mathcal{O}}\left(\frac{d}{\epsilon}\right)$ (Durmus et al., 2019b). Motivated by a recent result (Chewi et al., 2020) that shows better dimension dependence for a Metropolis-Adjusted improvement of LMC, we wonder if the current bound for (unadjusted) LMC is tight, and if not, what is the optimal dimension dependence?

Our contribution We study a broad family of numerical algorithms that discretize SDEs that have a contraction property (possibly after a coordinate transformation). For this type of problems, we revisit the classical mean-square analysis (Milstein and Tretyakov, 2013) in numerical SDE literature and extend its the global error bound from finite time to infinite time. Same as in classical mean-square analysis, we show the global error is only half order lower than the order of local strong error $\left(p_{2}\right)$. We further obtain a $\widetilde{\mathcal{O}}\left(C^{\frac{1}{p_{2}-\frac{1}{2}}} \frac{1}{\epsilon^{\frac{1}{p_{2}-\frac{1}{2}}}}\right)$ mixing time upper bound in 2 -Wasserstein distance for the family of algorithms, where C is a constant containing various information of the underlying problem, e.g., the dimension d.
As an application of the general mixing time result, we study the widely used Langevin Monte Carlo algorithm (LMC) for sampling from a Gibbs distribution $\mu \propto \exp (-f(\boldsymbol{x}))$, which is an Euler-Maruyama discretization of Langevin dynamics. Under the standard smoothness and strongconvexity assumptions, plus an additional linear growth condition on the third-order derivative of f, we obtain a $\widetilde{\mathcal{O}}\left(\frac{\sqrt{d}}{\epsilon}\right)$ mixing time in 2-Wasserstein distance, which improves upon the previously best known $\widetilde{\mathcal{O}}\left(\frac{d}{\epsilon}\right)$ result (Durmus et al., 2019b). For a comparison, note it was known that discretized kinetic Langevin dynamics can lead to \sqrt{d} dependence on dimension (Cheng and Bartlett, 2018; Dalalyan and Riou-Durand, 2020) and some believe that it is the introduction of momentum that improves the dimension dependence, but our result shows that discretized overdamped Langevin (no momentum) can also have mixing time scaling like \sqrt{d}. In fact, it is important to mention that it was recently shown that Metropolis-Adjusted Euler-Maruyama discretization of overdamped Langevin (i.e., MALA) has an optimal dimension dependence of $\widetilde{\mathcal{O}}(\sqrt{d})$ (Chewi et al., 2020), while what we analyze here is the unadjusted version (i.e., LMC), and it has the same dimension dependence (note however that our ϵ dependence is not as good as that for MALA; more discussion in Section 4). We also constructed an example that shows that the mixing time of LMC is at least $\widetilde{\Omega}\left(\frac{\sqrt{d}}{\epsilon}\right)$. Hence, our mixing time bound has the optimal dependence on both d and ϵ. Our theoretical analysis is further validated by empirical investigation of numerical examples.

2 Preliminaries

Notation Use the symbol \boldsymbol{x} to denote a d-dimensional vector, and the plain symbol x to denote a scalar variable. Use $\|\boldsymbol{x}\|$ to denote the Euclidean norm of vector \boldsymbol{x}. A numerical algorithm is denoted
by \mathcal{A} and its k-th iterate is denoted by $\overline{\boldsymbol{x}}_{k}$. We slightly abuse notation by identifying measures with their density function w.r.t. Lebesgue measure. We use the convention $\widetilde{\mathcal{O}}(\cdot)=\mathcal{O}(\cdot) \log ^{\mathcal{O}(1)}(\cdot)$, i.e., the $\widetilde{\mathcal{O}}(\cdot)$ notation ignores the dependence on logarithmic factors. We use the notation $\widetilde{\Omega}(\cdot)$ similarly. Denote 2-Wasserstein distance by $W_{2}\left(\mu_{1}, \mu_{2}\right)=\left(\inf _{(\boldsymbol{X}, \boldsymbol{Y}) \sim \Pi\left(\mu_{1}, \mu_{2}\right)} \mathbb{E}\|\boldsymbol{X}-\boldsymbol{Y}\|^{2}\right)^{\frac{1}{2}}$, where $\Pi\left(\mu_{1}, \mu_{2}\right)$ is the set of couplings, i.e. all joint measures with X and Y marginals being μ_{1} and μ_{2}. Denote the target distribution by μ and the law of a random variable \boldsymbol{X} by $\mathrm{Law}(\boldsymbol{X})$. Finally, denote the mixing time of an sampling algorithm \mathcal{A} converging to its target distribution μ in 2 -Wasserstein distance by $\tau_{\text {mix }}\left(\epsilon ; W_{2} ; \mathcal{A}\right)=\inf \left\{k \geq 0 \mid W_{2}\left(\operatorname{Law}\left(\overline{\boldsymbol{x}}_{k}\right), \mu\right) \leq \epsilon\right\}$.

SDE for Sampling Consider a general SDE

$$
\begin{equation*}
d \boldsymbol{x}_{t}=\boldsymbol{b}\left(t, \boldsymbol{x}_{t}\right) d t+\boldsymbol{\sigma}\left(t, \boldsymbol{x}_{t}\right) d \boldsymbol{B}_{t} \tag{1}
\end{equation*}
$$

where $\boldsymbol{b} \in \mathbb{R}^{d}$ is a drift term, $\boldsymbol{\sigma} \in \mathbb{R}^{d \times l}$ is a diffusion coefficient matrix and \boldsymbol{B}_{t} is a l-dimensional Wiener process. Under mild condition (Pavliotis, 2014, Theorem 3.1), there exists a unique strong solution \boldsymbol{x}_{t} to Eq. (1). Some SDEs admit geometric ergodicity, so that their solutions converge exponentially fast to a unique invariant distribution, and examples include the classical overdamped and kinetic Langevin dynamics, but are not limited to those (e.g., Mou et al. (2021); Li et al. (2020)). Such SDE are desired for sampling purposes, because one can set the target distribution to be the invariant distribution by choosing an SDE with an appropriate potential, and then solve the solution \boldsymbol{x}_{t} of the SDE and push the time t to infinity, so that (approximate) samples of the target distribution can be obtained. Except for a few known cases, however, explicit solutions of Eq. (1) are elusive and we have to resort to numerical schemes to simulate/integrate SDE. Such example schemes include, but are not limited to Euler-Maruyama method, Milstein methods and Runge-Kutta method (e.g., Kloeden and Platen (1992); Milstein and Tretyakov (2013)). With constant stepsize h and at k-th iteration, a typical numerical algorithm takes a previous iterate $\overline{\boldsymbol{x}}_{k-1}$ and outputs a new iterate $\overline{\boldsymbol{x}}_{k}$ as an approximation of the solution \boldsymbol{x}_{t} of Eq. (1) at time $t=k h$.

Langevin Monte Carlo Algorithm LMC algorithm is defined by the following update rule

$$
\begin{equation*}
\overline{\boldsymbol{x}}_{k}=\overline{\boldsymbol{x}}_{k-1}-h \nabla f\left(\overline{\boldsymbol{x}}_{k-1}\right)+\sqrt{2 h} \boldsymbol{\xi}_{k}, \quad k=1,2, \cdots \tag{2}
\end{equation*}
$$

where $\left\{\boldsymbol{\xi}_{k}\right\}_{k \in \mathbb{Z}_{>0}}$ are i.i.d. standard d-dimensional Gaussian vectors. LMC corresponds to an EulerMaruyama discretization of the continuous overdamped Langevin dynamics $d \boldsymbol{x}_{t}=-\nabla f\left(\boldsymbol{x}_{t}\right) d t+$ $\sqrt{2} d \boldsymbol{B}_{t}$, which converges to an equilibrium distribution $\mu \sim \exp (-f(\boldsymbol{x}))$.
Dalalyan (2017b) provided a non-asymptotic analysis of LMC. An $\widetilde{\mathcal{O}}\left(\frac{d}{\epsilon^{2}}\right)$ mixing time bound in W_{2} for log-smooth and log-strongly-convex target measures (Dalalyan, 2017a; Cheng et al., 2018a; Durmus et al., 2019a) has been established. It was further improved to $\widetilde{\mathcal{O}}\left(\frac{d}{\epsilon}\right)$ under additional Lipschitz assumption on the Hessian of f (Durmus et al., 2019b). Mixing time bounds of LMC in other statistical distances/divergences have also been studied, including total variation distance (Dalalyan, 2017b; Durmus et al., 2017) and KL divergence (Cheng and Bartlett, 2018).

Classical Mean-Square Analysis A powerful framework for quantifying the global discretization error of a numerical algorithm for Eq. (1), i.e., $e_{k}=\left\{\mathbb{E}\left\|\boldsymbol{x}_{k h}-\overline{\boldsymbol{x}}_{k}\right\|\right\}^{\frac{1}{2}}$, is mean-square analysis (e.g., the monograph of Milstein and Tretyakov (2013)). Mean-square analysis studies how local integration error propagate and accumulate into global integration error; in particular, if one-step (local) weak error and strong error (both the exact solution \boldsymbol{x}_{t} and the numerical approximation start from the same initial value \boldsymbol{x}) satisfy

$$
\begin{align*}
&\left\|\mathbb{E} \boldsymbol{x}_{h}-\mathbb{E} \overline{\boldsymbol{x}}_{1}\right\| \leq C_{1}\left(1+\mathbb{E}\|\boldsymbol{x}\|^{2}\right)^{\frac{1}{2}} h^{p_{1}}, \quad \text { (local weak error) } \\
&\left(\mathbb{E}\left\|\boldsymbol{x}_{h}-\overline{\boldsymbol{x}}_{1}\right\|^{2}\right)^{\frac{1}{2}} \leq C_{2}\left(1+\mathbb{E}\|\boldsymbol{x}\|^{2}\right)^{\frac{1}{2}} h^{p_{2}}, \quad \text { (local strong error) } \tag{3}
\end{align*}
$$

over a time interval $[0, K h]$ for some constants $C_{1}, C_{2}>0, p_{2} \geq \frac{1}{2}$ and $p_{1} \geq p_{2}+\frac{1}{2}$, then the global error can be bounded by $e_{k} \leq C\left(1+\mathbb{E}\left\|\boldsymbol{x}_{0}\right\|^{2}\right)^{\frac{1}{2}} h^{p_{2}-\frac{1}{2}}, k=1,2, \cdots, K$ for some constant $C>0$ dependent on $K h$.

Although classical mean-square analysis is only concerned with numerical integration error, sampling error can be also inferred. However, there is a limitation that prevents directly employing mean-square analysis in the non-asymptotic analysis of sampling algorithms. The bound of global error only holds in finite time because the constant C can grow exponentially as K increases, rendering the bound useless when $K \rightarrow \infty$.

3 Mean-Square Analysis of Samplers Based on Contractive SDE

In order to prepare for the analysis of sampling error, we first show that the finite time limitation of integration error analysis can be lifted if the SDE being discretized is contractive.

More precisely, one bottleneck that prevents the results of classical mean-square analysis from extending to infinite time horizon, is the fact that the solution of a general SDE may not be bounded, and neither is its discretization. Note that local error (Eq. (3)) depends on the initial value. To go from local to global error, these 'initial' values correspond to iterates of numerical algorithms, which change from iteration to iteration and can be unbounded, hence when accumulated together, it is possible that the global error may blow up.
Samplers considered here, on the other hand, are based on stochastic differential equations, each of which weakly converges to a limiting distributions. The solution of the underlying converging SDE, as it converges to the invariant measure, gradually inherits boundedness properties from the target measure. Thus, as long as the target measure has bounded 2nd-moment, a sampling algorithm based on a reasonable discretization of the SDE should also have bounded 2nd-moment. Motivated by this observation, we will assume the sampling algorithms we study are based on contractive SDEs, which is a sufficient condition to ensure the underlying SDE converges to a statistical distribution.
Definition 3.1. A stochastic differential equation is contractive if there exists a non-singular constant matrix $A \in \mathbb{R}^{d \times d}$, a constant $\beta>0$, such that any pair of solutions of the SDE satisfy

$$
\begin{equation*}
\left(\mathbb{E}\left\|A\left(\boldsymbol{x}_{t}-\boldsymbol{y}_{t}\right)\right\|^{2}\right)^{\frac{1}{2}} \leq\|A(\boldsymbol{x}-\boldsymbol{y})\| \exp (-\beta t) \tag{4}
\end{equation*}
$$

where $\boldsymbol{x}_{t}, \boldsymbol{y}_{t}$ are two solutions, driven by the same Brownian motion but evolved respectively from initial conditions \boldsymbol{x} and \boldsymbol{y}.
Remark. As long as \boldsymbol{b} and $\boldsymbol{\sigma}$ in (1) are not explicitly dependent on time, it suffices to find an arbitrarily small $t_{0}>0$ and show (4) holds for all $t<t_{0}$.
Remark. Sometimes contraction is not easy to establish directly, but can be shown after an appropriate coordinate transformation, see (Dalalyan and Riou-Durand, 2020, Proposition 1) for such a treatment for kinetic Langevin dynamics. The introduction of A permits such transformations.

We now use contractivity to remove the finite time limitation. We will first need a lemma, which is a local (short time) result.
Lemma 3.2. (Milstein and Tretyakov, 2013, Lemma 1.3) Suppose band $\boldsymbol{\sigma}$ in Eq.(1) are Lipschitz continuous. For two solutions $\boldsymbol{x}_{t}, \boldsymbol{y}_{t}$ of Eq. (1) starting from $\boldsymbol{x}, \boldsymbol{y}$ respectively, denote $\boldsymbol{z}:=$ $\left(\boldsymbol{x}_{t}-\boldsymbol{x}\right)-\left(\boldsymbol{y}_{t}-\boldsymbol{y}\right)$, then there exist $C_{0}>0$ and $h_{0}>0$ such that

$$
\begin{equation*}
\mathbb{E}\|\boldsymbol{z}\|^{2} \leq C_{0}\|\boldsymbol{x}-\boldsymbol{y}\|^{2} t, \quad \forall \boldsymbol{x}, \boldsymbol{y}, 0<t \leq h_{0} . \tag{5}
\end{equation*}
$$

Then we will have a sequence of results that connects sampling error (a statistical property) with local integration error (a simulation property). This justifies our generic produce for non-asymptotic sampling error analysis, which only requires bounding the orders of local weak and strong integration errors (in addition to establishing contractivity of the continuous dynamics).
Theorem 3.3. (Global Integration Error, Infinite Time Version) Suppose Eq.(1) is contractive with rate β and with respect to a non-singular matrix $A \in \mathbb{R}^{d \times d}$, with Lipschitz continuous \boldsymbol{b} and $\boldsymbol{\sigma}$, and there is a numerical algorithm \mathcal{A} with step size h simulating the solution x_{t} of the SDE, whose iterates are denoted by $\overline{\boldsymbol{x}}_{k}, k=0,1, \cdots$. Suppose there exists $0<h_{0} \leq 1, C_{1}, C_{2}>0, D_{1}, D_{2} \geq$ $0, p_{1} \geq 1, \frac{1}{2}<p_{2} \leq p_{1}-\frac{1}{2}$ such that for any $0<h \leq h_{0}$, the algorithm \mathcal{A} has, respectively, local weak and strong error of order p_{1} and p_{2}, defined as

$$
\left\{\begin{array}{l}
\left\|\mathbb{E}\left(\boldsymbol{x}_{h}-\overline{\boldsymbol{x}}_{1}\right)\right\| \leq\left(C_{1}+D_{1} \sqrt{\mathbb{E}\|\boldsymbol{x}\|^{2}}\right) h^{p_{1}} \tag{6}\\
\left(\mathbb{E}\left\|\boldsymbol{x}_{h}-\overline{\boldsymbol{x}}_{1}\right\|^{2}\right)^{\frac{1}{2}} \leq\left(C_{2}^{2}+D_{2}^{2} \mathbb{E}\|\boldsymbol{x}\|^{2}\right)^{\frac{1}{2}} h^{p_{2}}
\end{array}\right.
$$

where \boldsymbol{x}_{h} solves Eq.(1) with any initial value \boldsymbol{x} and $\overline{\boldsymbol{x}}_{1}$ is the result of applying \mathcal{A} to \boldsymbol{x} for one step.
If the solution of SDE \boldsymbol{x}_{t} and algorithm \mathcal{A} both start from \boldsymbol{x}_{0}, then for $0<h \leq h_{1} \triangleq$ $\min \left\{h_{0}, \frac{1}{4 \beta},\left(\frac{\sqrt{\beta}}{4 \sqrt{2} \kappa_{A} D_{2}}\right)^{\frac{1}{p_{2}-\frac{1}{2}}},\left(\frac{\beta}{8 \sqrt{2} \kappa_{A}\left(D_{1}+C_{0} D_{2}\right)}\right)^{\frac{1}{p_{2}-\frac{1}{2}}}\right\}$, the global error e_{k} is bounded as $e_{k}:=\left(\mathbb{E}\left\|\boldsymbol{x}_{k h}-\overline{\boldsymbol{x}}_{k}\right\|^{2}\right)^{\frac{1}{2}} \leq C h^{p_{2}-\frac{1}{2}}, \quad k=0,1,2, \cdots$
where

$$
C=\frac{2}{\sqrt{\beta}} \kappa_{A}^{2}\left(\frac{C_{1}+C_{0} C_{2}+\sqrt{2} U\left(D_{1}+C_{0} D_{2}\right)}{\sqrt{\beta}}+C_{2}+\sqrt{2} D_{2} U\right)
$$

C_{0} is from Eq. (5), κ_{A} is the condition number of matrix A and $U^{2} \triangleq 4\left\|\boldsymbol{x}_{0}\right\|^{2}+5 \mathbb{E}_{\mu}\|\boldsymbol{x}\|^{2}$.
Remark. We use the convention $1 / 0=\infty$ when $D_{1}=D_{2}=0$. This is pertinent when a numerical algorithm \mathcal{A}, e.g. LMC (Lemma D.3), produces bounded iterates. In such cases, the initial value in Eq. (6) are iterations of \mathcal{A} and will be bounded, it then can be absorbed into C_{1}, C_{2} and we may set $D_{1}=D_{2}=0$.

Following Theorem 3.3, we obtain the following non-asymptotic bound of the sampling error in W_{2} :
Theorem 3.4. (Non-Asymptotic Sampling Error Bound: General Case) Under the same assumption and with the same notation of Theorem 3.3, we have

$$
W_{2}\left(\operatorname{Law}\left(\overline{\boldsymbol{x}}_{k}\right), \mu\right) \leq \sqrt{2} e^{-\beta k h} W_{2}\left(\operatorname{Law}\left(\boldsymbol{x}_{0}\right), \mu\right)+\sqrt{2} C h^{p_{2}-\frac{1}{2}}, \quad \forall 0<h \leq h_{1}
$$

A corollary of Theorem 3.4 is a bound on the mixing time of the sampling algorithm:
Corollary 3.5. (Upper Bound of Mixing Time: General Case) Under the same assumption and with the same notation of Theorem 3.3, we have

$$
\tau_{\text {mix }}\left(\epsilon ; W_{2} ; \mathcal{A}\right) \leq \max \left\{\frac{1}{\beta h_{1}}, \frac{1}{\beta}\left(\frac{2 C}{\epsilon}\right)^{\frac{1}{p_{2}-\frac{1}{2}}}\right\} \log \frac{2 \sqrt{2} W_{2}\left(\operatorname{Law}\left(\boldsymbol{x}_{0}\right) \mu\right)}{\epsilon}
$$

In particular, when high accuracy is needed, i.e., $\epsilon<2 C h_{1}^{p_{2}-\frac{1}{2}}$, we have

$$
\begin{equation*}
\tau_{\text {mix }}\left(\epsilon ; W_{2} ; \mathcal{A}\right) \leq \frac{(2 C)^{\frac{1}{p_{2}-\frac{1}{2}}}}{\beta} \frac{1}{\epsilon^{\frac{1}{p_{2}-\frac{1}{2}}}} \log \frac{2 \sqrt{2} W_{2}\left(\operatorname{Law}\left(\boldsymbol{x}_{0}\right), \mu\right)}{\epsilon}=\widetilde{\mathcal{O}}\left(\frac{C^{\frac{1}{p_{2}-\frac{1}{2}}}}{\beta} \frac{1}{\epsilon^{\frac{1}{p_{2}-\frac{1}{2}}}}\right) \tag{9}
\end{equation*}
$$

Corollary 3.5 states how mixing time depends on the order of local (strong) error (i.e., p_{2}) of a numerical algorithm. The larger p_{2} is, the shorter the mixing time of the algorithm is, in term of the dependence on accuracy tolerance parameter ϵ. It is important to note that for constant stepsize discretizations that are deterministic on the filtration of the driving Brownian motion and use only its increments, there is a strong order barrier, namely $p_{2} \leq 1.5$ (Rüemelin, 1982); however, methods involving multiple stochastic integrals (e.g., Kloeden and Platen (1992); Milstein and Tretyakov (2013)) and randomization (e.g., Shen and Lee (2019)) can yield a larger p_{2}.

The constant C defined in Eq. (7) typically contains rich information about the underlying SDE, e.g. dimension, Lipschitz constant of drift and noise diffusion, and the initial value \boldsymbol{x}_{0} of the sampling algorithm. Through C, we can uncover the dependence of mixing time bound on various parameters, such as the dimension d. This will be exemplified with Langevin Monte Carlo in the next section.

4 Non-Asymptotic Analysis of Langevin Monte Carlo Algorithm

This section quantifies how LMC samples from Gibbs target distribution $\mu \sim \exp (-f(\boldsymbol{x}))$ that has a finite second moment, i.e., $\int_{\mathbb{R}^{d}}\|\boldsymbol{x}\|^{2} d \mu<\infty$. Assume without loss of generality that the origin is a local minimizer of f, i.e. $\nabla f(\mathbf{0})=\mathbf{0}$; this is for notational convenience in the analysis and can be realized via a simple coordinate shift, and it is not needed in the practical implementation. In addition, we assume the following two conditions hold:

A 1. (Smoothness and Strong Convexity) Assume $f \in \mathcal{C}^{2}$ and is L-smooth and m-strongly-convex, i.e. there exists $0<m \leq L$ such that $m I_{d} \preccurlyeq \nabla^{2} f(\boldsymbol{x}) \preccurlyeq L I_{d}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{d}$.

Denote the condition number of f by $\kappa \triangleq \frac{L}{m}$. The smoothness and strong-convexity assumption is the standard assumption in the literature of analyzing LMC algorithm (Dalalyan, 2017a,b; Cheng and Bartlett, 2018; Durmus et al., 2019a,b).
A 2. (Linear Growth of the 3rd-order derivative) Assume $f \in \mathcal{C}^{3}$ and the operator $\nabla(\Delta f)$ grows at most linearly, i.e., there exists a constant $G>0$ such that $\|\nabla(\Delta f(\boldsymbol{x}))\| \leq G(1+\|\boldsymbol{x}\|)$.
Remark. The linear growth (at infinity) condition on $\nabla \Delta f$ is actually not as restrictive as it appears, and in some sense even weaker than some classical condition for the existence of solutions to SDE. For example, a standard condition for ensuring the existence and uniqueness of a global solution to SDE is at most a linear growth (at infinity) of the drift (Pavliotis, 2014, Theorem 3.1). If we consider monomial potentials, i.e., $f(x)=x^{p}, p \in \mathbb{N}_{+}$, then the linear growth condition on $\nabla \Delta f$ is met when $p \leq 4$, whereas the classical condition for the existence of solutions holds only when $p \leq 2$.

To apply mean-square analysis to study LMC algorithm, we will need to ensure the underlying Langevin dynamics is contractive, which we verify in Section C and D in the appendix. In addition, we work out all required constants to determine the C in Eq. 7 explicitly in the appendix. With all these necessary ingredients, we now invoke Theorem 3.4 and obtain the following result:
Theorem 4.1. (Non-Asymptotic Error Bound: LMC) Suppose Assumption 1 and 2 hold. LMC iteration $\overline{\boldsymbol{x}}_{k+1}=\overline{\boldsymbol{x}}_{k}-h \nabla f\left(\overline{\boldsymbol{x}}_{k}\right)+\sqrt{2 h} \xi_{k}$ satisfies

$$
\begin{equation*}
W_{2}\left(\operatorname{Law}\left(\overline{\boldsymbol{x}}_{k}\right), \mu\right) \leq \sqrt{2} e^{-m k h} W_{2}\left(\operatorname{Law}\left(\boldsymbol{x}_{0}\right), \mu\right)+\sqrt{2} C_{L M C} h, \quad 0<h \leq \frac{1}{4 \kappa L}, k \in \mathbb{N} \tag{10}
\end{equation*}
$$

where $C_{L M C}=\frac{10\left(L^{2}+G\right)}{m^{\frac{3}{2}}} \sqrt{2 d+m\left(\left\|x_{0}\right\|^{2}+1\right)}=\mathcal{O}(\sqrt{d})$.
Corollary 3.5 combined with the above result gives the following bound on the mixing time of LMC:
Theorem 4.2. (Upper Bound of Mixing Time: LMC) Suppose Assumption 1 and 2 hold. If running LMC from \boldsymbol{x}_{0}, we then have

$$
\tau_{\text {mix }}\left(\epsilon ; W_{2} ; \mathrm{LMC}\right) \leq \max \left\{4 \kappa^{2}, \frac{2 C_{L M C}}{m} \frac{1}{\epsilon}\right\} \log \frac{2 \sqrt{2} W_{2}\left(\operatorname{Law}\left(\boldsymbol{x}_{0}\right), \mu\right)}{\epsilon}
$$

where $C_{L M C}$ is the same in Theorem 4.1. When high accuracy is needed, i.e., $\epsilon \leq \frac{C_{L M C}}{2 m \kappa^{2}}$, we have

$$
\tau_{\text {mix }}\left(\epsilon ; W_{2} ; \mathrm{LMC}\right) \leq \frac{2 C_{L M C}}{m} \frac{1}{\epsilon} \log \frac{2 \sqrt{2} W_{2}\left(\operatorname{Law}\left(\boldsymbol{x}_{0}\right), \mu\right)}{\epsilon}=\widetilde{\mathcal{O}}\left(\frac{\sqrt{d}}{\epsilon}\right) .
$$

The $\widetilde{\mathcal{O}}\left(\frac{\sqrt{d}}{\epsilon}\right)$ mixing time bound in 2-Wasserstein distance improves upon the previous ones (Dalalyan, 2017a; Cheng and Bartlett, 2018; Durmus et al., 2019b,a) in the dependence of d and/or ϵ. If further assuming $G=\mathcal{O}\left(L^{2}\right)$, we then have $C_{\mathrm{LMC}}=\mathcal{O}\left(\kappa^{2} \sqrt{m} \sqrt{d}\right)$ and Thm.4.2 shows the mixing time is $\widetilde{\mathcal{O}}\left(\frac{\kappa^{2}}{\sqrt{m}} \frac{\sqrt{d}}{\epsilon}\right)$, which also improves the κ dependence in some previous results (Dalalyan, 2017a; Cheng and Bartlett, 2018) in the regime $m \leq 1$. A brief comparison is summarized in Table 1.

Optimality In fact, the $\widetilde{\mathcal{O}}\left(\frac{\sqrt{d}}{\epsilon}\right)$ mixing time of LMC has the optimal scaling one can expect. This is in terms of the dependence on d and ϵ, over the class of all log-smooth and log-strongly-convex target measures. To illustrate this, consider the following Gaussian target distribution whose potential is

$$
\begin{equation*}
f(\boldsymbol{x})=\frac{m}{2} \sum_{i=1}^{d} x_{i}^{2}+\frac{L}{2} \sum_{i=d+1}^{2 d} x_{i}^{2}, \quad \text { with } m=1, L \geq 4 m . \tag{11}
\end{equation*}
$$

We now establish a lower bound on the mixing time of LMC algorithm for this target measure.
Theorem 4.3. (Lower Bound of Mixing Time) Suppose we run LMC for the target measure defined in Eq. (11) from $\boldsymbol{x}_{0}=\mathbf{1}_{2 d}$, then for any choice of step size $h>0$ within stability limit, we have

$$
\tau_{\operatorname{mix}}\left(\epsilon ; W_{2} ; \mathrm{LMC}\right) \geq \frac{\sqrt{d}}{8 \epsilon} \log \frac{\sqrt{d}}{\epsilon}=\widetilde{\Omega}\left(\frac{\sqrt{d}}{\epsilon}\right)
$$

Table 1: Comparison of mixing time results in 2-Wassertein distance of LMC with L-smooth and m-strongly-convex potential. Constant step size is used and accuracy tolerance ϵ is small enough.

	mixing time	Additional Assumption				
(Dalalyan, 2017a, Theorem 1)	$\widetilde{\mathcal{O}}\left(\frac{\kappa^{2}}{m} \cdot \frac{d}{\epsilon^{2}}\right)$	N/A				
(Cheng and Bartlett, 2018, Theorem 1)	$\widetilde{\mathcal{O}}\left(\frac{\kappa^{2}}{m} \cdot \frac{d}{\epsilon^{2}}\right)$	N/A				
(Durmus et al., 2019a, Corollary 10)	$\widetilde{\mathcal{O}}\left(\frac{\kappa}{m} \cdot \frac{d}{\epsilon^{2}}\right)$	N/A				
(Durmus et al., 2019b, Theorem 8)	$\widetilde{\mathcal{O}}\left(\frac{d}{\epsilon}\right)^{1}$	$\left\\|\nabla^{2} f(\boldsymbol{x})-\nabla^{2} f(\boldsymbol{y})\right\\| \leq \widetilde{L}\\|\boldsymbol{x}-\boldsymbol{y}\\|$				
This work (Theorem 4.2)	$\widetilde{\mathcal{O}}\left(\frac{\kappa^{2}}{\sqrt{m}} \cdot \frac{\sqrt{d}}{\epsilon}\right)$	Assumption 2 and $G=\mathcal{O}\left(L^{2}\right)^{2}$				

Combining Theorem 4.2 and 4.3, we see that mean-square analysis provides a tight bound for LMC.
However, there is one limitation of our result - Assumption 2, which is, although mild, still extra to the standard setup. Therefore, the gap between the upper bound and the lower bound of LMC algorithm over the entire family of log-smooth and log-strongly-convex target measures is not completely closed. We tend to believe that Assumption 2 may not be essential, but rather than an artifact of our proof technique. We hope to lift this restriction in future work.

Comparison At least two sampling algorithms are closely related to LMC. One is Kinetic Langevin Monte Carlo algorithm (KLMC), which is discretized kinetic/underdamped Langevin dynamics, and the other is Metropolis-Adjusted Langevin Algorithm (MALA) which uses the one-step update of LMC as a proposal and then accepts/rejects them with a Metropolis-Hastings algorithm.
The $\widetilde{\mathcal{O}}\left(\frac{\sqrt{d}}{\epsilon}\right)$ mixing time in 2-Wasserstein distance of KLMC has been established for log-smooth and log-strongly-convex target measures in existing literature (Cheng et al., 2018b; Dalalyan and Riou-Durand, 2020). Due to its better dimension dependence over previously best known results of LMC, KLMC is understood to be the analog of Nesterov's accelerated gradient method for sampling (Ma et al., 2021). Our findings show that LMC is able to achieve the same mixing time, albeit under an additional growth-at-infinity condition. However, this does not say anything about whether/how KLMC accelerates LMC, as the optimality of KLMC bound is not yet clear. We also note KLMC has better condition number dependence, although the κ dependence in our bound may not be tight.
In terms of MALA, a recent work (Chewi et al., 2020) establishes a $\widetilde{\mathcal{O}}(\sqrt{d})$ mixing time in 2Wasserstein distance with warm start, and the dimension dependence is shown to be optimal. We see that without the Metropolis adjustment, LMC can also achieve the optimal dimension dependence as MALA. But unlike LMC, MALA only has logarithmic dependence on $\frac{1}{\epsilon}$. Under warm-start condition, is it possible/how to improve the dependence of $\frac{1}{\epsilon}$ for LMC, from polynomial to logarithmic? This question is beyond the scope of this paper but worth further investigation.

5 Numerical Examples

This section numerically verifies our theoretical findings for LMC in Section 4, with a particular focus on the dependence of the discretization error in Theorem 4.1 on dimension d and step size h. To this end, we consider two target measures specified by the following two potentials:

$$
\begin{equation*}
f_{1}(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}\|^{2}+\log \left(\sum_{i=1}^{d} e^{x_{i}}\right) \quad \text { and } \quad f_{2}(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}\|^{2}-\frac{1}{2 d^{\frac{1}{2}}} \sum_{i=1}^{d} \cos \left(d^{\frac{1}{4}} x_{i}\right) . \tag{12}
\end{equation*}
$$

It is not hard to see that f_{1} is 2 -smooth and 1 -strongly convex, f_{2} is $\frac{3}{2}$-smooth and 1 -stronglyconvex. f_{2} is also used in (Chewi et al., 2020) to illustrate the optimal dimension dependence of MALA. Explicit expression of 2-Wasserstein distance between non-Gaussian distributions is

[^0]typically not available, instead, we use the Euclidean norm of the mean error as a surrogate because $\left\|\mathbb{E} \overline{\boldsymbol{x}}_{k}-\mathbb{E}_{\mu} \boldsymbol{x}\right\| \leq W_{2}\left(\operatorname{Law}\left(\overline{\boldsymbol{x}}_{k}\right), \mu\right)$ due to Jensen's inequality. To obtain an accurate estimate of the ground truth, we run 10^{8} independent LMC realizations using a tiny step size $(\mathrm{h}=0.001)$, each till a fixed, long enough time, and use the empirical average to approximate $\mathbb{E}_{\mu} \boldsymbol{x}$.
To study the dimension dependence of sampling error, we fix step size $h=0.1$, and for each $d \in\{1,2,5,10,20,50,100,200,500,1000\}$, we simulate 10^{4} independent Markov chains using LMC algorithm for 100 iterations, which is long enough for the chain to be well-mixed. The mean and the standard deviation of the sampling error corresponding to the last 10 iterates are recorded.

To study step size dependence of sampling error, dimension is fixed to be $d=10$. We experiment with step size $h \in\{1,2,3,4,5,6,7,8,9,10\} \times 10^{-1}$. We fix a continuous time $T=20$, and run LMC algorithm for $\left\lceil\frac{T}{h}\right\rceil$ iterations for each h. The procedure is repeated 10^{4} times with different random seeds to obtain independent samples. When the corresponding continuous time $t=k h>10$, we see from Eq. (10) that LMC is well converged and the sampling error is saturated by the discretization error. Therefore, for each h, we take the last $\left\lceil\frac{10}{h}\right\rceil$ iterates and record the mean and standard deviation of their sampling error.

Figure 1: (a) Dependence of the sampling error of LMC on dimension d and step size h for f_{1} and f_{2}. Both axes in Figure 1a and 1b are in log scale. The shaded areas in Figure 1a and 1b represent one standard deviation of the last 10 iterates. The shaded areas in Figure 1c and 1d represent one standard deviation of the last $\left\lceil\frac{10}{h}\right\rceil$ iterations.

The experiment results shown in Figure 1 are consistent with our theoretical analysis of the sampling error.Both linear dependence on \sqrt{d} and h can be identified in and supported by the empirical evidence. Note results with smaller h are less accurate because one starts to see the error of empirical approximation due to finite samples. Experiments were conducted on a machine with a 2.20 GHz Intel(R) Xeon(R) E5-2630 v4 CPU and an Nvidia GeForce GTX 1080 GPU.

6 Conclusion

This paper extends the mean-square analysis framework for analyzing the integration error of SDE to analyzing the sampling error in 2 -Wasserstein distance. Corresponding mixing time bound unveils how a high-order numerical algorithm can help improve dependence on accuracy tolerance ϵ, and potentially other parameters, such as the dimension. When applied to Langevin Monte Carlo algorithm, it obtains an improved and optimal $\widetilde{\mathcal{O}}(\sqrt{d} / \epsilon)$ bound, which was previously thought to be obtainable only with the addition of momentum.

Here are some possible directions worth further investigations. (i) In data-intensive applications, stochastic gradients are typically used for better scalability. It seems natural to apply the mean-square analysis framework to study SDE-basd stochastic gradient MCMC methods; (ii) Assumption 2 is likely to be an artifact of our analysis; how to establish the optimal mixing time bound in the standard log-smooth and log-strongly-convex setup is still an open question; (iii) Motivated by the recent result of MALA (Chewi et al., 2020), it would be interesting to know whether the dependence on $\frac{1}{\epsilon}$ can be improved to logarithmic, for example if LMC is initialized at a warm start.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265-283.

Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I. (2003). An introduction to mcmc for machine learning. Machine learning, 50(1):5-43.

Chen, C., Zhang, R., Wang, W., Li, B., and Chen, L. (2018). A unified particle-optimization framework for scalable bayesian sampling. In The Conference on Uncertainty in Artificial Intelligence.

Cheng, X. and Bartlett, P. L. (2018). Convergence of langevin mcmc in kl-divergence. PMLR 83, (83):186-211.

Cheng, X., Chatterji, N. S., Abbasi-Yadkori, Y., Bartlett, P. L., and Jordan, M. I. (2018a). Sharp convergence rates for langevin dynamics in the nonconvex setting. arXiv preprint arXiv:1805.01648.

Cheng, X., Chatterji, N. S., Bartlett, P. L., and Jordan, M. I. (2018b). Underdamped langevin mcmc: A non-asymptotic analysis. Proceedings of the 31st Conference On Learning Theory, PMLR.

Chewi, S., Lu, C., Ahn, K., Cheng, X., Gouic, T. L., and Rigollet, P. (2020). Optimal dimension dependence of the metropolis-adjusted langevin algorithm. arXiv preprint arXiv:2012.12810.

Chizat, L. and Bach, F. (2018). On the global convergence of gradient descent for over-parameterized models using optimal transport. In Advances in neural information processing systems, pages 3036-3046.

Dalalyan, A. S. (2017a). Further and stronger analogy between sampling and optimization: Langevin monte carlo and gradient descent. Conference on Learning Theory, pages 678-689.

Dalalyan, A. S. (2017b). Theoretical guarantees for approximate sampling from smooth and logconcave densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651-676.

Dalalyan, A. S. and Riou-Durand, L. (2020). On sampling from a log-concave density using kinetic Langevin diffusions. Bernoulli, 26(3):1956-1988.

Dashti, M. and Stuart, A. M. (2017). The Bayesian Approach to Inverse Problems, pages 311-428. Springer International Publishing, Cham.

Durmus, A., Majewski, S., and Miasojedow, B. (2019a). Analysis of langevin monte carlo via convex optimization. Journal of Machine Learning Research, 20:73-1.

Durmus, A., Moulines, E., et al. (2017). Nonasymptotic convergence analysis for the unadjusted langevin algorithm. Annals of Applied Probability, 27(3):1551-1587.

Durmus, A., Moulines, E., et al. (2019b). High-dimensional bayesian inference via the unadjusted langevin algorithm. Bernoulli, 25(4A):2854-2882.

Erdogdu, M. A. and Hosseinzadeh, R. (2020). On the convergence of langevin monte carlo: The interplay between tail growth and smoothness. arXiv preprint arXiv:2005.13097.

Frogner, C. and Poggio, T. (2020). Approximate inference with wasserstein gradient flows. In International Conference on Artificial Intelligence and Statistics.

Jordan, R., Kinderlehrer, D., and Otto, F. (1998). The variational formulation of the fokker-planck equation. SIAM journal on mathematical analysis, 29(1):1-17.

Kloeden, P. E. and Platen, E. (1992). Numerical solution of stochastic differential equations. Springer.
Li, R., Zha, H., and Tao, M. (2020). Hessian-free high-resolution nesterov acceleration for sampling. arXiv preprint arXiv:2006.09230.

Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer Science \& Business Media.
Liu, Q. and Wang, D. (2016). Stein variational gradient descent: A general purpose bayesian inference algorithm. In Advances in neural information processing systems, pages 2378-2386.

Ma, Y.-A., Chatterji, N. S., Cheng, X., Flammarion, N., Bartlett, P. L., and Jordan, M. I. (2021). Is there an analog of Nesterov acceleration for gradient-based MCMC? Bernoulli, 27(3):1942-1992.

Mandt, S., Hoffman, M. D., and Blei, D. M. (2017). Stochastic gradient descent as approximate bayesian inference. Journal of Machine Learning Research, 18(134):1-35.

Milstein, G. N. and Tretyakov, M. V. (2013). Stochastic numerics for mathematical physics. Springer Science \& Business Media.

Mou, W., Flammarion, N., Wainwright, M. J., and Bartlett, P. L. (2019). Improved bounds for discretization of langevin diffusions: Near-optimal rates without convexity. arXiv preprint arXiv:1907.11331.

Mou, W., Ma, Y.-A., Wainwright, M. J., Bartlett, P. L., and Jordan, M. I. (2021). High-order langevin diffusion yields an accelerated mcmc algorithm. Journal of Machine Learning Research, 22(42):1-41.

Pavliotis, G. A. (2014). Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations, volume 60. Springer.

Robert, C. and Casella, G. (2013). Monte Carlo statistical methods. Springer Science \& Business Media.

Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approximations to langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(1):255268.

Roberts, G. O., Tweedie, R. L., et al. (1996). Exponential convergence of langevin distributions and their discrete approximations. Bernoulli, 2(4):341-363.

Rüemelin, W. (1982). Numerical treatment of stochastic differential equations. SIAM Journal on Numerical Analysis, 19(3):604-613.

Shen, R. and Lee, Y. T. (2019). The randomized midpoint method for log-concave sampling. In Advances in Neural Information Processing Systems, pages 2098-2109.

Vempala, S. and Wibisono, A. (2019). Rapid convergence of the unadjusted langevin algorithm: Isoperimetry suffices. In Advances in Neural Information Processing Systems, pages 8092-8104.

Wibisono, A. (2018). Sampling as optimization in the space of measures: The langevin dynamics as a composite optimization problem. In Conference On Learning Theory, pages 2093-3027.

Zhang, R., Chen, C., Li, C., and Carin, L. (2018). Policy optimization as wasserstein gradient flows. In International Conference on Machine Learning, pages 5737-5746.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Limitation is discussed in the paragraph below Table 1.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] To the best of our knowledge, this work does not have any potential negative societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions are fully, clearly stated in theorems.
(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs of all theoretical results are provided in supplementary materials.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] All are provided in supplementary materials.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] Our experiments do not need training. We specify all the hyperparameters needed to run the experiments.
(c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] See Figure 1.
(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] We report the hardware used to run our experiments.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]

[^0]: ${ }^{1}$ The dependence on κ is not readily available from Theorem 8 in Durmus et al. (2019b).
 ${ }^{2}$ The $G=\mathcal{O}\left(L^{2}\right)$ assumption is only for κ, m dependence. Removing it does not affect d, ϵ dependence.

