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Abstract

Reliable explainability is not only a technical goal but also a cornerstone of private
AI governance. As AI models enter high-stakes sectors, private actors such as
auditors, insurers, certification bodies, and procurement agencies require standard-
ized evaluation metrics to assess trustworthiness. However, current XAI evaluation
metrics remain fragmented and prone to manipulation, which undermines ac-
countability and compliance. We argue that standardized metrics can function
as governance primitives, embedding auditability and accountability within AI
systems for effective private oversight. Building upon prior work in XAI bench-
marking, we identify key limitations in ensuring faithfulness, tamper resistance,
and regulatory alignment. Furthermore, interpretability can directly support model
alignment by providing a verifiable means of ensuring behavioral integrity in Gen-
eral Purpose AI (GPAI) systems. This connection between interpretability and
alignment positions XAI metrics as both technical and regulatory instruments that
help prevent alignment faking, a growing concern among oversight bodies. We
propose a Governance-by-Metrics paradigm that treats explainability evaluation
as a central mechanism of private AI governance. Our framework introduces a
hierarchical model linking transparency, tamper resistance, scalability, and legal
alignment, extending evaluation from model introspection toward systemic account-
ability. Through conceptual synthesis and alignment with governance standards,
we outline a roadmap for integrating explainability metrics into continuous AI
assurance pipelines that serve both private oversight and regulatory needs.

1 Introduction

As AI systems evolve into generative and agentic architectures, the reliability of explainability metrics
becomes a governance issue—determining whether systems can be audited, trusted, and lawfully
deployed. AI is already embedded in daily life and high-stakes domains [1, 2], with applications
spanning healthcare, finance, and law enforcement. As its impact grows, systems must be transparent
and their decision-making explainable. We argue XAI metrics are no longer only diagnostic but also
enforcement levers governing transparency, trust, and accountability across the lifecycle, helping
identify and mitigate risks [3, 4, 5]. Yet a critical gap persists: we lack standardized, reliable
metrics to evaluate the effectiveness and trustworthiness of explanations.

The evaluation landscape is fragmented and often subjective [6], enabling manipulation and weak-
ening comparisons across tasks [7, 8]. To be effective in high-risk settings, metrics must reliably
assess fidelity, robustness, and usability. While regulatory frameworks like the EU AI Act [9, 10] and
ISO 42001 [11] provide legal baselines, effective AI governance also depends on private oversight
mechanisms—technical and institutional processes within organizations that continuously monitor
and verify compliance. This aligns with emerging perspectives on private AI governance, where
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assurance bodies, insurers, and certification consortia use quantitative evaluation for continuous
oversight. XAI metrics can anchor these mechanisms by providing verifiable signals of explainability
quality for use in insurance underwriting, procurement, and certification.

This challenge extends to General Purpose AI (GPAI) systems, where interpretability-based alignment
has shown measurable potential [12, 13]. These findings suggest that explainability metrics can
move beyond evaluation toward behavioral steering—a crucial capability for both private assurance
and regulatory compliance. As GPAI systems become more complex and autonomous, the need for
governance-aligned interpretability becomes critical for ensuring these systems remain accountable
and controllable.

Position: Reliable XAI metrics are essential for technical progress and both private and regulatory
compliance. Advanced systems—particularly General Purpose AI (GPAI) models—demand scalable,
manipulation-resistant evaluation aligned with real-world governance needs. We call for metrics that
are contextually adaptive and serve as instruments for private oversight. By building robust core
metrics and aligning them with both regulatory frameworks and private governance mechanisms, we
can establish consistent, useful evaluation. Collaboration among researchers, industry, and regulators
is key to achieving meaningful, trustworthy, and compliant explanations.

The remainder of this paper is structured as follows: Section 2 provides background on XAI methods
and evaluation metrics; Section 3 identifies key challenges; Section 4 examines mechanistic inter-
pretability advances; Sections 5-6 establish requirements and alternative views; Section 7 outlines
our governance roadmap; Section 8 discusses policy integration; Section 9 concludes; and Section 10
provides an impact statement.

2 Background and Context

Explainable AI (XAI) aims to make complex ML models understandable [14], which is vital in
high-impact domains like healthcare, finance, and law enforcement. Beyond accuracy, systems must
provide transparent, accountable, and comprehensible explanations—especially where outcomes are
consequential [15].

Interpretability, explainability, and feature attribution serve related but distinct goals [16].
Interpretability concerns how readily humans can follow a model’s reasoning; explainability provides
reasons for predictions (e.g., LIME [17], SHAP [18]); attribution quantifies each input’s contribution
to an output. Together, they advance accountability and trust.

2.1 Explainability Methods

Intrinsic explainability [19, 20] uses inherently interpretable models (e.g., decision trees, linear
regression, rule-based systems). These expose decision logic directly but may trade accuracy for
simplicity. Recent work questions the faithfulness of some "inherently interpretable" claims [21], and
attention-based explanations have faced criticism [22, 6].

Post hoc explainability [19, 23] explains trained models without changing them. Notable methods
include SHAP [18], LIME [17], Grad-CAM [24], and Integrated Gradients [25]. These methods are
flexible and widely used but approximate model behavior.

These approaches face limitations: approximations can miss true behavior; explanations may be
inconsistent under small input changes; and they can be manipulated adversarially [26]. Moreover,
with no control over the model, faithfulness can be difficult [6].

Example-based methods compare similar cases; mechanistic interpretability reverse-engineers
internals [27, 28].

2.2 The Role of Evaluation Metrics in XAI

While explainability methods have advanced considerably, their evaluation remains inconsistent,
hindering reproducibility and comparability. Recent progress in quantitative analysis introduced
a broad set of evaluation metrics [29] for assessing reliability and effectiveness [30]. These help
researchers and practitioners assess how well explanations reflect model decision-making and meet
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requirements like transparency, robustness, and usability. Private governance initiatives increasingly
rely on measurable indicators to inform assurance practices—analogous to how financial auditing
depends on standardized accounting principles. Reliable XAI metrics could thus serve as "auditing
primitives" for model interpretability and robustness. Over time, it has become clear that most XAI
metrics can be grouped into six categories:

1. Faithfulness: Metrics measure how well explanations reflect the model’s true decision-
making process, ensuring accuracy and alignment with actual predictions [31, 32].

2. Robustness: Metrics evaluate stability under varying inputs, including adversarial attacks
and perturbations, ensuring explanations maintain integrity across test conditions [33, 34].

3. Localisation: Metrics assess the ability to highlight relevant regions or features that most
influence model decisions, particularly important for image data [35, 36].

4. Complexity: Metrics evaluate simplicity and comprehensibility, ensuring explanations are
accessible to end-users without unnecessary complexity [37].

5. Randomisation (Sensitivity): Metrics examine sensitivity to input data or parameter
changes, ensuring explanations don’t rely on trivial variations [38, 39].

6. Axiomatic: Metrics evaluate inherent properties like consistency, completeness, and preser-
vation across architectures, grounded in theoretical foundations [25, 40].

2.3 Existing Evaluation Frameworks and Benchmarking Tools for Model Explainability

Current evaluation frameworks face significant issues. Many metrics don’t capture real-world model
complexity, and benchmarks lack flexibility across domains. Research suggests shifting focus toward
robustness, generalizability, and actionability, while accounting for model evolution.

M-4 Benchmark [41] and OpenXAI [42] address some gaps but have limitations: M4 focuses on
faithfulness without robustness, OpenXAI relies on synthetic data, and Quantus [8] struggles with
human judgment alignment. Other tools like Captum [43] focus on fairness and attribution but lack
standardized comparison methods.

Specialized libraries like Ferret [44] and Inseq [45] offer contributions: Ferret examines post-hoc
methods but is limited to text models, while Inseq targets NLP sequence generation tasks.

2.4 Distinctive Contributions and Novelty

Unlike prior calls such as M4 [41] and OpenXAI [42], which emphasize benchmark standardization,
our position contributes three new governance-oriented dimensions:

1. Tamper-Resistance: We propose manipulation-resilient metrics that decouple evaluation
hyperparameters from model-specific artifacts, establishing auditability.

2. Regulatory Alignment: We explicitly map metric requirements to global governance
frameworks (EU AI Act, NIST AI RMF [46], ISO/IEC 42001 [11]).

3. Cross-Modality Integration: We extend reliability evaluation to multimodal and agentic
systems, capturing decision-making dependencies across modalities and agents.

4. Private Governance Integration: We position XAI metrics as quantitative instruments
for private oversight—enabling certification, liability assessment, and procurement-based
governance of AI systems, complementing statutory regulation.

By embedding governance principles into metric design, this framework transforms evaluation from
passive assessment to active oversight, offering a distinct governance-by-design pathway that serves
both private and public governance needs.

With this foundation established, we next examine the critical challenges that hinder current XAI
evaluation practices.

3 Challenges in XAI Metrics

Evaluating XAI methods presents several challenges that hinder reliability and adoption. These issues
prevent effective, universally applicable evaluation frameworks needed by regulators, risk managers,

3



and users. Major problems include fragmentation, subjectivity, and manipulation vulnerabilities.
Heavy reliance on hyperparameters creates opportunities to tune for favorable results [7, 47].

3.1 Neglect of Modern AI Models

Current XAI evaluation metrics struggle to capture the complexity of modern AI models, particularly
large language models and autoregressive systems. These models rely on intricate decision-making
processes and large-scale architectures, requiring more adaptable evaluation methods.

Explainability research has mainly focused on image and tabular modalities, with recent efforts
extending to NLP. However, multi-modal AI systems are becoming increasingly common, yet most
XAI methods remain single-modality focused, limiting their applicability to models processing
text, images, and structured data together. Among post-hoc explanation methods, only a few, such
as Layer-wise Relevance Propagation [48] and DLBacktrace [49], extend to multi-modal settings,
leaving a significant evaluation gap.

As multi-modal AI adoption grows, the lack of standardized evaluation frameworks hinders inter-
pretability and trustworthiness across domains. Existing XAI methods fail to capture dependencies
between modalities. For instance, vision-based methods like Grad-CAM fail to explain text contribu-
tions in vision-language models like CLIP, while SHAP and LIME overlook image-based reasoning.
This limitation is particularly critical in applications such as medical AI, where decisions rely on
both textual reports and diagnostic images. Without dedicated multi-modal explainability metrics,
evaluating these models remains inconsistent and unreliable. Addressing this challenge requires new
faithfulness metrics that measure explanation alignment across modalities, along with benchmarking
datasets to establish industry-wide standards.

3.2 Fragmentation and Manipulation Risks

A key challenge is the fragmentation in XAI evaluation due to the lack of standardized frameworks.
Different metrics are used across studies, making comparing results and drawing broad conclusions
hard. This inconsistency slows progress and hinders the development of best practices. Without
a unified system, the field lacks direction, limiting collaboration and advancements in XAI. This
fragmentation mirrors the broader governance challenge—without standardized metrics, explainability
cannot serve as an accountability instrument.

XAI metrics are vulnerable to intentional or unintentional manipulation, which undermines trust in
XAI systems and diminishes their practical value. Examples include adjusting evaluation parameters
to achieve desired outcomes, optimizing explanations to perform well on specific metrics while
not accurately reflecting the model’s true decision-making process, and using adversarial inputs to
create explanations that seem robust but fail in real-world applications. Without tamper-resistant
benchmarks, evaluation risks devolving into explanation theater, weakening both private and public
trust. As recent studies show, the sensitivity of XAI evaluations to hyperparameters—whether tied to
model architecture, attribution baselines, or metric parameters—creates pathways for manipulation.
For example, baseline selection in Integrated Gradients or perturbation order in faithfulness metrics
can drastically shift rankings [50, 25]. This interdependence highlights the need for tamper-resistant
evaluation frameworks capable of maintaining metric stability under parameter variation.

Recent research has increasingly focused on the role of hyperparameters in XAI evaluations and how
they can introduce confounding effects [8]. Studies have explored how sensitive attribution methods
are to explanation hyperparameters like random seed or sample size [51], how baseline choices impact
explanation outcomes [50, 25], and how model changes (optimizer, activation, learning rate, data
splits) influence explanations [52]. Research has also investigated how normalization, randomization
order, and similarity measures affect evaluation outcomes [53, 54].

To address these challenges and establish reliable governance-aligned metrics, we must first examine
the technical foundation provided by recent advances in mechanistic interpretability. These develop-
ments demonstrate how interpretability can move beyond passive explanation toward active alignment
and governance.
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Figure 1: Governance Hierarchy for XAI Evaluation. This pyramid illustrates foundational Trans-
parency & Robustness, building up through Adaptability & Tamper-Resistance and Scalability, to
Regulatory & Legal Aspects.

4 Mechanistic Interpretability and Alignment for Governance

Recent interpretability efforts such as TransformerLens [55], CircuitsVis [56], and Scaling Monose-
manticity [57] reveal neuron-level insights into large models, yet they lack measurable governance
alignment. Recent advances [12, 13] demonstrate that interpretability can directly guide model
alignment, showing that pruning and attribution-aware feedback can enhance both efficiency and
ethical behavior. Such interpretability-guided alignment not only enhances model integrity but also
provides measurable assurance to private auditors verifying alignment claims. This evidence supports
interpretability as a concrete mechanism for aligning General Purpose AI (GPAI) systems under
regulatory scrutiny.

Regulators have increasingly cited "alignment faking" — models simulating ethical behavior without
genuine internal compliance — as a critical governance risk [58]. Embedding interpretability-
guided evaluation within assurance pipelines provides an empirical safeguard against such deception,
bridging technical transparency with legal accountability. Our framework extends evaluation into
agentic and generative systems, establishing metrics to assess transparency, autonomy, and align-
ment drift for private auditors and certification bodies. As AI systems become more complex and
autonomous, the need for governance-aligned interpretability becomes critical for ensuring these
systems remain accountable and controllable. Mechanistic interpretability explains what a model
does; governance-oriented evaluation ensures that what it does remains accountable to both private
oversight mechanisms and regulatory frameworks.

Building on these mechanistic interpretability advances, we now establish the key requirements that
reliable XAI metrics must satisfy to serve as effective governance instruments for both private and
public oversight.

5 Key Requirements for Reliable Metrics

To overcome these challenges, reliable XAI metrics must be developed. These metrics should
establish standard benchmarks for explainability, helping to compare, quantify, and qualify evaluation
results. Standardization will clarify regulatory requirements, minimizing bias in user-preferred
choices [59, 60]. As depicted in Figure 1, reliable metrics must meet the following criteria:

Transparency & Robustness : XAI evaluation metrics must provide clear, consistent insights
into how well an explanation aligns with the model’s decision-making process. Transparent metrics
ensure stakeholder trust. Metrics should assess the stability of explanations under various conditions,
including adversarial inputs and data changes [61]. A robust metric ensures that explanations hold
up under real-world variations, offering consistency and reliability across different environments.
For example, a private auditor evaluating a credit scoring model would require transparent metrics
showing not only which features influenced decisions but also how stable those influences remain
across different applicant populations and temporal periods.

Adaptability & Tamper-Resistance : XAI frameworks should be flexible enough to cater to diverse
domains, such as healthcare or finance, where priorities like interpretability or compliance vary
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[61]. Adaptable metrics ensure their applicability across different sectors, addressing the specific
challenges of each. Moreover, these metrics must incorporate safeguards such as adversarial testing
and regular validation to prevent manipulation, ensuring that explanations are not artificially adjusted
to meet predetermined standards. A healthcare certification body, for instance, must ensure that
explainability metrics for diagnostic AI adapt to clinical workflows while remaining resistant to
manipulation through hyperparameter tuning—a balance essential for both usability and integrity.

Scalability : Scalable explainability metrics are critical for evaluating modern AI systems, particu-
larly large-scale models such as LLMs. Existing explainability metrics are often computationally
expensive, limiting their feasibility for large-scale deployments. As AI models grow in complexity, it
is imperative to develop scalable methods that can provide meaningful explanations without excessive
computational overhead [62]. Certification platforms can batch-evaluate hundreds of models using
scalable explainability benchmarks, enabling efficient assessment across diverse model types and
sizes, from small specialized models to large foundation models, without prohibitive computational
costs.

Regulatory & Legal Aspects : While the EU AI Act formalizes transparency and accountability
obligations, parallel governance frameworks such as NIST’s AI Risk Management Framework
(2023) [46], ISO/IEC 42001 (2024) [11], and Singapore’s Model AI Governance Framework [63]
embody equivalent principles of auditability and traceability. XAI metrics must align with regulatory
frameworks such as the EU AI Act, which mandates transparency and interpretability for high-risk AI
systems [64, 10]. These metrics must help organizations demonstrate compliance by providing clear,
traceable, and auditable explanations. Cross-jurisdictional audit value is enhanced when standardized
metrics enable consistent evaluation across different regulatory regimes, facilitating international
AI governance cooperation. From a legal perspective, XAI metrics must ensure that AI decisions
are explainable and justifiable in court [65], particularly in healthcare and finance sectors where AI
decisions have significant consequences [66, 67].

Together, these criteria define a governance hierarchy that connects technical transparency to regula-
tory verifiability. These requirements inform our governance-by-design approach, which we detail in
the following section.

6 Alternative Views

Needs differ by domain (e.g., clinical vs. financial), so one-size-fits-all metrics can hinder effec-
tiveness [68]. Expert qualitative evaluation complements quantitative metrics to capture context
and nuance [69, 70]. A hybrid approach combines core benchmarks (e.g., fidelity, robustness) with
domain-specific metrics and human input [71].

Industry stakeholders emphasize practical implementation challenges of private governance mecha-
nisms. Technology companies advocate for flexible, market-driven approaches that allow innovation
while maintaining accountability [72]. Insurance providers and certification bodies highlight the
need for standardized metrics that enable risk assessment and liability determination across diverse
AI applications [73, 74]. This diversity of perspectives underscores the importance of adaptable
evaluation frameworks that can accommodate sector-specific requirements while maintaining core
governance principles.

Governance approaches vary significantly across jurisdictions, reflecting different cultural and le-
gal traditions. While the EU emphasizes prescriptive regulatory frameworks, other regions favor
principles-based approaches that rely more heavily on private governance mechanisms [63]. This
variation creates both challenges and opportunities: challenges in achieving cross-border interoper-
ability, but opportunities for regulatory experimentation and learning. Our governance-by-metrics
approach provides a common technical foundation that can adapt to diverse regulatory contexts while
maintaining consistent evaluation standards.

Our framework acknowledges these diverse perspectives by positioning XAI metrics as flexible
governance instruments rather than rigid compliance checklists. The hierarchical model (Figure 1)
accommodates domain-specific adaptations while ensuring core requirements—transparency, ro-
bustness, tamper-resistance—remain non-negotiable. Nonetheless, over-standardization may stifle
methodological innovation if not balanced with domain flexibility. This balance between standardiza-
tion and flexibility enables both private governance innovation and regulatory compliance.
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Figure 2: The Iterative Feedback Loop in XAI Regulation and Governance Compliance. Regulatory
standards influence XAI evaluation metrics and AI models; subsequent real-world adoption and
challenges then refine these standards and metrics to align with evolving AI capabilities.

Having established these requirements, we now present a comprehensive roadmap for implementing
governance-by-metrics in practice.

7 Governance-by-Design: A Three-Phase Roadmap

To address the current gaps in XAI evaluation and ensure the development of reliable, transparent,
and compliant AI systems, we propose a three-phase governance roadmap that embeds accountability
into the evaluation process:

1. Phase I: Metric Integrity Develop transparent, reproducible faithfulness metrics and a
public integrity registry, covering fidelity, robustness, clarity, and comprehensibility.

2. Phase II: Private Assurance & Certification Embed metrics into audits, insurance work-
flows, and certification processes, enabling private governance actors to assess and verify AI
system trustworthiness.

3. Phase III: Regulatory Interoperability Align private metrics with legal frameworks to
ensure traceable compliance across jurisdictions, scalable to advanced models including
LLMs, while maintaining compatibility with private governance mechanisms.

Sectors require tailored emphases (e.g., clinical confidence vs. financial compliance and auditability).
Explainability methods can be computationally heavy, limiting use on large models. Evaluation
must balance efficiency with fidelity to keep interpretability feasible at scale [75]. Collaboration
among academia, industry, and regulators is vital to align metrics with real-world needs, especially in
high-risk areas [76].

For instance, assurance bodies could use standardized explainability metrics to certify model trans-
parency, enabling interoperability across markets while maintaining competitive flexibility. This
phased roadmap is among the first to operationalize governance principles through measurable XAI
metrics, enabling continuous accountability for agentic and generative AI systems.

This roadmap’s success depends on effective integration with broader policy frameworks and private
governance mechanisms. We now examine how XAI metrics can be embedded within existing and
emerging governance structures.

8 Policy Integration: Private and Public Governance Mechanisms

XAI metrics serve as critical instruments for both private and public governance, enabling account-
ability, trust, and compliance across diverse institutional contexts.
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8.1 Private Governance Mechanisms

Third-Party Auditing and Certification: Metrics quantify explanation quality for auditors and
evaluators [77, 78], enabling independent verification by private auditors and certification bodies.
Standardized evaluation frameworks allow these actors to assess model trustworthiness across differ-
ent domains and use cases. For instance, an AI certification body might use standardized explainability
metrics to assess whether a healthcare diagnostic model meets transparency requirements before
hospital procurement. The certification process would evaluate faithfulness scores, robustness under
distribution shift, and consistency across patient demographics—providing hospitals with verifiable
assurance of model trustworthiness.

Insurance and Liability Assessment: Private governance leverages metrics as market instru-
ments—through certification schemes, transparency indices, and risk-adjusted insurance models.
These mechanisms enable self-regulation that complements formal oversight, promoting responsible
AI through economic and reputational incentives. Consider an AI liability insurance policy: insurers
could use explainability metrics to assess risk exposure, offering lower premiums for models demon-
strating high faithfulness and robustness scores. This creates market incentives for developers to
prioritize explainability, complementing regulatory mandates with economic drivers for responsible
AI development.

Procurement-Based Governance: Objective criteria help organizations demonstrate compliance
and foster trustworthy deployment [9], enabling procurement-based governance where purchasing
decisions incorporate explainability requirements.

8.2 Regulatory Integration

Regulatory Compliance: XAI metrics align with legal frameworks (EU AI Act, NIST AI RMF,
ISO/IEC 42001) to create auditable templates that satisfy both technical and legal standards.

Auditability and Traceability: Metrics provide clear, consistent evaluation that improves user confi-
dence, especially in high-stakes domains [79], while ensuring legal traceability and accountability.

Building Trust: Prioritizing fairness, robustness, and transparency aligns XAI with societal values
[80, 81], fostering public confidence in AI systems.

8.3 GPAI Oversight and Cross-Jurisdictional Governance

As governance frameworks evolve, oversight of General Purpose AI (GPAI) models will de-
pend increasingly on measurable interpretability and alignment metrics. Private governance ac-
tors—including insurers, AI assurance labs, and model marketplaces—play crucial roles in GPAI
evaluation, suggesting a need for common explainability metrics that transcend legal boundaries
while remaining auditable. For example, a foundation model marketplace might require explainability
scores as part of model listings, enabling downstream users to assess transparency before integra-
tion. An AI assurance lab could provide independent verification of these scores, creating a trust
infrastructure for GPAI deployment that transcends individual regulatory jurisdictions. Integrating
interpretability-based alignment into private governance infrastructures provides a safeguard against
alignment faking—ensuring that models not only appear compliant but demonstrably behave in
alignment with ethical and legal standards, providing scalable, jurisdiction-agnostic oversight that
complements formal regulation.

8.4 Broader Societal Implications

Advancing Ethical AI: Standardized benchmarks enable comparison, best practices, and faster
progress. Regulation and explainability co-evolve (Figure 2), creating a virtuous cycle where
technical advances inform governance and governance requirements drive technical innovation.
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9 Conclusion

Reliable explainability is the foundation of both public and private algorithmic governance. By
integrating XAI metrics with global frameworks—NIST AI RMF [46], ISO/IEC 42001 [11], OECD
AI Principles [82], and Singapore’s Model AI Governance Framework [63]—this work defines a path
toward measurable, auditable accountability. The Governance-by-Metrics paradigm thus extends
explainability research into the domain of AI governance engineering—embedding transparency,
accountability, and legal verifiability into the very fabric of model evaluation.

Interpretability-guided alignment demonstrates that reliable explanations serve not only as diagnostic
tools but as behavioral governance instruments for GPAI systems, reinforcing the central role of
XAI metrics in both private assurance and regulatory compliance. Despite progress in explainability
methods, evaluation remains fragmented, subjective, and prone to manipulation. Key challenges
include lack of standardization, manipulation risks, limited multi-modal support, and regulatory
misalignment. Without rigorous evaluation, explainability risks becoming a mere regulatory formality.
Advancing beyond theoretical explainability toward standardized, governance-integrated evaluation
frameworks will ensure AI systems remain both accountable and compliant across jurisdictions.

10 Impact Statement

Reliable XAI metrics enable cost-efficient auditing, certification, and insurance underwriting for
AI systems. By embedding interpretability within private governance infrastructures, these metrics
ensure scalable, jurisdiction-agnostic oversight of General Purpose AI. Integrating alignment and
auditability within evaluation transforms explainability into an operational mechanism for responsible
AI deployment.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: No new datasets or code are introduced; all discussed methods and toolkits are
cited from prior public work.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not present new experiments or training runs; it discusses
existing techniques at a conceptual and methodological level.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: No experiments are performed, hence no statistical testing is applicable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No experiments were conducted in this work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work is conceptual, does not involve human subjects, and explicitly
addresses ethical concerns such as risks of misuse, explanation theater, and compliance
(Sections 5 and 7).

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The Impact Statement (Section 10) outlines both positive impacts (auditability,
compliance, trust) and negative risks (bias reinforcement, misuse, adversarial exploitation).

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new datasets or models are released; the work is conceptual.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All prior methods, toolkits, and datasets are properly cited with their original
sources. Referenced libraries such as LIME, SHAP, Captum, Quantus, and DLBacktrace are
open-source and distributed under permissive licenses (e.g., MIT, Apache 2.0); their terms
of use are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets; it synthesizes existing literature.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:No crowdsourcing or human-subject research was conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human participants or personal data.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used as a core methodological component;
they are only discussed as subjects of interpretability research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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